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Preface
Welcome to Precalculus, an OpenStax resource. This textbook was written to increase student access to high-quality 
learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax
OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first 
openly licensed college textbook was published in 2012, and our library has since scaled to over 25 books for college and 
AP® courses used by hundreds of thousands of students. Our adaptive learning technology, designed to improve learning 
outcomes through personalized educational paths, is being piloted in college courses throughout the country. Through our 
partnerships with philanthropic foundations and our alliance with other educational resource organizations, OpenStax is 
breaking down the most common barriers to learning and empowering students and instructors to succeed.

About OpenStax’s Resources
Customization
OpenStax is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means that you can 
distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most 
relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections 
in your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web 
view of your book.

Faculty also have the option of creating a customized version of their OpenStax book through the aerSelect 
platform. The custom version can be made available to students in low-cost print or digital form through their campus 
bookstore. Visit your book page on openstax.org for a link to your book on aerSelect.

Errata

All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors sometimes 
occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary. If you have 
a correction to suggest, submit it through the link on your book page on openstax.org. Subject matter experts review all 
errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list of past 
errata changes on your book page on openstax.org.

Format
You can access this textbook for free in web view or PDF through openstax.org, and for a low cost in print.
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About Precalculus
Precalculus is adaptable and designed to fit the needs of a variety of precalculus courses. It is a comprehensive text that 
covers more ground than a typical one- or two-semester college-level precalculus course. The content is organized by 
clearly-defined learning objectives, and includes worked examples that demonstrate problem-solving approaches in 
an accessible way.
Coverage and Scope

Precalculus contains twelve chapters, roughly divided into three groups.

Chapters 1-4 discuss various types of functions, providing a foundation for the remainder of the course.
Chapter 1: Functions
Chapter 2: Linear Functions
Chapter 3: Polynomial and Rational Functions
Chapter 4: Exponential and Logarithmic Functions

Chapters 5-8 focus on Trigonometry. In Precalculus, we approach trigonometry by first introducing angles and the unit
circle, as opposed to the right triangle approach more commonly used in College Algebra and Trigonometry courses.

Chapter 5: Trigonometric Functions
Chapter 6: Periodic Functions
Chapter 7: Trigonometric Identities and Equations
Chapter 8: Further Applications of Trigonometry

Chapters 9-12 present some advanced Precalculus topics that build on topics introduced in chapters 1-8. Most Precalculus 
syllabi include some of the topics in these chapters, but few include all. Instructors can select material as needed from this 
group of chapters, since they are not cumulative.

Chapter 9:   Systems of Equations and Inequalities
Chapter 10: Analytic Geometry
Chapter 11: Sequences, Probability and Counting Theory
Chapter 12: Introduction to Calculus

All chapters are broken down into multiple sections, the titles of which can be viewed in the Table of Contents.

Development Overview
Precalculus is the product of a collaborative effort by a group of dedicated authors, editors, and instructors whose collective 
passion for this project has resulted in a text that is remarkably unified in purpose and voice. Special thanks is due to our 
Lead Author, Jay Abramson of Arizona State University, who provided the overall vision for the book and oversaw the 
development of each and every chapter, drawing up the initial blueprint, reading numerous drafts, and assimilating field 
reviews into actionable revision plans for our authors and editors.

The first eight chapters are built on the foundation of Precalculus: An Investigation of Functions by David Lippman and 
Melonie Rasmussen. Chapters 9-12 were written and developed from by our expert and highly experienced author team. 
All twelve chapters follow a new and innovative instructional design, and great care has been taken to maintain a consistent 
voice from cover to cover. New features have been introduced to flesh out the instruction, all of the graphics have been 
redone in a more contemporary style, and much of the content has been revised, replaced, or supplemented to bring the 
text more in line with mainstream approaches to teaching precalculus.

Accuracy of the Content
We have taken great pains to ensure the validity and accuracy of this text. Each chapter’s manuscript underwent at least 
two rounds of review and revision by a panel of active precalculus instructors. Then, prior to publication, a separate team 
of experts checked all text, examples, and graphics for mathematical accuracy; multiple reviewers were assigned to each 
chapter to minimize the chances of any error escaping notice. A third team of experts was responsible for the accuracy of 
the Answer Key, dutifully reworking every solution to eradicate any lingering errors. Finally, the editorial team conducted 
a multi-round post-production review to ensure the integrity of the content in its final form was written and developed 
after the Student Edition, has also been rigorously checked for accuracy following a process similar to that described above. 
Incidentally, the act of writing out solutions step-by-step served as yet another round of validation for the Answer Key in 
the back of the Student Edition.
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Pedagogical Foundations and Features
Learning Objectives
Each chapter is divided into multiple sections (or modules), each of which is organized around a set of learning objectives. 
The learning objectives are listed explicitly at the beginning of each section and are the focal point of every instructional 
element.

Narrative Text
Narrative text is used to introduce key concepts, terms, and definitions, to provide real-world context, and to provide 
transitions between topics and examples. Throughout this book, we rely on a few basic conventions to highlight the most 
important ideas:

•	 Key terms are boldfaced, typically when first introduced and/or when formally defined.
•	 Key concepts and definitions are called out in a blue box for easy reference.

Example
Each learning objective is supported by one or more worked examples that demonstrate the problem-solving approaches 
that students must master. Typically, we include multiple Examples for each learning objective in order to model different 
approaches to the same type of problem, or to introduce similar problems of increasing complexity. All told, there are more 
than 650 Examples, or an average of about 55 per chapter.

All Examples follow a simple two- or three-part format. First, we pose a problem or question. Next, we demonstrate the 
Solution, spelling out the steps along the way. Finally (for select Examples), we conclude with an Analysis reflecting on the 
broader implications of the Solution just shown.

Figures
Precalculus contains more than 2000 figures and illustrations, the vast majority of which are graphs and diagrams. Art 
throughout the text adheres to a clear, understated style, drawing the eye to the most important information in each figure 
while minimizing visual distractions. Color contrast is employed with discretion to distinguish between the different 
functions or features of a graph.
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Supporting Features
Four small but important features, each marked by a distinctive icon, serve to support Examples.

A “How To” is a list of steps necessary to solve a certain type of problem. A How To typically precedes an Example that 
proceeds to demonstrate the steps in action.

A “Try It” exercise immediately follows an Example or a set of related Examples, providing the student with an immediate 
opportunity to solve a similar problem. In the Online version of the text, students can click an Answer link directly below 
the question to check their understanding. In other versions, answers to the Try-It exercises are located in the Answer Key.

A “Q & A...” may appear at any point in the narrative, but most often follows an Example. This feature pre-empts 
misconceptions by posing a commonly asked yes/no question, followed by a detailed answer and explanation.

The “Media” links appear at the conclusion of each section, just prior to the Section Exercises. These are a list of links to 
online video tutorials that reinforce the concepts and skills introduced in the section

While we have selected tutorials that closely align to our learning objectives, we did not produce these tutorials, nor were 
they specifically produced or tailored to accompany Precalculus.
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Section Exercises
Each section of every chapter concludes with a well-rounded set of exercises that can be assigned as homework or used 
selectively for guided practice. With over 5,900 exercises across the 12 chapters, instructors should have plenty to choose from[i].

Section Exercises are organized by question type, and generally appear in the following order:
Verbal questions assess conceptual understanding of key terms and concepts.
Algebraic problems require students to apply algebraic manipulations demonstrated in the section.
Graphical problems assess students’ ability to interpret or produce a graph.
Numeric problems require the student perform calculations or computations.
Technology problems encourage exploration through use of a graphing utility, either to visualize or verify algebraic 
results or to solve problems via an alternative to the methods demonstrated in the section.
Extensions pose problems more challenging than the Examples demonstrated in the section. They require students 
to synthesize multiple learning objectives or apply critical thinking to solve complex problems.
Real-World Applications present realistic problem scenarios from fields such as physics, geology, biology, finance, 
and the social sciences.

Chapter Review Features
Each chapter concludes with a review of the most important takeaways, as well as additional practice problems that students 
can use to prepare for exams.x

Key Terms provides a formal definition for each bold-faced term in the chapter.
Key Equations presents a compilation of formulas, theorems, and standard-form equations.
Key Concepts summarizes the most important ideas introduced in each section, linking back to the relevant 
Example(s) in case students need to review.
Chapter Review Exercises include 40-80 practice problems that recall the most important concepts from each section.
Practice Test includes 25-50 problems assessing the most important learning objectives from the chapter. Note that 
the practice test is not organized by section, and may be more heavily weighted toward cumulative objectives as 
opposed to the foundational objectives covered in the opening sections.

Additional Resources

Student and Instructor Resources 
We’ve compiled additional resources for both students and instructors, including Getting Started Guides, instructor solution 
manual, and PowerPoint slides. Instructor resources require a verified instructor account, which can be requested on your 
openstax.org log-in. Take advantage of these resources to supplement your OpenStax book.

Partner Resources
OpenStax Partners are our allies in the mission to make high-quality learning materials affordable and accessible to students 
and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner 
resources for your text, visit your book page on openstax.org.

Online Homework
XYZ Homework is built using the fastest-growing mathematics cloud platform. XYZ Homework gives 
instructors access to the Precalculus aligned problems, organized in the Precalculus Course Template. 
Instructors have access to thousands of additional algorithmically-generated questions for unparalleled 
course customization. For one low annual price, students can take multiple classes through XYZ 
Homework. Learn more at www.xyzhomework.com/openstax.

WebAssign is an independent online homework and assessment solution first launched at North 
Carolina State University in 1997. Today, WebAssign is an employee-owned benefit corporation and 
participates in the education of over a million students each year. WebAssign empowers faculty to deliver 
fully customizable assignments and high quality content to  their students in an interactive online 
environment. WebAssign supports Precalculus with hundreds of problems covering every concept in 
the course, each containing algorithmically-generated values and links directly to the eBook providing 
a completely integrated online learning experience.

i. 5,924 total exercises. Includes Chapter Reviews and Practice Tests.

http://www.xyzhomework.com/openstax
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Figure 1 Standard and Poor’s Index with dividends reinvested  
(credit "bull": modification of work by Prayitno Hadinata; credit "graph": modification of work by MeasuringWorth)

Introduction
Toward the end of the twentieth century, the values of stocks of internet and technology companies rose dramatically. 
As a result, the Standard and Poor’s stock market average rose as well. Figure 1 tracks the value of that initial 
investment of just under $100 over the 40 years. It shows that an investment that was worth less than $500 until about 
1995 skyrocketed up to about $1,100 by the beginning of 2000. That five-year period became known as the “dot-com 
bubble” because so many internet startups were formed. As bubbles tend to do, though, the dot-com bubble eventually 
burst. Many companies grew too fast and then suddenly went out of business. The result caused the sharp decline 
represented on the graph beginning at the end of 2000.

Notice, as we consider this example, that there is a definite relationship between the year and stock market average. 
For any year we choose, we can determine the corresponding value of the stock market average. In this chapter, we 
will explore these kinds of relationships and their properties.

CHAPTeR OUTlIne

1.1  Functions and Function notation
1.2  Domain and Range
1.3  Rates of Change and Behavior of Graphs
1.4  Composition of Functions
1.5  Transformation of Functions
1.6  Absolute Value Functions
1.7  Inverse Functions



CHAPTER 1 Functions2

1.1 FUnCTIOnS AnD FUnCTIOn nOTATIOn

A jetliner changes altitude as its distance from the starting point of a flight increases. The weight of a growing child 
increases with time. In each case, one quantity depends on another. There is a relationship between the two quantities 
that we can describe, analyze, and use to make predictions. In this section, we will analyze such relationships.

Determining Whether a Relation Represents a Function
A relation is a set of ordered pairs. The set of the first components of each ordered pair is called the domain and the 
set of the second components of each ordered pair is called the range. Consider the following set of ordered pairs. The 
first numbers in each pair are the first five natural numbers. The second number in each pair is twice that of the first.

{(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)}

The domain is {1, 2, 3, 4, 5}. The range is {2, 4, 6, 8, 10}.

Note that each value in the domain is also known as an input value, or independent variable, and is often labeled 
with the lowercase letter x. Each value in the range is also known as an output value, or dependent variable, and is 
often labeled lowercase letter y.

A function f is a relation that assigns a single value in the range to each value in the domain. In other words, no 
x-values are repeated. For our example that relates the first five natural numbers to numbers double their values, this 
relation is a function because each element in the domain, {1, 2, 3, 4, 5}, is paired with exactly one element in the range, 
{2, 4, 6, 8, 10}.

Now let’s consider the set of ordered pairs that relates the terms “even” and “odd” to the first five natural numbers. It 
would appear as

{(odd, 1), (even, 2), (odd, 3), (even, 4), (odd, 5)}

Notice that each element in the domain, {even, odd} is not paired with exactly one element in the range, {1, 2, 3, 4, 5}. 
For example, the term “odd” corresponds to three values from the domain, {1, 3, 5} and the term “even” corresponds 
to two values from the range, {2, 4}. This violates the definition of a function, so this relation is not a function. Figure 
1 compares relations that are functions and not functions.

Relation is a Function
Inputs Outputs Inputs Outputs Inputs Outputs

Relation is a Function Relation is NOT a Function

(a) (b) (c)

p

q

r

m

n

p

q

r

x

y

z

p

q

x

y

z

Figure 1 ( a ) This relationship is a function because each input is associated with a single output. note that input q and r both give output n.
( b ) This relationship is also a function. In this case, each input is associated with a single output.  

( c ) This relationship is not a function because input q is associated with two different outputs.

function 
A function is a relation in which each possible input value leads to exactly one output value. We say “the output 
is a function of the input.” The input values make up the domain, and the output values make up the range.

leARnInG OBjeCTIVeS

In this section, you will:
• Determine whether a relation represents a function.
•  Find the value of a function.
•  Determine whether a function is one-to-one.
•  Use the vertical line test to identify functions.
•  Graph the functions listed in the library of functions.
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How To…
Given a relationship between two quantities, determine whether the relationship is a function.

1. Identify the input values.
2. Identify the output values.
3. If each input value leads to only one output value, classify the relationship as a function. If any input value leads to 

two or more outputs, do not classify the relationship as a function.

Example 1 Determining If Menu Price Lists Are Functions

The coffee shop menu, shown in Figure 2 consists of items and their prices.

a. Is price a function of the item?  b. Is the item a function of the price?

Menu

Item Price
Plain Donut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.49
Jelly Donut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.99
Chocolate Donut . . . . . . . . . . . . . . . . . . . . . . . . . . 1.99

Figure 2

Solution 
a.  Let’s begin by considering the input as the items on the menu. The output values are then the prices. See Figure 3.

Menu

Item Price
Plain Donut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.49
Jelly Donut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.99
Chocolate Donut . . . . . . . . . . . . . . . . . . . . . . . . . . 1.99

Figure 3

Each item on the menu has only one price, so the price is a function of the item.

b.  Two items on the menu have the same price. If we consider the prices to be the input values and the items to be 
the output, then the same input value could have more than one output associated with it. See Figure 4.

Menu

Item Price
Plain Donut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.49
Jelly Donut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.99
Chocolate Donut . . . . . . . . . . . . . . . . . . . . . . . . . .    

Figure 4

Therefore, the item is a not a function of price.

Example 2 Determining If Class Grade Rules Are Functions

In a particular math class, the overall percent grade corresponds to a grade point average. Is grade point average a 
function of the percent grade? Is the percent grade a function of the grade point average? Table 1 shows a possible 
rule for assigning grade points.
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Percent grade 0-56 57-61 62-66 67-71 72-77 78-86 87-91 92-100

Grade point average 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Table 1

Solution For any percent grade earned, there is an associated grade point average, so the grade point average is a 
function of the percent grade. In other words, if we input the percent grade, the output is a specific grade point average.

In the grading system given, there is a range of percent grades that correspond to the same grade point average. For 
example, students who receive a grade point average of 3.0 could have a variety of percent grades ranging from 78 all 
the way to 86. Thus, percent grade is not a function of grade point average 

Try It #1

Table 2[1]  lists the five greatest baseball players of all time in order of rank.

Player Rank

Babe Ruth 1

Willie Mays 2

Ty Cobb 3

Walter Johnson 4

Hank Aaron 5

Table 2 

a. Is the rank a function of the player name? 
b. Is the player name a function of the rank?

Using Function Notation

Once we determine that a relationship is a function, we need to display and define the functional relationships so 
that we can understand and use them, and sometimes also so that we can program them into computers. There are 
various ways of representing functions. A standard function notation is one representation that facilitates working 
with functions.

To represent “height is a function of age,” we start by identifying the descriptive variables h for height and a for age. 
The letters f, g, and h are often used to represent functions just as we use x, y, and z to represent numbers and A, B, and 
C to represent sets.

 h is f of a We name the function f ; height is a function of age.
 h = f (a) We use parentheses to indicate the function input. 
 f (a) We name the function f ; the expression is read as “f of a.”

Remember, we can use any letter to name the function; the notation h(a) shows us that h depends on a. The value a must 
be put into the function h to get a result. The parentheses indicate that age is input into the function; they do not 
indicate multiplication.

We can also give an algebraic expression as the input to a function. For example f (a + b) means “first add a and b, and 
the result is the input for the function f. ” The operations must be performed in this order to obtain the correct result.

function notation 
The notation y = f (x) defines a function named f. This is read as “y is a function of x.” The letter x represents the input 
value, or independent variable. The letter y, or f (x), represents the output value, or dependent variable.

1 http://www.baseball-almanac.com/legendary/lisn100.shtml. Accessed 3/24/2014.

http://www.baseball-almanac.com/legendary/lisn100.shtml
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Example 3 Using Function Notation for Days in a Month

Use function notation to represent a function whose input is the name of a month and output is the number of days in  
that month.

Solution The number of days in a month is a function of the name of the month, so if we name the function f, we 
write days = f (month) or d = f (m). The name of the month is the input to a “rule” that associates a specific number 
(the output) with each input.

31�f (January)

output input
rule

Figure 5

For example, f (March) = 31, because March has 31 days. The notation d = f (m) reminds us that the number of days, 
d (the output), is dependent on the name of the month, m(the input).

Analysi s Note that the inputs to a function do not have to be numbers; function inputs can be names of people, labels 
of geometric objects, or any other element that determines some kind of output. However, most of the functions we will 
work with in this book will have numbers as inputs and outputs.

Example 4 Interpreting Function Notation

A function N = f (y) gives the number of police officers, N, in a town in year y. What does f (2005) = 300 represent?

Solution When we read f (2005) = 300, we see that the input year is 2005. The value for the output, the number of 
police officers (N), is 300. Remember N = f (y). The statement f (2005) = 300 tells us that in the year 2005 there were 
300 police officers in the town.

Try It #2

Use function notation to express the weight of a pig in pounds as a function of its age in days d.

Q & A…
Instead of a notation such as y = f (x), could we use the same symbol for the output as for the function, such as 
y = y (x), meaning “y is a function of x?”

Yes, this is often done, especially in applied subjects that use higher math, such as physics and engineering. 
However, in exploring math itself we like to maintain a distinction between a function such as f, which is a rule or 
procedure, and the output y we get by applying f to a particular input x. This is why we usually use notation such as  
y = f (x), P = W(d), and so on.

Representing Functions Using Tables

A common method of representing functions is in the form of a table. The table rows or columns display the 
corresponding input and output values. In some cases, these values represent all we know about the relationship; 
other times, the table provides a few select examples from a more complete relationship.

Table 3 lists the input number of each month (January = 1, February = 2, and so on) and the output value of the 
number of days in that month. This information represents all we know about the months and days for a given year 
(that is not a leap year). Note that, in this table, we define a days-in-a-month function f where D = f (m) identifies months 
by an integer rather than by name.

Month number, m (input) 1 2 3 4 5 6 7 8 9 10 11 12

Days in month, D (output) 31 28 31 30 31 30 31 31 30 31 30 31
Table 3
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Table 4 defines a function Q = g (n). Remember, this notation tells us that g is the name of the function that takes the 
input n and gives the output Q.

n 1 2 3 4 5

Q 8 6 7 6 8
Table 4

Table 5 below displays the age of children in years and their corresponding heights. This table displays just some of the 
data available for the heights and ages of children. We can see right away that this table does not represent a function 
because the same input value, 5 years, has two different output values, 40 in. and 42 in.

Age in years, a (input) 5 5 6 7 8 9 10

Height in inches, h (output) 40 42 44 47 50 52 54

Table 5

How To…
Given a table of input and output values, determine whether the table represents a function.

1. Identify the input and output values.
2. Check to see if each input value is paired with only one output value. If so, the table represents a function.

Example 5 Identifying Tables that Represent Functions

Which table, Table 6, Table 7, or Table 8, represents a function (if any)?
  

Input Output

2 1

5 3

8 6

  
Input Output

−3 5

0 1

4 5

  Input Output

1 0

5 2

5 4

Solution Table 6 and Table 7 define functions. In both, each input value corresponds to exactly one output value. 
Table 8 does not define a function because the input value of 5 corresponds to two different output values.

When a table represents a function, corresponding input and output values can also be specified using function 
notation.

The function represented by Table 6 can be represented by writing

f (2) = 1, f (5) = 3, and f (8) = 6

Similarly, the statements

g (−3) = 5, g (0) = 1, and g (4) = 5

represent the function in table Table 7.

Table 8 cannot be expressed in a similar way because it does not represent a function.

Try It #3

Does Table 9 represent a function? Input Output

1 10

2 100

3 1000

Table 9  

Table 6 Table 7 Table 8 
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Finding Input and Output Values of a Function
When we know an input value and want to determine the corresponding output value for a function, we evaluate the 
function. Evaluating will always produce one result because each input value of a function corresponds to exactly one 
output value.

When we know an output value and want to determine the input values that would produce that output value, we set 
the output equal to the function’s formula and solve for the input. Solving can produce more than one solution because 
different input values can produce the same output value.

Evaluation of Functions in Algebraic Forms

When we have a function in formula form, it is usually a simple matter to evaluate the function. For example, the 
function f (x) = 5 − 3x 2 can be evaluated by squaring the input value, multiplying by 3, and then subtracting the 
product from 5.

How To…
Given the formula for a function, evaluate.

1. Replace the input variable in the formula with the value provided.
2. Calculate the result.

Example 6 Evaluating Functions at Specific Values

Evaluate f(x) = x 2 + 3x − 4 at:

a. 2  b. a  c. a + h  d.    
f (a + h) − f (a)

  __ 
h

    

Solution   Replace the x in the function with each specified value.
a. Because the input value is a number, 2, we can use simple algebra to simplify.

 f (2) = 22 + 3(2) − 4
 = 4 + 6 − 4
 = 6

b. In this case, the input value is a letter so we cannot simplify the answer any further.

 f (a) = a2 + 3a − 4
c. With an input value of a + h, we must use the distributive property.

 f (a + h) = (a + h)2 + 3(a + h) − 4
 = a2 + 2ah + h2 + 3a + 3h −4 

d.  In this case, we apply the input values to the function more than once, and then perform algebraic operations 
on the result. We already found that

 f (a + h) = a2 + 2ah + h2 + 3a + 3h − 4
and we know that
 f(a) = a2 + 3a − 4

Now we combine the results and simplify.

    
f (a + h) − f(a)

  __ 
h

    =     
(a2 + 2ah + h2 + 3a + 3h − 4) − (a2 + 3a − 4)

    ____   
h

   

 =    2ah + h2 + 3h  ___________ h   

 =    h(2a + h + 3)  ___________ h    Factor out h.

 = 2a + h + 3  Simplify.
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Example 7 Evaluating Functions

Given the function h(p) = p2 + 2p, evaluate h(4).

Solution  To evaluate h(4), we substitute the value 4 for the input variable p in the given function.

 h(p) = p2 + 2p

 h(4) = (4)2 +2 (4)

 = 16 + 8

 = 24

Therefore, for an input of 4, we have an output of 24. 

Try It #4  

Given the function g(m) =   √
—

 m − 4   . Evaluate g(5).

Example 8 Solving Functions

Given the function h(p) = p2 + 2p, solve for h(p) = 3.

Solution h(p) = 3

 p2 + 2p = 3 Substitute the original function h(p) = p2 + 2p.

 p2 + 2p − 3 = 0 Subtract 3 from each side.

 (p + 3)(p − 1) = 0 Factor.

If (p + 3)(p − 1) = 0, either (p + 3) = 0 or (p − 1) = 0 (or both of them equal 0). We will set each factor equal to 0 
and solve for p in each case. 
 (p + 3) = 0, p = −3

 (p − 1) = 0, p = 1

This gives us two solutions. The output h(p) = 3 when the input is either p = 1 or p = −3. We can also verify by 
graphing as in Figure 6. The graph verifies that h(1) = h(−3) = 3 and h(4) = 24.

35
30
25
20
15
10

5

1 2 3 4 5
p

h(p)

p –3 –2 0 1 4
h(p) 3 0 0 3 24

Figure 6 

Try It #5

Given the function g(m) =   √
—

 m − 4   , solve g(m) = 2.

Evaluating Functions Expressed in Formulas

Some functions are defined by mathematical rules or procedures expressed in equation form. If it is possible to express 
the function output with a formula involving the input quantity, then we can define a function in algebraic form. For 
example, the equation 2n + 6p = 12 expresses a functional relationship between n and p. We can rewrite it to decide 
if p is a function of n.
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How To…
Given a function in equation form, write its algebraic formula.

1. Solve the equation to isolate the output variable on one side of the equal sign, with the other side as an expression 
that involves only the input variable.

2. Use all the usual algebraic methods for solving equations, such as adding or subtracting the same quantity to or 
from both sides, or multiplying or dividing both sides of the equation by the same quantity.

Example 9 Finding an Equation of a Function

Express the relationship 2n + 6p = 12 as a function p = f (n), if possible.

Solution To express the relationship in this form, we need to be able to write the relationship where p is a function 
of n, which means writing it as p = [expression involving n].

 2n + 6p = 12

 6p = 12 − 2n Subtract 2n from both sides.

 p =    12 − 2n _______ 6    Divide both sides by 6 and simplify.

 p =    12 __ 6    −    2n ___ 6   

 p = 2 −    1 __ 3   n

Therefore, p as a function of n is written as

 p = f (n) = 2 −    1 __ 3   n

Analysi s It is important to note that not every relationship expressed by an equation can also be expressed as a function 
with a formula.

Example 10 Expressing the Equation of a Circle as a Function

Does the equation x2 + y2 = 1 represent a function with x as input and y as output? If so, express the relationship as 
a function y = f (x).

Solution First we subtract x2 from both sides.

 y2 = 1 − x2

We now try to solve for y in this equation.

 y = ±  √
—

 1 − x2   

 = +  √
—

 1 − x2    and −  √
—

 1 − x2   

We get two outputs corresponding to the same input, so this relationship cannot be represented as a single function 
y = f (x).

Try It #6

If x − 8y 3 = 0, express y as a function of x.

Q & A…
Are there relationships expressed by an equation that do represent a function but which still cannot be represented 
by an algebraic formula?

Yes, this can happen. For example, given the equation x = y + 2y, if we want to express y as a function of x, there is no 
simple algebraic formula involving only x that equals y. However, each x does determine a unique value for y, and there 
are mathematical procedures by which y can be found to any desired accuracy. In this case, we say that the equation 
gives an implicit (implied) rule for y as a function of x, even though the formula cannot be written explicitly.
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Evaluating a Function Given in Tabular Form

As we saw above, we can represent functions in tables. Conversely, we can use information in tables to write functions, 
and we can evaluate functions using the tables. For example, how well do our pets recall the fond memories we share 
with them? There is an urban legend that a goldfish has a memory of 3 seconds, but this is just a myth. Goldfish can 
remember up to 3 months, while the beta fish has a memory of up to 5 months. And while a puppy’s memory span 
is no longer than 30 seconds, the adult dog can remember for 5 minutes. This is meager compared to a cat, whose 
memory span lasts for 16 hours.

The function that relates the type of pet to the duration of its memory span is more easily visualized with the use of a 
table. See Table 10.[2] 

Pet Memory span in hours
Puppy 0.008

Adult dog 0.083
Cat 16

Goldfish 2160
Beta fish 3600

Table 10

At times, evaluating a function in table form may be more useful than using equations. Here let us call the function P. 
The domain of the function is the type of pet and the range is a real number representing the number of hours the pet’s 
memory span lasts. We can evaluate the function P at the input value of “goldfish.” We would write P(goldfish) = 2160. 
Notice that, to evaluate the function in table form, we identify the input value and the corresponding output value 
from the pertinent row of the table. The tabular form for function P seems ideally suited to this function, more so than 
writing it in paragraph or function form.

How To…
Given a function represented by a table, identify specific output and input values.

1. Find the given input in the row (or column) of input values.
2. Identify the corresponding output value paired with that input value.
3.  Find the given output values in the row (or column) of output values, noting every time that output value appears.
4. Identify the input value(s) corresponding to the given output value.

Example 11 Evaluating and Solving a Tabular Function

Using Table 11,

a. Evaluate g(3)  b. Solve g(n) = 6.

n 1 2 3 4 5
g (n) 8 6 7 6 8

Table 11

Solution 

a.  Evaluating g (3) means determining the output value of the function g for the input value of n = 3. The table 
output value corresponding to n = 3 is 7, so g (3) = 7.

b.  Solving g (n) = 6 means identifying the input values, n, that produce an output value of 6. Table 11 shows two 
solutions: 2 and 4. When we input 2 into the function g, our output is 6. When we input 4 into the function g, 
our output is also 6. 

2 http://www.kgbanswers.com/how-long-is-a-dogs-memory-span/4221590. Accessed 3/24/2014.

http://www.kgbanswers.com/how-long-is-a-dogs-memory-span/4221590
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Try It #7

Using Table 11, evaluate g(1).

Finding Function Values from a Graph

Evaluating a function using a graph also requires finding the corresponding output value for a given input value, only 
in this case, we find the output value by looking at the graph. Solving a function equation using a graph requires finding 
all instances of the given output value on the graph and observing the corresponding input value( s ). 

Example 12 Reading Function Values from a Graph

Given the graph in Figure 7, 

a. Evaluate f (2). b. Solve f (x) = 4.

4

2

–1–1–2

2

–3

–
–

3

–4–5

1

3

3

21 4

5
6
7

5

f (x)

Figure 7

Solution

a.  To evaluate f (2), locate the point on the curve where x = 2, then read the y-coordinate of that point. The point 
has coordinates (2, 1), so f (2) = 1. See Figure 8.

(2, 1)
f (2) = 1

f (x)

4

2

–1–1–2

2

–3

–
–

3

–4–5

1

3

3

21 4

5
6
7

5

Figure 8

b.  To solve f (x) = 4, we find the output value 4 on the vertical axis. Moving horizontally along the line y = 4, we 
locate two points of the curve with output value 4: (−1, 4) and (3, 4). These points represent the two solutions to 
f (x) = 4: −1 or 3. This means f (−1) = 4 and f (3) = 4, or when the input is −1 or 3, the output is 4. See Figure 9.

4

2

–1–1–2

2

–3

–
–

3

–4–5

1

3

3

21 4

5
6
7

5

(3, 4)(−1, 4)

f (x)

Figure 9
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Try It #8

Using Figure 7, solve f (x) = 1.

Determining Whether a Function is One-to-One
Some functions have a given output value that corresponds to two or more input values. For example, in the stock 
chart shown in Figure 1 at the beginning of this chapter, the stock price was $1,000 on five different dates, meaning 
that there were five different input values that all resulted in the same output value of $1,000.

However, some functions have only one input value for each output value, as well as having only one output for each 
input. We call these functions one-to-one functions. As an example, consider a school that uses only letter grades and 
decimal equivalents, as listed in Table 12.

Letter grade Grade point average
A 4.0
B 3.0
C 2.0
D 1.0

Table 12

This grading system represents a one-to-one function, because each letter input yields one particular grade point 
average output and each grade point average corresponds to one input letter.

To visualize this concept, let’s look again at the two simple functions sketched in Figure 1(a) and Figure 1(b). The 
function in part ( a) shows a relationship that is not a one-to-one function because inputs q and r both give output 
n. The function in part (b ) shows a relationship that is a one-to-one function because each input is associated with a 
single output.

one-to-one function 
A one-to-one function is a function in which each output value corresponds to exactly one input value.

Example 13 Determining Whether a Relationship Is a One-to-One Function

Is the area of a circle a function of its radius? If yes, is the function one-to-one?

Solution A circle of radius r has a unique area measure given by A = πr 2, so for any input, r, there is only one output, 
A. The area is a function of radius r.

If the function is one-to-one, the output value, the area, must correspond to a unique input value, the radius. Any area 
measure A is given by the formula A = πr2. Because areas and radii are positive numbers, there is exactly one solution:  

r =   √ 
___

   A __ π       So the area of a circle is a one-to-one function of the circle’s radius.

Try It #9

a. Is a balance a function of the bank account number? 
b. Is a bank account number a function of the balance? 
c. Is a balance a one-to-one function of the bank account number?

Try It #10

a.  If each percent grade earned in a course translates to one letter grade, is the letter grade a function of the percent 
grade?

b. If so, is the function one-to-one?
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Using the Vertical line Test
As we have seen in some examples above, we can represent a function using a graph. Graphs display a great many 
input-output pairs in a small space. The visual information they provide often makes relationships easier to understand. 
By convention, graphs are typically constructed with the input values along the horizontal axis and the output values 
along the vertical axis.

The most common graphs name the input value x and the output value y, and we say y is a function of x, or y = f (x) 
when the function is named f. The graph of the function is the set of all points (x, y) in the plane that satisfies the 
equation y = f (x). If the function is defined for only a few input values, then the graph of the function is only a few 
points, where the x-coordinate of each point is an input value and the y-coordinate of each point is the corresponding 
output value. For example, the black dots on the graph in Figure 10 tell us that f (0) = 2 and f (6) = 1. However, the 
set of all points (x, y) satisfying y = f (x) is a curve. The curve shown includes (0, 2) and (6, 1) because the curve passes 
through those points.

y

x

Figure 10

The vertical line test can be used to determine whether a graph represents a function. If we can draw any vertical line 
that intersects a graph more than once, then the graph does not define a function because a function has only one 
output value for each input value. See Figure 11.

Function Not a Function Not a Function

Figure 11

How To…
Given a graph, use the vertical line test to determine if the graph represents a function.

1. Inspect the graph to see if any vertical line drawn would intersect the curve more than once.
2. If there is any such line, determine that the graph does not represent a function.
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Example 14 Applying the Vertical Line Test

Which of the graphs in Figure 12 represent( s ) a function y = f (x)?

x

f (x) y

(a) (b) (c)

5
4
3
2
1

 4 5 6 7 8 9 10 11 12
x x

f (x)

Figure 12

Solution If any vertical line intersects a graph more than once, the relation represented by the graph is not a function. 
Notice that any vertical line would pass through only one point of the two graphs shown in parts ( a) and (b) of Figure 
12. From this we can conclude that these two graphs represent functions. The third graph does not represent a function 
because, at most x-values, a vertical line would intersect the graph at more than one point, as shown in Figure 13.

x

y

Figure 13

Try It #11

Does the graph in Figure 14 represent a function? 

x

y

Figure 14
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Using the Horizontal line Test
Once we have determined that a graph defines a function, an easy way to determine if it is a one-to-one function is 
to use the horizontal line test. Draw horizontal lines through the graph. If any horizontal line intersects the graph 
more than once, then the graph does not represent a one-to-one function.

How To…
Given a graph of a function, use the horizontal line test to determine if the graph represents a one-to-one function.

1. Inspect the graph to see if any horizontal line drawn would intersect the curve more than once.
2. If there is any such line, determine that the function is not one-to-one.

Example 15 Horizontal Line Test 

Consider the functions shown in Figure 12(a) and Figure 12(b). Are either of the functions one-to-one?

Solution The function in Figure 12(a) is not one-to-one. The horizontal line shown in Figure 15 intersects the graph 
of the function at two points (and we can even find horizontal lines that intersect it at three points.)

x

f (x)

Figure 15

The function in Figure 12(b) is one-to-one. Any horizontal line will intersect a diagonal line at most once.

Try It #12

Is the graph shown here one-to-one?   

x

y

Identifying Basic Toolkit Functions
In this text, we will be exploring functions—the shapes of their graphs, their unique characteristics, their algebraic 
formulas, and how to solve problems with them. When learning to read, we start with the alphabet. When learning 
to do arithmetic, we start with numbers. When working with functions, it is similarly helpful to have a base set of 
building-block elements. We call these our “toolkit functions,” which form a set of basic named functions for which 
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we know the graph, formula, and special properties. Some of these functions are programmed to individual buttons 
on many calculators. For these definitions we will use x as the input variable and y = f (x) as the output variable.

We will see these toolkit functions, combinations of toolkit functions, their graphs, and their transformations 
frequently throughout this book. It will be very helpful if we can recognize these toolkit functions and their features 
quickly by name, formula, graph, and basic table properties. The graphs and sample table values are included with 
each function shown in Table 13.

Toolkit Functions
Name Function Graph

Constant f (x) = c, where c is a constant x –2 2
0 2

2 2

x f(x)

f (x)

Identity f (x) = x x

x f(x)
–2 –2
0 0

2 2

f (x)

Absolute value f (x) =   ∣ x ∣  x

f (x)

–2 2
0 0

2 2

x f(x)

Quadratic f (x) = x2 x

–2 4
–1 1

0 0
1 1
2 4

x f(x)

f (x)

Cubic f (x) = x3 x

–1 –1
–0.5 –0.125

0 0
0.5 0.125
1 1

x f(x)

f (x)
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Reciprocal f (x) =    1 __ x   x

–2 –0.5
–1 –1

–0.5 –2
0.5 2
1 1
2 0.5

x f(x)f (x)

Reciprocal squared f (x) =    1 _ 
x 2

   x

–2 0.25
–1 1

–0.5 4
0.5 4
1 1
2 0.25

x f(x)f (x)

Square root f (x) =   √—
 x   x 0 0

1 1

4 2

x f(x)

f (x)

Cube root f (x) =    3 √
—
 x   x

–1 –1
–0.125 –0.5

0 0
0.125 0.5
1 1

x f(x)

f (x)

Table 13

Access the following online resources for additional instruction and practice with functions.

•	 Determine if a Relation is a Function (http://openstaxcollege.org/l/relationfunction)

•	 Vertical line Test (http://openstaxcollege.org/l/vertlinetest)

•	 Introduction to Functions (http://openstaxcollege.org/l/introtofunction)

•	 Vertical line Test of Graph (http://openstaxcollege.org/l/vertlinegraph)

•	 One-to-one Functions (http://openstaxcollege.org/l/onetoone)

•	 Graphs as One-to-one Functions (http://openstaxcollege.org/l/graphonetoone)

http://openstaxcollege.org/l/relationfunction
http://openstaxcollege.org/l/vertlinetest
http://openstaxcollege.org/l/introtofunction
http://openstaxcollege.org/l/vertlinegraph
http://openstaxcollege.org/l/onetoone
http://openstaxcollege.org/l/graphonetoone
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1.1 SeCTIOn exeRCISeS

VeRBAl

1. What is the difference between a relation and  
a function?

2. What is the difference between the input and the 
output of a function?

3. Why does the vertical line test tell us whether the 
graph of a relation represents a function?

4. How can you determine if a relation is a one-to-one 
function?

5. Why does the horizontal line test tell us whether  
the graph of a function is one-to-one?

AlGeBRAIC

For the following exercises, determine whether the relation represents a function.

6. {(a, b), (c, d), (a, c)} 7. {(a, b),(b, c),(c, c)}

For the following exercises, determine whether the relation represents y as a function of x.
8. 5x + 2y = 10 9. y = x 2 10. x = y 2

11. 3x 2 + y = 14 12. 2x + y 2 = 6 13. y = −2x 2 + 40x

14. y =    1 __ x   15. x =    3y + 5 ______ 7y − 1   16. x =   √
—

 1 − y 2   

17. y =    3x + 5 ______ 7x − 1   18. x 2 + y 2 = 9 19. 2xy = 1

20. x = y 3 21. y = x 3 22. y =   √
—

 1 − x 2   

23. x = ±  √
—

 1 − y   24. y = ±  √
—

 1 − x   25. y 2 = x 2

26. y 3 = x 2

For the following exercises, evaluate the function f at the indicated values f (−3), f (2), f (−a), −f (a), f (a + h).

27. f (x) = 2x − 5 28. f (x) = −5x 2 + 2x − 1 29. f (x) =   √
—

 2 − x    + 5

30. f (x) =    6x − 1 ______ 5x + 2   31. f (x) =   ∣ x − 1 ∣   −   ∣ x + 1 ∣  

32. Given the function g(x) = 5 − x 2, evaluate    
g(x + h) − g(x)

  __ 
h

   , h ≠ 0 

33. Given the function g(x) = x 2 + 2x, evaluate    
g(x) − g(a)

 _ x − a   ,  x ≠ a

34. Given the function k(t) = 2t − 1:
a. Evaluate k(2).
b. Solve k(t) = 7.

35. Given the function f (x) = 8 − 3x:
a. Evaluate f (−2).
b. Solve f (x) = −1.

36. Given the function p(c) = c 2 + c:
a. Evaluate p(−3).
b. Solve p(c) = 2.

37. Given the function f (x) = x2 − 3x
a. Evaluate f (5).
b. Solve f (x) = 4

38. Given the function f (x) =   √
—

 x + 2   :
a. Evaluate f (7).
b. Solve f (x) = 4

39. Consider the relationship 3r + 2t = 18.
a. Write the relationship as a function r = f (t).
b. Evaluate f (−3).
c. Solve f (t) = 2.
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GRAPHICAl

For the following exercises, use the vertical line test to determine which graphs show relations that are functions.

40. 
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y
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y 44. 45. 
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x
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x

y

x

y
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52. Given the following graph
a. Evaluate f (−1).
b. Solve for f (x) = 3.

53. Given the following graph
a. Evaluate f (0).
b. Solve for f (x) = −3.

54. Given the following graph
a. Evaluate f (4).
b. Solve for f (x) = 1.

For the following exercises, determine if the given graph is a one-to-one function.
55. 
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nUMeRIC
For the following exercises, determine whether the relation represents a function.

60. {(−1, −1),(−2, −2),(−3, −3)} 61. {(3, 4),(4, 5),(5, 6)} 62. {(2, 5),(7, 11),(15, 8),(7, 9)}

For the following exercises, determine if the relation represented in table form represents y as a function of x.

63.  x 5 10 15
y 3 8 14

64.  x 5 10 15
y 3 8 8

65.  x 5 10 10
y 3 8 14

For the following exercises, use the function f represented in Table 14 below.

x 0 1 2 3 4 5 6 7 8 9
f (x) 74 28 1 53 56 3 36 45 14 47

Table 14

66. Evaluate f (3). 67. Solve f (x) = 1

2
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For the following exercises, evaluate the function f at the values f (−2), f (−1), f (0), f (1), and f (2).

68. f (x) = 4 − 2x 69. f (x) = 8 − 3x 70. f (x) = 8x2 − 7x + 3

71. f (x) = 3 +   √
—

 x + 3   72. f (x) =    x − 2 _____ x + 3   73. f (x) = 3x

For the following exercises, evaluate the expressions, given functions f, g, and h:

f (x) = 3x − 2  g(x) = 5 − x2  h(x) = −2x2 + 3x − 1

74. 3f (1) − 4g(−2) 75. f       7 __ 3      − h(−2)

TeCHnOlOGY

For the following exercises, graph y = x2 on the given viewing window. Determine the corresponding range for each 
viewing window. Show each graph.

76. [−0.1, 0.1] 77. [−10, 10] 78. [−100, 100]

For the following exercises, graph y = x3 on the given viewing window. Determine the corresponding range for each 
viewing window. Show each graph.

79. [−0.1, 0.1] 80. [−10, 10] 81. [−100, 100]

For the following exercises, graph y =     √
—
 x    on the given viewing window. Determine the corresponding range for each 

viewing window. Show each graph.
82. [0, 0.01] 83. [0, 100] 84. [0, 10,000]

For the following exercises, graph y =    3 √
—
 x    on the given viewing window. Determine the corresponding range for each 

viewing window. Show each graph.
85. [−0.001, 0.001] 86. [−1,000, 1,000] 87. [−1,000,000, 1,000,000]

ReAl-WORlD APPlICATIOnS
88. The amount of garbage, G, produced by a city with 

population p is given by G = f (p). G is measured in 
tons per week, and p is measured in thousands of 
people.
a. The town of Tola has a population of 40,000 and 

produces 13 tons of garbage each week. Express 
this information in terms of the function f. 

b. Explain the meaning of the statement f (5) = 2.

89. The number of cubic yards of dirt, D, needed to 
cover a garden with area a square feet is given by 
D = g(a).
a. A garden with area 5,000 ft2 requires 50 yd3 of 

dirt. Express this information in terms of the 
function g.

b. Explain the meaning of the statement g(100) = 1.

90. Let f (t) be the number of ducks in a lake t years after 
1990. Explain the meaning of each statement:
a. f (5) = 30
b. f (10) = 40

91. Let h(t) be the height above ground, in feet, of 
a rocket t seconds after launching. Explain the 
meaning of each statement:
a. h(1) = 200
b. h(2) = 350

92. Show that the function f (x) = 3(x − 5)2 + 7 is not 
one-to-one.
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1. 2 DOMAIn AnD RAnGe

If you’re in the mood for a scary movie, you may want to check out one of the five most popular horror movies of all 
time—I am Legend, Hannibal, The Ring, The Grudge, and The Conjuring. Figure 1 shows the amount, in dollars, each 
of those movies grossed when they were released as well as the ticket sales for horror movies in general by year. Notice 
that we can use the data to create a function of the amount each movie earned or the total ticket sales for all horror 
movies by year. In creating various functions using the data, we can identify different independent and dependent 
variables, and we can analyze the data and the functions to determine the domain and range. In this section, we will 
investigate methods for determining the domain and range of functions such as these. 
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Figure 1 Based on data compiled by www.the-numbers.com.[3] 

Finding the Domain of a Function Defined by an equation 
In Functions and Function Notation, we were introduced to the concepts of domain and range. In this section, we 
will practice determining domains and ranges for specific functions. Keep in mind that, in determining domains and 
ranges, we need to consider what is physically possible or meaningful in real-world examples, such as tickets sales and 
year in the horror movie example above. We also need to consider what is mathematically permitted. For example, 
we cannot include any input value that leads us to take an even root of a negative number if the domain and range 
consist of real numbers. Or in a function expressed as a formula, we cannot include any input value in the domain 
that would lead us to divide by 0. 

We can visualize the domain as a “holding area” that contains “raw materials” for a “function machine” and the range 
as another “holding area” for the machine’s products. See Figure 2.

Domain Function
machinea

b
c

x
y
z

Range

Figure 2

We can write the domain and range in interval notation, which uses values within brackets to describe a set of 
numbers. In interval notation, we use a square bracket [when the set includes the endpoint and a parenthesis (to 
indicate that the endpoint is either not included or the interval is unbounded. For example, if a person has $100 to 
spend, he or she would need to express the interval that is more than 0 and less than or equal to 100 and write (0, 100]. 
We will discuss interval notation in greater detail later. 
3 The Numbers: Where Data and the Movie Business Meet. “Box Office History for Horror Movies.” http://www.the-numbers.com/market/genre/Horror. Accessed 3/24/2014

leARnInG OBjeCTIVeS

In this section, you will:
•	  Find the domain of a function defined by an equation. 
•	  Graph piecewise-defined functions. 

http://www.the-numbers.com
http://www.the-numbers.com/market/genre/Horror
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Let’s turn our attention to finding the domain of a function whose equation is provided. Oftentimes, finding the 
domain of such functions involves remembering three different forms. First, if the function has no denominator or an 
even root, consider whether the domain could be all real numbers. Second, if there is a denominator in the function’s 
equation, exclude values in the domain that force the denominator to be zero. Third, if there is an even root, consider 
excluding values that would make the radicand negative. 

Before we begin, let us review the conventions of interval notation: 

•	 The smallest term from the interval is written first. 

•	 The largest term in the interval is written second, following a comma. 

•	 Parentheses, (or), are used to signify that an endpoint is not included, called exclusive. 

•	 Brackets, [or], are used to indicate that an endpoint is included, called inclusive. 

See Figure 3 for a summary of interval notation.

Inequality Interval Notation Graph on Number Line Description

x > a (a, ∞)
a
( x is greater than a

x < a (−∞, a)
a

( x is less than a

x ≥ a [a, ∞)
a
[ x is greater than or equal to a

x ≤ a (−∞, a]
a
] x is less than or equal to a

a < x < b (a, b)
a b
( ( x is strictly between a and b

a ≤ x < b [a, b)
a b

([ x is between a and b, to include a 

a < x ≤ b (a, b]
a b

]( x is between a and b, to include b

a ≤ x ≤ b [a, b]
a b
[ ] x is between a and b, to include a and b

Figure 3  

Example 1 Finding the Domain of a Function as a Set of Ordered Pairs 

Find the domain of the following function: {(2, 10), (3, 10), (4, 20), (5, 30), (6, 40)}. 

Solution First identify the input values. The input value is the first coordinate in an ordered pair. There are no 
restrictions, as the ordered pairs are simply listed. The domain is the set of the first coordinates of the ordered pairs. 

{2, 3, 4, 5, 6} 

Try It #1

Find the domain of the function: {(−5, 4), (0, 0), (5, −4), (10, −8), (15, −12)}

How To…
Given a function written in equation form, find the domain. 

1. Identify the input values. 
2. Identify any restrictions on the input and exclude those values from the domain. 
3. Write the domain in interval form, if possible. 
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Example 2 Finding the Domain of a Function 

Find the domain of the function f (x) = x2 − 1. 

Solution The input value, shown by the variable x in the equation, is squared and then the result is lowered by one. 
Any real number may be squared and then be lowered by one, so there are no restrictions on the domain of this 
function. The domain is the set of real numbers. 

In interval form, the domain of f is (−∞, ∞). 

Try It #2

Find the domain of the function: f (x) = 5 − x + x 3.

How To…
Given a function written in an equation form that includes a fraction, find the domain. 

1. Identify the input values. 
2. Identify any restrictions on the input. If there is a denominator in the function’s formula, set the denominator equal  

to zero and solve for x. If the function’s formula contains an even root, set the radicand greater than or equal to 0, 
and then solve. 

3. Write the domain in interval form, making sure to exclude any restricted values from the domain. 

Example 3 Finding the Domain of a Function Involving a Denominator 

Find the domain of the function f (x) =    x + 1 _____ 2 − x   .

Solution When there is a denominator, we want to include only values of the input that do not force the denominator 
to be zero. So, we will set the denominator equal to 0 and solve for x. 

 2 − x = 0 
 −x = −2 
 x = 2

Now, we will exclude 2 from the domain. The answers are all real numbers where x < 2 or x > 2. We can use a symbol 
known as the union, ∪, to combine the two sets. In interval notation, we write the solution: (−∞, 2) ∪ (2, ∞).

–3 –2 –1 0 1 2 3
x < 2 or x > 2 

↓   ↓ 
(−∞, 2) ∪ (2, ∞)

Figure 4  

In interval form, the domain of f  is (−∞, 2) ∪ (2, ∞). 

Try It #3

Find the domain of the function: f (x) =    1 + 4x ______ 2x − 1   . 

How To…
Given a function written in equation form including an even root, find the domain. 

1. Identify the input values. 
2. Since there is an even root, exclude any real numbers that result in a negative number in the radicand. Set the 

radicand greater than or equal to zero and solve for x. 
3. The solution(s) are the domain of the function. If possible, write the answer in interval form. 
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Example 4 Finding the Domain of a Function with an Even Root 

Find the domain of the function f (x) =   √
—

 7 − x   . 

Solution When there is an even root in the formula, we exclude any real numbers that result in a negative number 
in the radicand. 

Set the radicand greater than or equal to zero and solve for x. 
 7 − x ≥ 0 
 −x ≥ −7
 x ≤ 7 
Now, we will exclude any number greater than 7 from the domain. The answers are all real numbers less than or equal 
to 7, or (−∞, 7]. 

Try It #4

Find the domain of the function f (x) =   √
—

 5 + 2x   . 

Q & A…
Can there be functions in which the domain and range do not intersect at all? 

Yes. For example, the function f (x) = −    1 _ 
 √

—
 x  
    has the set of all positive real numbers as its domain but the set of all 

negative real numbers as its range. As a more extreme example, a function’s inputs and outputs can be completely 
different categories (for example, names of weekdays as inputs and numbers as outputs, as on an attendance chart), in 
such cases the domain and range have no elements in common.

Using notations to Specify Domain and Range 
In the previous examples, we used inequalities and lists to describe the domain of functions. We can also use 
inequalities, or other statements that might define sets of values or data, to describe the behavior of the variable in 
set-builder notation. For example, {x | 10 ≤ x < 30} describes the behavior of x in set-builder notation. The braces 
{ } are read as “the set of,” and the vertical bar | is read as “such that,” so we would read {x | 10 ≤ x < 30} as “the set of 
x-values such that 10 is less than or equal to x, and x is less than 30.”

Figure 5 compares inequality notation, set-builder notation, and interval notation.

Inequality  
Notation

Set-builder  
Notation

Interval  
Notation

5 10 5 < h ≤ 10 {h | 5 < h ≤ 10} (5, 10]

5 10 5 ≤ h < 10 {h | 5 ≤ h < 10} [5, 10)

5 10 5 < h < 10 {h | 5 < h < 10} (5, 10)

5 10 h < 10 {h | h < 10} (−∞, 10)

10 h ≥ 10 {h | h ≥ 10} [10, ∞)

5 10 All real numbers 핉 (−∞, ∞)

Figure 5
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To combine two intervals using inequality notation or set-builder notation, we use the word “or.” As we saw in earlier 
examples, we use the union symbol, ∪, to combine two unconnected intervals. For example, the union of the sets  
{2, 3, 5} and {4, 6} is the set {2, 3, 4, 5, 6}. It is the set of all elements that belong to one or the other (or both) of the 
original two sets. For sets with a finite number of elements like these, the elements do not have to be listed in ascending 
order of numerical value. If the original two sets have some elements in common, those elements should be listed only 
once in the union set. For sets of real numbers on intervals, another example of a union is 

{x | | x | ≥ 3} = (−∞, −3] ∪ [3, ∞)

set-builder notation and interval notation  

Set-builder notation is a method of specifying a set of elements that satisfy a certain condition. It takes the 
form {x | statement about x} which is read as, “the set of all x such that the statement about x is true.” For 
example, 

{x | 4 < x ≤ 12} 

Interval notation is a way of describing sets that include all real numbers between a lower limit that may or may 
not be included and an upper limit that may or may not be included. The endpoint values are listed between 
brackets or parentheses. A square bracket indicates inclusion in the set, and a parenthesis indicates exclusion 
from the set. For example, 

(4, 12]

How To…
Given a line graph, describe the set of values using interval notation. 

1. Identify the intervals to be included in the set by determining where the heavy line overlays the real line. 
2. At the left end of each interval, use [with each end value to be included in the set (solid  dot) or (for each excluded 

end value (open dot). 
3. At the right end of each interval, use] with each end value to be included in the set (filled dot) or) for each excluded 

end value (open dot). 
4.  Use the union symbol ∪ to combine all intervals into one set. 

Example 5 Describing Sets on the Real-Number Line 

Describe the intervals of values shown in Figure 6 using inequality notation, set-builder notation, and interval notation. 

–2 –1 0 1 2 3 4 5 6 7

Figure 6

Solution To describe the values, x, included in the intervals shown, we would say, “x is a real number greater than 
or equal to 1 and less than or equal to 3, or a real number greater than 5.”

Inequality 1 ≤ x ≤ 3 or x > 5

Set-builder notation { x |1 ≤ x ≤ 3 or x > 5 }

Interval notation [1, 3] ∪ (5, ∞)

Remember that, when writing or reading interval notation, using a square bracket means the boundary is included in 
the set. Using a parenthesis means the boundary is not included in the set. 
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Try It #5

Given this figure, specify the graphed set in    
–5 –4 –3 –2 –1 0 1 2 3 4 5  

Figure 7
a. words 

b. set-builder notation 

c. interval notation

Finding Domain and Range from Graphs 
Another way to identify the domain and range of functions is by using graphs. Because the domain refers to the set of 
possible input values, the domain of a graph consists of all the input values shown on the x-axis. The range is the set 
of possible output values, which are shown on the y-axis. Keep in mind that if the graph continues beyond the portion 
of the graph we can see, the domain and range may be greater than the visible values. See Figure 8.
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Figure 8 

We can observe that the graph extends horizontally from −5 to the right without bound, so the domain is [−5, ∞). 
The vertical extent of the graph is all range values 5 and below, so the range is (−∞, 5]. Note that the domain and 
range are always written from smaller to larger values, or from left to right for domain, and from the bottom of the 
graph to the top of the graph for range. 

Example 6 Finding Domain and Range from a Graph 

Find the domain and range of the function f whose graph is shown in Figure 9.

f

x

y

–1
–1

–2

–2

–3

3

–4

–

–

4

–5

–5

321

1

4 5

Figure 9 
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Solution We can observe that the horizontal extent of the graph is −3 to 1, so the domain of f is (−3, 1]. 

The vertical extent of the graph is 0 to −4, so the range is [−4, 0]. See Figure 10. 
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4 5

Figure 10 

Example 7 Finding Domain and Range from a Graph of Oil Production 

Find the domain and range of the function f whose graph is shown in Figure 11.
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Alaska Crude Oil Production
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1000
1200
1400
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2000
2200

Figure 11  (credit: modification of work by the U.S. energy Information Administration) [4] 

Solution The input quantity along the horizontal axis is “years,” which we represent with the variable t for time. The 
output quantity is “thousands of barrels of oil per day,” which we represent with the variable b for barrels. The graph 
may continue to the left and right beyond what is viewed, but based on the portion of the graph that is visible, we can 
determine the domain as 1973 ≤ t ≤ 2008 and the range as approximately 180 ≤ b ≤ 2010. 

In interval notation, the domain is [1973, 2008], and the range is about [180, 2010]. For the domain and the range, we 
approximate the smallest and largest values since they do not fall exactly on the grid lines. 

Try It #6

Given Figure 12, identify the domain and range using interval notation.   
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Figure 12  

Q & A…
Can a function’s domain and range be the same? 

Yes. For example, the domain and range of the cube root function are both the set of all real numbers. 

4 http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MCRFPAK2&f=A.

http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=MCRFPAK2&f=A
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Finding Domains and Ranges of the Toolkit Functions 

We will now return to our set of toolkit functions to determine the domain and range of each. 

x

f (x) = c

f (x) Domain: (−∞, ∞)
Range: [c, c]

 

Figure 13  

For the constant function f(x) = c, the domain consists of 
all real numbers; there are no restrictions on the input. The 
only output value is the constant c, so the range is the set {c} 
that contains this single element. In interval notation, this is 
written as [c, c], the interval that both begins and ends with c.

x

f (x)

Domain: (−∞, ∞)
Range: (−∞, ∞)

Figure 14  

For the identity function f(x) = x, there is no restriction on 
x. Both the domain and range are the set of all real numbers.

x

f (x)
Domain: (−∞, ∞)

Range: [0, ∞)

Figure 15  

For the absolute value function f(x) =   ∣ x ∣  , there is no 
restriction on x. However, because absolute value is defined 
as a distance from 0, the output can only be greater than or 
equal to 0.

Domain: (−∞, ∞)
Range: [0, ∞)

x

f (x)

Figure 16   

For the quadratic function f(x) = x 2, the domain is all 
real numbers since the horizontal extent of the graph is 
the whole real number line. Because the graph does not 
include any negative values for the range, the range is only 
nonnegative real numbers.

Domain: (−∞, ∞)
Range: (−∞, ∞)

x

f (x)

Figure 17  

For the cubic function f(x) = x 3, the domain is all real 
numbers because the horizontal extent of the graph is the 
whole real number line. The same applies to the vertical 
extent of the graph, so the domain and range include all 
real numbers.



CHAPTER 1 Functions30

x

f (x)

Domain: (−∞, 0) ∪ (0, ∞)
Range: (−∞, 0) ∪ (0, ∞)

Figure 18  

For the reciprocal function f(x) =    1 _ x   , we cannot divide by 0, 
so we must exclude 0 from the domain. Further, 1 divided by 
any value can never be 0, so the range also will not include 
0. In set-builder notation, we could also write {x | x ≠ 0}, the 
set of all real numbers that are not zero.

Domain: (−∞, 0) ∪ (0, ∞)
Range: (0, ∞)

x

f (x)

Figure 19   

For the reciprocal squared function f(x) =    1 __ x 2   , we cannot 
divide by 0, so we must exclude 0 from the domain. There is 
also no x that can give an output of 0, so 0 is excluded from 
the range as well. Note that the output of this function is 
always positive due to the square in the denominator, so the 
range includes only positive numbers. 

x

f (x)
Domain: [0, ∞)
Range: [0, ∞)

Figure 20  

For the square root function f(x) =    √
—
 x   , we cannot take the 

square root of a negative real number, so the domain must 
be 0 or greater. The range also excludes negative numbers 
because the square root of a positive number x is defined to 
be positive, even though the square of the negative number 

−  √
—
 x    also gives us x.

x

f (x)
Domain: (−∞, ∞)
Range: (−∞, ∞)

Figure 21  

For the cube root function f(x) =    3 √
—
 x    the domain and range 

include all real numbers. Note that there is no problem 
taking a cube root, or any odd-integer root, of a negative 
number, and the resulting output is negative (it is an odd 
function). 

How To…
Given the formula for a function, determine the domain and range. 

1. Exclude from the domain any input values that result in division by zero. 
2. Exclude from the domain any input values that have nonreal (or undefined) number outputs. 
3. Use the valid input values to determine the range of the output values. 
4. Look at the function graph and table values to confirm the actual function behavior. 

Example 8 Finding the Domain and Range Using Toolkit Functions 

Find the domain and range of f (x) = 2x3 − x. 

Solution There are no restrictions on the domain, as any real number may be cubed and then subtracted from 
the result. The domain is (−∞, ∞) and the range is also (−∞, ∞). 
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Example 9 Finding the Domain and Range 

Find the domain and range of f (x) =    2 ____ x + 1   . 

Solution We cannot evaluate the function at −1 because division by zero is undefined. The domain is (−∞, −1) ∪ (−1, ∞). 
Because the function is never zero, we exclude 0 from the range. The range is (−∞, 0) ∪ (0, ∞). 

Example 10 Finding the Domain and Range 

Find the domain and range of f (x) = 2  √
—

 x + 4   . 

Solution We cannot take the square root of a negative number, so the value inside the radical must be nonnegative. 

x + 4 ≥ 0 when x ≥ −4 

The domain of f (x) is [−4, ∞). 

We then find the range. We know that f (−4) = 0, and the function value increases as x increases without any upper 
limit. We conclude that the range of f is [0, ∞).

Analysi s Figure 22 represents the function f .  

2

x
–1–1–2–3–4–5

1

3

3

21 4

4

5

5

f

f (x)

Figure 22 

Try It #7

Find the domain and range of f (x) = −  √
—

 2 − x   .

Graphing Piecewise-Defined Functions 
Sometimes, we come across a function that requires more than one formula in order to obtain the given output. For 
example, in the toolkit functions, we introduced the absolute value function f (x) = |x|. With a domain of all real 
numbers and a range of values greater than or equal to 0, absolute value can be defined as the magnitude, or modulus, 
of a real number value regardless of sign. It is the distance from 0 on the number line. All of these definitions require 
the output to be greater than or equal to 0. 

If we input 0, or a positive value, the output is the same as the input. 

f (x) = x if x ≥ 0 

If we input a negative value, the output is the opposite of the input. 

f (x) = −x if x < 0 

Because this requires two different processes or pieces, the absolute value function is an example of a piecewise 
function. A piecewise function is a function in which more than one formula is used to define the output over different 
pieces of the domain. 

We use piecewise functions to describe situations in which a rule or relationship changes as the input value crosses 
certain “boundaries.” For example, we often encounter situations in business for which the cost per piece of a certain 
item is discounted once the number ordered exceeds a certain value. Tax brackets are another real-world example of 
piecewise functions. For example, consider a simple tax system in which incomes up to $10,000 are taxed at 10%, and any 
additional income is taxed at 20%. The tax on a total income S would be 0.1S if S ≤ $10,000 and $1000 + 0.2(S − $10,000) 
if S > $10,000. 
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piecewise function 
A piecewise function is a function in which more than one formula is used to define the output. Each formula has its 
own domain, and the domain of the function is the union of all these smaller domains. We notate this idea like this: 

f (x) = 
formula 1 if x is in domain 1 
formula 2 if x is in domain 2 
formula 3 if x is in domain 3{

In piecewise notation, the absolute value function is 

|x| = 
x if x ≥ 0 

−x if x < 0{

How To…
Given a piecewise function, write the formula and identify the domain for each interval. 

1. Identify the intervals for which different rules apply. 
2. Determine formulas that describe how to calculate an output from an input in each interval. 
3. Use braces and if-statements to write the function. 

Example 11 Writing a Piecewise Function 

A museum charges $5 per person for a guided tour with a group of 1 to 9 people or a fixed $50 fee for a group of 10 or 
more people. Write a function relating the number of people, n, to the cost, C. 

Solution Two different formulas will be needed. For n-values under 10, C = 5n. For values of n that are 10 or greater, 
C = 50. 

C(n) = 
5n if 0 < n < 10 
50 if n ≥ 10 {

Analysi s The function is represented in Figure 23. The graph is 
a diagonal line from n = 0 to n = 10 and a constant after that. In 
this example, the two formulas agree at the meeting point where  
n = 10, but not all piecewise functions have this property. 

C(n)

C(n)

n
–

–10
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40

– 1515 1010 2020 2525

50

Figure 23  

Example 12 Working with a Piecewise Function 

A cell phone company uses the function below to determine the cost, C, in dollars for g gigabytes of data transfer. 

C(g) = 
 25 if 0 < g < 2
 25 + 10(g − 2) if  g ≥ 2 {

Find the cost of using 1.5 gigabytes of data and the cost of using 4 gigabytes of data. 

Solution To find the cost of using 1.5 gigabytes of data, C(1.5), we first look to see which part of the domain our input 
falls in. Because 1.5 is less than 2, we use the first formula. 

C(1.5) = $25 

To find the cost of using 4 gigabytes of data, C(4), we see that our input of 4 is greater than 2, so we use the second 
formula. 

C(4) = 25 + 10(4 − 2) = $45 
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Analysi s The function is represented in Figure 24. We can see where the function changes from a constant to a shifted 
and stretched identity at g = 2. We plot the graphs for the different formulas on a common set of axes, making sure each 
formula is applied on its proper domain. 
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Figure 24  

How To…
Given a piecewise function, sketch a graph. 

1. Indicate on the x-axis the boundaries defined by the intervals on each piece of the domain. 
2. For each piece of the domain, graph on that interval using the corresponding equation pertaining to that piece. Do 

not graph two functions over one interval because it would violate the criteria of a function. 

Example 13 Graphing a Piecewise Function 

Sketch a graph of the function. 

f (x) = 
x2 if x ≤ 1 
3 if 1 < x ≤ 2 
x if x > 2 {

Solution Each of the component functions is from our library of toolkit functions, so we know their shapes. We can 
imagine graphing each function and then limiting the graph to the indicated domain. At the endpoints of the domain, 
we draw open circles to indicate where the endpoint is not included because of a less-than or greater-than inequality; 
we draw a closed circle where the endpoint is included because of a less-than-or-equal-to or greater-than-or-equal-to 
inequality. 

Figure 25 shows the three components of the piecewise function graphed on separate coordinate systems. 
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Figure 25 ( a) f (x) = x2 if x ≤ 1; ( b) f (x) = 3 if 1 < x ≤ 2; ( c) f (x) = x if x > 2
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Now that we have sketched each piece individually, we combine them in the same coordinate plane. See Figure 26.
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Figure 26

Analysis Note that the graph does pass the vertical line test even at x = 1 and x = 2 because the points (1, 3) and  
(2, 2) are not part of the graph of the function, though (1, 1) and (2, 3) are.

Try It #8

Graph the following piecewise function. 

f (x) = 
  √

—
 x   

 x3 if x < −1 
 −2 if −1 < x < 4 
 if x > 4 { 

Q & A…
Can more than one formula from a piecewise function be applied to a value in the domain? 

No. Each value corresponds to one equation in a piecewise formula. 

Access these online resources for additional instruction and practice with domain and range.

•	 Domain and Range of Square Root Functions (http://openstaxcollege.org/l/domainsqroot)

•	 Determining Domain and Range (http://openstaxcollege.org/l/determinedomain)

•	 Find Domain and Range Given the Graph (http://openstaxcollege.org/l/drgraph)

•	 Find Domain and Range Given a Table (http://openstaxcollege.org/l/drtable)

•	 Find Domain and Range Given Points on a Coordinate Plane (http://openstaxcollege.org/l/drcoordinate)

http://openstaxcollege.org/l/domainsqroot
http://openstaxcollege.org/l/determinedomain
http://openstaxcollege.org/l/drgraph
http://openstaxcollege.org/l/drtable
http://openstaxcollege.org/l/drcoordinate
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1.2 SeCTIOn exeRCISeS

VeRBAl

1. Why does the domain differ for different functions? 2. How do we determine the domain of a function 
defined by an equation? 

3. Explain why the domain of f (x) =    3 √
—
 x    is different 

from the domain of f (x) =   √
—
 x   .

4. When describing sets of numbers using interval 
notation, when do you use a parenthesis and when 
do you use a bracket? 

5. How do you graph a piecewise function?

AlGeBRAIC

For the following exercises, find the domain of each function using interval notation. 

6. f (x) = −2x(x − 1)(x − 2) 7. f (x) = 5 − 2x2
8. f (x) = 3  √

—
 x − 2   

9. f (x) = 3 −   √
—

 6 − 2x   10. f (x) =   √
—

 4 − 3x   11. f (x) =   √
—

 x 2 + 4   

12. f (x) =     3 √
—

 1 − 2x   13. f (x) =     3 √
—

 x − 1   14. f (x) =     9 _____ x − 6   

15. f (x) =    3x + 1 ______ 4x + 2   16. f (x) =      √
—

 x + 4   _______ x − 4   17. f (x) =     x − 3 __________  x2 + 9x − 22   

18. f (x) =     1 ________ x2 − x − 6   19. f (x) =     2x3 − 250 __________  x2 − 2x − 15   20. f (x) =     5 _ 
 √
—

 x − 3  
   

21. f (x) =    2x + 1 _ 
 √
—

 5 − x  
   22. f (x) =      √

—
 x − 4   _ 

 √
—

 x − 6  
   23. f (x) =      √

—
 x − 6   _ 

 √
—

 x − 4  
   

24. f (x) =    x __ x   
25. f (x) =    x

2 − 9x _ 
x2 − 81

   

26. Find the domain of the function f (x) =   √
—

 2x 3 − 50x     by:
a. using algebra. 
b. graphing the function in the radicand and determining intervals on the x-axis for which the radicand is 

nonnegative.

GRAPHICAl

For the following exercises, write the domain and range of each function using interval notation. 
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For the following exercises, sketch a graph of the piecewise function. Write the domain in interval notation. 

38. f (x) = 
x + 1 if x < −2 

−2x − 3 if x ≥ −2 { 39. f (x) = 
2x − 1 if x < 1 
1 + x if x ≥ 1 { 40. f (x) = 

x + 1 if x < 0 
x − 1 if x > 0 {

41. f (x) = 
3 if x < 0 
  √

—
 x    if x ≥ 0 { 42. f (x) = 

x2  if x < 0 
1 − x if x > 0 { 43. f (x) = 

x2  if x < 0 
x + 2 if x ≥ 0 {

44. f (x) = 
x + 1 if x < 1 
x3 if x ≥ 1 { 45. f (x) = 

| x | if x < 2 
1 if x ≥ 2 {
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nUMeRIC
For the following exercises, given each function f, evaluate f (−3), f (−2), f (−1), and f (0). 

46. f (x) = 
x + 1 if x < −2 

−2x − 3 if x ≥ −2 { 47. f (x) = 
1 if x ≤ −3 
0 if x > −3 { 48. f (x) = 

−2x 2 + 3 if x ≤ −1 
5x − 7 if x > −1 {

For the following exercises, given each function f, evaluate f (−1), f (0), f (2), and f (4). 

49. f (x) = 
7x + 3 if x < 0 
7x + 6 if x ≥ 0{ 50. f (x) = 

x 2 − 2 if x < 2 
4 + | x − 5 | if x ≥ 2{ 51. f (x) = 

5x if x < 0 
3 if 0 ≤ x ≤ 3
x 2 if x > 3{

For the following exercises, write the domain for the piecewise function in interval notation. 

52. f (x) = 
x + 1 if x < −2 

−2x − 3 if x ≥ −2 { 53. f (x) = 
x2 − 2 if x < 1 

−x2 + 2 if x > 1 { 54. f (x) = 
2x − 3 if x < 0 
−3x2 if x ≥ 2 {

TeCHnOlOGY 

55. Graph y =    1 __ x 2    on the viewing window [−0.5, −0.1] and [0.1, 0.5]. Determine the corresponding range for the 
viewing window. Show the graphs. 

56. Graph y =    1 _ x    on the viewing window [−0.5, −0.1] and [0.1, 0.5]. Determine the corresponding range for the 
viewing window. Show the graphs.

exTenSIOn 
57. Suppose the range of a function f is [−5, 8]. What is the range of | f (x) |? 

58. Create a function in which the range is all nonnegative real numbers. 

59. Create a function in which the domain is x > 2. 

ReAl-WORlD APPlICATIOnS

60. The height h of a projectile is a function of the time 
t it is in the air. The height in feet for t seconds is 
given by the function h(t) = −16t 2 + 96t. What is 
the domain of the function? What does the domain 
mean in the context of the problem? 

61. The cost in dollars of making x items is given by the 
function C(x) = 10x + 500. 
a. The fixed cost is determined when zero items are 

produced. Find the fixed cost for this item. 
b. What is the cost of making 25 items? 
c. Suppose the maximum cost allowed is $1500. 

What are the domain and range of the cost 
function, C(x)? 
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1. 3 RATeS OF CHAnGe AnD BeHAVIOR OF GRAPHS

Gasoline costs have experienced some wild fluctuations over the last several decades. Table 1[5] lists the average cost, 
in dollars, of a gallon of gasoline for the years 2005–2012. The cost of gasoline can be considered as a function of year.

y 2005 2006 2007 2008 2009 2010 2011 2012
C(y) 2.31 2.62 2.84 3.30 2.41 2.84 3.58 3.68

Table 1

If we were interested only in how the gasoline prices changed between 2005 and 2012, we could compute that the cost 
per gallon had increased from $2.31 to $3.68, an increase of $1.37. While this is interesting, it might be more useful to 
look at how much the price changed per year. In this section, we will investigate changes such as these.

Finding the Average Rate of Change of a Function
The price change per year is a rate of change because it describes how an output quantity changes relative to the change 
in the input quantity. We can see that the price of gasoline in Table 1 did not change by the same amount each year, 
so the rate of change was not constant. If we use only the beginning and ending data, we would be finding the average 
rate of change over the specified period of time. To find the average rate of change, we divide the change in the output 
value by the change in the input value.

 Average rate of change =    
Change in output

  __  
Change in input

   

 =    
∆y

 _ 
∆x

   

 =    
y2 − y1 _ x2 − x1

   

 =    
 f (x2) − f (x1) __ x2− x1

   

The Greek letter ∆ (delta) signifies the change in a quantity; we read the ratio as “delta-y over delta-x” or “the change 
in y divided by the change in x.” Occasionally we write ∆ f instead of ∆y, which still represents the change in the 
function’s output value resulting from a change to its input value. It does not mean we are changing the function into 
some other function.

In our example, the gasoline price increased by $1.37 from 2005 to 2012. Over 7 years, the average rate of change was

    
∆y

 _ 
∆x

    =    $1.37 _ 7 years    ≈ 0.196 dollars per year

On average, the price of gas increased by about 19.6 each year.

Other examples of rates of change include:
•	  A population of rats increasing by 40 rats per week
•	 A car traveling 68 miles per hour (distance traveled changes by 68 miles each hour as time passes)
•	 A car driving 27 miles per gallon (distance traveled changes by 27 miles for each gallon)
•	 The current through an electrical circuit increasing by 0.125 amperes for every volt of increased voltage
•	 The amount of money in a college account decreasing by $4,000 per quarter

5 http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0524. Accessed 3/5/2014.

leARnInG OBjeCTIVeS

In this section, you will:
•	  Find the average rate of change of a function.
•	  Use a graph to determine where a function is increasing, decreasing, or constant.
•	  Use a graph to locate local maxima and local minima.
•	  Use a graph to locate the absolute maximum and absolute minimum.

http://www.eia.gov/totalenergy/data/annual/showtext.cfm?t=ptb0524
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rate of change 
A rate of change describes how an output quantity changes relative to the change in the input quantity. The units 
on a rate of change are “output units per input units.”

The average rate of change between two input values is the total change of the function values (output values) 
divided by the change in the input values.

   
∆y

 _ 
∆x

    =     
f (x2) − f (x1) __ x2 − x1

   

How To…
Given the value of a function at different points, calculate the average rate of change of a function for the interval 
between two values x1 and x2.

1. Calculate the difference y2 − y1 = ∆y.

2. Calculate the difference x2 − x1 = ∆x.

3. Find the ratio    
∆y

 _ 
∆x

   .

Example 1 Computing an Average Rate of Change

Using the data in Table 1, find the average rate of change of the price of gasoline between 2007 and 2009.

Solution In 2007, the price of gasoline was $2.84. In 2009, the cost was $2.41. The average rate of change is

    ∆y ___ 
∆x    =    

y2 − y1 _ x2 − x1
   

 =    $2.41 − $2.84  __  
2009 − 2007

   

 =    −$0.43 ______ 2 years   

 = −$0.22 per year

Analysi s Note that a decrease is expressed by a negative change or “negative increase.” A rate of change is negative when 
the output decreases as the input increases or when the output increases as the input decreases.

Try It #1

Using the data in Table 1 at the beginning of this section, find the average rate of change between 2005 and 2010.

Example 2 Computing Average Rate of Change from a Graph

Given the function g (t) shown in Figure 1, find the average rate of change on the interval [−1, 2].
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Solution At t = −1, Figure 2 shows g (−1) = 4. At t = 2, the graph shows g (2) = 1.
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g(t)

∆g(t) = –3

∆t = 3

Figure 2

The horizontal change ∆ t = 3 is shown by the red arrow, and the vertical change ∆ g(t) = −3 is shown by the turquoise 
arrow. The output changes by –3 while the input changes by 3, giving an average rate of change of

   1 − 4 _______ 2 − (−1)    =     −3 ___ 3    = −1

Analysi s Note that the order we choose is very important. If, for example, we use    
y2 − y1 _ x1 − x2

    , we will not get the correct 

answer. Decide which point will be 1 and which point will be 2, and keep the coordinates fixed as ( x1 , y1 ) and ( x2 , y2 ).

Example 3 Computing Average Rate of Change from a Table

After picking up a friend who lives 10 miles away, Anna records her distance from home over time. The values are 
shown in Table 2. Find her average speed over the first 6 hours.

t (hours) 0 1 2 3 4 5 6 7
D(t) (miles) 10 55 90 153 214 240 292 300

Table 2

Solution Here, the average speed is the average rate of change. She traveled 282 miles in 6 hours, for an average speed of

    292 − 10 _______ 6 − 0     =    282 ___ 6   

 = 47

The average speed is 47 miles per hour.

Analysi s Because the speed is not constant, the average speed depends on the interval chosen. For the interval [2, 3], 
the average speed is 63 miles per hour.

Example 4  Computing Average Rate of Change for a Function Expressed as a Formula

Compute the average rate of change of f (x) = x 2 −   1 __ x    on the interval [2, 4].

Solution We can start by computing the function values at each endpoint of the interval.

 f (2) = 22 −    1 __ 2    f(4) = 42 −    1 __ 4   

 = 4 −    1 __ 2    = 16 −    1 __ 4   

 =    7 __ 2    =    63 __ 4   

Now we compute the average rate of change.
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 Average rate of change =    
f (4) − f (2)

 _ 
4 − 2

   

 =    
  63 __ 4   −   7 __ 2  

 _ 
4 − 2

   

 =    
  49 __ 4  

 _ 
2

   

 =    49 __ 8   

Try It #2
Find the average rate of change of f (x) = x − 2  √

—
 x    on the interval [1, 9].

Example 5 Finding the Average Rate of Change of a Force

The electrostatic force F, measured in newtons, between two charged particles can be related to the distance between 
the particles d, in centimeters, by the formula F(d) =    2 _ 

d 2
   . Find the average rate of change of force if the distance 

between the particles is increased from 2 cm to 6 cm.

Solution We are computing the average rate of change of F (d) =    2 __ d 2    on the interval [2, 6].

 Average rate of change =    
F(6) − F(2)

 __ 
6 − 2

   

 =    
  2 _ 
62

   −   2 _ 
22

  
 _ 

6 − 2
    Simplify.

 =    
  2 __ 36   −   2 __ 4  

 _ 4   

 =    
−  16 __ 36  

 _ 4    Combine numerator terms.

 = −   1 __ 9    Simplify.

The average rate of change is −   1 __ 9    newton per centimeter.

Example 6 Finding an Average Rate of Change as an Expression

Find the average rate of change of g(t) = t2 + 3t + 1 on the interval [0, a]. The answer will be an expression involving a.

Solution We use the average rate of change formula.

 Average rate of change =     
g(a) − g(0)

 _ 
a − 0

    Evaluate.

 =     
(a2 + 3a + 1) − (02 + 3(0) + 1)

   ___  
a − 0

    Simplify.

 =     a
2 + 3a + 1 − 1  _____________ a    Simplify and factor.

 =     a(a + 3) _______ a     Divide by the common factor a.

 =  a + 3

This result tells us the average rate of change in terms of a between t = 0 and any other point t = a. For example, on 
the interval [0, 5], the average rate of change would be 5 + 3 = 8.
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Try It #3
Find the average rate of change of f (x) = x2 + 2x − 8 on the interval [5, a].

Using a Graph to Determine Where a Function is Increasing, Decreasing, or Constant
As part of exploring how functions change, we can identify intervals over which the function is changing in specific 
ways. We say that a function is increasing on an interval if the function values increase as the input values increase 
within that interval. Similarly, a function is decreasing on an interval if the function values decrease as the input 
values increase over that interval. The average rate of change of an increasing function is positive, and the average 
rate of change of a decreasing function is negative. Figure 3 shows examples of increasing and decreasing intervals 
on a function.
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21 4
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f(x)

f(b) > f(a)
where b > a

f(b) < f(a)
where b > a

f(b) > f(a)
where b > a

Increasing

Increasing
Decreasing

Figure 3 The function f(x) = x3 − 12x is increasing on (−∞, −2) ∪ (2, ∞) and is decreasing on (−2, 2).

While some functions are increasing (or decreasing) over their entire domain, many others are not. A value of the 
input where a function changes from increasing to decreasing (as we go from left to right, that is, as the input variable 
increases) is called a local maximum. If a function has more than one, we say it has local maxima. Similarly, a value 
of the input where a function changes from decreasing to increasing as the input variable increases is called a local 
minimum. The plural form is “local minima.” Together, local maxima and minima are called local extrema, or local 
extreme values, of the function. (The singular form is “extremum.”) Often, the term local is replaced by the term 
relative. In this text, we will use the term local.

Clearly, a function is neither increasing nor decreasing on an interval where it is constant. A function is also neither 
increasing nor decreasing at extrema. Note that we have to speak of local extrema, because any given local extremum 
as defined here is not necessarily the highest maximum or lowest minimum in the function’s entire domain.

For the function whose graph is shown in Figure 4, the local maximum is 16, and it occurs at x = −2. The local 
minimum is −16 and it occurs at x = 2.
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Figure 4
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To locate the local maxima and minima from a graph, we need to observe the graph to determine where the graph 
attains its highest and lowest points, respectively, within an open interval. Like the summit of a roller coaster, the 
graph of a function is higher at a local maximum than at nearby points on both sides. The graph will also be lower at 
a local minimum than at neighboring points. Figure 5 illustrates these ideas for a local maximum.

f(x)

f(b)

x
a b

Local maximum

Increasing
function

Decreasing
function

c
Figure 5 Definition of a local maximum

These observations lead us to a formal definition of local extrema.

local minima and local maxima 
A function f is an increasing function on an open interval if f (b) > f (a) for every two input values a and b in the 
interval where b > a.

A function f is a decreasing function on an open interval if f (b) < f (a) for every two input values a and b in the 
interval where b > a.

A function f has a local maximum at a point b in an open interval (a, c) if f (b) ≥ f (x) for every point x (x does 
not equal b) in the interval. f  has a local minimum at a point b in the interval (a, c) if f (b) ≤ f (x) for every point 
x (x does not equal both) in the interval.

Example 7 Finding Increasing and Decreasing Intervals on a Graph

Given the function p(t) in Figure 6, identify the intervals on which the function appears to be increasing.
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Figure 6

Solution We see that the function is not constant on any interval. The function is increasing where it slants upward 
as we move to the right and decreasing where it slants downward as we move to the right. The function appears to be 
increasing from t = 1 to t = 3 and from t = 4 on.

In interval notation, we would say the function appears to be increasing on the interval (1, 3) and the interval (4, ∞).
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Analysi s Notice in this example that we used open intervals (intervals that do not include the endpoints), because the 
function is neither increasing nor decreasing at t = 1, t = 3, and t = 4. These points are the local extrema (two minima 
and a maximum).

Example 8 Finding Local Extrema from a Graph

Graph the function f (x) =    2 __ x    +    x __ 3   . Then use the graph to estimate the local extrema of the function and to determine 
the intervals on which the function is increasing.

Solution Using technology, we find that the graph of the function looks like that in Figure 7. It appears there is a low 
point, or local minimum, between x = 2 and x = 3, and a mirror-image high point, or local maximum, somewhere 
between x = −3 and x = −2.
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Figure 7

Analysi s Most graphing calculators and graphing utilities can estimate the location of maxima and minima. Figure 8 
provides screen images from two different technologies, showing the estimate for the local maximum and minimum.

x
Maximum
X = –2.449491 Y = –1.632993

y

(b)(a)

2.4494898, 1.6329932

0

2

–2

2 4

4

6

6

Figure 8

Based on these estimates, the function is increasing on the interval (−∞, −2.449) and (2.449, ∞). Notice that, while we 
expect the extrema to be symmetric, the two different technologies agree only up to four decimals due to the differing 
approximation algorithms used by each. (The exact location of the extrema is at ±  √

—
 6   , but determining this requires 

calculus.)

Try It #4

Graph the function f (x) = x3 − 6x2 − 15x + 20 to estimate the local extrema of the function. Use these to determine 
the intervals on which the function is increasing and decreasing.
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Example 9 Finding Local Maxima and Minima from a Graph

For the function f whose graph is shown in Figure 9, find all local maxima and minima.
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Figure 9

Solution Observe the graph of f. The graph attains a local maximum at x = 1 because it is the highest point in an 
open interval around x = 1. The local maximum is the y-coordinate at x = 1, which is 2.

The graph attains a local minimum at x = −1 because it is the lowest point in an open interval around x = −1.

The local minimum is the y-coordinate at x = −1, which is −2.

Analyzing the Toolkit Functions for Increasing or Decreasing Intervals

We will now return to our toolkit functions and discuss their graphical behavior in Figure 10, Figure 11, and Figure 12.

Function Increasing/Decreasing Example

Constant Function

f(x) = c
Neither increasing  

nor decreasing

y

x

Identity Function

f(x) = x
Increasing

y

x

Quadratic Function

f(x) = x2

Increasing on (0, ∞)

Decreasing on (−∞, 0)

Minimum at x = 0

y

x

Figure 10
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Function Increasing/Decreasing Example

Cubic Function 

f(x) = x3
Increasing

y

x

Reciprocal

f(x) =    1 __ x   
Decreasing  

(−∞, 0) ∪ (0, ∞)

y

x

Reciprocal Squared

f(x) =    1 _ 
x2

   
Increasing on (−∞, 0) 
Decreasing on (0, ∞)

y

x

Figure 11

Function Increasing/Decreasing Example

Cube Root 

f(x) =    3 √
—
 x   

Increasing

y

x

Square Root 

f(x) =   √
—
 x   

Increasing on (0, ∞)

y

x

Absolute Value

f(x) =   ∣ x ∣  
Increasing on (0, ∞) 

Decreasing on (−∞, 0)

y

x

Figure 12
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Use A Graph to locate the Absolute Maximum and Absolute Minimum
There is a difference between locating the highest and lowest points on a graph in a region around an open interval 
(locally) and locating the highest and lowest points on the graph for the entire domain. The y-coordinates (output) at 
the highest and lowest points are called the absolute maximum and absolute minimum, respectively.

To locate absolute maxima and minima from a graph, we need to observe the graph to determine where the graph 
attains it highest and lowest points on the domain of the function. See Figure 13.
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Figure 13

Not every function has an absolute maximum or minimum value. The toolkit function f (x) = x3 is one such function.

absolute maxima and minima 
The absolute maximum of f at x = c is f (c) where f (c) ≥ f (x) for all x in the domain of f.

The absolute minimum of f at x = d is f (d) where f (d) ≤ f (x) for all x in the domain of f.

Example 10 Finding Absolute Maxima and Minima from a Graph

For the function f shown in Figure 14, find all absolute maxima and minima.
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Figure 14

Solution Observe the graph of f. The graph attains an absolute maximum in two locations, x = −2 and x = 2, because at 
these locations, the graph attains its highest point on the domain of the function. The absolute maximum is the y-coordinate at  
x = −2 and x = 2, which is 16.

The graph attains an absolute minimum at x = 3, because it is the lowest point on the domain of the function’s graph. 
The absolute minimum is the y-coordinate at x = 3, which is −10.

Access this online resource for additional instruction and practice with rates of change.

•	 Average Rate of Change (http://openstaxcollege.org/l/aroc)

http://openstaxcollege.org/l/aroc
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1.3 SeCTIOn exeRCISeS

VeRBAl

1. Can the average rate of change of a function  
be constant?

2. If a function f is increasing on (a, b) and decreasing 
on (b, c), then what can be said about the local 
extremum of f on (a, c)?

3. How are the absolute maximum and minimum  
similar to and different from the local extrema?

4. How does the graph of the absolute value function 
compare to the graph of the quadratic function,  
y = x 2, in terms of increasing and decreasing 
intervals?

AlGeBRAIC
For the following exercises, find the average rate of change of each function on the interval specified for real numbers 
b or h.

5. f (x) = 4x 2 − 7 on [1, b] 6. g (x) = 2x 2 − 9 on [4, b]

7. p(x) = 3x + 4 on [2, 2 + h] 8. k(x) = 4x − 2 on [3, 3 + h]

9. f (x) = 2x 2 + 1 on [x, x + h] 10. g(x) = 3x 2 − 2 on [x, x + h]

11. a(t) =    1 ____ t + 4    on [9, 9 + h] 12. b(x) =    1 _____ x + 3    on [1, 1 + h]

13. j(x) = 3x 3 on [1, 1 + h] 14. r(t) = 4t 3 on [2, 2 + h]

15.    
f (x + h) − f(x)

  __ 
h

    given f(x) = 2x2 − 3x on [x, x + h]

GRAPHICAl

For the following exercises, consider the graph of f shown in Figure 15.   

16. Estimate the average rate of change from x = 1 to x = 4. 
 
 

17. Estimate the average rate of change from x = 2 to x = 5. 
 
 

For the following exercises, use the graph of each function to estimate the intervals on which the function is increasing 
or decreasing. 
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21. 

2

x

y

–1–1–2

–2

–3

–3

–4

–4

–5–6

–5
–6

1

3

3

21 4

4

5 6

5
6

For the following exercises, consider the graph shown in Figure 16. 

22. Estimate the intervals where the function is increasing or decreasing.

23. Estimate the point(s) at which the graph of f has a local maximum  
or a local minimum.
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Figure 16  

For the following exercises, consider the graph in Figure 17.

24. If the complete graph of the function is shown, estimate the intervals 
where the function is increasing or decreasing.

25. If the complete graph of the function is shown, estimate the absolute 
maximum and absolute minimum.
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Figure 17  

nUMeRIC

26. Table 3 gives the annual sales (in millions of dollars) of a product from 1998 to 2006. What was the average rate 
of change of annual sales (a) between 2001 and 2002, and (b) between 2001 and 2004?

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006
Sales (millions of dollars) 201 219 233 243 249 251 249 243 233

Table 3 

27. Table 4 gives the population of a town (in thousands) from 2000 to 2008. What was the average rate of change 
of population (a) between 2002 and 2004, and (b) between 2002 and 2006?

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008
Population (thousands) 87 84 83 80 77 76 78 81 85

Table 4 
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For the following exercises, find the average rate of change of each function on the interval specified.
28. f (x) = x 2 on [1, 5] 29. h(x) = 5 − 2x 2 on [−2, 4]

30. q(x) = x3 on [−4, 2] 31. g (x) = 3x 3 − 1 on [−3, 3]

32. y =    1 _ x    on [1, 3] 33. p(t) =    (t 2 − 4)(t + 1)  ____________ t 2 + 3    on [−3, 1]

34. k (t) = 6t2 +    4 __ t3    on [−1, 3]

TeCHnOlOGY
For the following exercises, use a graphing utility to estimate the local extrema of each function and to estimate the 
intervals on which the function is increasing and decreasing.

35. f(x) = x 4 − 4x 3 + 5 36. h(x) = x 5 + 5x 4 + 10x 3 + 10x 2 − 1

37. g(t) = t  √
—

 t + 3   38. k(t) = 3  t    2 _ 3     − t

39. m(x) = x 4 + 2x 3 − 12x 2 − 10x + 4 40. n(x) = x 4 − 8x 3 + 18x 2 − 6x + 2

exTenSIOn
41. The graph of the function f is shown in Figure 18.

Maximum
X = 1.3333324 Y = 5.1851852

 

Figure 18  

Based on the calculator screen shot, the point  
(1.333, 5.185) is which of the following?

a. a relative (local) maximum of the function
b. the vertex of the function
c. the absolute maximum of the function
d. a zero of the function

42. Let f (x) =    1 __ x   . Find a number c such that the average 
rate of change of the function f on the interval (1, c)  
is −   1 __ 4   

43. Let f(x) =    1 __ x   . Find the number b such that the 
average rate of change of f on the interval (2, b)  
is −   1 __ 10   .

ReAl-WORlD APPlICATIOnS
44. At the start of a trip, the odometer on a car read 

21,395. At the end of the trip, 13.5 hours later, the 
odometer read 22,125. Assume the scale on the 
odometer is in miles. What is the average speed the 
car traveled during this trip?

45. A driver of a car stopped at a gas station to fill up his 
gas tank. He looked at his watch, and the time read 
exactly 3:40 p.m. At this time, he started pumping 
gas into the tank. At exactly 3:44, the tank was full 
and he noticed that he had pumped 10.7 gallons. 
What is the average rate of flow of the gasoline into 
the gas tank?

46. Near the surface of the moon, the distance that 
an object falls is a function of time. It is given by  
d(t) = 2.6667t2, where t is in seconds and d(t) 
is in feet. If an object is dropped from a certain 
height, find the average velocity of the object 
from t = 1 to t = 2.

47. The graph in Figure 19 illustrates the decay of a 
radioactive substance over t days.
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Use the graph to estimate the average decay rate from 
t = 5 to t = 15.
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1. 4 COMPOSITIOn OF FUnCTIOnS

Suppose we want to calculate how much it costs to heat a house on a particular day of the year. The cost to heat a house 
will depend on the average daily temperature, and in turn, the average daily temperature depends on the particular 
day of the year. Notice how we have just defined two relationships: The cost depends on the temperature, and the 
temperature depends on the day.

Using descriptive variables, we can notate these two functions. The function C(T) gives the cost C of heating a house 
for a given average daily temperature in T degrees Celsius. The function T(d) gives the average daily temperature on 
day d of the year. For any given day, Cost = C(T(d)) means that the cost depends on the temperature, which in turns 
depends on the day of the year. Thus, we can evaluate the cost function at the temperature T(d). For example, we could 
evaluate T(5) to determine the average daily temperature on the 5th day of the year. Then, we could evaluate the cost 
function at that temperature. We would write C(T(5)).

Cost for the temperature

Temperature on day 5

C(T(5))

By combining these two relationships into one function, we have performed function composition, which is the focus 
of this section.

Combining Functions Using Algebraic Operations
Function composition is only one way to combine existing functions. Another way is to carry out the usual algebraic 
operations on functions, such as addition, subtraction, multiplication and division. We do this by performing the 
operations with the function outputs, defining the result as the output of our new function.

Suppose we need to add two columns of numbers that represent a husband and wife’s separate annual incomes over a 
period of years, with the result being their total household income. We want to do this for every year, adding only that 
year’s incomes and then collecting all the data in a new column. If w(y) is the wife’s income and h(y) is the husband’s 
income in year y, and we want T to represent the total income, then we can define a new function.

T(y) = h(y) + w(y)

If this holds true for every year, then we can focus on the relation between the functions without reference to a year 
and write

T = h + w

Just as for this sum of two functions, we can define difference, product, and ratio functions for any pair of functions 
that have the same kinds of inputs (not necessarily numbers) and also the same kinds of outputs (which do have to 
be numbers so that the usual operations of algebra can apply to them, and which also must have the same units or no 
units when we add and subtract). In this way, we can think of adding, subtracting, multiplying, and dividing functions.

leARnInG OBjeCTIVeS

In this section, you will:
•	  Combine functions using algebraic operations.
•	  Create a new function by composition of functions.
•	  Evaluate composite functions.
•	  Find the domain of a composite function.
•	  Decompose a composite function into its component functions.
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For two functions f (x) and g(x) with real number outputs, we define new functions f + g,  f − g,  fg, and    
 f
 _ g     by the 

relations
 (f + g)(x) = f (x) + g(x)

 (f − g)(x) = f (x) − g(x)

 (fg)(x) = f (x)g(x)

       f _ g      (x) =    
f (x)

 _ 
g(x)

   

Example 1 Performing Algebraic Operations on Functions

Find and simplify the functions (g − f )(x) and      
g
 _ 

f
     (x), given f (x) = x − 1 and g(x) = x 2 − 1. Are they the same 

function?

Solution Begin by writing the general form, and then substitute the given functions.

 (g − f )(x) = g(x) − f (x)

 (g − f )(x) = x 2 − 1 − (x − 1)

 (g − f )(x) = x 2 − x

 (g − f )(x) = x(x − 1)

      
g
 _ 

f
     (x) =    

g(x)
 _ 

f (x)
   

      
g
 _ 

f
     (x) =    x

2 − 1 _ x − 1    where x ≠ 1

      
g
 _ 

f
     (x) =    (x + 1)(x − 1)  ____________ x − 1    where x ≠ 1

      
g
 _ 

f
     (x) = x + 1 where x ≠ 1

No, the functions are not the same.

Note: For      
g
 _ 

f
     (x), the condition x ≠ 1 is necessary because when x = 1, the denominator is equal to 0, which makes 

the function undefined.

Try It #1

Find and simplify the functions (fg)(x) and (f − g)(x). 

f (x) = x − 1 and g(x) = x 2 − 1 
Are they the same function?

Create a Function by Composition of Functions
Performing algebraic operations on functions combines them into a new function, but we can also create functions by 
composing functions. When we wanted to compute a heating cost from a day of the year, we created a new function 
that takes a day as input and yields a cost as output. The process of combining functions so that the output of one 
function becomes the input of another is known as a composition of functions. The resulting function is known as a 
composite function. We represent this combination by the following notation:

( f ∘ g)(x) = f (g(x))
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We read the left-hand side as “ f composed with g at x,” and the right-hand side as “ f of g of x.” The two sides of the 
equation have the same mathematical meaning and are equal. The open circle symbol ∘ is called the composition 
operator. We use this operator mainly when we wish to emphasize the relationship between the functions themselves 
without referring to any particular input value. Composition is a binary operation that takes two functions and forms a 
new function, much as addition or multiplication takes two numbers and gives a new number. However, it is important 
not to confuse function composition with multiplication because, as we learned above, in most cases f (g(x)) ≠ f (x)g(x).

It is also important to understand the order of operations in evaluating a composite function. We follow the usual 
convention with parentheses by starting with the innermost parentheses first, and then working to the outside. In 
the equation above, the function g takes the input x first and yields an output g(x). Then the function f takes g(x) as 
an input and yields an output f (g(x)).

x is the input of g

g(x), the output of g
is the input of f

(f ° g)(x) = f(g(x))

In general, f ∘ g and g ∘ f are different functions. In other words, in many cases f ( g(x)) ≠ g(f (x)) for all x. We will also 
see that sometimes two functions can be composed only in one specific order.

For example, if f (x) = x2 and g(x) = x + 2, then

 f (g(x)) = f (x + 2)

 = (x + 2)2

 = x2 + 4x + 4
but
 g(f (x)) = g(x2)

 = x2 + 2

These expressions are not equal for all values of x, so the two functions are not equal. It is irrelevant that the expressions 
happen to be equal for the single input value x = −   1 _ 2   .

Note that the range of the inside function (the first function to be evaluated) needs to be within the domain of the 
outside function. Less formally, the composition has to make sense in terms of inputs and outputs.

composition of functions 
When the output of one function is used as the input of another, we call the entire operation a composition of 
functions. For any input x and functions f and g, this action defines a composite function, which we write as f ∘ g 
such that

(f ∘ g)(x) = f (g(x))

The domain of the composite function f ∘ g is all x such that x is in the domain of g and g(x) is in the domain of 
f. It is important to realize that the product of functions fg is not the same as the function composition f (g(x)), 
because, in general, f (x)g(x) ≠ f (g(x)).

Example 2 Determining whether Composition of Functions is Commutative

Using the functions provided, find f (g(x)) and g( f (x)). Determine whether the composition of the functions is 
commutative.

f (x) = 2x + 1  g(x) = 3 − x
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Solution Let’s begin by substituting g(x) into f (x).

 f (g(x)) = 2(3 − x) + 1
 = 6 − 2x + 1
 = 7 − 2x

Now we can substitute f (x) into g(x).
 g(f (x)) = 3 − (2x + 1)
 = 3 − 2x − 1
 = − 2x + 2
We find that g(f (x)) ≠ f (g(x)), so the operation of function composition is not commutative.

Example 3 Interpreting Composite Functions

The function c(s) gives the number of calories burned completing s sit-ups, and s(t) gives the number of sit-ups a person 
can complete in t minutes. Interpret c(s(3)).

Solution The inside expression in the composition is s(3). Because the input to the s-function is time, t = 3 represents 
3 minutes, and s(3) is the number of sit-ups completed in 3 minutes.

Using s(3) as the input to the function c(s) gives us the number of calories burned during the number of sit-ups that 
can be completed in 3 minutes, or simply the number of calories burned in 3 minutes (by doing sit-ups).

Example 4 Investigating the Order of Function Composition

Suppose f (x) gives miles that can be driven in x hours and g(y) gives the gallons of gas used in driving y miles. Which 
of these expressions is meaningful: f (g(y)) or g(f (x))?

Solution The function y = f (x) is a function whose output is the number of miles driven corresponding to the number 
of hours driven.

number of miles = f (number of hours)

The function g(y) is a function whose output is the number of gallons used corresponding to the number of miles 
driven. This means:

number of gallons = g (number of miles)

The expression g(y) takes miles as the input and a number of gallons as the output. The function f (x) requires a number 
of hours as the input. Trying to input a number of gallons does not make sense. The expression f (g(y)) is meaningless.

The expression f (x) takes hours as input and a number of miles driven as the output. The function g(y) requires a 
number of miles as the input. Using f (x) (miles driven) as an input value for g(y), where gallons of gas depends on 
miles driven, does make sense. The expression g(f (x)) makes sense, and will yield the number of gallons of gas used, 
g, driving a certain number of miles, f (x), in x hours.

Q & A…
Are there any situations where f (g(y)) and g(f (x)) would both be meaningful or useful expressions ?

Yes. For many pure mathematical functions, both compositions make sense, even though they usually produce 
different new functions. In real-world problems, functions whose inputs and outputs have the same units also may 
give compositions that are meaningful in either order.

Try It #2
The gravitational force on a planet a distance r from the sun is given by the function G(r). The acceleration of a planet 
subjected to any force F is given by the function a(F). Form a meaningful composition of these two functions, and 
explain what it means.
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evaluating Composite Functions
Once we compose a new function from two existing functions, we need to be able to evaluate it for any input in its 
domain. We will do this with specific numerical inputs for functions expressed as tables, graphs, and formulas and 
with variables as inputs to functions expressed as formulas. In each case, we evaluate the inner function using the 
starting input and then use the inner function’s output as the input for the  outer function.

Evaluating Composite Functions Using Tables

When working with functions given as tables, we read input and output values from the table entries and always work 
from the inside to the outside. We evaluate the inside function first and then use the output of the inside function as 
the input to the outside function.

Example 5 Using a Table to Evaluate a Composite Function

Using Table 1, evaluate f (g(3)) and g(f (3)).

x f (x) g(x)
1 6 3
2 8 5
3 3 2
4 1 7

Table 1

Solution To evaluate f (g(3)), we start from the inside with the input value 3. We then evaluate the inside expression 
g(3) using the table that defines the function g: g(3) = 2. We can then use that result as the input to the function f, so 
g(3) is replaced by 2 and we get f (2). Then, using the table that defines the function f, we find that f (2) = 8.

 g(3) = 2

f (g(3)) = f (2) = 8

To evaluate g( f (3)), we first evaluate the inside expression f (3) using the first table: f (3) = 3. Then, using the table for 
g, we can evaluate

g(f (3)) = g(3) = 2

Table 2 shows the composite functions f ∘ g and g ∘ f as tables.

x g(x) f (g(x)) f (x) g(f (x))
3 2 8 3 2

Table 2

Try It #3

Using Table 1, evaluate f (g(1)) and g(f (4)).

Evaluating Composite Functions Using Graphs

When we are given individual functions as graphs, the procedure for evaluating composite functions is similar to the 
process we use for evaluating tables. We read the input and output values, but this time, from the x- and y-axes of  
the graphs.



CHAPTER 1 Functions56

How To…
Given a composite function and graphs of its individual functions, evaluate it using the information provided by the 
graphs.

1. Locate the given input to the inner function on the x-axis of its graph.
2. Read off the output of the inner function from the y-axis of its graph.
3. Locate the inner function output on the x-axis of the graph of the outer function.
4. Read the output of the outer function from the y-axis of its graph. This is the output of the composite function.

Example 6 Using a Graph to Evaluate a Composite Function

Using Figure 1, evaluate f (g(1)).

x

g(x)

(a)

321 4 5 6 7

2

–1
–2
–3
–4
–5

1

3
4
5
6
7

x

f(x)

(b)

321 4 5 6 7

2

–1
–2
–3
–4
–5

1

3
4
5
6
7

Figure 1 

Solution To evaluate f (g(1)), we start with the inside evaluation. See Figure 2.

x

g(x)

321 4 5 6 7

2

–1
–2
–3
–4
–5

1

3
4
5
6
7

x

f (x)

321 4 5 6 7

2

–1
–2
–3
–4
–5

1

3
4
5
6
7

g(1) = 3 f (3) = 6

(1, 3)

(3, 6)

Figure 2

We evaluate g(1) using the graph of g(x), finding the input of 1 on the x-axis and finding the output value of the graph 
at that input. Here, g(1) = 3. We use this value as the input to the function f.

f (g(1)) = f (3)

We can then evaluate the composite function by looking to the graph of f (x), finding the input of 3 on the x-axis and 
reading the output value of the graph at this input. Here, f (3) = 6, so f ( g(1)) = 6.
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Analysis Figure 3 shows how we can mark the graphs with arrows to trace the path from the input value to the output value.

4

x

g(x)

–2–2–4

–4

–6

–6

–8

–8

–10

–10

2

6

6

42 8

8

10

10

4

x

f(x)

–2–2–4

–4

–6

–6

–8

–8

–10

–10

2

6

6

42 8

8

10

10

Figure 3

Try It #4

Using Figure 1, evaluate g(f (2)).

Evaluating Composite Functions Using Formulas

When evaluating a composite function where we have either created or been given formulas, the rule of working from 
the inside out remains the same. The input value to the outer function will be the output of the inner function, which 
may be a numerical value, a variable name, or a more complicated expression.

While we can compose the functions for each individual input value, it is sometimes helpful to find a single formula 
that will calculate the result of a composition f ( g(x)). To do this, we will extend our idea of function evaluation. Recall 
that, when we evaluate a function like f (t) = t2 − t, we substitute the value inside the parentheses into the formula 
wherever we see the input variable.

How To…
Given a formula for a composite function, evaluate the function.

1. Evaluate the inside function using the input value or variable provided.
2. Use the resulting output as the input to the outside function.

Example 7  Evaluating a Composition of Functions Expressed as Formulas with a Numerical Input

Given f (t) = t2 − t and h(x) = 3x + 2, evaluate f (h(1)).

Solution Because the inside expression is h(1), we start by evaluating h(x) at 1.

 h(1) = 3(1) + 2

 h(1) = 5

Then f (h(1)) = f (5), so we evaluate f (t) at an input of 5.

 f (h(1)) = f (5)

 f (h(1)) = 52 − 5

 f (h(1)) = 20

Analysi s It makes no difference what the input variables t and x were called in this problem because we evaluated for 
specific numerical values.
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Try It #5

Given f (t) = t 2 − t and h(x) = 3x + 2, evaluate

a. h(f (2))  b. h(f (−2))

Finding the Domain of a Composite Function
As we discussed previously, the domain of a composite function such as f ∘ g is dependent on the domain of g and the 
domain of f. It is important to know when we can apply a composite function and when we cannot, that is, to know 
the domain of a function such as f ∘ g. Let us assume we know the domains of the functions f and g separately. If we 
write the composite function for an input x as f (g(x)), we can see right away that x must be a member of the domain of 
g in order for the expression to be meaningful, because otherwise we cannot complete the inner function evaluation. 
However, we also see that g(x) must be a member of the domain of f, otherwise the second function evaluation in f (g(x)) 
cannot be completed, and the expression is still undefined. Thus the domain of f ∘ g consists of only those inputs in the 
domain of g that produce outputs from g belonging to the domain of f. Note that the domain of f composed with g is 
the set of all x such that x is in the domain of g and g(x) is in the domain of f.

domain of a composite function 
The domain of a composite function f (g(x)) is the set of those inputs x in the domain of g for which g(x) is in the 
domain of f.

How To…
Given a function composition f (g(x)), determine its domain.

1. Find the domain of g.
2. Find the domain of f.
3. Find those inputs x in the domain of g for which g(x) is in the domain of f. That is, exclude those inputs x from the 

domain of g for which g(x) is not in the domain of f. The resulting set is the domain of f ∘ g.

Example 8 Finding the Domain of a Composite Function

Find the domain of

(f ∘ g)(x) where f (x) =    5 ____ x − 1    and g(x) =    4 _____ 3x − 2   

Solution The domain of g(x) consists of all real numbers except x =    2 __ 3   , since that input value would cause us to divide by 
0. Likewise, the domain of f consists of all real numbers except 1. So we need to exclude from the domain of g(x) that value 
of x for which g(x) = 1.

    4 _____ 3x − 2    = 1

 4 = 3x − 2
 6 = 3x
 x = 2

So the domain of f ∘ g is the set of all real numbers except    2 __ 3    and 2. This means that

x ≠    2 __ 3    or x ≠ 2

We can write this in interval notation as

   − ∞,   2 __ 3      ∪      2 __ 3  , 2    ∪ (2, ∞)
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 Finding the Domain of a Composite Function Involving Radicals Find the domain of
(f ∘ g)(x) where f (x) =   √

—
 x + 2    and g(x) =   √

—
 3 − x   

Solution Because we cannot take the square root of a negative number, the domain of g is (−∞, 3]. Now we check 
the domain of the composite function

(f ∘ g)(x) =   √ 
___________

  √
—

 3 − x  +2   

For (f ∘ g)(x) =   √ 
___________

  √
—

 3 − x  +2    ,   √
—

  3 − x  +2  ≥ 0, since the radicand of a square root must be positive. Since the square 
roots are positive,   √

—
  3 − x    ≥ 0,  3 − x  ≥ 0, which gives a domain of (−∞, 3].

Analysi s This example shows that knowledge of the range of functions (specifically the inner function) can also be helpful 
in finding the domain of a composite function. It also shows that the domain of f ∘ g can contain values that are not in 
the domain of f, though they must be in the domain of g.

Try It #6

Find the domain of (f ∘ g)(x) where f (x) =    1 ____ x − 2    and g(x) =   √
—

 x + 4   

Decomposing a Composite Function into its Component Functions
In some cases, it is necessary to decompose a complicated function. In other words, we can write it as a composition 
of two simpler functions. There may be more than one way to decompose a composite function, so we may choose the 
decomposition that appears to be most expedient.

Example 9 Decomposing a Function

Write f (x) =   √
—

 5 − x 2    as the composition of two functions.

Solution We are looking for two functions, g and h, so f (x) = g(h(x)). To do this, we look for a function inside a 
function in the formula for f (x). As one possibility, we might notice that the expression 5 − x2 is the inside of the 
square root. We could then decompose the function as

h(x) = 5 − x2 and g(x) =   √
—
 x   

We can check our answer by recomposing the functions.

g(h(x)) = g(5 − x2) =   √
—

 5 − x2   

Try It #7

Write f (x) =    4 __  
3 −  √

—
 4 + x2  

     as the composition of two functions.

Access these online resources for additional instruction and practice with composite functions.

•	 Composite Functions (http://openstaxcollege.org/l/compfunction)

•	 Composite Function notation Application (http://openstaxcollege.org/l/compfuncnot)

•	 Composite Functions Using Graphs (http://openstaxcollege.org/l/compfuncgraph)

•	 Decompose Functions (http://openstaxcollege.org/l/decompfunction)

•	 Composite Function Values (http://openstaxcollege.org/l/compfuncvalue)

http://openstaxcollege.org/l/compfunction
http://openstaxcollege.org/l/compfuncnot
http://openstaxcollege.org/l/compfuncgraph
http://openstaxcollege.org/l/decompfunction
http://openstaxcollege.org/l/compfuncvalue
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1.4 SeCTIOn exeRCISeS

VeRBAl

1. How does one find the domain of the quotient of 

two functions,    
 f
 _ g    ?

2. What is the composition of two functions, f ∘ g ?

3. If the order is reversed when composing two 
functions, can the result ever be the same as the 
answer in the original order of the composition ? If 
yes, give an example. If no, explain why not.

4. How do you find the domain for the composition of 
two functions, f ∘ g ?

AlGeBRAIC

5. Given f (x) = x   2 + 2x and g(x) = 6 − x   2, find f + g,  

f − g, fg, and    
 f
 _ g    . Determine the domain for each 

function in interval notation.

6. Given f (x) = −3x2 + x and g(x) = 5, find f + g, f − g, 

fg, and    
 f
 _ g    . Determine the domain for each function 

in interval notation.

7. Given f (x) = 2x   2 + 4x and g(x) =    1 _ 2x   , find f + g, 

f − g, fg, and    
 f
 _ g    . Determine the domain for each 

function in interval notation.

8. Given f (x) =    1 _ x − 4    and g(x) =    1 _ 
6 − x

   , find  

f + g, f − g, fg, and    
 f
 _ g    . Determine the domain for each 

function in interval notation.

9. Given f (x) = 3x   2 and g(x) =   √
—

 x − 5   , find f + g, 

f − g, fg, and    
 f
 _ g    . Determine the domain for each 

function in interval notation.

10. Given f (x) =   √
—
 x    and g(x) = |x − 3|, find    

 g
 _ 

f 
   . 

Determine the domain for each function in interval 
notation.

11. Given f (x) = 2x   2 + 1 and g(x) = 3x − 5, find the following:
a. f ( g(2))  b. f ( g(x))  c. g( f (x))  d. ( g ∘ g)(x)  e. ( f ∘ f )(−2)

For the following exercises, use each pair of functions to find f (g(x)) and g(f (x)). Simplify your answers.

12. f (x) = x   2 + 1, g(x) =   √
—

 x + 2   13. f (x) =   √
—
 x    + 2, g(x) = x   2 + 3

14. f (x) = |x|, g(x) = 5x + 1 15. f (x) =    3 √
— x   , g(x) =    x + 1 _ 

x3
   

16. f (x) =    1 _ 
x − 6

   , g(x) =    7 _ x    + 6 17. f (x) =    1 ___ x−4   , g(x) =    2 _ x    + 4

For the following exercises, use each set of functions to find f (g(h(x))). Simplify your answers.

18. f (x) = x      4 + 6, g(x) = x − 6, and h(x) =   √
—
 x   19. f (x) = x   2 + 1, g(x) =    1 _ x    , and h(x) = x + 3

20. Given f (x) =    1 _ x   , and g(x) = x − 3, find the 
following:
a. ( f ∘ g)(x)
b. the domain of ( f ∘ g)(x) in interval notation
c. ( g ∘ f )(x)
d. the domain of ( g ∘ f )(x)

e.      
 f

 _ g     x

21. Given f (x) =   √
—

 2 − 4x    and g(x) = −   3 _ x   , find the 
following:
a. ( g ∘ f )(x)
b. the domain of ( g ∘ f )(x) in interval notation
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22. Given the functions f (x) =    1 − x _ x    and g(x) =    1 _ 
1 + x2

   , 

find the following:

a. ( g ∘ f )(x)
b. ( g ∘ f )(2)

23. Given functions p(x) =     1 _ 
 √

—
 x  
    and m(x) = x 2 − 4, 

state the domain of each of the following functions 
using interval notation:

a.    
p(x)

 _ 
m(x)

    b. p(m(x)) c. m(p(x))

24. Given functions q(x) =    1 _ 
 √

—
 x  
    and h(x) = x 2 − 9, state 

the domain of each of the following functions using 
interval notation.

a.    
q(x)

 _ 
h(x)

    b. q(h(x)) c. h(q(x))

25. For f (x) =    1 _ x    and g(x) =   √
—

 x − 1   , write the domain 

of ( f ∘ g)(x) in interval notation.

For the following exercises, find functions f (x) and g(x) so the given function can be expressed as h(x) = f (g(x)).

26. h(x) = (x + 2)2 27. h(x) = (x − 5)3 28. h(x) =    3 _ x − 5   29. h(x) =    4 _______ (x + 2)2   

30. h(x) = 4 +    3 √
—
 x   31. h(x) =  

3
  √ 

_______

   1 ______ 2x − 3      32. h(x) =    1 _ 
(3x 2 − 4)−3

   33. h(x) =  
4

  √ 
_______

   3x − 2 ______ x + 5      

34. h(x) =      8 + x 3 _ 
8 − x 3

     
4

35. h(x) =   √
—

 2x + 6   36. h(x) = (5x − 1)3
37. h(x) =    3 √

—
 x − 1    

38. h(x) = |x 2 + 7| 39. h(x) =    1 _ 
(x − 2)3   40. h(x) =      1 _ 2x − 3     

2

41. h(x) =   √ 
_______

   2x − 1 _ 3x + 4     

GRAPHICAl

For the following exercises, use the graphs of f, shown in Figure 4, and g, shown in Figure 5, to evaluate the expressions.

f(x)

x
–1

1

1–

5

6

3

2

–
7321 654

4
f

Figure 4 

f(x)

x
–1

1

1–

5

6

3

2

–
7321 654

4
g

Figure 5 

42. f ( g(3)) 43. f ( g(1)) 44. g( f (1)) 45. g( f (0))

46. f ( f (5)) 47. f ( f (4)) 48. g( g(2)) 49. g( g(0))
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For the following exercises, use graphs of f (x), shown in Figure 6, g(x), shown in Figure 7, and h(x), shown in Figure 8, 
to evaluate the expressions.

f(x)

x

f (x)

–
–1

1

1

–

2

–

3

–

4

3 24

5

3 421

Figure 6 

g(x)

x

f (x)

–
–1

1

1

–

2

–

3

–

4

3 24

5

3 421

Figure 7 

h(x)

x

f (x)

–
–1

1

1

–

2

–

3

–

4

3 24

5

3 421

Figure 8 

50. g( f (1)) 51. g( f (2)) 52. f ( g(4)) 53. f ( g(1))

54. f (h(2)) 55. h( f (2)) 56. f ( g(h(4))) 57. f ( g( f (−2)))

nUMeRIC

For the following exercises, use the function values for f and g shown in Table 3 to evaluate each expression.

x 0 1 2 3 4 5 6 7 8 9
f (x) 7 6 5 8 4 0 2 1 9 3
g(x) 9 5 6 2 1 8 7 3 4 0

Table 3

58. f ( g(8)) 59. f ( g(5)) 60. g( f (5)) 61. g( f (3))
62. f ( f (4)) 63. f ( f (1)) 64. g( g(2)) 65. g( g(6))

For the following exercises, use the function values for f and g shown in Table 4 to evaluate the expressions.

x −3 −2 −1 0 1 2 3
f (x) 11 9 7 5 3 1 −1
g(x) −8 −3 0 1 0 −3 −8

Table 4

66. ( f ∘ g)(1) 67. ( f ∘ g)(2) 68. ( g ∘ f )(2)
69. ( g ∘ f )(3) 70. ( g ∘ g )(1) 71. ( f ∘ f )(3)

For the following exercises, use each pair of functions to find f (g(0)) and g(f (0)).

72. f (x) = 4x + 8, g(x) = 7 − x2 73. f (x) = 5x + 7, g(x) = 4 − 2x2

74. f (x) =   √
—

 x + 4   , g(x) = 12 − x3 75. f (x) =    1 _ x + 2   , g(x) = 4x + 3

For the following exercises, use the functions f (x) = 2x2 + 1 and g(x) = 3x + 5 to evaluate or find the composite 
function as indicated.

76. f ( g(2)) 77. f ( g(x)) 78. g( f ( − 3)) 79. ( g ∘ g )(x)
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exTenSIOnS

For the following exercises, use f (x) = x3 + 1 and g(x) =    3 √
—

 x − 1   .

80. Find ( f ∘ g)(x) and ( g ∘ f )(x). Compare the two answers. 81. Find ( f ∘ g)(2) and ( g ∘ f )(2).

82. What is the domain of ( g ∘ f )(x) ? 83. What is the domain of ( f ∘ g)(x) ?

84. Let f (x) =    1 __ x   .

a. Find ( f ∘ f )(x).
b. Is ( f ∘ f )(x) for any function f the same result as the answer to part (a) for any function ? Explain.

For the following exercises, let F (x) = (x + 1)5, f (x) = x5, and g(x) = x + 1.

85. True or False: ( g ∘ f )(x) = F (x). 86. True or False: ( f ∘ g )(x) = F (x).

For the following exercises, find the composition when f (x) = x2 + 2 for all x ≥ 0 and g(x) =   √
—

 x − 2   .

87. ( f ∘ g)(6) ; ( g ∘ f )(6) 88. ( g ∘ f )(a) ; ( f ∘ g )(a) 89. ( f ∘ g )(11) ; (g ∘ f )(11)

ReAl-WORlD APPlICATIOnS
90. The function D(p) gives the number of items 

that will be demanded when the price is p. The 
production cost C(x) is the cost of producing x 
items. To determine the cost of production when the 
price is $6, you would do which of the following ?
a. Evaluate D(C(6)).
b. Evaluate C(D(6)).
c. Solve D(C(x)) = 6.
d. Solve C(D(p)) = 6.

91. The function A(d) gives the pain level on a scale of 0  
to 10 experienced by a patient with d milligrams of 
a pain- reducing drug in her system. The milligrams 
of the drug in the patient’s system after t minutes is 
modeled by m(t). Which of the following would you 
do in order to determine when the patient will be at 
a pain level of 4 ?
a. Evaluate A(m(4)).
b. Evaluate m(A(4)).
c. Solve A(m(t)) = 4.
d. Solve m(A(d)) = 4.

92. A store offers customers a 30 % discount on the 
price x of selected items. Then, the store takes off 
an additional 15 % at the cash register. Write a price 
function P(x) that computes the final price of the 
item in terms of the original price x. (Hint: Use 
function composition to find your answer.)

93. A rain drop hitting a lake makes a circular ripple. If 
the radius, in inches, grows as a function of time in 
minutes according to r(t) = 25      √

—
 t + 2   , find the area 

of the ripple as a function of time. Find the area of 
the ripple at t = 2.

94. A forest fire leaves behind an area of grass burned 
in an expanding circular pattern. If the radius of 
the circle of burning grass is increasing with time 
according to the formula r(t) = 2t + 1, express the 
area burned as a function of time, t (minutes).

95. Use the function you found in the previous exercise 
to find the total area burned after 5 minutes.

96. The radius r, in inches, of a spherical balloon is 
related to the volume, V, by r(V) =  

3
  √ 

___

   3V ___ 4π    .  Air is 
pumped into the balloon, so the volume after t 
seconds is given by V(t) = 10 + 20t.
a. Find the composite function r(V(t)).
b. Find the exact time when the radius reaches 

10 inches.

97. The number of bacteria in a refrigerated food 
product is given by 

N(T) = 23T 2 − 56T + 1, 3 < T < 33, 

where T is the temperature of the food. When 
the food is removed from the refrigerator, the 
temperature is given by T(t) = 5t + 1.5, where t is 
the time in hours.
a. Find the composite function N(T(t)).
b. Find the time (round to two decimal places) 

when the bacteria count reaches 6,752.
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1. 5 TRAnSFORMATIOn OF FUnCTIOnS

Figure 1 (credit: "Misko"/Flickr)

We all know that a flat mirror enables us to see an accurate image of ourselves and whatever is behind us. When 
we tilt the mirror, the images we see may shift horizontally or vertically. But what happens when we bend a flexible 
mirror? Like a carnival funhouse mirror, it presents us with a distorted image of ourselves, stretched or compressed 
horizontally or vertically. In a similar way, we can distort or transform mathematical functions to better adapt them to 
describing objects or processes in the real world. In this section, we will take a look at several kinds of transformations. 

Graphing Functions Using Vertical and Horizontal Shifts
Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs, 
and equations. One method we can employ is to adapt the basic graphs of the toolkit functions to build new models 
for a given scenario. There are systematic ways to alter functions to construct appropriate models for the problems 
we are trying to solve.

Identifying Vertical Shifts

One simple kind of transformation involves shifting the entire graph of a function up, down, right, or left. The 
simplest shift is a vertical shift, moving the graph up or down, because this transformation involves adding a positive 
or negative constant to the function. In other words, we add the same constant to the output value of the function 
regardless of the input. For a function g (x) = f (x) + k, the function f (x) is shifted vertically k units. See Figure 2 for 
an example.

leARnInG OBjeCTIVeS

In this section, you will:
•	  Graph functions using vertical and horizontal shifts.
•	  Graph functions using reflections about the x-axis and the y-axis.
•	  Determine whether a function is even, odd, or neither from its graph.
•	  Graph functions using compressions and stretches.
•	 Combine transformations.
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Figure 2 Vertical shift by k = 1 of the cube root function f ( x) =    3 √
— x   .

To help you visualize the concept of a vertical shift, consider that y = f (x). Therefore, f (x) + k is equivalent to y + k. 
Every unit of y is replaced by y + k, so the y-value increases or decreases depending on the value of k. The result is a 
shift upward or downward.

vertical shift 
Given a function f (x), a new function g(x) = f (x) + k, where k is a constant, is a vertical shift of the function 
f (x). All the output values change by k units. If k is positive, the graph will shift up. If k is negative, the graph 
will shift down. 

 

Example 1 Adding a Constant to a Function

To regulate temperature in a green building, airflow vents near the roof open and close throughout the day. Figure 
3 shows the area of open vents V (in square feet) throughout the day in hours after midnight, t. During the summer, 
the facilities manager decides to try to better regulate temperature by increasing the amount of open vents by 20 
square feet throughout the day and night. Sketch a graph of this new function.
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Solution We can sketch a graph of this new function by adding 20 to each of the output values of the original function. 
This will have the effect of shifting the graph vertically up, as shown in Figure 4.
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Notice that in Figure 4, for each input value, the output value has increased by 20, so if we call the new function S(t), 
we could write

S(t) = V(t) + 20

This notation tells us that, for any value of t, S(t) can be found by evaluating the function V at the same input and 
then adding 20 to the result. This defines S as a transformation of the function V, in this case a vertical shift up 20 
units. Notice that, with a vertical shift, the input values stay the same and only the output values change. See Table 1.

t 0 8 10 17 19 24
V(t) 0 0 220 220 0 0
S(t) 20 20 240 240 20 20

Table 1

How To…
Given a tabular function, create a new row to represent a vertical shift.

1.  Identify the output row or column.
2. Determine the magnitude of the shift.
3.   Add the shift to the value in each output cell. Add a positive value for up or a negative value for down.

Example 2 Shifting a Tabular Function Vertically

A function f (x) is given in Table 2. Create a table for the function g(x) = f (x) − 3.

x 2 4 6 8
f (x) 1 3 7 11

Table 2

Solution The formula g (x) = f (x) − 3 tells us that we can find the output values of g by subtracting 3 from the output 
values of f. For example:
 f (2) = 1 Given

 g(x) = f (x) − 3 Given transformation

 g(2) = f (2) − 3

 = 1 − 3

 = −2

Subtracting 3 from each f (x) value, we can complete a table of values for g(x) as shown in Table 3.

x 2 4 6 8
f (x) 1 3 7 11
g(x) −2 0 4 8

Table 3

Analysi s As with the earlier vertical shift, notice the input values stay the same and only the output values change.

Try It #1

The function h(t) = –4.9t2 + 30t gives the height h of a ball (in meters) thrown upward from the ground after t seconds. 
Suppose the ball was instead thrown from the top of a 10-m building. Relate this new height function b(t) to h(t), and 
then find a formula for b(t).
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Identifying Horizontal Shifts

We just saw that the vertical shift is a change to the output, or outside, of the function. We will now look at how changes 
to input, on the inside of the function, change its graph and meaning. A shift to the input results in a movement of the 
graph of the function left or right in what is known as a horizontal shift, shown in Figure 5.
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Figure 5 Horizontal shift of the function f (x) =    
3
 √
—
 x   . note that h = +1 shifts the graph to the left, that is, towards negative values of x.

For example, if f (x) = x2, then g(x) = (x − 2)2 is a new function. Each input is reduced by 2 prior to squaring the 
function. The result is that the graph is shifted 2 units to the right, because we would need to increase the prior input 
by 2 units to yield the same output value as given in f.

horizontal shift   
Given a function f, a new function g(x) = f (x − h), where h is a constant, is a horizontal shift of the function f. If 
h is positive, the graph will shift right. If h is negative, the graph will shift left.

Example 3 Adding a Constant to an Input

Returning to our building airflow example from Figure 3, suppose that in autumn the facilities manager decides that 
the original venting plan starts too late, and wants to begin the entire venting program 2 hours earlier. Sketch a graph 
of the new function.

Solution We can set V(t) to be the original program and F (t) to be the revised program.

 V(t) = the original venting plan

 F(t) = starting 2 hrs sooner

In the new graph, at each time, the airflow is the same as the original function V was 2 hours later. For example, in 
the original function V, the airflow starts to change at 8 a.m., whereas for the function F, the airflow starts to change 
at 6 a.m. The comparable function values are V(8) = F(6). See Figure 6. Notice also that the vents first opened to 220 
ft2 at 10 a.m. under the original plan, while under the new plan the vents reach 220 ft2 at 8 a.m., so V(10) = F(8).

In both cases, we see that, because F (t) starts 2 hours sooner, h = −2. That means that the same output values are 
reached when F (t) = V(t − (−2)) = V(t + 2).
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Analysi s  Note that V(t + 2) has the effect of shifting the graph to the left.

Horizontal changes or “inside changes” affect the domain of a function (the input) instead of the range and often seem 
counterintuitive. The new function F(t) uses the same outputs as V(t), but matches those outputs to inputs 2 hours 
earlier than those of V(t). Said another way, we must add 2 hours to the input of V to find the corresponding output 
for F : F(t) = V(t + 2).

How To…
Given a tabular function, create a new row to represent a horizontal shift.

1. Identify the input row or column.
2. Determine the magnitude of the shift.
3.  Add the shift to the value in each input cell.

Example 4 Shifting a Tabular Function Horizontally

A function f (x) is given in Table 4. Create a table for the function g (x) = f (x − 3).

x 2 4 6 8
f (x) 1 3 7 11

Table 4 

Solution The formula g(x) = f (x − 3) tells us that the output values of g are the same as the output value of f when 
the input value is 3 less than the original value. For example, we know that f (2) = 1. To get the same output from the 
function g, we will need an input value that is 3 larger. We input a value that is 3 larger for g (x) because the function 
takes 3 away before evaluating the function f.
 g (5) = f (5 − 3)
 = f (2)
 = 1

We continue with the other values to create Table 5.

x 5 7 9 11
x − 3 2 4 6 8

f (x − 3) 1 3 7 11
g(x) 1 3 7 11

Table 5 

The result is that the function g (x) has been shifted to the right by 3. Notice the output values for g (x) remain the same 
as the output values for f (x), but the corresponding input values, x, have shifted to the right by 3. Specifically, 2 shifted 
to 5, 4 shifted to 7, 6 shifted to 9, and 8 shifted to 11.

Analysi s Figure 7 represents both of the functions. We can see the horizontal shift in each point.
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Example 5 Identifying a Horizontal Shift of a Toolkit Function

Figure 8 represents a transformation of the toolkit function f (x) = x2. Relate this new function g (x) to f (x), and then 
find a formula for g (x).
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Figure 8  

Solution Notice that the graph is identical in shape to the f (x) = x2 function, but the x-values are shifted to the 
right 2 units. The vertex used to be at (0,0), but now the vertex is at (2,0). The graph is the basic quadratic function 
shifted 2 units to the right, so
 g (x) = f (x − 2)

Notice how we must input the value x = 2 to get the output value y = 0; the x-values must be 2 units larger 
because of the shift to the right by 2 units. We can then use the definition of the f (x) function to write a formula 
for g (x) by evaluating f (x − 2).
 f (x) = x2

 g (x) = f (x − 2)
 g (x) = f (x − 2) = (x − 2)2

Analysi s To determine whether the shift is +2 or −2, consider a single reference point on the graph. For a quadratic, 
looking at the vertex point is convenient. In the original function, f (0) = 0. In our shifted function, g (2) = 0. To 
obtain the output value of 0 from the function f, we need to decide whether a plus or a minus sign will work to satisfy  
g (2) = f (x − 2) = f (0) = 0. For this to work, we will need to subtract 2 units from our input values.

Example 6 Interpreting Horizontal versus Vertical Shifts

The function G (m) gives the number of gallons of gas required to drive m miles. Interpret G (m) + 10 and G (m + 10).

Solution G (m) + 10 can be interpreted as adding 10 to the output, gallons. This is the gas required to drive m miles, 
plus another 10 gallons of gas. The graph would indicate a vertical shift. 

G (m + 10) can be interpreted as adding 10 to the input, miles. So this is the number of gallons of gas required to drive 
10 miles more than m miles. The graph would indicate a horizontal shift.

Try It #2

Given the function f (x) =   √
—
 x   , graph the original function f (x) and the transformation g (x) = f (x + 2) on the same axes. 

Is this a horizontal or a vertical shift? Which way is the graph shifted and by how many units?

Combining Vertical and Horizontal Shifts

Now that we have two transformations, we can combine them together. Vertical shifts are outside changes that affect 
the output ( y-) axis values and shift the function up or down. Horizontal shifts are inside changes that affect the input 
(x-) axis values and shift the function left or right. Combining the two types of shifts will cause the graph of a function 
to shift up or down and right or left.
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How To…
Given a function and both a vertical and a horizontal shift, sketch the graph.
1.  Identify the vertical and horizontal shifts from the formula.
2. The vertical shift results from a constant added to the output. Move the graph up for a positive constant and down 

for a negative constant.
3. The horizontal shift results from a constant added to the input. Move the graph left for a positive constant and right 

for a negative constant.
4. Apply the shifts to the graph in either order.

Example 7 Graphing Combined Vertical and Horizontal Shifts

Given f (x) = ∣ x ∣, sketch a graph of h (x) = f (x + 1) − 3.

Solution The function f is our toolkit absolute value function. We know that this graph has a V shape, with the 
point at the origin. The graph of h has transformed f in two ways: f (x + 1) is a change on the inside of the function, 
giving a horizontal shift left by 1, and the subtraction by 3 in f (x + 1) − 3 is a change to the outside of the function, 
giving a vertical shift down by 3. The transformation of the graph is illustrated in Figure 9.

Let us follow one point of the graph of f (x) = ∣ x ∣.

•	 The	point	(0,	0)	is	transformed	first	by	shifting	left	1	unit:	(0,	0)	→ (−1, 0)

•	 The	point	(−1, 0) is transformed next by shifting down 3 units: (−1, 0) → (−1, −3)
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Figure 10 shows the graph of h.
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Try It #3

Given f (x) = ∣ x ∣, sketch a graph of h(x) = f (x − 2) + 4.
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Example 8 Identifying Combined Vertical and Horizontal Shifts

Write a formula for the graph shown in Figure 11, which is a transformation of the toolkit square root function.
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Solution The graph of the toolkit function starts at the origin, so this graph has been shifted 1 to the right and up 2. 
In function notation, we could write that as

h(x) = f (x −  1) + 2

Using the formula for the square root function, we can write

h(x) =   √
—

 x − 1    + 2

Analysi s Note that this transformation has changed the domain and range of the function. This new graph has domain  
[1, ∞) and range [2, ∞).

Try It #4

Write a formula for a transformation of the toolkit reciprocal function f (x) =    1 __ x    that shifts the function’s graph one 
unit to the right and one unit up.

Graphing Functions Using Reflections about the Axes
Another transformation that can be applied to a function is a reflection over the x- or y-axis. A vertical reflection 
reflects a graph vertically across the x-axis, while a horizontal reflection reflects a graph horizontally across the y-axis. 
The reflections are shown in Figure 12.

Horizontal
re�ection

Original
function

Vertical
re�ection

x

y

f(x)

f(–x)

–f(x)

Figure 12 Vertical and horizontal reflections of a function.

Notice that the vertical reflection produces a new graph that is a mirror image of the base or original graph about the 
x-axis. The horizontal reflection produces a new graph that is a mirror image of the base or original graph about the 
y-axis.
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reflections 

Given a function f (x), a new function g(x) = −f (x) is a vertical reflection of the function f (x), sometimes called a 
reflection about (or over, or through) the x-axis.

Given a function f (x), a new function g(x) = f (−x) is a horizontal reflection of the function f (x), sometimes 
called a reflection about the y-axis.

How To…
Given a function, reflect the graph both vertically and horizontally.

1. Multiply all outputs by –1 for a vertical reflection. The new graph is a reflection of the original graph about the x-axis.
2.  Multiply all inputs by –1 for a horizontal reflection. The new graph is a reflection of  the original graph about the 

y-axis.

Example 9 Reflecting a Graph Horizontally and Vertically

Reflect the graph of s(t) =   √
—
 t    a. vertically and b. horizontally.

Solution 

a.  Reflecting the graph vertically means that each output value will be reflected over the horizontal t-axis as shown 
in Figure 13.
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Figure 13 Vertical reflection of the square root function

Because each output value is the opposite of the original output value, we can write

V(t) = −s(t) or V(t) = −  √
—
 t   

 Notice that this is an outside change, or vertical shift, that affects the output s(t) values, so the negative sign 
belongs outside of the function.

b.  Reflecting horizontally means that each input value will be reflected over the vertical axis as shown in Figure 14.
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Figure 14 Horizontal reflection of the square root function
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Because each input value is the opposite of the original input value, we can write

H(t) = s(−t) or H(t) =   √
—

 −t   

Notice that this is an inside change or horizontal change that affects the input values, so the negative sign is on the 
inside of the function.

Note that these transformations can affect the domain and range of the functions. While the original square root 
function has domain [0, ∞) and range [0, ∞), the vertical reflection gives the V(t) function the range (−∞, 0] and 
the horizontal reflection gives the H(t) function the domain (−∞, 0].

Try It #5

Reflect the graph of f (x) = |x − 1|  a. vertically and b. horizontally.

Example 10 Reflecting a Tabular Function Horizontally and Vertically

A function f (x) is given as Table 6. Create a table for the functions below.

a. g(x) = −f (x)  b. h(x) = f (−x)

x 2 4 6 8
f (x) 1 3 7 11

Table 6 

Solution

a.  For g(x), the negative sign outside the function indicates a vertical reflection, so the x-values stay the same and 
each output value will be the opposite of the original output value. See Table 7.

x 2 4 6 8
g (x) –1 –3 –7 –11

Table 7

b.  For h(x), the negative sign inside the function indicates a horizontal reflection, so each input value will be the 
opposite of the original input value and the h(x) values stay the same as the f (x) values. See Table 8.

x –2 –4 –6 –8

h(x) 1 3 7 11

Table 8 

Try It #6

A function f (x) is given as Table 9. Create a table for the functions below.

x −2 0 2 4

f(x) 5 10 15 20
Table 9 

a. g(x) = −f (x) 

b. h(x) = f (−x)
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Example 11 Applying a Learning Model Equation 

A common model for learning has an equation similar to k(t) = −2−t + 1, where k is the percentage of mastery that 
can be achieved after t practice sessions. This is a transformation of the function f (t) = 2t shown in Figure 15. Sketch 
a graph of k(t).
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Figure 15 

Solution This equation combines three transformations into one equation.

•	A horizontal reflection: f (−t) = 2−t

•	A vertical reflection: −f (−t) = −2−t

•	A vertical shift: −f (−t) + 1 = −2−t + 1

We can sketch a graph by applying these transformations one at a time to the original function. Let us follow two 
points through each of the three transformations. We will choose the points (0, 1) and (1, 2).

1. First, we apply a horizontal reflection: (0, 1) (−1, 2).

2. Then, we apply a vertical reflection: (0, −1) (1, −2).

3. Finally, we apply a vertical shift: (0, 0) (1, 1).

This means that the original points, (0,1) and (1,2) become (0,0) and (1,1) after we apply the transformations.

In Figure 16, the first graph results from a horizontal reflection. The second results from a vertical reflection. The third 
results from a vertical shift up 1 unit.
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Figure 16 

Analysi s As a model for learning, this function would be limited to a domain of t ≥ 0, with corresponding range [0, 1).

Try It #7

Given the toolkit function f (x) = x 2, graph g(x) = −f (x) and h(x) = f (−x). Take note of any surprising behavior for 
these functions.
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Determining even and Odd Functions
Some functions exhibit symmetry so that reflections result in the original graph. For example, horizontally reflecting 
the toolkit functions f (x) = x2 or f (x) = x will result in the original graph. We say that these types of graphs are 
symmetric about the y-axis. Functions whose graphs are symmetric about the y-axis are called even functions. 

If the graphs of f (x) = x3 or f (x) =    1 _ x    were reflected over both axes, the result would be the original graph, as shown 
in Figure 17.
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f (x) = x3 f (−x) −f (−x)
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f (x) = x3 f (−x) −f (−x)

Figure 17 (a) The cubic toolkit function (b) Horizontal reflection of the cubic toolkit function  
(c) Horizontal and vertical reflections reproduce the original cubic function.

We say that these graphs are symmetric about the origin. A function with a graph that is symmetric about the origin 
is called an odd function.

Note: A function can be neither even nor odd if it does not exhibit either symmetry. For example, f (x) = 2x is neither 
even nor odd. Also, the only function that is both even and odd is the constant function f (x) = 0.

even and odd functions 
A function is called an even function if for every input x: f (x) = f (−x)

The graph of an even function is symmetric about the y-axis.
A function is called an odd function if for every input x: f (x) = −f (−x)
The graph of an odd function is symmetric about the origin.

How To…
Given the formula for a function, determine if the function is even, odd, or neither.

1. Determine whether the function satisfies f (x) = f (−x). If it does, it is even.
2. Determine whether the function satisfies f (x) = −f (−x). If it does, it is odd.
3. If the function does not satisfy either rule, it is neither even nor odd.

Example 12 Determining whether a Function Is Even, Odd, or Neither

Is the function f (x) = x 3 + 2x even, odd, or neither?

Solution Without looking at a graph, we can determine whether the function is even or odd by finding formulas for 
the reflections and determining if they return us to the original function. Let’s begin with the rule for even functions.

f (−x) = (−x)3 + 2(−x) = −x 3 − 2x
This does not return us to the original function, so this function is not even. We can now test the rule for odd functions.

−f (−x) = −(−x 3 − 2x) = x 3 + 2x
Because −f (−x) = f (x), this is an odd function.
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Analysis Consider the graph of f in Figure 18. Notice that the graph 
is symmetric about the origin. For every point (x, y) on the graph, the 
corresponding point (−x, −y) is also on the graph. For example, (1, 3) is on 
the graph of f, and the corresponding point (−1, −3) is also on the graph.
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(−1, −3)

f (x) 
f

Figure 18   

Try It #8

Is the function f (s) = s 4 + 3s 2 + 7 even, odd, or neither?

Graphing Functions Using Stretches and Compressions
Adding a constant to the inputs or outputs of a function changed the position of a graph with respect to the axes, but 
it did not affect the shape of a graph. We now explore the effects of multiplying the inputs or outputs by some quantity.

We can transform the inside (input values) of a function or we can transform the outside (output values) of a function. 
Each change has a specific effect that can be seen graphically.

Vertical Stretches and Compressions

When we multiply a function by a positive constant, we get a function whose graph is stretched or compressed 
vertically in relation to the graph of the original function. If the constant is greater than 1, we get a vertical stretch; 
if the constant is between 0 and 1, we get a vertical compression. Figure 19 shows a function multiplied by constant 
factors 2 and 0.5 and the resulting vertical stretch and compression.

Vertical
stretch

Vertical
compression

x 

y

2f(x)
f(x)
0.5f(x)

Figure 19 Vertical stretch and compression

vertical stretches and compressions 
Given a function f (x), a new function g(x) = af (x), where a is a constant, is a vertical stretch or vertical 
compression of the function f (x).

•	 If	a > 1, then the graph will be stretched.

•	 If	0	< a < 1, then the graph will be compressed.

•	 	If	a < 0, then there will be combination of a vertical stretch or compression with a vertical reflection.
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How To…
Given a function, graph its vertical stretch.

1. Identify the value of a.

2. Multiply all range values by a.

3. If a > 1, the graph is stretched by a factor of a.
If 0 < a < 1, the graph is compressed by a factor of a.
If a < 0, the graph is either stretched or compressed and also reflected about the x-axis.

Example 13 Graphing a Vertical Stretch

A function P(t) models the population of fruit flies. The graph is shown in Figure 20.
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Figure 20

A scientist is comparing this population to another population, Q, whose growth follows the same pattern, but is twice 
as large. Sketch a graph of this population.

Solution Because the population is always twice as large, the new population’s output values are always twice the 
original function’s output values. Graphically, this is shown in Figure 21.

If we choose four reference points, (0, 1), (3, 3), (6, 2) and (7, 0) we will multiply all of the outputs by 2.

The following shows where the new points for the new graph will be located.

(0, 1) → (0, 2)

(3, 3) → (3, 6)

(6, 2) → (6, 4)

(7, 0) → (7, 0)
t

Q(t)

–1

1

1–

5

6

3

2

–
7321 654

4

Figure 21  

Symbolically, the relationship is written as

Q(t) = 2P(t)

This means that for any input t, the value of the function Q is twice the value of the function P. Notice that the effect 
on the graph is a vertical stretching of the graph, where every point doubles its distance from the horizontal axis. The 
input values, t, stay the same while the output values are twice as large as before.
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How To…
Given a tabular function and assuming that the transformation is a vertical stretch or compression, create a table for 
a vertical compression.

1. Determine the value of a.
2. Multiply all of the output values by a.

Example 14 Finding a Vertical Compression of a Tabular Function 

A function f is given as Table 10. Create a table for the function g(x) =    1 __ 2   f (x).

x 2 4 6 8
f (x) 1 3 7 11

Table 10

Solution The formula g(x) =    1 __ 2   f (x) tells us that the output values of g are half of the output values of f with the same 
inputs. For example, we know that f (4) = 3. Then

g(4) =    1 __ 2   f (4) =    1 __ 2   (3) =    3 __ 2   

We do the same for the other values to produce Table 11.

x 2 4 6 8

g(x)    1 __ 2      3 __ 2      7 __ 2      11 __ 2   

Table 11

Analysi s The result is that the function g(x) has been compressed vertically by    1 __ 2   . Each output value is divided in half, 
so the graph is half the original height.

Try It #9

A function f is given as Table 12. Create a table for the function g(x) =    3 __ 4    f (x).

x 2 4 6 8
f(x) 12 16 20 0

Table 12 

Example 15 Recognizing a Vertical Stretch

The graph in Figure 22 is a transformation of the toolkit function f (x) = x3. Relate this new function g(x) to f (x), and 
then find a formula for g(x).
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Solution When trying to determine a vertical stretch or shift, it is helpful to look for a point on the graph that is 
relatively clear. In this graph, it appears that g(2) = 2. With the basic cubic function at the same input, f (2) = 23 = 8. 
Based on that, it appears that the outputs of g are    1 __ 4    the outputs of the function f because g(2) =    1 __ 4    f (2). From this we 
can fairly safely conclude that g(x) =    1 __ 4    f (x).

We can write a formula for g by using the definition of the function f.

g(x) =    1 __ 4    f (x) =    1 __ 4   x3

Try It #10

Write the formula for the function that we get when we stretch the identity toolkit function by a factor of 3, and then 
shift it down by 2 units.

Horizontal Stretches and Compressions

Now we consider changes to the inside of a function. When we multiply a function’s input by a positive constant, we 
get a function whose graph is stretched or compressed horizontally in relation to the graph of the original function. 
If the constant is between 0 and 1, we get a horizontal stretch; if the constant is greater than 1, we get a horizontal 
compression of the function.
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y = (2x)2

y = (0.5x)2

y = x2

Figure 23 

Given a function y = f (x), the form y = f (bx) results in a horizontal stretch or compression. Consider the function 
y = x2. Observe Figure 23. The graph of y = (0.5x)2 is a horizontal stretch of the graph of the function y = x 2 by a factor 
of 2. The graph of y = (2x)2 is a horizontal compression of the graph of the function y = x 2 by a factor of 2.

horizontal stretches and compressions 
Given a function f (x), a new function g(x) = f (bx), where b is a constant, is a horizontal stretch or horizontal 
compression of the function f (x).

•	 If b > 1, then the graph will be compressed by    1 __ b   .

•	 If 0 < b < 1, then the graph will be stretched by    1 __ b   .

•	 If b < 0, then there will be combination of a horizontal stretch or compression with a horizontal reflection.

How To…
Given a description of a function, sketch a horizontal compression or stretch.

1. Write a formula to represent the function.
2. Set g(x) = f (bx) where b > 1 for a compression or 0 < b < 1 for a stretch.
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Example 16 Graphing a Horizontal Compression

Suppose a scientist is comparing a population of fruit flies to a population that progresses through its lifespan twice 
as fast as the original population. In other words, this new population, R, will progress in 1 hour the same amount 
as the original population does in 2 hours, and in 2 hours, it will progress as much as the original population does in 
4 hours. Sketch a graph of this population.

Solution Symbolically, we could write

 R(1) = P(2),

 R(2) = P(4), and in general,

 R(t) = P(2t).

See Figure 24 for a graphical comparison of the original population and the compressed population.
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Figure 24 (a) Original population graph (b) Compressed population graph

Analysi s Note that the effect on the graph is a horizontal compression where all input values are half of their original 
distance from the vertical axis.

Example 17 Finding a Horizontal Stretch for a Tabular Function

A function f (x) is given as Table 13. Create a table for the function g(x) = f       1 __ 2  x   .

x 2 4 6 8
f (x) 1 3 7 11

Table 13

Solution The formula g(x) = f       1 __ 2  x    tells us that the output values for g are the same as the output values for 

the function f at an input half the size. Notice that we do not have enough information to determine g(2) because  
g(2) = f       1 __ 2   ⋅ 2    = f (1), and we do not have a value for f (1) in our table. Our input values to g will need to be twice as 

large to get inputs for f that we can evaluate. For example, we can determine g(4).

g(4) = f       1 __ 2   ⋅ 4    = f (2) = 1

We do the same for the other values to produce Table 14.

x 4 8 12 16
g(x) 1 3 7 11

Table 14
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Figure 25 shows the graphs of both of these sets of points.
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Analysi s Because each input value has been doubled, the result is that the function g(x) has been stretched horizontally 
by a factor of 2.

Example 18 Recognizing a Horizontal Compression on a Graph

Relate the function g(x) to f (x) in Figure 26.
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Solution The graph of g(x) looks like the graph of f (x) horizontally compressed. Because f (x) ends at (6, 4) and g(x) ends at  
(2, 4), we can see that the x-values have been compressed by    1 __ 3   , because 6      1 __ 3      = 2. We might also notice that g(2) = f (6) 

and g(1) = f (3). Either way, we can describe this relationship as g(x) = f (3x). This is a horizontal compression by    1 __ 3   .

Analysis Notice that the coefficient needed for a horizontal stretch or compression is the reciprocal of the stretch or 

compression. So to stretch the graph horizontally by a scale factor of 4, we need a coefficient of    1 __ 4    in our function: f       1 __ 4  x  .   

This means that the input values must be four times larger to produce the same result, requiring the input to be larger, 
causing the horizontal stretching.

Try It #11

Write a formula for the toolkit square root function horizontally stretched by a factor of 3.
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Performing a Sequence of Transformations
When combining transformations, it is very important to consider the order of the transformations. For example, 
vertically shifting by 3 and then vertically stretching by 2 does not create the same graph as vertically stretching by 
2 and then vertically shifting by 3, because when we shift first, both the original function and the shift get stretched, 
while only the original function gets stretched when we stretch first.

When we see an expression such as 2f (x) + 3, which transformation should we start with? The answer here follows 
nicely from the order of operations. Given the output value of f (x), we first multiply by 2, causing the vertical stretch, 
and then add 3, causing the vertical shift. In other words, multiplication before addition.

Horizontal transformations are a little trickier to think about. When we write g(x) = f (2x + 3), for example, we have 
to think about how the inputs to the function g relate to the inputs to the function f . Suppose we know f (7) = 12. What 
input to g would produce that output? In other words, what value of x will allow g(x) = f (2x + 3) = 12? We would 
need 2x + 3 = 7. To solve for x, we would first subtract 3, resulting in a horizontal shift, and then divide by 2, causing 
a horizontal compression.

This format ends up being very difficult to work with, because it is usually much easier to horizontally stretch a graph 
before shifting. We can work around this by factoring inside the function.

f (bx + p) = f     b   x +   
p

 _ 
b

       

Let’s work through an example.
f (x) = (2x + 4)2

We can factor out a 2.
f (x) = (2(x + 2))2

Now we can more clearly observe a horizontal shift to the left 2 units and a horizontal compression. Factoring in this 
way allows us to horizontally stretch first and then shift horizontally.

combining transformations 
When combining vertical transformations written in the form af (x) + k, first vertically stretch by a and then 
vertically shift by k.

When combining horizontal transformations written in the form f (bx − h), first horizontally shift by h and 
then horizontally stretch by    1 __ b   .

When combining horizontal transformations written in the form f (b(x − h)), first horizontally stretch by    1 _ 
b

    
and then horizontally shift by h.

Horizontal and vertical transformations are independent. It does not matter whether horizontal or vertical 
transformations are performed first.

Example 19 Finding a Triple Transformation of a Tabular Function

Given Table 15 for the function f (x), create a table of values for the function g(x) = 2f (3x) + 1.

x 6 12 18 24
f (x) 10 14 15 17

Table 15

Solution There are three steps to this transformation, and we will work from the inside out. Starting with the horizontal 
transformations, f (3x) is a horizontal compression by    1 __ 3   , which means we multiply each x-value by    1 __ 3   . See Table 16.

x 2 4 6 8
f (3x) 10 14 15 17

Table 16
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Looking now to the vertical transformations, we start with the vertical stretch, which will multiply the output values 
by 2. We apply this to the previous transformation. See Table 17.

x 2 4 6 8
2f (3x) 20 28 30 34

Table 17

Finally, we can apply the vertical shift, which will add 1 to all the output values. See Table 18.

x 2 4 6 8
g(x) = 2f (3x) + 1 21 29 31 35

Table 18

Example 20 Finding a Triple Transformation of a Graph

Use the graph of f (x) in Figure 27 to sketch a graph of k(x) = f       1 __ 2  x + 1    − 3.
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Figure 27

Solution To simplify, let’s start by factoring out the inside of the function.

 f       1 __ 2  x + 1    − 3 = f       1 __ 2  (x + 2)    − 3

By factoring the inside, we can first horizontally stretch by 2, as indicated by the    1 __ 2    on the inside of the function. 
Remember that twice the size of 0 is still 0, so the point (0, 2) remains at (0, 2) while the point (2, 0) will stretch to  
(4, 0). See Figure 28.
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Next, we horizontally shift left by 2 units, as indicated by x + 2. See Figure 29.
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Last, we vertically shift down by 3 to complete our sketch, as indicated by the −3 on the outside of the function. See 
Figure 30.
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Figure 30

Access this online resource for additional instruction and practice with transformation of functions.

•	 Function Transformations (http://openstaxcollege.org/l/functrans)

http://openstaxcollege.org/l/functrans
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1.5 SeCTIOn exeRCISeS

VeRBAl

1. When examining the formula of a function that is 
the result of multiple transformations, how can you 
tell a horizontal shift from a vertical shift?

2. When examining the formula of a function that is 
the result of multiple transformations, how can you 
tell a horizontal stretch from a vertical stretch?

3. When examining the formula of a function that 
is the result of multiple transformations, how can 
you tell a horizontal compression from a vertical 
compression?

4. When examining the formula of a function that is 
the result of multiple transformations, how can you 
tell a reflection with respect to the x-axis from a 
reflection with respect to the y-axis?

5. How can you determine whether a function is odd 
or even from the formula of the function?

AlGeBRAIC

6. Write a formula for the function obtained when the 
graph of f (x) =   √

—
 x    is shifted up 1 unit and to the 

left 2 units.

7. Write a formula for the function obtained when the 
graph of f (x) = |x| is shifted down 3 units and to the 
right 1 unit.

8. Write a formula for the function obtained when the 
graph of f (x) =    1 _ x    is shifted down 4 units and to the 
right 3 units.

9. Write a formula for the function obtained when the 
graph of f (x) =    1 _ 

x2
    is shifted up 2 units and to the 

left 4 units.

For the following exercises, describe how the graph of the function is a transformation of the graph of the original 
function f.

10. y = f (x − 49) 11. y = f (x + 43) 12. y = f (x + 3)

13. y = f (x − 4) 14. y = f (x) + 5 15. y = f (x) + 8

16. y = f (x) − 2 17. y = f (x) − 7 18. y = f (x − 2) + 3

19. y = f (x + 4) − 1

For the following exercises, determine the interval(s) on which the function is increasing and decreasing.

20. f (x) = 4(x + 1)2 − 5 21. g(x) = 5(x + 3)2 − 2 22. a(x) =   √
—

 −x + 4   

23. k(x) = −3  √
—
 x    − 1
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Figure 31  

GRAPHICAl 
For the following exercises, use the graph of f (x) = 2x shown in Figure 31 to 
sketch a graph of each transformation of f (x).

24. g(x) = 2x + 1 25. h(x) = 2x − 3

26. w(x) = 2x − 1

For the following exercises, sketch a graph of the function as a transformation 
of the graph of one of the toolkit functions.

27. f (t) = (t + 1)2 − 3 28. h(x) = |x − 1| + 4

29. k(x) = (x − 2)3 − 1 30. m(t) = 3 +   √
—

 t + 2    
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nUMeRIC

31. Tabular representations for the functions f, g, and h are given below. Write g(x) and h(x) as transformations 
of f (x).

x –2 –1 0 1 2
f (x) –2 –1 –3 1 2

x –1 0 1 2 3
g(x) –2 –1 –3 1 2

x –2 –1 0 1 2
h(x) –1 0 –2 2 3

32. Tabular representations for the functions f, g, and h are given below. Write g(x) and h(x) as transformations 
of f (x).

x –2 –1 0 1 2
f (x) –1 –3 4 2 1

x –3 –2 –1 0 1
g(x) –1 –3 4 2 1

x –2 –1 0 1 2
h(x) –2 –4 3 1 0

For the following exercises, write an equation for each graphed function by using transformations of the graphs of 
one of the toolkit functions.
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For the following exercises, use the graphs of transformations of the square root function to find a formula for each 
of the functions.
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For the following exercises, use the graphs of the transformed toolkit functions to write a formula for each of the 
resulting functions.
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For the following exercises, determine whether the function is odd, even, or neither.
47. f (x) = 3x 4 48. g(x) =   √

—
 x   49. h(x) =    1 __ x    + 3x

50. f (x) = (x − 2)2 51. g(x) = 2x4 52. h(x) = 2x − x3

For the following exercises, describe how the graph of each function is a transformation of the graph of the original 
function f.

53. g(x) = −f (x) 54. g(x) = f (−x) 55. g(x) = 4f (x) 56. g(x) = 6f (x)

57. g(x) = f (5x) 58. g(x) = f (2x) 59. g(x) = f       1 __ 3  x   60. g(x) = f       1 __ 5  x   

61. g(x) = 3f (−x) 62. g(x) = −f (3x)

For the following exercises, write a formula for the function g that results when the graph of a given toolkit function 
is transformed as described.

63. The graph of f (x) =   ∣ x ∣   is reflected over the y-axis 
and horizontally compressed by a factor of    1 __ 4   .

64. The graph of f (x) =   √
—
 x    is reflected over the x-axis 

and horizontally stretched by a factor of 2.

65. The graph of f (x) =    1 __ x2    is vertically compressed by a 
factor of    1 __ 3   , then shifted to the left 2 units and down 
3 units.

66. The graph of f (x) =    1 __ x    is vertically stretched by a 
factor of 8, then shifted to the right 4 units and up 2 
units.

67. The graph of f (x) = x2 is vertically compressed by a 
factor of    1 __ 2   , then shifted to the right 5 units and up 
1 unit.

68. The graph of f (x) = x2 is horizontally stretched by a 
factor of 3, then shifted to the left 4 units and down 
3 units.

For the following exercises, describe how the formula is a transformation of a toolkit function. Then sketch a graph 
of the transformation.

69. g(x) = 4(x + 1)2 − 5 70. g(x) = 5(x + 3)2 − 2 71. h(x) = −2  ∣ x − 4 ∣   + 3

72. k(x) = −3  √
—
 x    − 1 73. m(x) =    1 __ 2    x3 74. n(x) =    1 __ 3   |x − 2|

75. p(x) =       1 __ 3  x   
3

 − 3 76. q(x) =      1 __ 4  x   
3

 + 1 77. a(x) =   √
—

 −x + 4   

For the following exercises, use the graph in Figure 32 to sketch the given transformations.
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78. g(x) = f (x) − 2 79. g(x) = −f (x) 80. g(x) = f (x + 1) 81. g(x) = f (x − 2)
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1. 6 ABSOlUTe VAlUe FUnCTIOnS

Figure 1 Distances in deep space can be measured in all directions. As such, it is useful to consider distance in terms of absolute values. (credit: “s58y”/Flickr)

Until the 1920s, the so-called spiral nebulae were believed to be clouds of dust and gas in our own galaxy, some tens 
of thousands of light years away. Then, astronomer Edwin Hubble proved that these objects are galaxies in their own 
right, at distances of millions of light years. Today, astronomers can detect galaxies that are billions of light years away. 
Distances in the universe can be measured in all directions. As such, it is useful to consider distance as an absolute 
value function. In this section, we will investigate absolute value functions.

Understanding Absolute Value
Recall that in its basic form f (x) = | x |, the absolute value function, is one of our toolkit functions. The absolute value 
function is commonly thought of as providing the distance the number is from zero on a number line. Algebraically, 
for whatever the input value is, the output is the value without regard to sign.

absolute value function 
The absolute value function can be defined as a piecewise function

f (x) =   ∣ x ∣   = 
  x if x ≥ 0 
−x if x < 0{

Example 1 Determine a Number within a Prescribed Distance

Describe all values x within or including a distance of 4 from the number 5.

Solution We want the distance between x and 5 to be less than or equal to 4. We can draw a number line, such as the 
one in Figure 2, to represent the condition to be satisfied.

5

44

Figure 2

The distance from x to 5 can be represented using the absolute value as   ∣ x − 5 ∣  . We want the values of x that satisfy 
the condition   ∣ x − 5 ∣   ≤ 4.

Analysi s Note that
 −4 ≤ x − 5 x − 5 ≤ 4
 1 ≤ x x ≤ 9
So   ∣ x − 5 ∣   ≤ 4 is equivalent to 1 ≤ x ≤ 9. However, mathematicians generally prefer absolute value notation.

leARnInG OBjeCTIVeS

In this section you will:
•	  Graph an absolute value function.
•	  Solve an absolute value equation.
•	  Solve an absolute value inequality.
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Try It #1
Describe all values x within a distance of 3 from the number 2.

Example 2 Resistance of a Resistor

Electrical parts, such as resistors and capacitors, come with specified values of their operating parameters: resistance, 
capacitance, etc. However, due to imprecision in manufacturing, the actual values of these parameters vary somewhat 
from piece to piece, even when they are supposed to be the same. The best that manufacturers can do is to try to 
guarantee that the variations will stay within a specified range, often ±1%, ±5%, or ±10%.

Suppose we have a resistor rated at 680 ohms, ±5%. Use the absolute value function to express the range of possible 
values of the actual resistance.

Solution 5% of 680 ohms is 34 ohms. The absolute value of the difference between the actual and nominal resistance 
should not exceed the stated variability, so, with the resistance R in ohms,

| R − 680 | ≤ 34

Try It #2
Students who score within 20 points of 80 will pass a test. Write this as a distance from 80 using absolute value 
notation.

Graphing an Absolute Value Function
The most significant feature of the absolute value graph is the corner point at which the graph changes direction. This 
point is shown at the origin in Figure 3.
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Figure 3

Figure 4 shows the graph of y = 2| x − 3| + 4. The graph of y = | x| has been shifted right 3 units, vertically stretched by 
a factor of 2, and shifted up 4 units. This means that the corner point is located at (3, 4) for this transformed function.
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Example 3 Writing an Equation for an Absolute Value Function

Write an equation for the function graphed in Figure 5.

2

x

y

–1–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

Figure 5

Solution The basic absolute value function changes direction at the origin, so this graph has been shifted to the right 
3 units and down 2 units from the basic toolkit function. See Figure 6.
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Figure 6

We also notice that the graph appears vertically stretched, because the width of the final graph on a horizontal line is 
not equal to 2 times the vertical distance from the corner to this line, as it would be for an unstretched absolute value 
function. Instead, the width is equal to 1 times the vertical distance as shown in Figure 7.
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Figure 7

From this information we can write the equation

f (x) = 2| x − 3 | − 2, treating the stretch as a vertical stretch, or 

 f (x) = | 2(x − 3) | − 2, treating the stretch as a horizontal compression.

Analysis Note that these equations are algebraically equivalent—the stretch for an absolute value function can be 
written interchangeably as a vertical or horizontal stretch or compression.
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Q & A…
If we couldn’t observe the stretch of the function from the graphs, could we algebraically determine it?

Yes. If we are unable to determine the stretch based on the width of the graph, we can solve for the stretch factor by 
putting in a known pair of values for x and f (x).

f (x) = a| x − 3 | − 2
Now substituting in the point (1, 2)
 2 = a| 1 − 3 | − 2
 4 = 2a
 a = 2

Try It #3

Write the equation for the absolute value function that is horizontally shifted left 2 units, is vertically flipped, and verti-
cally shifted up 3 units.

Q & A…
Do the graphs of absolute value functions always intersect the vertical axis? The horizontal axis?
Yes, they always intersect the vertical axis. The graph of an absolute value function will intersect the vertical axis when the 
input is zero.

No, they do not always intersect the horizontal axis. The graph may or may not intersect the horizontal axis, depending 
on how the graph has been shifted and reflected. It is possible for the absolute value function to intersect the horizontal 
axis at zero, one, or two points (see Figure 8).
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Figure 8 (a) The absolute value function does not intersect the horizontal axis. (b) The absolute value function intersects the horizontal axis at one point. (c) 
The absolute value function intersects the horizontal axis at two points.

Solving an Absolute Value equation
Now that we can graph an absolute value function, we will learn how to solve an absolute value equation. To solve an equation 
such as 8 = | 2x − 6| , we notice that the absolute value will be equal to 8 if the quantity inside the absolute value is 8 or −8.  
This leads to two different equations we can solve independently.

2x − 6 = 8 or 2x − 6 = −8
 2x = 14 2x = −2
 x = 7 x = −1
Knowing how to solve problems involving absolute value functions is useful. For example, we may need to identify 
numbers or points on a line that are at a specified distance from a given reference point.
An absolute value equation is an equation in which the unknown variable appears in absolute value bars. For example,

 | x | = 4,
 | 2x − 1 | = 3
 | 5x + 2 | − 4 = 9
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solutions to absolute value equations 
For real numbers A and B, an equation of the form | A | = B, with B ≥ 0, will have solutions when A = B or A = −B. 
If B < 0, the equation | A | = B has no solution.

How To…
Given the formula for an absolute value function, find the horizontal intercepts of its graph.

1. Isolate the absolute value term.
2. Use | A | = B to write A = B or −A = B, assuming B > 0.
3. Solve for x.

Example 4 Finding the Zeros of an Absolute Value Function

For the function f (x) = | 4x + 1 | − 7 , find the values of x such that f (x) = 0.

Solution
0 = | 4x + 1 | − 7 Substitute 0 for f (x).
7 = | 4x + 1 | Isolate the absolute value on one side of the equation.
7 = 4x + 1 or −7 = 4x + 1 Break into two separate equations and solve.
6 = 4x −8 = 4x

x =    6 __ 4    = 1.5  x =    −8 ___ 4    = −2

The function outputs 0 when x = 1.5 or x = −2. See Figure 9.
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Figure 9

Try It #4

For the function f  (x) = | 2x − 1 | − 3, find the values of x such that f (x) = 0.

Q & A…
Should we always expect two answers when solving ∣ A ∣ = B?

No. We may find one, two, or even no answers. For example, there is no solution to 2 + | 3x − 5 | = 1.

How To…
Given an absolute value equation, solve it.

1. Isolate the absolute value term.
2. Use | A | = B to write A = B or A = −B.
3. Solve for x.
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Example 5 Solving an Absolute Value Equation

Solve 1 = 4| x − 2| + 2.

Solution Isolating the absolute value on one side of the equation gives the following.

 1 = 4| x − 2 | + 2

 −1 = 4| x − 2 |

 −   1 _ 4    = | x − 2 | 

The absolute value always returns a positive value, so it is impossible for the absolute value to equal a negative value. 
At this point, we notice that this equation has no solutions.

Q & A…
In Example 5, if f(x) = 1 and g(x) = 4∣ x − 2 ∣ + 2 were graphed on the same set of axes, would the graphs intersect?

No. The graphs of f and g would not intersect, as shown in Figure 10. This confirms, graphically, that the equation  
1 = 4| x − 2 | + 2 has no solution.
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Try It #5

Find where the graph of the function f (x) = −| x + 2 | + 3 intersects the horizontal and vertical axes.

Solving an Absolute Value Inequality
Absolute value equations may not always involve equalities. Instead, we may need to solve an equation within a range 
of values. We would use an absolute value inequality to solve such an equation. An absolute value inequality is an 
equation of the form

| A | < B, | A | ≤ B, | A | ≥ B, or | A | ≥ B,

where an expression A (and possibly but not usually B) depends on a variable x. Solving the inequality means finding 
the set of all x that satisfy the inequality. Usually this set will be an interval or the union of two intervals.

There are two basic approaches to solving absolute value inequalities: graphical and algebraic. The advantage of the 
graphical approach is we can read the solution by interpreting the graphs of two functions. The advantage of the 
algebraic approach is it yields solutions that may be difficult to read from the graph.
For example, we know that all numbers within 200 units of 0 may be expressed as 

| x | < 200 or −200 < x < 200
Suppose we want to know all possible returns on an investment if we could earn some amount of money within $200 
of $600. We can solve algebraically for the set of values x such that the distance between x and 600 is less than 200. 
We represent the distance between x and 600 as | x − 600 |.

| x − 600 | < 200 or −200 < x − 600 < 200
−200 + 600 < x − 600 + 600 < 200 + 600

400 < x < 800
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This means our returns would be between $400 and $800.
Sometimes an absolute value inequality problem will be presented to us in terms of a shifted and/or stretched or 
compressed absolute value function, where we must determine for which values of the input the function’s output 
will be negative or positive.

How To…
Given an absolute value inequality of the form | x − A | ≤ B for real numbers a and b where b is positive, solve the 
absolute value inequality algebraically.

1. Find boundary points by solving | x − A | = B.
2. Test intervals created by the boundary points to determine where | x − A | ≤ B.
3. Write the interval or union of intervals satisfying the inequality in interval, inequality, or set-builder notation.

Example 6 Solving an Absolute Value Inequality

Solve | x − 5| < 4.

Solution With both approaches, we will need to know first where the corresponding equality is true. In this case we 
first will find where | x − 5| = 4. We do this because the absolute value is a function with no breaks, so the only way the 
function values can switch from being less than 4 to being greater than 4 is by passing through where the values equal 4.  
Solve | x − 5| = 4.

x − 5 = 4 or x − 5 = −4
 x = 9 x = 1
After determining that the absolute value is equal to 4 at x = 1 and x = 9, we know the graph can change only from 
being less than 4 to greater than 4 at these values. This divides the number line up into three intervals:

x < 1, 1 < x < 9, and x > 9.

To determine when the function is less than 4, we could choose a value in each interval and see if the output is less 
than or greater than 4, as shown in Table 1.

Interval test x f (x) < 4 or > 4?

x < 1 0 | 0 − 5| = 5 Greater than

1 < x < 9 6 | 6 − 5| = 1 Less than

x > 9 11 | 11 − 5| = 6 Greater than

Table 1

Because 1 ≤ x ≤ 9 is the only interval in which the output at the test value is less than 4, we can conclude that the 
solution to | x − 5| ≤ 4 is 1 ≤ x ≤ 9, or [1, 9].

To use a graph, we can sketch the function f (x) = | x − 5| . To help us see where the outputs are 4, the line g(x) = 4 
could also be sketched as in Figure 11.
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or on the graph of g
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1

1–

5
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2

–
7 8 9 10321 654

4

Figure 11 Graph to find the points satisfying an absolute value inequality.
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We can see the following:

•	 The output values of the absolute value are equal to 4 at x = 1 and x = 9.

•	 The graph of f is below the graph of g on 1 < x < 9. This means the output values of f (x) are less than the output 
values of g(x).

•	 The absolute value is less than or equal to 4 between these two points, when 1 ≤ x ≤ 9. In interval notation, this 
would be the interval [1, 9].

Analysi s For absolute value inequalities,

 | x − A | < C, | x − A | > C,

 −C < x − A < C, x − A < −C or x − A > C.

The < or > symbol may be replaced by ≤ or ≥.

So, for this example, we could use this alternative approach.

 | x − 5| ≤ 4

 −4 ≤ x − 5 ≤ 4 Rewrite by removing the absolute value bars.

 −4 + 5 ≤ x − 5 + 5 ≤ 4 + 5 Isolate the x.

 1 ≤ x ≤ 9

Try It #6

Solve | x + 2| ≤ 6.

How To…
Given an absolute value function, solve for the set of inputs where the output is positive (or negative).

1. Set the function equal to zero, and solve for the boundary points of the solution set.
2. Use test points or a graph to determine where the function’s output is positive or negative.

Example 7 Using a Graphical Approach to Solve Absolute Value Inequalities

Given the function f (x) = −   1 __ 2   | 4x − 5 | + 3, determine the x-values for which the function values are negative.

Solution We are trying to determine where f (x) < 0, which is when −   1 __ 2   | 4x − 5| + 3 < 0. We begin by isolating the 
absolute value.

 −   1 __ 2   | 4x − 5| < −3  Multiply both sides by −2, and reverse the inequality.

 | 4x − 5| > 6

Next we solve for the equality | 4x − 5| = 6.

 4x − 5 = 6 or 4x − 5 = −6

 4x − 5 = 6 4x = −1

 x =    11 __ 4    x = −   1 __ 4   

Now, we can examine the graph of f to observe where the output is negative. We will observe where the branches 
are below the x-axis. Notice that it is not even important exactly what the graph looks like, as long as we know that 

it crosses the horizontal axis at x = −   1 __ 4    and x =    11 __ 4    and that the graph has been reflected vertically. See Figure 12.
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Figure 12 

We observe that the graph of the function is below the x-axis left of x = −   1 __ 4    and right of x =    11 __ 4    This means the 

function values are negative to the left of the first horizontal intercept at x = −   1 __ 4   , and negative to the right of the 

second intercept at x =    11 __ 4   .This gives us the solution to the inequality.

x < −   1 __ 4    or x >    11 __ 4   

In interval notation, this would be (−∞, −0.25) ∪ (2.75, ∞).

Try It #7

Solve −2| k − 4| ≤ −6.

Access these online resources for additional instruction and practice with absolute value.

•	 Graphing Absolute Value Functions (http://openstaxcollege.org/l/graphabsvalue)

•	 Graphing Absolute Value Functions 2 (http://openstaxcollege.org/l/graphabsvalue2)

•	 equations of Absolute Value Function (http://openstaxcollege.org/l/findeqabsval)

•	 equations of Absolute Value Function 2 (http://openstaxcollege.org/l/findeqabsval2)

•	 Solving Absolute Value equations (http://openstaxcollege.org/l/solveabsvalueeq)

http://openstaxcollege.org/l/graphabsvalue
http://openstaxcollege.org/l/graphabsvalue2
http://openstaxcollege.org/l/findeqabsval
http://openstaxcollege.org/l/findeqabsval2
http://openstaxcollege.org/l/solveabsvalueeq
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1.6 SeCTIOn exeRCISeS

VeRBAl

1. How do you solve an absolute value equation? 2. How can you tell whether an absolute value function 
has two x-intercepts without graphing the function?

3. When solving an absolute value function, the 
isolated absolute value term is equal to a negative 
number. What does that tell you about the graph of 
the absolute value function?

4. How can you use the graph of an absolute value 
function to determine the x-values for which the 
function values are negative?

5. How do you solve an absolute value inequality 
algebraically?

AlGeBRAIC

6. Describe all numbers x that are at a distance of 4 
from the number 8. Express this using absolute 
value notation.

7. Describe all numbers x that are at a distance of    1 __ 2    
from the number −4. Express this using absolute 
value notation.

8. Describe the situation in which the distance that 
point x is from 10 is at least 15 units. Express this 
using absolute value notation.

9. Find all function values f (x) such that the distance 
from f (x) to the value 8 is less than 0.03 units. 
Express this using absolute value notation.

For the following exercises, solve the equations below and express the answer using set notation.

10. | x + 3 | = 9 11. | 6 − x | = 5 12. | 5x − 2 | = 11

13. | 4x − 2 | = 11 14. 2| 4 − x | = 7 15. 3| 5 − x  | = 5

16. 3| x + 1 | − 4 = 5 17. 5| x − 4 | − 7 = 2 18. 0 = −| x − 3 | + 2

19. 2| x − 3 | + 1 = 2 20. | 3x − 2 | = 7 21. | 3x − 2 | = −7

22.      1 __ 2  x − 5     = 11 23.      1 __ 3  x + 5     = 14 24.  −     1 __ 3  x + 5     + 14 = 0

For the following exercises, find the x- and y-intercepts of the graphs of each function.

25. f (x) = 2| x +1 | − 10 26. f (x) = 4| x − 3 | + 4

27. f (x) = −3| x − 2 | − 1 28. f (x) = −2| x +1 | + 6

For the following exercises, solve each inequality and write the solution in interval notation.

29. | x − 2 | > 10 30. 2| v − 7 | − 4 ≥ 42 31. | 3x − 4 | ≤ 8

32. | x − 4 | ≥ 8 33. | 3x − 5 | ≥ 13 34. | 3x − 5 | ≥ −13

35.      3 __ 4  x − 5     ≥ 7 36.      3 __ 4  x − 5     + 1 ≤ 16
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GRAPHICAl

For the following exercises, graph the absolute value function. Plot at least five points by hand for each graph.

37. y = | x − 1 | 38. y = | x + 1 |  39. y = | x | + 1

For the following exercises, graph the given functions by hand.

40. y = | x | − 2 41. y = −| x |  42. y = −| x | − 2

43. y = −| x − 3 | − 2 44. f (x) = −| x − 1 | − 2 45. f (x) = −| x + 3 | + 4

46. f (x) = 2| x + 3 | + 1 47. f (x) = 3| x − 2 | + 3 48. f (x) = | 2x − 4 | − 3

49. f (x) = | 3x + 9 | + 2 50. f (x) = −| x − 1 | − 3 51. f (x) = −| x + 4 | −3

52. f (x) =    1 __ 2   | x + 4 | − 3

TeCHnOlOGY

53. Use a graphing utility to graph f (x) = 10| x − 2| 
on the viewing window [0, 4]. Identify the 
corresponding range. Show the graph.

54. Use a graphing utility to graph f (x) = −100| x| + 100 
on the viewing window [−5, 5]. Identify the 
corresponding range. Show the graph.

For the following exercises, graph each function using a graphing utility. Specify the viewing window.

55. f (x) = −0.1| 0.1(0.2 − x)| + 0.3 56. f (x) = 4 × 109   ∣ x − (5 × 109) ∣   + 2 × 109

exTenSIOnS

For the following exercises, solve the inequality.

57.  | −2x −   2 __ 3  (x + 1) | + 3 > −1 58. If possible, find all values of a such that there are no 
x-intercepts for f (x) = 2| x + 1| + a.

59. If possible, find all values of a such that there are no 
y-intercepts for f (x) = 2| x + 1| + a.

ReAl-WORlD APPlICATIOnS

60. Cities A and B are on the same east-west line. 
Assume that city A is located at the origin. If the 
distance from city A to city B is at least 100 miles 
and x represents the distance from city B to city A, 
express this using absolute value notation.

61. The true proportion p of people who give a favorable 
rating to Congress is 8% with a margin of error of 
1.5%. Describe this statement using an absolute 
value equation.

62. Students who score within 18 points of the number 
82 will pass a particular test. Write this statement 
using absolute value notation and use the variable x 
for the score.

63. A machinist must produce a bearing that is within 
0.01 inches of the correct diameter of 5.0 inches. 
Using x as the diameter of the bearing, write this 
statement using absolute value notation.

64. The tolerance for a ball bearing is 0.01. If the true 
diameter of the bearing is to be 2.0 inches and the 
measured value of the diameter is x inches, express 
the tolerance using absolute value notation.
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1.7 InVeRSe FUnCTIOnS

A reversible heat pump is a climate-control system that is an air conditioner and a heater in a single device. Operated 
in one direction, it pumps heat out of a house to provide cooling. Operating in reverse, it pumps heat into the building 
from the outside, even in cool weather, to provide heating. As a heater, a heat pump is several times more efficient than 
conventional electrical resistance heating.

If some physical machines can run in two directions, we might ask whether some of the function “machines” we have 
been studying can also run backwards. Figure 1 provides a visual representation of this question. In this section, we 
will consider the reverse nature of functions.

x

x

f ?

y

y

Figure 1 Can a function “machine” operate in reverse?

Verifying That Two Functions Are Inverse Functions
Suppose a fashion designer traveling to Milan for a fashion show wants to know what the temperature will be. He is 
not familiar with the Celsius scale. To get an idea of how temperature measurements are related, he asks his assistant, 
Betty, to convert 75 degrees Fahrenheit to degrees Celsius. She finds the formula

C =    5 __ 9   (F − 32)

and substitutes 75 for F to calculate

   5 __ 9   (75 − 32) ≈ 24°C.

Knowing that a comfortable 75 degrees Fahrenheit is about 24 degrees Celsius, he sends his assistant the week’s weather 
forecast from Figure 2 for Milan, and asks her to convert all of the temperatures to degrees Fahrenheit.

 26°C | 19°C      29°C | 19°C           30°C | 20°C                 26°C | 18°C

   Mon           Tue               Web     Thu

Figure 2

leARnInG OBjeCTIVeS

In this section, you will:
•	  Verify inverse functions.
•	  Determine the domain and range of an inverse function, and restrict the domain of a function to make it one-to-one.
•	  Find or evaluate the inverse of a function.
•	  Use the graph of a one-to-one function to graph its inverse function on the same axes.
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At first, Betty considers using the formula she has already found to complete the conversions. After all, she knows her 
algebra, and can easily solve the equation for F after substituting a value for C. For example, to convert 26 degrees 
Celsius, she could write

 26 =    5 __ 9   (F − 32)

 26 ⋅    9 __ 5    = F − 32

 F = 26 ⋅    9 __ 5    + 32 ≈ 79

After considering this option for a moment, however, she realizes that solving the equation for each of the temperatures 
will be awfully tedious. She realizes that since evaluation is easier than solving, it would be much more convenient to 
have a different formula, one that takes the Celsius temperature and outputs the Fahrenheit temperature.

The formula for which Betty is searching corresponds to the idea of an inverse function, which is a function for which 
the input of the original function becomes the output of the inverse function and the output of the original function 
becomes the input of the inverse function.

Given a function f (x), we represent its inverse as f −1(x), read as “ f inverse of x.” The raised −1 is part of the notation. 
It is not an exponent; it does not imply a power of −1. In other words, f −1(x) does not mean    1 ___ f (x)    because    1 ___ f (x)    is the 
reciprocal of f and not the inverse.

The “exponent-like” notation comes from an analogy between function composition and multiplication: just as a−1 
a = 1 (1 is the identity element for multiplication) for any nonzero number a, so f  −1 ∘ f equals the identity function, 
that is,

(f −1 ∘ f  )(x) = f −1( f (x)) = f  −1 (y) = x

This holds for all x in the domain of f. Informally, this means that inverse functions “undo” each other. However, just 
as zero does not have a reciprocal, some functions do not have inverses.

Given a function f (x), we can verify whether some other function g (x) is the inverse of f (x) by checking whether either 
g ( f (x)) = x or f (g (x)) = x is true. We can test whichever equation is more convenient to work with because they are 
logically equivalent (that is, if one is true, then so is the other.)

For example, y = 4x and y =    1 __ 4   x are inverse functions.

(f −1 ∘ f )(x) = f −1 (4x) =    1 __ 4   (4x) = x
and

(f ∘ f −1)(x) = f       1 __ 4  x    = 4      1 __ 4  x    = x

A few coordinate pairs from the graph of the function y = 4x are (−2, −8), (0, 0), and (2, 8). A few coordinate pairs 
from the graph of the function y =    1 __ 4   x are (−8, −2), (0, 0), and (8, 2). If we interchange the input and output of each 
coordinate pair of a function, the interchanged coordinate pairs would appear on the graph of the inverse function.

inverse function 
For any one-to-one function f (x) = y, a function f −1 (x) is an inverse function of f  if f −1(y) = x. This can also be written 
as f −1( f (x)) = x for all x in the domain of f . It also follows that f ( f −1(x)) = x for all x in the domain of f −1 if f −1 is the 
inverse of f .

The notation f −1 is read “ f  inverse.” Like any other function, we can use any variable name as the input for f −1, 
so we will often write f −1(x), which we read as “ f  inverse of x.” Keep in mind that

f −1(x) ≠    1 ___ f (x)   

and not all functions have inverses.
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Example 1 Identifying an Inverse Function for a Given Input-Output Pair

If for a particular one-to-one function f (2) = 4 and f (5) = 12, what are the corresponding input and output values 
for the inverse function?

Solution The inverse function reverses the input and output quantities, so if

f (2) = 4, then f −1 (4) = 2;

f (5) = 12, then f −1 (12) = 5.

Alternatively, if we want to name the inverse function g, then g (4) = 2 and g (12) = 5.

Analysi s Notice that if we show the coordinate pairs in a table form, the input and output are clearly reversed. See 
Table 1.

(x, f (x)) (x, g (x))
(2, 4) (4, 2)
(5, 12) (12, 5)

Table 1

Try It #1

Given that h−1(6) = 2, what are the corresponding input and output values of the original function h?

How To…
Given two functions f (x) and g (x), test whether the functions are inverses of each other.

1. Determine whether f (g(x)) = x or g(f (x)) = x.
2. If both statements are true, then g = f −1 and f = g −1. If either statement is false, then both are false, and g ≠ f −1 

and f ≠ g−1.

Example 2 Testing Inverse Relationships Algebraically

If f (x) =    1 ____ x + 2    and g (x) =    1 __ x    − 2, is g = f −1?

Solution g (f (x)) =    1 _ 
     1 _ 

x + 2
    

    − 2

 = x + 2 − 2

 = x
so

 g = f −1 and f = g −1

This is enough to answer yes to the question, but we can also verify the other formula.

 f (g (x)) =    1 _ 
  1 __ x   − 2 + 2

   

 =    1 _ 
  1 __ x  

   

 = x

Analysi s Notice the inverse operations are in reverse order of the operations from the original function.

Try It #2
If f (x) = x3 − 4 and g (x) =    

3 √
—

 x − 4    , is g = f −1?
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Example 3 Determining Inverse Relationships for Power Functions

If f (x) = x3 (the cube function) and g (x) =    1 __ 3   x, is g = f −1?

Solution f (g (x)) =    x
3
 __ 27    ≠ x

No, the functions are not inverses.

Analysi s The correct inverse to the cube is, of course, the cube root    3 √
—
 x    = x1/3 that is, the one-third is an exponent, 

not a multiplier.

Try It #3

If f (x) = (x − 1)3 and g (x) =    3 √
—

 x     + 1, is g = f −1?

Finding Domain and Range of Inverse Functions
The outputs of the function f are the inputs to f −1, so the range of f is also the domain of f −1. Likewise, because the 
inputs to f are the outputs of f −1, the domain of f is the range of f −1. We can visualize the situation as in Figure 3.

Domain of f Range of f

ba

Range of f –1 Domain of f –1
 f –1(x)

 f (x)

Figure 3 Domain and range of a function and its inverse

When a function has no inverse function, it is possible to create a new function where that new function on a limited 
domain does have an inverse function. For example, the inverse of f (x) =   √

—
 x    is f −1(x) = x2, because a square “undoes” 

a square root; but the square is only the inverse of the square root on the domain [0, ∞), since that is the range of 
f (x) =   √

—
 x   .

We can look at this problem from the other side, starting with the square (toolkit quadratic) function f (x) = x2. If we 
want to construct an inverse to this function, we run into a problem, because for every given output of the quadratic 
function, there are two corresponding inputs (except when the input is 0). For example, the output 9 from the quadratic 
function corresponds to the inputs 3 and –3. But an output from a function is an input to its inverse; if this inverse 
input corresponds to more than one inverse output (input of the original function), then the “inverse” is not a function 
at all! To put it differently, the quadratic function is not a one-to-one function; it fails the horizontal line test, so it does 
not have an inverse function. In order for a function to have an inverse, it must be a one-to-one function.

In many cases, if a function is not one-to-one, we can still restrict the function to a part of its domain on which it is 
one-to-one. For example, we can make a restricted version of the square function f (x) = x2 with its domain limited 
to [0, ∞), which is a one-to-one function (it passes the horizontal line test) and which has an inverse (the square-root 
function).

If f (x) = (x − 1)2 on [1, ∞), then the inverse function is f −1(x) =   √
—
 x    + 1.

•	 The domain of f = range of f −1 = [1, ∞).
•	 The domain of f −1 = range of f = [0, ∞).

Q & A…
Is it possible for a function to have more than one inverse?

No. If two supposedly different functions, say, g and h, both meet the definition of being inverses of another function 
f, then you can prove that g = h. We have just seen that some functions only have inverses if we restrict the domain 
of the original function. In these cases, there may be more than one way to restrict the domain, leading to different 
inverses. However, on any one domain, the original function still has only one unique inverse.
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domain and range of inverse functions 
The range of a function f (x) is the domain of the inverse function f −1(x). The domain of f (x) is the range of f −1(x).

How To…
Given a function, find the domain and range of its inverse.

1. If the function is one-to-one, write the range of the original function as the domain of the inverse, and write the 
domain of the original function as the range of the inverse.

2. If the domain of the original function needs to be restricted to make it one-to-one, then this restricted domain 
becomes the range of the inverse function.

Example 4 Finding the Inverses of Toolkit Functions

Identify which of the toolkit functions besides the quadratic function are not one-to-one, and find a restricted domain 
on which each function is one-to-one, if any. The toolkit functions are reviewed in Table 2. We restrict the domain 
in such a fashion that the function assumes all y-values exactly once.

Constant Identity Quadratic Cubic Reciprocal

f (x) = c f (x) = x f (x) = x 2 f (x) = x 3 f (x) =    1 _ x   

Reciprocal squared Cube root Square root Absolute value

f (x) =    1 _ 
x2

   f (x) =    3 √
—
 x   f (x) =   √

—
 x    f (x) = ∣x∣

Table 2

Solution The constant function is not one-to-one, and there is no domain (except a single point) on which it could 
be one-to-one, so the constant function has no meaningful inverse.

The absolute value function can be restricted to the domain [0, ∞), where it is equal to the identity function.

The reciprocal-squared function can be restricted to the domain (0, ∞).

Analysi s We can see that these functions (if unrestricted) are not one-to-one by looking at their graphs, shown in Figure 
4. They both would fail the horizontal line test. However, if a function is restricted to a certain domain so that it passes 
the horizontal line test, then in that restricted domain, it can have an inverse.

2

x

f (x)

–1–1–2

–2

–3

–3

–4

–4

–5

1

3

3

21 4

4

5

(a) (b)

5

x

f (x)

–1–1–2

–2

–3

–3

–4

–4

–5

1

321 4

4

5

5

3
2

Figure 4 (a ) Absolute value (b ) Reciprocal squared

Try It #4

The domain of function f is (1, ∞) and the range of function f is (−∞, −2). Find the domain and range of the inverse 
function.
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Finding and evaluating Inverse Functions
Once we have a one-to-one function, we can evaluate its inverse at specific inverse function inputs or construct a 
complete representation of the inverse function in many cases.

Inverting Tabular Functions

Suppose we want to find the inverse of a function represented in table form. Remember that the domain of a function 
is the range of the inverse and the range of the function is the domain of the inverse. So we need to interchange the 
domain and range.

Each row (or column) of inputs becomes the row (or column) of outputs for the inverse function. Similarly, each row 
(or column) of outputs becomes the row (or column) of inputs for the inverse function.

Example 5 Interpreting the Inverse of a Tabular Function

A function f (t) is given in Table 3, showing distance in miles that a car has traveled in t minutes. Find and interpret f −1(70).

t (minutes) 30 50 70 90

f (t) (miles) 20 40 60 70

Table 3

Solution The inverse function takes an output of f and returns an input for f. So in the expression f −1(70), 70 is an 
output value of the original function, representing 70 miles. The inverse will return the corresponding input of the 
original function f, 90 minutes, so f −1(70) = 90. The interpretation of this is that, to drive 70 miles, it took 90 minutes.

Alternatively, recall that the definition of the inverse was that if f (a) = b, then f −1(b) = a. By this definition, if we are given 
f −1(70) = a, then we are looking for a value a so that f (a) = 70. In this case, we are looking for a t so that f (t) = 70, which 
is when t = 90.

Try It #5

Using Table 4, find and interpret a. f (60), and b. f −1(60).

t (minutes) 30 50 60 70 90

f (t) (miles) 20 40 50 60 70

Table 4 

Evaluating the Inverse of a Function, Given a Graph of the Original Function

We saw in Functions and Function Notation that the domain of a function can be read by observing the horizontal 
extent of its graph. We find the domain of the inverse function by observing the vertical extent of the graph of the 
original function, because this corresponds to the horizontal extent of the inverse function. Similarly, we find the 
range of the inverse function by observing the horizontal extent of the graph of the original function, as this is the 
vertical extent of the inverse function. If we want to evaluate an inverse function, we find its input within its domain, 
which is all or part of the vertical axis of the original function’s graph.

How To…
Given the graph of a function, evaluate its inverse at specific points.

1. Find the desired input on the y-axis of the given graph.
2. Read the inverse function’s output from the x-axis of the given graph.
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Example 6 Evaluating a Function and Its Inverse from a Graph at Specific Points

A function g(x) is given in Figure 5. Find g(3) and g−1(3).

g(x)

x
–1

1

1–

5

6

3

2

–
7321 654

4

Figure 5

Solution To evaluate g(3), we find 3 on the x-axis and find the corresponding output value on the y-axis. The point 
(3, 1) tells us that g(3) = 1.

To evaluate g −1(3), recall that by definition g −1(3) means the value of x for which g(x) = 3. By looking for the output value 3 
on the vertical axis, we find the point (5, 3) on the graph, which means g(5) = 3, so by definition, g −1(3) = 5. See Figure 6.

g(x)

x
–1

1

1–

5

6

3

2

–
7321 654

4

(3, 1)

(5, 3)

Figure 6

Try It #6

Using the graph in Figure 6, a. find g−1(1), and b. estimate g−1(4).

Finding Inverses of Functions Represented by Formulas

Sometimes we will need to know an inverse function for all elements of its domain, not just a few. If the original 
function is given as a formula— for example, y as a function of x— we can often find the inverse function by solving 
to obtain x as a function of y.

How To…
Given a function represented by a formula, find the inverse.

1. Make sure f is a one-to-one function.
2. Solve for x.
3. Interchange x and y.

Example 7 Inverting the Fahrenheit-to-Celsius Function

Find a formula for the inverse function that gives Fahrenheit temperature as a function of Celsius temperature.

C =    5 __ 9   (F − 32)
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Solution C =    5 __ 9    (F − 32)

 C ⋅    9 __ 5    = F − 32

 F =    9 __ 5   C + 32

By solving in general, we have uncovered the inverse function. If

 C = h(F) =    5 __ 9   (F − 32),

then

 F = h−1(C) =    9 __ 5   C + 32.

In this case, we introduced a function h to represent the conversion because the input and output variables are 
descriptive, and writing C−1 could get confusing.

Try It #7

Solve for x in terms of y given y =    1 __ 3   (x − 5)

Example 8 Solving to Find an Inverse Function

Find the inverse of the function f (x) =    2 ____ x − 3    + 4.

Solution y =    2 ____ x − 3    + 4 Set up an equation.

 y − 4 =    2 _____ x − 3    Subtract 4 from both sides.

 x − 3 =    2 ____ y − 4    Multiply both sides by x − 3 and divide by y − 4.

 x =    2 ____ y − 4    + 3 Add 3 to both sides.

So f −1 (y) =    2 _____ y − 4    + 3 or f −1 (x) =    2 ____ x − 4    + 3.

Analysi s The domain and range of f exclude the values 3 and 4, respectively. f and f −1 are equal at two points but are 
not the same function, as we can see by creating Table 5.

x 1 2 5 f −1(y)
f (x) 3 2 5 y

Table 5 

Example 9 Solving to Find an Inverse with Radicals

Find the inverse of the function f (x) = 2 +   √
—

 x − 4   .

Solution y = 2 +   √
—

 x − 4   

 (y − 2)2 = x − 4

 x = (y − 2)2 + 4

So f −1 (x) = (x − 2)2 + 4.

The domain of f is [4, ∞). Notice that the range of f is [2, ∞), so this means that the domain of the inverse function 
f −1 is also [2, ∞).

Analysi s The formula we found for f  −1(x) looks like it would be valid for all real x. However, f  −1 itself must have an 
inverse (namely, f) so we have to restrict the domain of f  −1 to [2, ∞) in order to make f  −1 a one-to-one function. This 
domain of f  −1 is exactly the range of f.
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Try It #8

What is the inverse of the function f (x) = 2 −   √
—
 x    ? State the domains of both the function and the inverse function.

Finding Inverse Functions and Their Graphs
Now that we can find the inverse of a function, we will explore the graphs of functions and their inverses. Let us return 
to the quadratic function f (x) = x2 restricted to the domain [0, ∞), on which this function is one-to-one, and graph 
it as in Figure 7.

2

x

f (x)

–1–1–2

–2

–3–4–5

1

3

3

21 4

4

5

5

Figure 7 Quadratic function with domain restricted to [0, ∞).

Restricting the domain to [0, ∞) makes the function one-to-one (it will obviously pass the horizontal line test), so it 
has an inverse on this restricted domain.

We already know that the inverse of the toolkit quadratic function is the square root function, that is, f −1(x) =   √
—
 x   .  

What happens if we graph both f and f −1 on the same set of axes, using the x-axis for the input to both f and f −1 ?

We notice a distinct relationship: The graph of f −1(x) is the graph of f (x) reflected about the diagonal line y = x, which 
we will call the identity line, shown in Figure 8.

2

x

y

–1–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5 f (x)
y = x

f –1(x)

Figure 8 Square and square-root functions on the non-negative domain

This relationship will be observed for all one-to-one functions, because it is a result of the function and its inverse 
swapping inputs and outputs. This is equivalent to interchanging the roles of the vertical and horizontal axes.
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Example 10  Finding the Inverse of a Function Using Reflection about the Identity Line

Given the graph of f (x) in Figure 9, sketch a graph of f −1(x).
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x

y

–1–1–2
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–4
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–5

–5
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21 4
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5

5

Figure 9

Solution This is a one-to-one function, so we will be able to sketch an inverse. Note that the graph shown has an 
apparent domain of (0, ∞) and range of (−∞, ∞), so the inverse will have a domain of (−∞, ∞) and range of (0, ∞).

If we reflect this graph over the line y = x, the point (1, 0) reflects to (0, 1) and the point (4, 2) reflects to (2, 4). Sketching 
the inverse on the same axes as the original graph gives Figure 10.
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x

y

–1–1–2
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–3
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–5
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3

21 4

4
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5

f (x)

y = xf –1(x)

Figure 10 The function and its inverse, showing reflection about the identity line

Try It #9

Draw graphs of the functions f and f −1 from Example 8.

Q & A…
Is there any function that is equal to its own inverse?

Yes. If f = f −1, then f (f (x)) = x, and we can think of several functions that have this property. The identity function 
does, and so does the reciprocal function, because

   1 _ 
  1 _ x  

    =  x

Any function f (x) = c − x, where c is a constant, is also equal to its own inverse.

Access these online resources for additional instruction and practice with inverse functions.
•	 Inverse Functions (http://openstaxcollege.org/l/inversefunction)

•	 Inverse Function Values Using Graph (http://openstaxcollege.org/l/inversfuncgraph)

•	 Restricting the Domain and Finding the Inverse (http://openstaxcollege.org/l/restrictdomain)

http://openstaxcollege.org/l/inversefunction
http://openstaxcollege.org/l/inversfuncgraph
http://openstaxcollege.org/l/restrictdomain
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1.7 SeCTIOn exeRCISeS

VeRBAl

1. Describe why the horizontal line test is an effective 
way to determine whether a function is one-to-one?

2. Why do we restrict the domain of the function  
f (x) = x2 to find the function’s inverse?

3. Can a function be its own inverse? Explain. 4. Are one-to-one functions either always increasing or 
always decreasing? Why or why not?

5. How do you find the inverse of a function 
algebraically?

AlGeBRAIC

6. Show that the function f (x) = a − x is its own inverse for all real numbers a.

For the following exercises, find f −1(x) for each function.

7. f (x) = x + 3 8. f (x) = x + 5 9. f (x) = 2 − x

10. f (x) = 3 − x 11. f (x) =    x _____ x + 2   12. f (x) =    2x + 3 ______ 5x + 4   

For the following exercises, find a domain on which each function f is one-to-one and non-decreasing. Write the 
domain in interval notation. Then find the inverse of f restricted to that domain.

13. f (x) = (x + 7)2 14. f (x) = (x − 6)2 15. f (x) = x2 − 5

16. Given f (x) =    x __ 2 + x
    and g(x) =    2x _____ 1 − x   :

a. Find f (g(x)) and g (f (x)).
b. What does the answer tell us about the relationship between f (x) and g(x)?

For the following exercises, use function composition to verify that f (x) and g(x) are inverse functions.

17. f (x) =    3 √
—

 x − 1    and g (x) = x3 + 1 18. f (x) = −3x + 5 and g (x) =    x − 5 _____ 
−3   

GRAPHICAl

For the following exercises, use a graphing utility to determine whether each function is one-to-one.

19. f (x) =   √
—
 x   20. f (x) =    3 √

—
 3x + 1   

21. f (x) = −5x + 1 22. f (x) = x3 − 27

For the following exercises, determine whether the graph represents a one-to-one function.

23. 

10

x

y

f

–5–5–10

–10

–15

–15

–20

–20

–25

–25

5

15

15
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24. 

4
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y

f
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6

6
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8
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10
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For the following exercises, use the graph of f shown in Figure 11.

2

x

y

f

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5

Figure 11  

25. Find f (0). 

26. Solve f (x) = 0. 

27. Find f −1(0). 

28. Solve f −1(x) = 0.

For the following exercises, use the graph of the one-to-one function shown in Figure 12.

4

x

y

f

–2–4–6–8–10 –2
–4
–6
–8

–10

2

6

6

42 8

8

10

10

Figure 12  

29. Sketch the graph of f −1.

30. Find f (6) and f −1(2).

31. If the complete graph of f is shown, find the domain 
of f.

32. If the complete graph of f is shown, find the range 
of f.

nUMeRIC

For the following exercises, evaluate or solve, assuming that the function f is one-to-one.

33. If f (6) = 7, find f −1(7). 34. If f (3) = 2, find f −1(2).

35. If f −1(−4) = −8, find f (−8). 36. If f −1(−2) = −1, find f (−1).

For the following exercises, use the values listed in Table 6 to evaluate or solve.

x 0 1 2 3 4 5 6 7 8 9

f (x) 8 0 7 4 2 6 5 3 9 1
Table 6

37. Find f (1). 38. Solve f (x) = 3.
39. Find f −1(0). 40. Solve f −1(x) = 7.

41. Use the tabular representation of f in Table 7 to create a table for f −1(x).

x 3 6 9 13 14

f (x) 1 4 7 12 16
Table 7
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TeCHnOlOGY

For the following exercises, find the inverse function. Then, graph the function and its inverse.

42. f (x) =    3 _____ x − 2   43. f (x) = x 3 − 1

44. Find the inverse function of f (x) =    1 _ 
x − 1

   . Use a graphing utility to find its domain and range. Write the domain 
and range in interval notation.

ReAl-WORlD APPlICATIOnS

45. To convert from x degrees Celsius to y degrees 
Fahrenheit, we use the formula f (x) =    9 __ 5   x + 32.  
Find the inverse function, if it exists, and explain  
its meaning.

46. The circumference C of a circle is a function of its 
radius given by C(r) = 2πr. Express the radius of a 
circle as a function of its circumference. Call this 
function r(C). Find r(36π) and interpret its meaning.

47. A car travels at a constant speed of 50 miles per hour. 
The distance the car travels in miles is a function of 
time, t, in hours given by d(t) = 50t. Find the inverse 
function by expressing the time of travel in terms of 
the distance traveled. Call this function t(d). Find 
t(180) and interpret its meaning.
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CHAPTeR 1 ReVIeW

Key Terms
absolute maximum the greatest value of a function over an interval

absolute minimum the lowest value of a function over an interval

absolute value equation an equation of the form ∣A∣ = B, with B ≥ 0; it will have solutions when A = B or A = −B

absolute value inequality a relationship in the form ∣A∣ < B, ∣A∣ ≤ B, ∣A∣ > B, or ∣A∣ ≥ B

average rate of change the difference in the output values of a function found for two values of the input divided by the 
difference between the inputs

composite function the new function formed by function composition, when the output of one function is used as the input 
of another

decreasing function a function is decreasing in some open interval if f (b) < f (a) for any two input values a and b in the given 
interval where b > a

dependent variable an output variable

domain the set of all possible input values for a relation

even function a function whose graph is unchanged by horizontal reflection, f (x) = f (−x), and is symmetric about the y-axis

function a relation in which each input value yields a unique output value

horizontal compression a transformation that compresses a function’s graph horizontally, by multiplying the input by a 
constant b > 1

horizontal line test a method of testing whether a function is one-to-one by determining whether any horizontal line 
intersects the graph more than once

horizontal reflection a transformation that reflects a function’s graph across the y-axis by multiplying the input by −1

horizontal shift a transformation that shifts a function’s graph left or right by adding a positive or negative constant to the 
input

horizontal stretch a transformation that stretches a function’s graph horizontally by multiplying the input by a constant  
0 < b < 1

increasing function a function is increasing in some open interval if f (b) > f (a) for any two input values a and b in the given 
interval where b > a

independent variable an input variable

input each object or value in a domain that relates to another object or value by a relationship known as a function

interval notation a method of describing a set that includes all numbers between a lower limit and an upper limit; the 
lower and upper values are listed between brackets or parentheses, a square bracket indicating inclusion in the set, and a 
parenthesis indicating exclusion

inverse function for any one-to-one function f (x), the inverse is a function f −1(x) such that f −1(f (x)) = x for all x in the 
domain of f; this also implies that f ( f −1(x)) = x for all x in the domain of f −1

local extrema collectively, all of a function’s local maxima and minima

local maximum a value of the input where a function changes from increasing to decreasing as the input value increases.

local minimum a value of the input where a function changes from decreasing to increasing as the input value increases.

odd function a function whose graph is unchanged by combined horizontal and vertical reflection, f (x) = − f (−x), and is 
symmetric about the origin

one-to-one function a function for which each value of the output is associated with a unique input value

output each object or value in the range that is produced when an input value is entered into a function

piecewise function a function in which more than one formula is used to define the output

range the set of output values that result from the input values in a relation
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rate of change the change of an output quantity relative to the change of the input quantity

relation a set of ordered pairs

set-builder notation a method of describing a set by a rule that all of its members obey; it takes the form  
{x ∣ statement about x}

vertical compression a function transformation that compresses the function’s graph vertically by multiplying the output by 
a constant 0 < a < 1

vertical line test a method of testing whether a graph represents a function by determining whether a vertical line intersects 
the graph no more than once

vertical reflection a transformation that reflects a function’s graph across the x-axis by multiplying the output by −1

vertical shift a transformation that shifts a function’s graph up or down by adding a positive or negative constant to  
the output

vertical stretch a transformation that stretches a function’s graph vertically by multiplying the output by a constant a > 1

Key equations

Constant function f (x) = c, where c is a constant

Identity function f (x) = x

Absolute value function f (x) = ∣x∣

Quadratic function f (x) = x2

Cubic function f (x) = x3

Reciprocal function f (x) =    1 _ x   

Reciprocal squared function f (x) =    1 _ 
x2

   

Square root function f (x) =   √
—
 x   

Cube root function f (x) =    3 √
—
 x   

Average rate of change    
∆y

 _ 
∆x

    =    
f (x2) − f (x1) _ x2 − x1

   

Composite function (f ∘ g)(x) = f (g(x))

Vertical shift g(x) = f (x) + k (up for k > 0)

Horizontal shift g(x) = f (x − h) (right for h > 0)

Vertical reflection g(x) = −f (x)

Horizontal reflection g(x) = f (−x)

Vertical stretch g(x) = af (x) (a > 0)

Vertical compression g(x) = af (x) (0 < a < 1)

Horizontal stretch g(x) = f (bx) (0 < b < 1)

Horizontal compression g(x) = f (bx) (b > 1)
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Key Concepts

1.1 Functions and Function Notation
•	 A relation is a set of ordered pairs. A function is a specific type of relation in which each domain value, or input, 

leads to exactly one range value, or output. See Example 1 and Example 2.

•	 Function notation is a shorthand method for relating the input to the output in the form y = f (x). See Example 3 
and Example 4.

•	 In tabular form, a function can be represented by rows or columns that relate to input and output values. See 
Example 5.

•	 To evaluate a function, we determine an output value for a corresponding input value. Algebraic forms of a function 
can be evaluated by replacing the input variable with a given value. See Example 6 and Example 7.

•	 To solve for a specific function value, we determine the input values that yield the specific output value. See 
Example 8.

•	 An algebraic form of a function can be written from an equation. See Example 9 and Example 10.

•	 Input and output values of a function can be identified from a table. See Example 11.

•	 Relating input values to output values on a graph is another way to evaluate a function. See Example 12.

•	 A function is one-to-one if each output value corresponds to only one input value. See Example 13.

•	 A graph represents a function if any vertical line drawn on the graph intersects the graph at no more than one point. 
See Example 14.

•	 The graph of a one-to-one function passes the horizontal line test. See Example 15.

1.2 Domain and Range
•	 The domain of a function includes all real input values that would not cause us to attempt an undefined 

mathematical operation, such as dividing by zero or taking the square root of a negative number.

•	 The domain of a function can be determined by listing the input values of a set of ordered pairs. See Example 1.

•	 The domain of a function can also be determined by identifying the input values of a function written as an equation. 
See Example 2, Example 3, and Example 4.

•	 Interval values represented on a number line can be described using inequality notation, set-builder notation, and 
interval notation. See Example 5.

•	 For many functions, the domain and range can be determined from a graph. See Example 6 and Example 7.

•	 An understanding of toolkit functions can be used to find the domain and range of related functions. See Example 8, 
Example 9, and Example 10.

•	 A piecewise function is described by more than one formula. See Example 11 and Example 12.

•	 A piecewise function can be graphed using each algebraic formula on its assigned subdomain. See Example 13.

1.3 Rates of Change and Behavior of Graphs
•	 A rate of change relates a change in an output quantity to a change in an input quantity. The average rate of change is 

determined using only the beginning and ending data. See Example 1.

•	 Identifying points that mark the interval on a graph can be used to find the average rate of change. See Example 2.

•	 Comparing pairs of input and output values in a table can also be used to find the average rate of change. See 
Example 3.

•	 An average rate of change can also be computed by determining the function values at the endpoints of an interval 
described by a formula. See Example 4 and Example 5.

•	 The average rate of change can sometimes be determined as an expression. See Example 6.

•	 A function is increasing where its rate of change is positive and decreasing where its rate of change is negative. See 
Example 7.

•	 A local maximum is where a function changes from increasing to decreasing and has an output value larger (more 
positive or less negative) than output values at neighboring input values.
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•	 A local minimum is where the function changes from decreasing to increasing (as the input increases) and has an 
output value smaller (more negative or less positive) than output values at neighboring input values.

•	 Minima and maxima are also called extrema.

•	 We can find local extrema from a graph. See Example 8 and Example 9.

•	 The highest and lowest points on a graph indicate the maxima and minima. See Example 10.

1.4 Composition of Functions
•	 We can perform algebraic operations on functions. See Example 1.

•	 When functions are combined, the output of the first (inner) function becomes the input of the second (outer) 
function.

•	 The function produced by combining two functions is a composite function. See Example 2 and Example 3.

•	 The order of function composition must be considered when interpreting the meaning of composite functions.  
See Example 4.

•	 A composite function can be evaluated by evaluating the inner function using the given input value and then 
evaluating the outer function taking as its input the output of the inner function.

•	 A composite function can be evaluated from a table. See Example 5.

•	 A composite function can be evaluated from a graph. See Example 6.

•	 A composite function can be evaluated from a formula. See Example 7.

•	 The domain of a composite function consists of those inputs in the domain of the inner function that correspond to 
outputs of the inner function that are in the domain of the outer function. See Example 8 and Example 9.

•	 Just as functions can be combined to form a composite function, composite functions can be decomposed into 
simpler functions.

•	 Functions can often be decomposed in more than one way. See Example 10.

1.5 Transformation of Functions
•	 A function can be shifted vertically by adding a constant to the output. See Example 1 and Example 2.

•	 A function can be shifted horizontally by adding a constant to the input. See Example 3, Example 4, and Example 5.

•	 Relating the shift to the context of a problem makes it possible to compare and interpret vertical and horizontal 
shifts. See Example 6.

•	 Vertical and horizontal shifts are often combined. See Example 7 and Example 8.

•	 A vertical reflection reflects a graph about the x-axis. A graph can be reflected vertically by multiplying the output  
by –1.

•	 A horizontal reflection reflects a graph about the y-axis. A graph can be reflected horizontally by multiplying the 
input by –1.

•	 A graph can be reflected both vertically and horizontally. The order in which the reflections are applied does not 
affect the final graph. See Example 9.

•	 A function presented in tabular form can also be reflected by multiplying the values in the input and output rows or 
columns accordingly. See Example 10.

•	 A function presented as an equation can be reflected by applying transformations one at a time. See Example 11.

•	 Even functions are symmetric about the y-axis, whereas odd functions are symmetric about the origin.

•	 Even functions satisfy the condition f (x) = f (−x).

•	 Odd functions satisfy the condition f (x) = −f (−x).

•	 A function can be odd, even, or neither. See Example 12.

•	 A function can be compressed or stretched vertically by multiplying the output by a constant. See Example 13, 
Example 14, and Example 15.

•	 A function can be compressed or stretched horizontally by multiplying the input by a constant. See Example 16, 
Example 17, and Example 18.
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•	 The order in which different transformations are applied does affect the final function. Both vertical and horizontal 
transformations must be applied in the order given. However, a vertical transformation may be combined with a 
horizontal transformation in any order. See Example 19 and Example 20.

1.6 Absolute Value Functions
•	 The absolute value function is commonly used to measure distances between points. See Example 1.

•	 Applied problems, such as ranges of possible values, can also be solved using the absolute value function. See 
Example 2.

•	 The graph of the absolute value function resembles a letter V. It has a corner point at which the graph changes 
direction. See Example 3.

•	 In an absolute value equation, an unknown variable is the input of an absolute value function.

•	 If the absolute value of an expression is set equal to a positive number, expect two solutions for the unknown 
variable. See Example 4.

•	 An absolute value equation may have one solution, two solutions, or no solutions. See Example 5.

•	 An absolute value inequality is similar to an absolute value equation but takes the form ∣A∣ < B, ∣A∣ ≤ B,  
∣A∣ > B, or ∣A∣ ≥ B. It can be solved by determining the boundaries of the solution set and then testing which 
segments are in the set. See Example 6.

•	 Absolute value inequalities can also be solved graphically. See Example 7.

1.7 Inverse Functions
•	 If g(x) is the inverse of f (x), then g(f (x)) = f (g(x)) = x. See Example 1, Example 2, and Example 3.

•	 Each of the toolkit functions has an inverse. See Example 4.

•	 For a function to have an inverse, it must be one-to-one (pass the horizontal line test).

•	 A function that is not one-to-one over its entire domain may be one-to-one on part of its domain.

•	 For a tabular function, exchange the input and output rows to obtain the inverse. See Example 5.

•	 The inverse of a function can be determined at specific points on its graph. See Example 6.

•	 To find the inverse of a formula, solve the equation y = f (x) for x as a function of y. Then exchange the labels x and y. 
See Example 7, Example 8, and Example 9.

•	 The graph of an inverse function is the reflection of the graph of the original function across the line y = x. See 
Example 10.
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CHAPTeR 1 ReVIeW exeRCISeS

FUnCTIOnS AnD FUnCTIOn nOTATIOn

For the following exercises, determine whether the relation is a function.

1. {(a, b), (c, d), (e, d)}

2. {(5, 2), (6, 1), (6, 2), (4, 8)}

3. y 2 + 4 = x, for x the independent variable and y the dependent variable

4. Is the graph in Figure 1 a function?

f
10

y

–5–10–15–20–25 –5
–10
–15
–20
–25

5

15

15

05 20

20

25

Figure 1 

For the following exercises, evaluate the function at the indicated values: f (−3); f (2); f (−a); −f (a); f (a + h).

5. f (x) = −2x 2 + 3x 6. f (x) = 2∣3 x − 1∣

For the following exercises, determine whether the functions are one-to-one.

7. f (x) = −3x + 5 8. f (x) = ∣x − 3∣

For the following exercises, use the vertical line test to determine if the relation whose graph is provided is a function.

9. 
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y

–1–2–3–4–5 –1
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10. 
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11. 
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5

For the following exercises, graph the functions.

12. f (x) = ∣x + 1∣ 13. f (x) = x 2 − 2

25

1
x
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For the following exercises, use Figure 2 to approximate the values.

2

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5

Figure 2 

14. f (2)

15. f (−2)

16. If f (x) = −2, then solve for x.

17. If f (x) = 1, then solve for x.

For the following exercises, use the function h(t) = −16t 2 + 80t to find the values.

18.    
h(2) − h(1)

 __ 2 − 1   19.    
h(a) − h(1)

 __ a − 1   

DOMAIn AnD RAnGe

For the following exercises, find the domain of each function, expressing answers using interval notation.

20. f (x) =    2 _ 3x + 2   21. f (x) =    x − 3 ___________ x 2 − 4x − 12   22. f (x) =      √
—

 x − 6   _ 
 √
—

 x − 4  
   

23. Graph this piecewise function: f (x) = { x + 1 x < −2
  −2x − 3 x ≥ −2

RATeS OF CHAnGe AnD BeHAVIOR OF GRAPHS

For the following exercises, find the average rate of change of the functions from x = 1 to x = 2.

24. f (x) = 4x − 3 25. f (x) = 10x 2 + x 26. f (x) = −   2 _ 
x 2

   

For the following exercises, use the graphs to determine the intervals on which the functions are increasing, decreasing, 
or constant.

27. 
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28. 
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29. 

2

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4
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5

5

30. Find the local minimum of the function graphed in Exercise 27.

31. Find the local extrema for the function graphed in Exercise 28.
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32. For the graph in Figure 3, the domain of the 
function is [−3, 3]. The range is [−10, 10]. Find the 
absolute minimum of the function on this interval.
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–1–2–3–4–5 –2
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21 4

8

5
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Figure 3 

33. Find the absolute maximum of the function graphed 
in Figure 3.

COMPOSITIOn OF FUnCTIOnS

For the following exercises, find (f ∘ g)(x) and (g ∘ f)(x) for each pair of functions.

34. f (x) = 4 − x,  g(x) = −4x 35. f (x) = 3x + 2,  g(x) = 5 − 6x 36. f (x) = x 2 + 2x,  g(x) = 5x + 1

37. f (x) =   √
—

 x + 2   ,  g(x) =    1 _ x   38. f (x) =    x + 3 _____ 2   ,  g(x) =   √
—

 1 − x   

For the following exercises, find (f ∘ g) and the domain for (f ∘ g)(x) for each pair of functions.

39. f (x) =    x + 1 _ x + 4   ,  g(x) =    1 _ x   40. f (x) =    1 _ x + 3   ,  g(x) =    1 _ x − 9   41. f (x) =    1 _ x   ,  g(x) =   √
—
 x   

42. f (x) =    1 _ 
x2 − 1

   ,  g(x) =   √
—

 x + 1   

For the following exercises, express each function H as a composition of two functions f and g where H(x) = (f ∘ g)(x).

43. H(x) =   √ 
_______

   2x − 1 ______ 3x + 4     44. H(x) =    1 _ 
(3x 2 − 4)−3

   

TRAnSFORMATIOn OF FUnCTIOnS

For the following exercises, sketch a graph of the given function.

45. f (x) = (x − 3)2 46. f (x) = (x + 4)3
47. f (x) =   √

—
 x    + 5

48. f (x) = −x 3 49. f (x) =    3 √
—

 −x   50. f (x) = 5  √
—

 −x    − 4

51. f (x) = 4[∣x − 2∣ − 6] 52. f (x) = −(x + 2)2 − 1

For the following exercises, sketch the graph of the function g if the graph of the function f is shown in Figure 4.
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y

–1–2–3–4–5 –1
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1

3

3

21 4

4

5

5

Figure 4  

53. g(x) = f (x − 1)

54. g(x) = 3f (x)
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For the following exercises, write the equation for the standard function represented by each of the graphs below.

55. 
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56. 
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For the following exercises, determine whether each function below is even, odd, or neither.

57. f (x) = 3x 4 58. g(x) =   √
—
 x   59. h(x) =    1 _ x    + 3x

For the following exercises, analyze the graph and determine whether the graphed function is even, odd, or neither.

60. 
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ABSOlUTe VAlUe FUnCTIOnS

For the following exercises, write an equation for the transformation of f (x) = | x |.

63. 
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64. 
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65. 
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For the following exercises, graph the absolute value function.

66. f (x) = | x − 5 | 67. f (x) = −| x − 3 | 68. f (x) = | 2x − 4 |
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For the following exercises, solve the absolute value equation.

69. | x + 4 | = 18 70.      1 __ 3  x + 5    =      3 __ 4  x − 2   

For the following exercises, solve the inequality and express the solution using interval notation.

71. | 3x − 2 | < 7 72.      1 __ 3  x − 2    ≤ 7

InVeRSe FUnCTIOnS

For the following exercises, find f −1(x) for each function.

73. f (x) = 9 + 10x 74. f (x) =    x _ x + 2   

For the following exercise, find a domain on which the function f is one-to-one and non-decreasing. Write the domain 
in interval notation. Then find the inverse of f restricted to that domain.

75. f (x) = x 2 + 1

76. Given f (x) = x 3 − 5 and g(x) =    3 √
—

 x + 5    :
a. Find f (g(x)) and g(f (x)).
b. What does the answer tell us about the relationship between f (x) and g(x)?

For the following exercises, use a graphing utility to determine whether each function is one-to-one.

77. f (x) =    1 _ x   78. f (x) = −3x 2 + x 79. If f (5) = 2, find f −1(2).

80. If f (1) = 4, find f −1(4).
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CHAPTeR 1 PRACTICe TeST

For the following exercises, determine whether each of the following relations is a function.

1. y = 2x + 8 2. {(2, 1), (3, 2), (−1, 1), (0, −2)}

For the following exercises, evaluate the function f (x) = −3x 2 + 2x at the given input.

3. f (−2) 4. f (a)

5. Show that the function f (x) = −2(x − 1)2 + 3 is not 
one-to-one.

6. Write the domain of the function f (x) =   √
—

 3 − x    in 
interval notation.

7. Given f (x) = 2x 2 − 5x, find f (a + 1) − f (1). 8. Graph the function f (x) = {  x + 1 if −2 < x < 3
−x if x ≥ 3

9. Find the average rate of change of the function f (x) = 3 − 2x 2 + x by finding     
f (b) − f (a)

 _ 
b − a

   .

For the following exercises, use the functions f (x) = 3 − 2x 2 + x and g(x) =   √
—
 x    to find the composite functions.

10. (g ∘ f )(x) 11. (g ∘ f )(1)

12. Express H(x) =    3 √
—

 5x 2 − 3x    as a composition of two functions, f and g, where (f ∘ g)(x) = H(x).

For the following exercises, graph the functions by translating, stretching, and/or compressing a toolkit function.

13. f (x) =   √
—

 x + 6    − 1 14. f (x) =    1 _ x + 2    − 1

For the following exercises, determine whether the functions are even, odd, or neither.

15. f (x) = −   5 _ 
x2

    + 9x 6 16. f (x) = −   5 _ 
x 3

    + 9x 5

17. f (x) =    1 _ x   18. Graph the absolute value function  
f (x) = −2| x − 1 | + 3.

19. Solve | 2x − 3 | = 17. 20. Solve −     1 _ 
3

  x − 3    ≥ 17. Express the solution in  

interval notation.

For the following exercises, find the inverse of the function.

21. f (x) = 3x − 5 22. f (x) =    4 _ x + 7   
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For the following exercises, use the graph of g shown in Figure 1.
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Figure 1  

23. On what intervals is the function increasing?

24. On what intervals is the function decreasing?

25. Approximate the local minimum of the function. 
Express the answer as an ordered pair.

26. Approximate the local maximum of the function. 
Express the answer as an ordered pair.

For the following exercises, use the graph of the piecewise function shown in Figure 2.
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Figure 2  

27. Find f (2).

28. Find f (−2).

29. Write an equation for the piecewise function.

For the following exercises, use the values listed in Table 1.

x 0 1 2 3 4 5 6 7 8
F (x) 1 3 5 7 9 11 13 15 17

Table 1

30. Find F (6). 31. Solve the equation F (x) = 5.

32. Is the graph increasing or decreasing on its domain? 33. Is the function represented by the graph 
one-to-one?

34. Find F −1(15). 35. Given f (x) = −2x + 11, find f −1(x).
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Linear Functions

Figure 1 A bamboo forest in China (credit: “JFXie”/Flickr) 

Introduction
Imagine placing a plant in the ground one day and finding that it has doubled its height just a few days later. Although 
it may seem incredible, this can happen with certain types of bamboo species. These members of the grass family are 
the fastest-growing plants in the world. One species of bamboo has been observed to grow nearly 1.5 inches every hour.[6] 
In a twenty-four hour period, this bamboo plant grows about 36 inches, or an incredible 3 feet! A constant rate of change, 
such as the growth cycle of this bamboo plant, is a linear function.

Recall from Functions and Function Notation that a function is a relation that assigns to every element in the domain 
exactly one element in the range. Linear functions are a specific type of function that can be used to model many 
real-world applications, such as plant growth over time. In this chapter, we will explore linear functions, their graphs, 
and how to relate them to data.

6 http://www.guinnessworldrecords.com/records-3000/fastest-growing-plant/

CHAPTeR OUTlIne

2.1 linear Functions
2.2 Graphs of linear Functions
2.3 Modeling with linear Functions
2.4 Fitting linear Models to Data

http://www.guinnessworldrecords.com/records-3000/fastest-growing-plant/
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2.1 lIneAR FUnCTIOnS

Figure 1 Shanghai Maglev Train (credit: “kanegen”/Flickr)

Just as with the growth of a bamboo plant, there are many situations that involve constant change over time. Consider, 
for example, the first commercial maglev train in the world, the Shanghai MagLev Train (Figure 1). It carries 
passengers comfortably for a 30-kilometer trip from the airport to the subway station in only eight minutes.[7]

Suppose a maglev train were to travel a long distance, and that the train maintains a constant speed of 83 meters per 
second for a period of time once it is 250 meters from the station. How can we analyze the train’s distance from the 
station as a function of time? In this section, we will investigate a kind of function that is useful for this purpose, and 
use it to investigate real-world situations such as the train’s distance from the station at a given point in time.

Representing linear Functions
The function describing the train’s motion is a linear function, which is defined as a function with a constant rate of 
change, that is, a polynomial of degree 1. There are several ways to represent a linear function, including word form, 
function notation, tabular form, and graphical form. We will describe the train’s motion as a function using each 
method.

Representing a Linear Function in Word Form

Let’s begin by describing the linear function in words. For the train problem we just considered, the following word 
sentence may be used to describe the function relationship.

•	 The train’s distance from the station is a function of the time during which the train moves at a constant speed plus 
its original distance from the station when it began moving at constant speed.

The speed is the rate of change. Recall that a rate of change is a measure of how quickly the dependent variable changes 
with respect to the independent variable. The rate of change for this example is constant, which means that it is the 
same for each input value. As the time (input) increases by 1 second, the corresponding distance (output) increases by 
83 meters. The train began moving at this constant speed at a distance of 250 meters from the station.

7 http://www.chinahighlights.com/shanghai/transportation/maglev-train.htm

leARnInG OBjeCTIVeS

In this section, you will:

•	  Represent a linear function.

•	  Determine whether a linear function is increasing, decreasing, or constant.

•	  Calculate and interpret slope.

•	  Write the point-slope form of an equation.

•	  Write and interpret a linear function.

http://www.chinahighlights.com/shanghai/transportation/maglev-train.htm
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Representing a Linear Function in Function Notation

Another approach to representing linear functions is by using function notation. One example of function notation is 
an equation written in the form known as the slope-intercept form of a line, where x is the input value, m is the rate 
of change, and b is the initial value of the dependent variable.

 Equation form y = mx + b

 Equation notation f (x) = mx + b

In the example of the train, we might use the notation D(t) in which the total distance D is a function of the time t. The 
rate, m, is 83 meters per second. The initial value of the dependent variable b is the original distance from the station, 
250 meters. We can write a generalized equation to represent the motion of the train.

D(t) = 83t + 250

Representing a Linear Function in Tabular Form

A third method of representing a linear function is through the use of a table. The relationship between the distance 
from the station and the time is represented in Figure 2. From the table, we can see that the distance changes by 83 
meters for every 1 second increase in time.

0
250

1
333

2
416

3
499

t
D(t)

1 second    1 second     1 second

83 meters   83 meters    83 meters

Figure 2 Tabular representation of the function D showing selected input and output values

Q & A…
Can the input in the previous example be any real number?

No. The input represents time, so while nonnegative rational and irrational numbers are possible, negative real 
numbers are not possible for this example. The input consists of non-negative real numbers.

Representing a Linear Function in Graphical Form

Another way to represent linear functions is visually, using a graph. We can use the function relationship from above, 
D(t) = 83t + 250, to draw a graph, represented in Figure 3. Notice the graph is a line. When we plot a linear function, 
the graph is always a line.

The rate of change, which is constant, determines the slant, or slope of the line. The point at which the input value is 
zero is the vertical intercept, or y-intercept, of the line. We can see from the graph in Figure 3 that the y-intercept in 
the train example we just saw is (0, 250) and represents the distance of the train from the station when it began moving 
at a constant speed.

100
200
300
400
500

D
ist
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ce

 (m
)

Time (s)

0 321 4 5

Figure 3 The graph of D(t) = 83t + 250. Graphs of linear functions are lines because the rate of change is constant.

Notice that the graph of the train example is restricted, but this is not always the case. Consider the graph of the line 
f (x) = 2x + 1. Ask yourself what numbers can be input to the function, that is, what is the domain of the function? The 
domain is comprised of all real numbers because any number may be doubled, and then have one added to the product.
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linear function 
A linear function is a function whose graph is a line. Linear functions can be written in the slope-intercept form 
of a line

f (x) = mx + b

where b is the initial or starting value of the function (when input, x = 0), and m is the constant rate of change, or 
slope of the function. The y-intercept is at (0, b).

Example 1 Using a Linear Function to Find the Pressure on a Diver

The pressure, P, in pounds per square inch (PSI) on the diver in Figure 4 depends upon her depth below the water 
surface, d, in feet. This relationship may be modeled by the equation, P(d) = 0.434d + 14.696. Restate this function 
in words.

Figure 4 (credit: Ilse Reijs and jan-noud Hutten)

Solution To restate the function in words, we need to describe each part of the equation. The pressure as a function of 
depth equals four hundred thirty-four thousandths times depth plus fourteen and six hundred ninety-six thousandths.

Analysi s The initial value, 14.696, is the pressure in PSI on the diver at a depth of 0 feet, which is the surface of the 
water. The rate of change, or slope, is 0.434 PSI per foot. This tells us that the pressure on the diver increases 0.434 PSI 
for each foot her depth increases.

Determining Whether a linear Function Is Increasing, Decreasing, or Constant
The linear functions we used in the two previous examples increased over time, but not every linear function does. A 
linear function may be increasing, decreasing, or constant. For an increasing function, as with the train example, the 
output values increase as the input values increase. The graph of an increasing function has a positive slope. A line 
with a positive slope slants upward from left to right as in Figure 5(a). For a decreasing function, the slope is negative. 
The output values decrease as the input values increase. A line with a negative slope slants downward from left to right 
as in Figure 5(b). If the function is constant, the output values are the same for all input values so the slope is zero. A 
line with a slope of zero is horizontal as in Figure 5(c).

Increasing function Decreasing function
f (x)

f

f

f

f (x)f (x)

x x x

Constant function

(c)(b)(a)
Figure 5
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increasing and decreasing functions 
The slope determines if the function is an increasing linear function, a decreasing linear function, or a constant 
function.
•	 f (x) = mx + b is an increasing function if m > 0.

•	 f (x) = mx + b is an decreasing function if m < 0.

•	 f (x) = mx + b is a constant function if m = 0.

Example 2  Deciding Whether a Function Is Increasing, Decreasing, or Constant

Some recent studies suggest that a teenager sends an average of 60 texts per day.[8] For each of the following scenarios, 
find the linear function that describes the relationship between the input value and the output value. Then, determine 
whether the graph of the function is increasing, decreasing, or constant.

a.  The total number of texts a teen sends is considered a function of time in days. The input is the number of days, 
and output is the total number of texts sent. b.  A teen has a limit of 500 texts per month in his or her data plan. 

The input is the number of days, and output is the total number 
of texts remaining for the month.

c.  A teen has an unlimited number of texts in his or her data plan for a cost of $50 per month. The input is the 
number of days, and output is the total cost of texting each month.

Solution Analyze each function.

a.  The function can be represented as f (x) = 60x where x is the number of days. The slope, 60, is positive so the 
function is increasing. This makes sense because the total number of texts increases with each day.

b.  The function can be represented as f (x) = 500 − 60x where x is the number of days. In this case, the slope is 
negative so the function is decreasing. This makes sense because the number of texts remaining decreases each 
day and this function represents the number of texts remaining in the data plan after x days.

c.  The cost function can be represented as f (x) = 50 because the number of days does not affect the total cost. The 
slope is 0 so the function is constant.

Calculating and Interpreting Slope
In the examples we have seen so far, we have had the slope provided for us. However, we often need to calculate the slope 
given input and output values. Given two values for the input, x1 and x2, and two corresponding values for the output, 
y1 and y2 —which can be represented by a set of points, (x1, y1) and (x2, y2) —we can calculate the slope m, as follows

m =   
change in output (rise)

  __  
change in input (run)

   =   
Δy

 _ 
Δx

   =   
y2 − y1 _ x2 − x1

   

where ∆y is the vertical displacement and ∆x is the horizontal displacement. Note in function notation two 
corresponding values for the output y1 and y2 for the function f, y1 = f (x1) and y2 = f (x2), so we could equivalently write

m =   
f (x2) − f (x1) _ x2 − x1

  

Figure 6 indicates how the slope of the line between the points, (x1, y1) and (x2, y2), is calculated. Recall that the slope 
measures steepness. The greater the absolute value of the slope, the steeper the line is.

8 http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-are-sending-60-texts-a-day-study-says/

http://www.cbsnews.com/8301-501465_162-57400228-501465/teens-are-sending-60-texts-a-day-study-says/
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x

y
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(x1 , y1)

(x2 , y2)
x2 – x1

y2 – y1

0 321 4

m = =
∆y
∆x

y2 – y1
x2 – x1

Figure 6 The slope of a function is calculated by the change in y divided by the change in x. It does not matter which coordinate  
is used as the (x2, y2) and which is the (x1, y1), as long as each calculation is started with the elements from the same coordinate pair.

Q & A…
Are the units for slope always    

units for the output
  __  

units for the input
   ?

Yes. Think of the units as the change of output value for each unit of change in input value. An example of slope could 
be miles per hour or dollars per day. Notice the units appear as a ratio of units for the output per units for the input.

calculate slope 
The slope, or rate of change, of a function m can be calculated according to the following:

m =   
change in output (rise)

  __  
change in input (run)

   =   
Δy

 _ 
Δx

   =   
y2 − y1 _ x2 − x1

  

where x1 and x2 are input values, y1 and y2 are output values.

How To…
Given two points from a linear function, calculate and interpret the slope.

1. Determine the units for output and input values.
2. Calculate the change of output values and change of input values.
3. Interpret the slope as the change in output values per unit of the input value.

Example 3 Finding the Slope of a Linear Function

If f (x) is a linear function, and (3, −2) and (8, 1) are points on the line, find the slope. Is this function increasing or 
decreasing?

Solution The coordinate pairs are (3, −2) and (8, 1). To find the rate of change, we divide the change in output by  
the change in input.

m =   
change in output

  __  
change in input

   =   1 − (−2) ________ 8 − 3   =   3 __ 5  

We could also write the slope as m = 0.6. The function is increasing because m > 0.

Analysi s As noted earlier, the order in which we write the points does not matter when we compute the slope of the line 
as long as the first output value, or y-coordinate, used corresponds with the first input value, or x-coordinate, used.

Try It #1

If f (x) is a linear function, and (2, 3) and (0, 4) are points on the line, find the slope. Is this function increasing or 
decreasing?
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Example 4 Finding the Population Change from a Linear Function

The population of a city increased from 23,400 to 27,800 between 2008 and 2012. Find the change of population per 
year if we assume the change was constant from 2008 to 2012.

Solution The rate of change relates the change in population to the change in time. The population increased by  
27,800 − 23,400 = 4,400 people over the four-year time interval. To find the rate of change, divide the change in the 
number of people by the number of years.

   
4,400 people

 __ 4 years    =    
1,100 people

 __ year   

So the population increased by 1,100 people per year.

Analysi s Because we are told that the population increased, we would expect the slope to be positive. This positive slope 
we calculated is therefore reasonable.

Try It #2

The population of a small town increased from 1,442 to 1,868 between 2009 and 2012. Find the change of population 
per year if we assume the change was constant from 2009 to 2012.

Writing the Point-Slope Form of a linear equation
Up until now, we have been using the slope-intercept form of a linear equation to describe linear functions. Here, we 
will learn another way to write a linear function, the point-slope form.

 y − y1 = m(x − x1)

The point-slope form is derived from the slope formula.

 m =   
 y − y1 _ x − x1

   Assuming x ≠ x1

 m(x − x1) =   
y − y1 _ x − x1

  (x − x1) Multiply both sides by (x − x1).

 m(x − x1) = y − y1 Simplify.

 y − y1 = m(x − x1) Rearrange.

Keep in mind that the slope-intercept form and the point-slope form can be used to describe the same function. We 
can move from one form to another using basic algebra. For example, suppose we are given an equation in point-slope 
form, y − 4 = −  1 __ 2   (x − 6). 

We can convert it to the slope-intercept form as shown.

 y − 4 = −  1 __ 2   (x − 6)

 y − 4 = −  1 __ 2  x + 3 Distribute the −  1 __ 2  .

 y = −  1 __ 2  x + 7 Add 4 to each side.

Therefore, the same line can be described in slope-intercept form as y = −  1 __ 2  x + 7.

point-slope form of a linear equation 
The point-slope form of a linear equation takes the form

y − y1 = m(x − x1)

where m is the slope, x1 and y1 are the x- and y-coordinates of a specific point through which the line passes.



CHAPTER 2 linear Functions132

Writing the Equation of a Line Using a Point and the Slope

The point-slope form is particularly useful if we know one point and the slope of a line. Suppose, for example, we are 
told hat a line has a slope of 2 and passes through the point (4, 1). We know that m = 2 and that x1 = 4 and y1 = 1. We 
can substitute these values into the general point-slope equation.
 y − y1 = m(x − x1)
 y − 1 = 2(x − 4)

If we wanted to then rewrite the equation in slope-intercept form, we apply algebraic techniques.
 y − 1 = 2(x − 4) 
 y − 1 = 2x − 8 Distribute the 2.
 y = 2x − 7 Add 1 to each side.

Both equations, y − 1 = 2(x − 4) and y = 2x − 7, describe the same line. See Figure 7.
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Figure 7

Example 5 Writing Linear Equations Using a Point and the Slope

Write the point-slope form of an equation of a line with a slope of 3 that passes through the point (6, −1). Then rewrite 
it in the slope-intercept form.

Solution Let’s figure out what we know from the given information. The slope is 3, so m = 3. We also know one point, 
so we know x1 = 6 and y1 = −1. Now we can substitute these values into the general point-slope equation.

 y − y1 = m(x − x1)

 y − (−1) = 3(x − 6) Substitute known values.

 y + 1 = 3(x − 6) Distribute −1 to find point-slope form.

Then we use algebra to find the slope-intercept form.

 y + 1 = 3(x − 6)

 y + 1 = 3x − 18 Distribute 3.

 y = 3x − 19 Simplify to slope-intercept form.

Try It #3

Write the point-slope form of an equation of a line with a slope of −2 that passes through the point (−2, 2). Then 
rewrite it in the slope-intercept form.

Writing the Equation of a Line Using Two Points

The point-slope form of an equation is also useful if we know any two points through which a line passes. Suppose, for 
example, we know that a line passes through the points (0, 1) and (3, 2). We can use the coordinates of the two points 
to find the slope.
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 m =    
y2 − y1 _ x2 − x1

  

 =    2 − 1 _ 
3 − 0

  

 =   1 __ 3  

Now we can use the slope we found and the coordinates of one of the points to find the equation for the line. Let use 
(0, 1) for our point.
 y − y1 = m(x − x1)

 y − 1 =   1 __ 3  (x − 0)

As before, we can use algebra to rewrite the equation in the slope-intercept form.

 y − 1 =   1 __ 3  (x − 0)

 y − 1 =   1 __ 3  x Distribute the   1 __ 3  .

 y =   1 __ 3  x + 1 Add 1 to each side.

Both equations describe the line shown in Figure 8.
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Example 6 Writing Linear Equations Using Two Points

Write the point-slope form of an equation of a line that passes through the points (5, 1) and (8, 7). Then rewrite it in 
the slope-intercept form.

Solution Let’s begin by finding the slope.

 m =   
y2 − y1 _ x2 − x1

  

 =   7 − 1 _ 
8 − 5

  

 =   6 __ 3  

 = 2

So m = 2. Next, we substitute the slope and the coordinates for one of the points into the general point-slope equation. 
We can choose either point, but we will use (5, 1).

 y − y1 = m(x − x1)

 y − 1 = 2(x − 5)

The point-slope equation of the line is y2 − 1 = 2(x2 − 5). To rewrite the equation in slope-intercept form, we use 
algebra.
 y − 1 = 2(x − 5)

 y − 1 = 2x − 10

 y = 2x − 9

The slope-intercept equation of the line is y = 2x − 9.
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Try It #4

Write the point-slope form of an equation of a line that passes through the points (−1, 3) and (0, 0). Then rewrite it 
in the slope-intercept form.

Writing and Interpreting an equation for a linear Function
Now that we have written equations for linear functions in both the slope-intercept form and the point-slope form, 
we can choose which method to use based on the information we are given. That information may be provided in the 
form of a graph, a point and a slope, two points, and so on. Look at the graph of the function f in Figure 9.
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Figure 9

We are not given the slope of the line, but we can choose any two points on the line to find the slope. Let’s choose (0, 7) 
and (4, 4). We can use these points to calculate the slope.

 m =   
y2 − y1 _ x2 − x1

  

 =   4 − 7 _ 
4 − 0

  

 = −  3 __ 4  

Now we can substitute the slope and the coordinates of one of the points into the point-slope form.

 y − y1 = m(x − x1)

 y − 4 = −  3 __ 4  (x − 4)

If we want to rewrite the equation in the slope-intercept form, we would find

 y − 4 = −  3 __ 4  (x − 4)

 y − 4 = −  3 __ 4  x + 3

 y = −  3 __ 4  x + 7

If we wanted to find the slope-intercept form without first writing the point-slope form, we could have recognized that 
the line crosses the y-axis when the output value is 7. Therefore, b = 7. We now have the initial value b and the slope 
m so we can substitute m and b into the slope-intercept form of a line.

f (x) = mx + b
 ↑ ↑
 −  3 __ 4    7

f (x) = −  3 __ 4  x + 7

So the function is f (x) = −  3 __ 4  x + 7, and the linear equation would be y = −  3 __ 4  x + 7.
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How To…
Given the graph of a linear function, write an equation to represent the function.

1. Identify two points on the line.
2. Use the two points to calculate the slope.
3. Determine where the line crosses the y-axis to identify the y-intercept by visual inspection.
4. Substitute the slope and y-intercept into the slope-intercept form of a line equation.

Example 7  Writing an Equation for a Linear Function

Write an equation for a linear function given a graph of f shown in Figure 10.
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Solution Identify two points on the line, such as (0, 2) and (−2, −4). Use the points to calculate the slope.

 m =   
y2 − y1 _ x2 − x1

  

 =   −4 − 2 _ 
−2 − 0

  

 =   −6 _ 
−2

  

 = 3
Substitute the slope and the coordinates of one of the points into the point-slope form.

 y − y1 = m(x − x1)

 y − (−4) = 3(x − (−2))

 y + 4 = 3(x + 2)

We can use algebra to rewrite the equation in the slope-intercept form.

 y + 4 = 3(x + 2)

 y + 4 = 3x + 6

 y = 3x + 2

Analysi s This makes sense because we can see from Figure 11 that the line crosses the y-axis at the point (0, 2), which 
is the y-intercept, so b = 2.
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Example 8  Writing an Equation for a Linear Cost Function

Suppose Ben starts a company in which he incurs a fixed cost of $1,250 per month for the overhead, which includes 
his office rent. His production costs are $37.50 per item. Write a linear function C where C(x) is the cost for x items 
produced in a given month.

Solution The fixed cost is present every month, $1,250. The costs that can vary include the cost to produce each item, 
which is $37.50 for Ben. The variable cost, called the marginal cost, is represented by 37.5. The cost Ben incurs is the 
sum of these two costs, represented by C(x) = 1250 + 37.5x.

Analysi s If Ben produces 100 items in a month, his monthly cost is represented by

 C(100) = 1250 + 37.5(100)
 = 5000
So his monthly cost would be $5,000.

Example 9 Writing an Equation for a Linear Function Given Two Points

If f is a linear function, with f (3) = −2 , and f (8) = 1 , find an equation for the function in slope-intercept form.

Solution We can write the given points using coordinates.

 f (3) = −2 → (3, −2)

 f (8) = 1 → (8, 1)

We can then use the points to calculate the slope.

 m =   
y2 − y1 _ x2 − x1

  

 =   1 − (−2) ________ 8 − 3  

 =   3 __ 5  

Substitute the slope and the coordinates of one of the points into the point-slope form.

 y − y1 = m(x − x1)

 y − (−2) =   3 __ 5   (x − 3)

We can use algebra to rewrite the equation in the slope-intercept form.

 y + 2 =   3 __ 5  (x − 3)

 y + 2 =   3 __ 5  x −   9 __ 5  

 y =   3 __ 5  x −   19 __ 5  

Try It #5  

If f (x) is a linear function, with f (2) = −11, and f (4) = −25, find an equation for the function in slope-intercept 
form.

Modeling Real-World Problems with linear Functions
In the real world, problems are not always explicitly stated in terms of a function or represented with a graph. 
Fortunately, we can analyze the problem by first representing it as a linear function and then interpreting the 
components of the function. As long as we know, or can figure out, the initial value and the rate of change of a linear 
function, we can solve many different kinds of real-world problems.
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How To…
Given a linear function f and the initial value and rate of change, evaluate f (c).

1. Determine the initial value and the rate of change (slope).
2. Substitute the values into f (x) = mx + b.
3. Evaluate the function at x = c.

Example 10   Using a Linear Function to Determine the Number of Songs in a Music Collection

Marcus currently has 200 songs in his music collection. Every month, he adds 15 new songs. Write a formula for the 
number of songs, N, in his collection as a function of time, t, the number of months. How many songs will he own 
in a year?

Solution The initial value for this function is 200 because he currently owns 200 songs, so N(0) = 200, which means 
that b = 200.

The number of songs increases by 15 songs per month, so the rate of change is 15 songs per month. Therefore we know 
that m = 15. We can substitute the initial value and the rate of change into the slope-intercept form of a line.

 f (x) = mx + b
 ↑ ↑
 15 200

 N(t) = 15t + 200
Figure 12

We can write the formula N(t) = 15t + 200.

With this formula, we can then predict how many songs Marcus will have in 1 year (12 months). In other words, we 
can evaluate the function at t = 12.
 N(12) = 15(12) + 200

 = 180 + 200

 = 380

Marcus will have 380 songs in 12 months.

Analysi s Notice that N is an increasing linear function. As the input (the number of months) increases, the output 
(number of songs) increases as well.

Example 11  Using a Linear Function to Calculate Salary Plus Commission

Working as an insurance salesperson, Ilya earns a base salary plus a commission on each new policy. Therefore, Ilya’s 
weekly income, I, depends on the number of new policies, n, he sells during the week. Last week he sold 3 new policies, 
and earned $760 for the week. The week before, he sold 5 new policies and earned $920. Find an equation for I(n), and 
interpret the meaning of the components of the equation.

Solution The given information gives us two input-output pairs: (3,760) and (5,920). We start by finding the rate of 
change.

 m =   920 − 760 ________ 5 − 3  

 =   $160 _______ 2 policies  

 = $80 per policy

Keeping track of units can help us interpret this quantity. Income increased by $160 when the number of policies 
increased by 2, so the rate of change is $80 per policy. Therefore, Ilya earns a commission of $80 for each policy sold 
during the week.
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We can then solve for the initial value.
 I(n) = 80n + b

 760 = 80(3) + b when n = 3, I(3) = 760

 760 − 80(3) = b

 520 = b

The value of b is the starting value for the function and represents Ilya’s income when n = 0, or when no new policies are 
sold. We can interpret this as Ilya’s base salary for the week, which does not depend upon the number of policies sold.

We can now write the final equation.
I(n) = 80n + 520

Our final interpretation is that Ilya’s base salary is $520 per week and he earns an additional $80 commission for each 
policy sold.

Example 12 Using Tabular Form to Write an Equation for a Linear Function

Table 1 relates the number of rats in a population to time, in weeks. Use the table to write a linear equation.

w, number of weeks 0 2 4 6

P(w), number of rats 1,000 1,080 1,160 1,240
Table 1

Solution We can see from the table that the initial value for the number of rats is 1000, so b = 1000. 

Rather than solving for m, we can tell from looking at the table that the population increases by 80 for every 2 weeks 
that pass. This means that the rate of change is 80 rats per 2 weeks, which can be simplified to 40 rats per week.

P(w) = 40w + 1000

If we did not notice the rate of change from the table we could still solve for the slope using any two points from the 
table. For example, using (2, 1080) and (6, 1240)

 m =   1240 − 1080 __________ 6 − 2  

 =   160 ___ 4  

 = 40

Q & A…
Is the initial value always provided in a table of values like Table 1?

No. Sometimes the initial value is provided in a table of values, but sometimes it is not. If you see an input of 0, then the 
initial value would be the corresponding output. If the initial value is not provided because there is no value of input 
on the table equal to 0, find the slope, substitute one coordinate pair and the slope into f (x) = mx + b, and solve for b.

Try It #6

A new plant food was introduced to a young tree to test its effect on the height of the tree. Table 2 shows the height 
of the tree, in feet, x months since the measurements began. Write a linear function, H(x), where x is the number of 
months since the start of the experiment.

x 0 2 4 8 12

H(x) 12.5 13.5 14.5 16.5 18.5

Table 2 

Access this online resource for additional instruction and practice with linear functions.
•	 linear Functions (http://openstaxcollege.org/l/linearfunctions)

http://openstaxcollege.org/l/linearfunctions
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2.1 SeCTIOn exeRCISeS

VeRBAl

1. Terry is skiing down a steep hill. Terry’s elevation, E(t), 
in feet after t seconds is given by E(t) = 3000 − 70t. 
Write a complete sentence describing Terry’s starting 
elevation and how it is changing over time.

2. Maria is climbing a mountain. Maria’s elevation, E(t), 
in feet after t minutes is given by E(t) = 1200 + 40t. 
Write a complete sentence describing Maria’s 
starting elevation and how it is changing over time.

3. Jessica is walking home from a friend’s house.  
After 2 minutes she is 1.4 miles from home.  
Twelve minutes after leaving, she is 0.9 miles  
from home. What is her rate in miles per hour?

4. Sonya is currently 10 miles from home and is 
walking farther away at 2 miles per hour. Write  
an equation for her distance from home t hours 
from now.

5. A boat is 100 miles away from the marina, sailing 
directly toward it at 10 miles per hour. Write an 
equation for the distance of the boat from the 
marina after t hours.

6. Timmy goes to the fair with $40. Each ride costs  
$2. How much money will he have left after riding  
n rides?

AlGeBRAIC

For the following exercises, determine whether the equation of the curve can be written as a linear function.

7. y =   1 __ 4  x + 6 8. y = 3x − 5 9. y = 3x 2 − 2

10. 3x + 5y = 15 11. 3x 2 + 5y = 15 12. 3x + 5y 2 = 15

13.  −2x 2 + 3y2  = 6 14.  −  x − 3 ______ 5   = 2y

For the following exercises, determine whether each function is increasing or decreasing.

15. f (x) = 4x + 3 16. g(x) = 5x + 6 17. a(x) = 5 − 2x

18. b(x) = 8 − 3x 19. h(x) = −2x + 4 20. k(x) = −4x + 1

21. j(x) =   1 __ 2  x − 3 22. p(x) =   1 __ 4  x − 5 23. n(x) = −  1 __ 3  x − 2

24. m(x) = −  3 __ 8  x + 3

For the following exercises, find the slope of the line that passes through the two given points.

25. (2, 4) and (4, 10) 26. (1, 5) and (4, 11) 27. (−1, 4) and (5, 2)

28. (8, −2) and (4, 6) 29. (6, 11) and (−4, 3)
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For the following exercises, given each set of information, find a linear equation satisfying the conditions, if possible.

30. f (−5) = −4, and f (5) = 2 31. f (−1) = 4 and f (5) = 1

32. (2, 4) and (4, 10) 33. Passes through (1, 5) and (4, 11)

34. Passes through (−1, 4) and (5, 2) 35. Passes through (−2, 8) and (4, 6)

36. x-intercept at (−2, 0) and y-intercept at (0, −3) 37. x-intercept at (−5, 0) and y-intercept at (0, 4)

GRAPHICAl

For the following exercises, find the slope of the lines graphed.

38. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5

1
2
3
4
5

0 321 4 5 6

39. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

0 321 4 5 6

40. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

0 321 4 5 6

For the following exercises, write an equation for the lines graphed.

41. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

0 321 4 5 6

42. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

0 321 4 5 6

43. 

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5
–6

1
2
3
4

6
5

0 321 4 5

44. 

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5
–6

1
2
3
4

6
5

0 321 4 5

45. 

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4
5

0 321 4 5 6–6

46. 

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4
5

0 321 4 5 6–6
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nUMeRIC

For the following exercises, which of the tables could represent a linear function? For each that could be linear, find a 
linear equation that models the data.

47.  x 0 5 10 15
g(x) 5 −10 −25 −40

48.  x 0 5 10 15
h(x) 5 30 105 230

49.  x 0 5 10 15
f (x) −5 20 45 70

50.  x 5 10 20 25
k(x) 13 28 58 73

51.  x 0 2 4 6
g(x) 6 −19 −44 −69

52.  x 2 4 6 8
f (x) 13 23 43 53

53.  x 2 4 6 8
f (x) −4 16 36 56

54.  x 0 2 6 8
k(x) 6 31 106 231

TeCHnOlOGY

55. If f is a linear function, f (0.1) = 11.5, and f (0.4) = −5.9, find an equation for the function.

56. Graph the function f on a domain of [−10, 10] : f (x) = 0.02x − 0.01. Enter the function in a graphing utility. 
For the viewing window, set the minimum value of x to be −10 and the maximum value of x to be 10.

57. Graph the function f on a domain of [−10, 10] : f (x) = 2,500x + 4,000

58. Table 3 shows the input, w, and output, k, for a 
linear function k. a. Fill in the missing values of 
the table. b. Write the linear function k, round to 3 
decimal places. 

w −10 5.5 67.5 b

k 30 −26 a −44

Table 3 

59. Table 4 shows the input, p, and output, q, for a linear 
function q. a. Fill in the missing values of the table.  
b. Write the linear function k.

p 0.5 0.8 12 b

q 400 700 a 1,000,000

Table 4 

60. Graph the linear function f on a domain of [−10, 10] for the function whose slope is   1 __ 8   and y-intercept is   31 __ 16  . 
Label the points for the input values of −10 and 10.

61. Graph the linear function f on a domain of [−0.1, 0.1] for the function whose slope is 75 and y-intercept is 
−22.5. Label the points for the input values of −0.1 and 0.1.

62. Graph the linear function f where f (x) = ax + b on the same set of axes on a domain of [−4, 4] for the 
following values of a and b.
a. a = 2; b = 3  b. a = 2; b = 4  c. a = 2; b = −4  d.  a = 2; b = −5

exTenSIOnS

63. Find the value of x if a linear function goes through  
the following points and has the following slope:  
(x, 2), (−4, 6), m = 3

64. Find the value of y if a linear function goes through  
the following points and has the following slope:  
(10, y), (25, 100), m = −5

65. Find the equation of the line that passes through the 
following points: (a, b) and (a, b + 1)

66. Find the equation of the line that passes through the 
following points: (2a, b) and (a, b + 1)

67. Find the equation of the line that passes through the 
following points: (a, 0) and (c, d)
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ReAl-WORlD APPlICATIOnS
68. At noon, a barista notices that she has $20 in her 

tip jar. If she makes an average of $0.50 from each 
customer, how much will she have in her tip jar if 
she serves n more customers during her shift?

69. A gym membership with two personal training 
sessions costs $125, while gym membership with  
five personal training sessions costs $260. What is  
cost per session?

70. A clothing business finds there is a linear 
relationship between the number of shirts, n, it  
can sell and the price, p, it can charge per shirt.  
In particular, historical data shows that 1,000 shirts 
can be sold at a price of $30, while 3,000 shirts can 
be sold at a price of $22. Find a linear equation in 
the form p(n) = mn + b that gives the price p they 
can charge for n shirts.

71. A phone company charges for service according 
to the formula: C(n) = 24 + 0.1n, where n is the 
number of minutes talked, and C(n) is the monthly 
charge, in dollars. Find and interpret the rate of 
change and initial value.

72. A farmer finds there is a linear relationship between 
the number of bean stalks, n, she plants and the 
yield, y, each plant produces. When she plants 30 
stalks, each plant yields 30 oz of beans. When she 
plants 34 stalks, each plant produces 28 oz of beans. 
Find a linear relationship in the form y = mn + b  
that gives the yield when n stalks are planted.

73. A city’s population in the year 1960 was 287,500.  
In 1989 the population was 275,900. Compute 
the rate of growth of the population and make a 
statement about the population rate of change in 
people per year.

74. A town’s population has been growing linearly.  
In 2003, the population was 45,000, and the 
population has been growing by 1,700 people  
each year. Write an equation, P(t), for the 
population t years after 2003.

75. Suppose that average annual income (in dollars) for 
the years 1990 through 1999 is given by the linear 
function: I(x) = 1,054x + 23,286, where x is the 
number of years after 1990. Which of the following 
interprets the slope in the context of the problem?
a. As of 1990, average annual income was $23,286.
b. In the ten-year period from 1990–1999, average 

annual income increased by a total of $1,054.
c. Each year in the decade of the 1990s, average 

annual income increased by $1,054.
d. Average annual income rose to a level of $23,286 

by the end of 1999.

76. When temperature is 0 degrees Celsius, the 
Fahrenheit temperature is 32. When the Celsius 
temperature is 100, the corresponding Fahrenheit 
temperature is 212. Express the Fahrenheit 
temperature as a linear function of C, the Celsius 
temperature, F (C).
a. Find the rate of change of Fahrenheit temperature 

for each unit change temperature of Celsius.
b. Find and interpret F (28).
c. Find and interpret F (−40).
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2.2 GRAPHS OF lIneAR FUnCTIOnS

Two competing telephone companies offer different payment plans. The two plans charge the same rate per long 
distance minute, but charge a different monthly flat fee. A consumer wants to determine whether the two plans will 
ever cost the same amount for a given number of long distance minutes used. The total cost of each payment plan can 
be represented by a linear function. To solve the problem, we will need to compare the functions. In this section, we 
will consider methods of comparing functions using graphs.

Graphing linear Functions
In Linear Functions, we saw that the graph of a linear function is a straight line. We were also able to see the points  
of the function as well as the initial value from a graph. By graphing two functions, then, we can more easily compare  
their characteristics.

There are three basic methods of graphing linear functions. The first is by plotting points and then drawing a line 
through the points. The second is by using the y-intercept and slope. And the third is by using transformations of the 
identity function f (x) = x.

Graphing a Function by Plotting Points

To find points of a function, we can choose input values, evaluate the function at these input values, and calculate 
output values. The input values and corresponding output values form coordinate pairs. We then plot the coordinate 
pairs on a grid. In general, we should evaluate the function at a minimum of two inputs in order to find at least two 
points on the graph. For example, given the function, f (x) = 2x, we might use the input values 1 and 2. Evaluating 
the function for an input value of 1 yields an output value of 2, which is represented by the point (1, 2). Evaluating the 
function for an input value of 2 yields an output value of 4, which is represented by the point (2, 4). Choosing three 
points is often advisable because if all three points do not fall on the same line, we know we made an error.

How To…
Given a linear function, graph by plotting points.

1. Choose a minimum of two input values.
2. Evaluate the function at each input value.
3. Use the resulting output values to identify coordinate pairs.
4. Plot the coordinate pairs on a grid.
5. Draw a line through the points.

Example 1 Graphing by Plotting Points

Graph f (x) = −  2 __ 3  x + 5 by plotting points.

Solution Begin by choosing input values. This function includes a fraction with a denominator of 3, so let’s choose 
multiples of 3 as input values. We will choose 0, 3, and 6.

leARnInG OBjeCTIVeS

In this section, you will:

•	  Graph linear functions.

•	  Write the equation for a linear function from the graph of a line.

•	  Given the equations of two lines, determine whether their graphs are parallel or perpendicular.

•	  Write the equation of a line parallel or perpendicular to a given line.

•	  Solve a system of linear equations.
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Evaluate the function at each input value, and use the output value to identify coordinate pairs.

 x = 0 f (0) = −  2 __ 3  (0) + 5 = 5 (0, 5)

 x = 3 f (3) = −  2 __ 3  (3) + 5 = 3 (3, 3)

 x = 6 f (6) = −  2 __ 3  (6) + 5 = 1 (6, 1)

Plot the coordinate pairs and draw a line through the points. Figure 1 represents the graph of the function  
f (x) = −  2 __ 3  x + 5.

f

(6, 1)

(3, 3)

(0, 5)

f(x)

x
–1

1

5

6

3

2

–
7321 654

4

Figure 1 The graph of the linear function f (x) = −  2 __ 
3
  x + 5.

Analysis The graph of the function is a line as expected for a linear function. In addition, the graph has a downward slant, 
which indicates a negative slope. This is also expected from the negative constant rate of change in the equation for the function.

Try It #1

Graph f (x) = −  3 __ 4  x + 6 by plotting points.

Graphing a Function Using y-intercept and Slope

Another way to graph linear functions is by using specific characteristics of the function rather than plotting points. 
The first characteristic is its y-intercept, which is the point at which the input value is zero. To find the y-intercept, we 
can set x = 0 in the equation.

The other characteristic of the linear function is its slope m, which is a measure of its steepness. Recall that the slope is 
the rate of change of the function. The slope of a function is equal to the ratio of the change in outputs to the change in 
inputs. Another way to think about the slope is by dividing the vertical difference, or rise, by the horizontal difference, 
or run. We encountered both the y-intercept and the slope in Linear Functions.

Let’s consider the following function.
f (x) =   1 __ 2  x + 1

The slope is   1 __ 2  . Because the slope is positive, we know the graph will slant upward from left to right. The y-intercept is 
the point on the graph when x = 0. The graph crosses the y-axis at (0, 1). Now we know the slope and the y-intercept. 
We can begin graphing by plotting the point (0, 1). We know that the slope is rise over run, m =   rise ___ run  . 

From our example, we have m =   1 __ 2  , which means that the rise is 1 and the run is 2. So starting from our y-intercept 
(0, 1), we can rise 1 and then run 2, or run 2 and then rise 1. We repeat until we have a few points, and then we draw a  
line through the points as shown in Figure 2.

f

(0, 1)

y-intercept

↑Run = 2
←Rise = 1

y

x
–1–2

5

3

2

7321 654

4

Figure 2
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graphical interpretation of a linear function 
In the equation f (x) = mx + b

• b is the y-intercept of the graph and indicates the point (0, b) at which the graph crosses the y-axis.

• m is the slope of the line and indicates the vertical displacement (rise) and horizontal displacement (run)
between each successive pair of points. Recall the formula for the slope:

m = 
change in output (rise)

  __  
change in input (run)

   = 
Δy

 _ 
Δx

   =   
y2 − y1 _ x2 − x1

  

Q & A…
Do all linear functions have y-intercepts?

Yes. All linear functions cross the y-axis and therefore have y-intercepts. (Note: A vertical line parallel to the y-axis 
does not have a y-intercept, but it is not a function.)

How To…
Given the equation for a linear function, graph the function using the y-intercept and slope.

1. Evaluate the function at an input value of zero to find the y-intercept.
2. Identify the slope as the rate of change of the input value.
3. Plot the point represented by the y-intercept.

4. Use   rise ___ run   to determine at least two more points on the line.

5. Sketch the line that passes through the points.

Example 2 Graphing by Using the y-intercept and Slope

Graph f (x) = −  2 __ 3  x + 5 using the y-intercept and slope.

Solution Evaluate the function at x = 0 to find the y-intercept. The output value when x = 0 is 5, so the graph will 
cross the y-axis at (0, 5).

According to the equation for the function, the slope of the line is −  2 __ 3  . This tells us that for each vertical decrease in
the “rise” of −2 units, the “run” increases by 3 units in the horizontal direction. We can now graph the function by 
first plotting the y-intercept on the graph in Figure 3. From the initial value (0, 5) we move down 2 units and to the 
right 3 units. We can extend the line to the left and right by repeating, and then draw a line through the points.

f(x)

f

x
–1

1

5

6

3

2

–
7321 654

4

Figure 3

Analysi s The graph slants downward from left to right, which means it has a negative slope as expected.

Try It #2

Find a point on the graph we drew in Example 2 that has a negative x-value.
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Graphing a Function Using Transformations

Another option for graphing is to use transformations of the identity function f (x) = x. A function may be transformed 
by a shift up, down, left, or right. A function may also be transformed using a reflection, stretch, or compression.

Vertical Stretch or Compression

In the equation f (x) = mx, the m is acting as the vertical stretch or compression of the identity function. When m is 
negative, there is also a vertical reflection of the graph. Notice in Figure 4 that multiplying the equation of f (x) = x 
by m stretches the graph of f by a factor of m units if m > 1 and compresses the graph of f by a factor of m units if  
0 < m < 1. This means the larger the absolute value of m, the steeper the slope.

–1–2

–2
–1

1

2

x

y

–3

–3

–4

–4

–5
–6

–5–6

1

3

3

2 4

4

5 6

5
6

Figure 4 Vertical stretches and compressions and reflections on the function f ( x ) = x.

Vertical Shift

In f (x) = mx + b, the b acts as the vertical shift, moving the graph up and down without affecting the slope of the line. 
Notice in Figure 5 that adding a value of b to the equation of f (x) = x shifts the graph of f a total of b units up if b is 
positive and ∣b∣ units down if b is negative.

4

x

y

–2–4–6–8–10 –2
–4
–6
–8

–10

2

6

6

42 8

8

10

10

f(x) = x + 4
f(x) = x + 2

f(x) = x – 2
f(x) = x – 4

f(x) = x

Figure 5 This graph illustrates vertical shifts of the function f ( x ) = x.

Using vertical stretches or compressions along with vertical shifts is another way to look at identifying different types 
of linear functions. Although this may not be the easiest way to graph this type of function, it is still important to 
practice each method.

How To…
Given the equation of a linear function, use transformations to graph the linear function in the form f (x) = mx + b.

1. Graph f (x) = x.
2. Vertically stretch or compress the graph by a factor m.
3. Shift the graph up or down b units.
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Example 3 Graphing by Using Transformations

Graph f (x) =   1 __ 2  x − 3 using transformations.

Solution The equation for the function shows that m =   1 __ 2   so the identity function is vertically compressed by   1 __ 2  . The 
equation for the function also shows that b = −3 so the identity function is vertically shifted down 3 units. First, graph 
the identity function, and show the vertical compression as in Figure 6. 

Then show the vertical shift as in Figure 7.
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Figure 6 The    function, y = x
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compressed by a factor of   2  . 

y =    x − 31
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y =    x1

2

Figure 7 The function y =   __1
2

  x, shifted down 3 units.

Try It #3
Graph f (x) = 4 + 2x, using t  ransformations.
Q & A…
In Example 3, could we have sketched the graph by reversing the order of the transformations?
No. The order of the transformations follows the order of operations. When the function is evaluated at a given input, 
the corresponding output is calculated by following the order of operations. This is why we performed the compression 
first. For example, following the order: Let the input be 2.

f (2) =   1 __ 2  (2) − 3

= 1 − 3
= −2

Writing the equation for a Function from the Graph of a line
Recall that in Linear Functions, we wrote the equation for a linear function from a graph. Now we can extend what 
we know about graphing linear functions to analyze graphs a little more closely. Begin by taking a look at Figure 8. 
We can see right away that the graph crosses the y-axis at the point (0, 4) so this is the y-intercept.
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Figure 8

Then we can calculate the slope by finding the rise and run. We can choose any two points, but let’s look at the point 
(−2, 0). To get from this point to the y-intercept, we must move up 4 units (rise) and to the right 2 units (run). So the 
slope must be

m =   rise ___ run   =   4 __ 2   = 2

Substituting the slope and y-intercept into the slope-intercept form of a line gives

y = 2x + 4

1

y
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How To…
Given a graph of linear function, find the equation to describe the function.

1. Identify the y-intercept of an equation.
2. Choose two points to determine the slope.
3. Substitute the y-intercept and slope into the slope-intercept form of a line.

Example 4 Matching Linear Functions to Their Graphs

Match each equation of the linear functions with one of the lines in Figure 9.

a. f (x) = 2x + 3 b. g(x) = 2x − 3 c. h(x) = −2x + 3 d. j(x) =   1 __ 2  x + 3

I II III

IV
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Figure 9

Solution Analyze the information for each function.

a.  This function has a slope of 2 and a y-intercept of 3. It must pass through the point (0, 3) and slant upward
from left to right. We can use two points to find the slope, or we can compare it with the other functions listed.
Function g has the same slope, but a different y-intercept. Lines I and III have the same slant because they have
the same slope. Line III does not pass through (0, 3) so f must be represented by line I.

b.  This function also has a slope of 2, but a y-intercept of −3. It must pass through the point (0, −3) and slant
upward from left to right. It must be represented by line III.

c.  This function has a slope of −2 and a y-intercept of 3. This is the only function listed with a negative slope, so
it must be represented by line IV because it slants downward from left to right.

d.  This function has a slope of   1 __ 2   and a y-intercept of 3. It must pass through the point (0, 3) and slant upward

from left to right. Lines I and II pass through (0, 3), but the slope of j is less than the slope of f so the line for j 
must be flatter. This function is represented by Line II.

Now we can re-label the lines as in Figure 10.  

h(x) = −2x + 3f (x) = 2x + 3

g(x) = 2x − 3

j(x) =   x + 31
2
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Figure 10

Finding the x-intercept of a Line

So far, we have been finding the y-intercepts of a function: the point at which the graph of the function crosses the 
y-axis. A function may also have an x-intercept, which is the x-coordinate of the point where the graph of the function
crosses the x-axis. In other words, it is the input value when the output value is zero.

To find the x-intercept, set a function f (x) equal to zero and solve for the value of x. For example, consider the function 
shown.

f (x) = 3x − 6

Set the function equal to 0 and solve for x.
0 = 3x − 6
6 = 3x
2 = x
x = 2

The graph of the function crosses the x-axis at the point (2, 0).

Q & A…
Do all linear functions have x-intercepts?

No. However, linear functions of the form y = c, where c is a nonzero real number are the only examples of linear 
functions with no x-intercept. For example, y = 5 is a horizontal line 5 units above the x-axis. This function has no 
x-intercepts, as shown in Figure 11.
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x-intercept
The x-intercept of the function is value of x when f (x) = 0. It can be solved by the equation 0 = mx + b.

Example 5 Finding an x-intercept

Find the x-intercept of f (x) =   1 __ 2  x − 3.

Solution Set the function equal to zero to solve for x.

0 =   1 __ 2  x − 3

3 =   1 __ 2  x

6 = x

x = 6
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The graph crosses the x-axis at the point (6, 0).

Analysi s A graph of the function is shown in Figure 12. We can see that the x-intercept is (6, 0) as we expected.
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Figure 12 The graph of the linear function f (x) =   1 __ 
2
  x − 3.

Try It #4

Find the x-intercept of f (x) =   1 __ 4  x − 4.

Describing Horizontal and Vertical Lines

There are two special cases of lines on a graph—horizontal and vertical lines. A horizontal line indicates a constant 
output, or y-value. In Figure 13, we see that the output has a value of 2 for every input value. The change in outputs 
between any two points, therefore, is 0. In the slope formula, the numerator is 0, so the slope is 0. If we use m = 0 in 
the equation f (x) = mx + b, the equation simplifies to f (x) = b. In other words, the value of the function is a constant. 
This graph represents the function f (x) = 2.

x −4 −2 0 2 4
y 2 2 2 2 2
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Figure 13 A horizontal line representing the function f (x) = 2.

A vertical line indicates a constant input, or x-value. We can see that the input value for every point on the line is 2, 
but the output value varies. Because this input value is mapped to more than one output value, a vertical line does not 
represent a function. Notice that between any two points, the change in the input values is zero. In the slope formula, 
the denominator will be zero, so the slope of a vertical line is undefined.

 m =   
change of output

  __  
change of input

    ← Non-zero real number         ← 0  

Notice that a vertical line, such as the one in Figure 14, has an x-intercept, but no y-intercept unless it’s the line x = 0. 
This graph represents the line x = 2.
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Figure 14 The vertical line, x = 2, which does not represent a function.

horizontal and vertical lines 
Lines can be horizontal or vertical.

A horizontal line is a line defined by an equation in the form f (x) = b.

A vertical line is a line defined by an equation in the form x = a.

Example 6 Writing the Equation of a Horizontal Line

Write the equation of the line graphed in Figure 15.
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Figure 15

Solution For any x-value, the y-value is −4, so the equation is y = −4.

Example 7 Writing the Equation of a Vertical Line

Write the equation of the line graphed in Figure 16.
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Solution The constant x-value is 7, so the equation is x = 7.

Determining Whether lines are Parallel or Perpendicular
The two lines in Figure 17 are parallel lines: they will never intersect. Notice that they have exactly the same steepness, 
which means their slopes are identical. The only difference between the two lines is the y-intercept. If we shifted one 
line vertically toward the y-intercept of the other, they would become the same line.
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Figure 17 Parallel lines

We can determine from their equations whether two lines are parallel by comparing their slopes. If the slopes are 
the same and the y-intercepts are different, the lines are parallel. If the slopes are different, the lines are not parallel.

 f (x) = −2x + 6 } f (x) = 3x + 2  } f (x) = −2x − 4 
parallel

  f (x) = 2x + 2 
not parallel

Unlike parallel lines, perpendicular lines do intersect. Their intersection forms a right, or 90-degree, angle. The two 
lines in Figure 18 are perpendicular.
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Figure 18 Perpendicular lines

Perpendicular lines do not have the same slope. The slopes of perpendicular lines are different from one another in a 
specific way. The slope of one line is the negative reciprocal of the slope of the other line. The product of a number and 
its reciprocal is 1. So, if m1 and m2 are negative reciprocals of one another, they can be multiplied together to yield −1.

m1m2 = −1

To find the reciprocal of a number, divide 1 by the number. So the reciprocal of 8 is   1 __ 8  , and the reciprocal of   1 __ 8   is 8. To 
find the negative reciprocal, first find the reciprocal and then change the sign.

As with parallel lines, we can determine whether two lines are perpendicular by comparing their slopes, assuming 
that the lines are neither horizontal nor perpendicular. The slope of each line below is the negative reciprocal of the 
other so the lines are perpendicular.

 f (x) =   1 __ 4  x + 2     negative reciprocal of   1 __ 4   is −4

 f (x) = −4x + 3   negative reciprocal of −4 is   1 __ 4  

The product of the slopes is −1.
−4     1 __ 4     = −1

parallel and perpendicular lines 
Two lines are parallel lines if they do not intersect. The slopes of the lines are the same.

f (x) = m1x + b1 and g(x) = m2x + b2 are parallel if m1 = m2.
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If and only if b1 = b2 and m1 = m2, we say the lines coincide. Coincident lines are the same line.

Two lines are perpendicular lines if they intersect at right angles.

f (x) = m1x + b1 and g(x) = m2x + b2 are perpendicular if m1m2 = −1, and so m2 = −   1 _ m1
  

Example 8 Identifying Parallel and Perpendicular Lines

Given the functions below, identify the functions whose graphs are a pair of parallel lines and a pair of perpendicular 
lines.
 f (x) = 2x + 3 h(x) = −2x + 2

 g(x) =   1 __ 2  x − 4 j(x) = 2x − 6

Solution Parallel lines have the same slope. Because the functions f (x) = 2x + 3 and j(x) = 2x − 6 each have a slope 
of 2, they represent parallel lines. Perpendicular lines have negative reciprocal slopes. Because −2 and   1 __ 2   are negative 
reciprocals, the equations, g(x) =   1 __ 2  x − 4 and h(x) = −2x + 2 represent perpendicular lines.

Analysi s A graph of the lines is shown in Figure 19.

4

x

y

–2–4–6–8–10 –2
–4
–6
–8

–10

2

6

6

42 8

8

10

10

h(x) =  −2x + 2 f (x) = 2x + 3

j(x) = 2x − 6

g(x) =    x − 41
2

Figure 19

The graph shows that the lines f (x) = 2x + 3 and j(x) = 2x − 6 are parallel, and the lines g(x) =   1 __ 2  x − 4 and 
h(x) = −2x + 2 are perpendicular.

Writing the equation of a line Parallel or Perpendicular to a Given line
If we know the equation of a line, we can use what we know about slope to write the equation of a line that is either 
parallel or perpendicular to the given line.

Writing Equations of Parallel Lines

Suppose for example, we are given the following equation.

 f (x) = 3x + 1

We know that the slope of the line formed by the function is 3. We also know that the y-intercept is (0, 1). Any other 
line with a slope of 3 will be parallel to f (x). So the lines formed by all of the following functions will be parallel to f (x).

 g(x) = 3x + 6

 h(x) = 3x + 1

 p(x) = 3x +   2 __ 3  

Suppose then we want to write the equation of a line that is parallel to f and passes through the point (1, 7). We already 
know that the slope is 3. We just need to determine which value for b will give the correct line. We can begin with the 
point-slope form of an equation for a line, and then rewrite it in the slope-intercept form.
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 y − y1 = m(x − x1)
 y − 7 = 3(x − 1)
 y − 7 = 3x − 3
 y = 3x + 4
So g(x) = 3x + 4 is parallel to f (x) = 3x + 1 and passes through the point (1, 7).

How To…
Given the equation of a function and a point through which its graph passes, write the equation of a line parallel to 
the given line that passes through the given point.

1. Find the slope of the function.
2.  Substitute the given values into either the general point-slope equation or the slope-intercept equation for a line.
3. Simplify.

Example 9 Finding a Line Parallel to a Given Line

Find a line parallel to the graph of f (x) = 3x + 6 that passes through the point (3, 0).

Solution The slope of the given line is 3. If we choose the slope-intercept form, we can substitute m = 3, x = 3, and 
f (x) = 0 into the slope-intercept form to find the y-intercept.

 g(x) = 3x + b

 0 = 3(3) + b

 b = −9

The line parallel to f (x) that passes through (3, 0) is g(x) = 3x − 9.

Analysi s We can confirm that the two lines are parallel by graphing them. 
Figure 20 shows that the two lines will never intersect.
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Writing Equations of Perpendicular Lines

We can use a very similar process to write the equation for a line perpendicular to a given line. Instead of using the 
same slope, however, we use the negative reciprocal of the given slope. Suppose we are given the following function:

 f (x) = 2x + 4

The slope of the line is 2, and its negative reciprocal is −  1 __ 2  . Any function with a slope of −  1 __ 2   will be perpendicular to 
f (x). So the lines formed by all of the following functions will be perpendicular to f (x).

g(x) = −  1 __ 2  x + 4  h(x) = −  1 __ 2  x + 2  p(x) = −  1 __ 2  x −   1 __ 2  

As before, we can narrow down our choices for a particular perpendicular line if we know that it passes through a 
given point. Suppose then we want to write the equation of a line that is perpendicular to f (x) and passes through the 
point (4, 0). We already know that the slope is −  1 __ 2  . Now we can use the point to find the y-intercept by substituting 
the given values into the slope-intercept form of a line and solving for b.
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 g (x) = mx + b

 0 = −  1 __ 2  (4) + b

 0 = −2 + b

 2 = b

 b = 2
The equation for the function with a slope of −  1 __ 2   and a y-intercept of 2 is

 g(x) = −  1 __ 2  x + 2.

So g(x) = −  1 __ 2   x + 2 is perpendicular to f (x) = 2x + 4 and passes through the point (4, 0). Be aware that perpendicular 
lines may not look obviously perpendicular on a graphing calculator unless we use the square zoom feature.

Q & A…
A horizontal line has a slope of zero and a vertical line has an undefined slope. These two lines are perpendicular, 
but the product of their slopes is not −1. Doesn’t this fact contradict the definition of perpendicular lines?
No. For two perpendicular linear functions, the product of their slopes is −1. However, a vertical line is not a function 
so the definition is not contradicted.

How To…
Given the equation of a function and a point through which its graph passes, write the equation of a line perpendicular 
to the given line.

1. Find the slope of the function.
2. Determine the negative reciprocal of the slope.
3. Substitute the new slope and the values for x and y from the coordinate pair provided into g(x) = mx + b.
4. Solve for b.
5. Write the equation for the line.

Example 10 Finding the Equation of a Perpendicular Line

Find the equation of a line perpendicular to f (x) = 3x + 3 that passes through the point (3, 0).

Solution The original line has slope m = 3, so the slope of the perpendicular line will be its negative reciprocal, or 
−  1 __ 3  . Using this slope and the given point, we can find the equation for the line.

 g(x) = −  1 __ 3  x + b

 0 = −  1 __ 3  (3) + b

 1 = b
 b = 1

The line perpendicular to f (x) that passes through (3, 0) is g(x) = −  1 __ 3  x + 1.

Analysi s A graph of the two lines is shown in Figure 21.    

Figure 21 
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Try It #5

Given the function h(x) = 2x − 4, write an equation for the line passing through (0, 0) that is
a. parallel to h(x)  b. perpendicular to h(x)

How To…
Given two points on a line and a third point, write the equation of the perpendicular line that passes through the point.

1. Determine the slope of the line passing through the points.
2. Find the negative reciprocal of the slope.
3. Use the slope-intercept form or point-slope form to write the equation by substituting the known values.
4. Simplify.

Example 11  Finding the Equation of a Line Perpendicular to a Given Line Passing through a Point

A line passes through the points (−2, 6) and (4, 5). Find the equation of a perpendicular line that passes through the 
point (4, 5).

Solution From the two points of the given line, we can calculate the slope of that line.

 m1 =   5 − 6 _______ 4 − (−2)  

 =   −1 ___ 6  

 = −  1 __ 6  

Find the negative reciprocal of the slope.

 m2 =   −1 _ 
−  1 __ 6  

  

 = −1   −  6 __ 1    

 = 6

We can then solve for the y-intercept of the line passing through the point (4, 5).

 g (x) = 6x + b

 5 = 6(4) + b

 5 = 24 + b

 −19 = b

 b = −19

The equation for the line that is perpendicular to the line passing through the two given points and also passes through 
point (4, 5) is
 y = 6x − 19

Try It #6

A line passes through the points, (−2, −15) and (2,−3). Find the equation of a perpendicular line that passes 
through the point, (6, 4).
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Solving a System of linear equations Using a Graph
A system of linear equations includes two or more linear equations. The graphs of two lines will intersect at a single 
point if they are not parallel. Two parallel lines can also intersect if they are coincident, which means they are the same 
line and they intersect at every point. For two lines that are not parallel, the single point of intersection will satisfy 
both equations and therefore represent the solution to the system.

To find this point when the equations are given as functions, we can solve for an input value so that f (x) = g(x). In other 
words, we can set the formulas for the lines equal to one another, and solve for the input that satisfies the equation.

Example 12 Finding a Point of Intersection Algebraically

Find the point of intersection of the lines h(t) = 3t − 4 and j(t) = 5 − t.

Solution Set h(t) = j(t).
 3t − 4 = 5 − t

 4t = 9

 t =   9 __ 4  

This tells us the lines intersect when the input is   9 __ 4  .

We can then find the output value of the intersection point by evaluating either function at this input.

 j     9 __ 4     = 5 −   9 __ 4  

 =   11 __ 4  

These lines intersect at the point     9 __ 4  ,   11 __ 4    .

Analysi s Looking at Figure 22, this result seems reasonable.   

j(t)

h(t)

9
4

11
4,

2

x

y

–1–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

Figure 22 

Q & A…
If we were asked to find the point of intersection of two distinct parallel lines, should something in the solution 
process alert us to the fact that there are no solutions?

Yes. After setting the two equations equal to one another, the result would be the contradiction “0 = non-zero real 
number.”
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Try It #7

Look at the graph in Figure 22 and identify the following for the function j(t):
a. y-intercept  b. x-intercept(s)  c. slope
d.  Is j(t) parallel or perpendicular to h(t) (or neither)?
e.  Is j(t) an increasing or decreasing function (or neither)?
f.  Write a transformation description for j(t) from the identity toolkit function f (x) = x.

Example 13 Finding a Break-Even Point

A company sells sports helmets. The company incurs a one-time fixed cost for $250,000. Each helmet costs $120 to 
produce, and sells for $140.

a. Find the cost function, C, to produce x helmets, in dollars.
b. Find the revenue function, R, from the sales of x helmets, in dollars.
c. Find the break-even point, the point of intersection of the two graphs C and R.

Solution

a.  The cost function in the sum of the fixed cost, $250,000, and the variable cost, $120 per helmet.

C(x) = 120x + 250,000
b.  The revenue function is the total revenue from the sale of x helmets, R(x) = 140x.
c.  The break-even point is the point of intersection of the graph of the cost and revenue functions. To find the 

x-coordinate of the coordinate pair of the point of intersection, set the two equations equal, and solve for x.

 C(x) = R(x)
 250,000 + 120x = 140x
 250,000 = 20x
 12,500 = x
 x = 12,500

To find y, evaluate either the revenue or the cost function at 12,500.
 R(x) = 140(12,500)
 = $1,750,000

The break-even point is (12,500, 1,750,000).

Analysi s This means if the company sells 12,500 helmets, they break even; both the sales and cost incurred equaled 1.75 
million dollars. See Figure 23.

y

x0
0

1,000,000

20,000

2,000,000
Cost < Sales

Company loses money

C R

Sales > Cost
Company makes a pro�t

(12,500, 1,750,000)

Figure 23 

Access these online resources for additional instruction and practice with graphs of linear functions.

•	 Finding Input of Function from the Output and Graph (http://openstaxcollege.org/l/findinginput)

•	 Graphing Functions Using Tables (http://openstaxcollege.org/l/graphwithtable)

http://openstaxcollege.org/l/findinginput
http://openstaxcollege.org/l/graphwithtable
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2.2 SeCTIOn exeRCISeS

VeRBAl

1. If the graphs of two linear functions are parallel, 
describe the relationship between the slopes and the 
y-intercepts.

2. If the graphs of two linear functions are 
perpendicular, describe the relationship between the 
slopes and the y-intercepts.

3. If a horizontal line has the equation f (x) = a and a 
vertical line has the equation x = a, what is the point 
of intersection? Explain why what you found is the 
point of intersection.

4. Explain how to find a line parallel to a linear 
function that passes through a given point.

5. Explain how to find a line perpendicular to a linear 
function that passes through a given point.

AlGeBRAIC

For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular,  
or neither parallel nor perpendicular:

6. 4x − 7y = 10
 7x + 4y = 1

7. 3y + x = 12
 −y = 8x + 1

8. 3y + 4x = 12
 −6y = 8x + 1

9. 6x − 9y = 10

 3x + 2y = 1

10. y =   2 __ 3  x + 1

 3x + 2y = 1

11. y =   3 __ 4  x + 1

 −3x + 4y = 1

For the following exercises, find the x- and y-intercepts of each equation

12. f (x) = −x + 2 13. g(x) = 2x + 4 14. h(x) = 3x − 5

15. k(x) = −5x + 1 16.  −2x + 5y = 20 17. 7x + 2y = 56

For the following exercises, use the descriptions of each pair of lines given below to find the slopes of Line 1 and Line 
2. Is each pair of lines parallel, perpendicular, or neither?

18. Line 1: Passes through (0, 6) and (3, −24)
 Line 2: Passes through (−1, 19) and (8, −71)

19. Line 1: Passes through (−8, −55) and (10, 89)
 Line 2: Passes through (9, −44) and (4, −14)

20. Line 1: Passes through (2, 3) and (4, −1)
 Line 2: Passes through (6, 3) and (8, 5)

21. Line 1: Passes through (1, 7) and (5, 5)
 Line 2: Passes through (−1, −3) and (1, 1)

22. Line 1: Passes through (0, 5) and (3, 3)
 Line 2: Passes through (1, −5) and (3, −2)

23. Line 1: Passes through (2, 5) and (5, −1)
 Line 2: Passes through (−3, 7) and (3, −5)

24.  Write an equation for a line parallel to f (x) = −5x − 3 
and passing through the point (2, −12).

25. Write an equation for a line parallel to  
g(x) = 3x − 1 and passing through the point (4, 9).

26. Write an equation for a line perpendicular to 
h(t) =  −2t + 4 and passing through the point 
(−4, −1).

27. Write an equation for a line perpendicular to  
p(t) = 3t + 4 and passing through the point (3, 1).
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28. Find the point at which the line f (x) = −2x − 1 
intersects the line g(x) = −x.

29. Find the point at which the line f (x) = 2x + 5 
intersects the line g(x) = −3x − 5.

30. Use algebra to find the point at which the line 

f (x) = −  4 __ 5  x +   274 ___ 25   intersects h(x) =   9 __ 4  x +   73 __ 10  .

31. Use algebra to find the point at which the line  

f (x) =   7 __ 4  x +   457 ___ 60   intersects g(x) =   4 __ 3  x +   31 __ 5  .

GRAPHICAl

For the following exercises, match the given linear 
equation with its graph in Figure 24.
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Figure 24  

32. f (x) = −x − 1

33. f (x) = −2x − 1

34. f (x) = −  1 __ 2  x − 1

35. f (x) = 2

36. f (x) = 2 + x

37. f (x) = 3x + 2

For the following exercises, sketch a line with the given features.

38. An x-intercept of (−4, 0) and y-intercept of (0, −2) 39. An x-intercept of (−2, 0) and y-intercept of (0, 4)

40. A y-intercept of (0, 7) and slope −  3 __ 2   41. A y-intercept of (0, 3) and slope   2 __ 5   

42. Passing through the points (−6, −2) and (6, −6) 43. Passing through the points (−3, −4) and (3, 0)

For the following exercises, sketch the graph of each equation.

44. f (x) = −2x − 1 45. g(x) = −3x + 2 46.  h(x) =   1 __ 3  x + 2

47. k(x) =   2 __ 3  x − 3 48. f (t) = 3 + 2t 49. p(t) = −2 + 3t

50. x = 3 51. x = −2 52. r(x) = 4

53. q(x) = 3 54. 4x = −9y + 36 55.   x __ 3   −   y _ 4   = 1

56. 3x − 5y = 15 57. 3x = 15 58. 3y = 12

59. If g(x) is the transformation of f (x) = x after a  
vertical compression by   3 __ 4  , a shift right by 2, and  
a shift down by 4
a. Write an equation for g(x).
b. What is the slope of this line?
c. Find the y-intercept of this line.

60. If g(x) is the transformation of f (x) = x after a  
vertical compression by   1 __ 3  , a shift left by 1, and a 
shift up by 3
a. Write an equation for g(x).
b. What is the slope of this line?
c. Find the y-intercept of this line.
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For the following exercises, write the equation of the line shown in the graph.
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For the following exercises, find the point of intersection of each pair of lines if it exists. If it does not exist, indicate 
that there is no point of  intersection.

65.      y =   3 __ 4  x + 1

 −3x + 4y = 12

66. 2x − 3y = 12

    5y + x = 30

67.        2x = y − 3

 y + 4x = 15

68. x − 2y + 2 = 3
           x − y = 3

69. 5x + 3y = − 65
      x − y = − 5

exTenSIOnS
70. Find the equation of the line parallel to the line 

g(x) = −0.01x + 2.01 through the point (1, 2).
71. Find the equation of the line perpendicular to the 

line g(x) = −0.01x + 2.01 through the point (1, 2).

For the following exercises, use the functions f (x) = −0.1x + 200 and g(x) = 20x + 0.1.
72. Find the point of intersection of the lines f and g. 73. Where is f (x) greater than g(x)? Where is g(x) 

greater than f (x)?

ReAl-WORlD APPlICATIOnS
74. A car rental company offers two plans for renting a 

car.
 Plan A: $30 per day and $0.18 per mile
 Plan B: $50 per day with free unlimited mileage
How many miles would you need to drive for plan B 
to save you money?

75. A cell phone company offers two plans for minutes.
  Plan A: $20 per month and $1 for every one 

hundred texts.
 Plan B: $50 per month with free unlimited texts.
How many texts would you need to send per month 
for plan B to save you money?

76. A cell phone company offers two plans for minutes.
   Plan A: $15 per month and $2 for every 300 texts.
   Plan B: $25 per month and $0.50 for every 100 texts.
How many texts would you need to send per month 
for plan B to save you money?
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2.3 MODelInG WITH lIneAR FUnCTIOnS

Figure 1 (credit: eeK Photography/Flickr)

Emily is a college student who plans to spend a summer in Seattle. She has saved $3,500 for her trip and anticipates 
spending $400 each week on rent, food, and activities. How can we write a linear model to represent her situation? 
What would be the x-intercept, and what can she learn from it? To answer these and related questions, we can create a  
model using a linear function. Models such as this one can be extremely useful for analyzing relationships and making 
predictions based on those relationships. In this section, we will explore examples of linear function models.

Identifying Steps to Model and Solve Problems
When modeling scenarios with linear functions and solving problems involving quantities with a constant rate of 
change, we typically follow the same problem strategies that we would use for any type of function. Let’s briefly review 
them:

1. Identify changing quantities, and then define descriptive variables to represent those quantities. When 
appropriate, sketch a picture or define a coordinate system.

2. Carefully read the problem to identify important information. Look for information that provides values for 
the variables or values for parts of the functional model, such as slope and initial value.

3. Carefully read the problem to determine what we are trying to find, identify, solve, or interpret.

4. Identify a solution pathway from the provided information to what we are trying to find. Often this will 
involve checking and tracking units, building a table, or even finding a formula for the function being used to 
model the problem.

5. When needed, write a formula for the function.

6. Solve or evaluate the function using the formula.

7. Reflect on whether your answer is reasonable for the given situation and whether it makes sense mathematically.

8. Clearly convey your result using appropriate units, and answer in full sentences when necessary.

leARnInG OBjeCTIVeS

In this section, you will:

•	  Identify steps for modeling and solving.

•	  Build linear models from verbal descriptions.

•	  Build systems of linear models.
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Building linear Models
Now let’s take a look at the student in Seattle. In her situation, there are two changing quantities: time and money. The 
amount of money she has remaining while on vacation depends on how long she stays. We can use this information 
to define our variables, including units.

•	 Output: M, money remaining, in dollars
•	 Input: t, time, in weeks

So, the amount of money remaining depends on the number of weeks: M(t)

We can also identify the initial value and the rate of change.

•	 Initial Value: She saved $3,500, so $3,500 is the initial value for M.
•	 Rate of Change: She anticipates spending $400 each week, so −$400 per week is the rate of change, or slope.

Notice that the unit of dollars per week matches the unit of our output variable divided by our input variable. Also, 
because the slope is negative, the linear function is decreasing. This should make sense because she is spending money 
each week.

The rate of change is constant, so we can start with the linear model M(t) = mt + b. Then we can substitute the intercept 
and slope provided.

M(t) = mt + b
 ↑ ↑
 −400   3500

M(t) = − 400t + 3500

To find the x-intercept, we set the output to zero, and solve for the input.

 0 = −400t + 3500

 t =   3500 ____ 400  

 = 8.75

The x-intercept is 8.75 weeks. Because this represents the input value when the output will be zero, we could say that 
Emily will have no money left after 8.75 weeks.

When modeling any real-life scenario with functions, there is typically a limited domain over which that model will be 
valid—almost no trend continues indefinitely. Here the domain refers to the number of weeks. In this case, it doesn’t 
make sense to talk about input values less than zero. A negative input value could refer to a number of weeks before 
she saved $3,500, but the scenario discussed poses the question once she saved $3,500 because this is when her trip 
and subsequent spending starts. It is also likely that this model is not valid after the x-intercept, unless Emily will 
use a credit card and goes into debt. The domain represents the set of input values, so the reasonable domain for this 
function is 0 ≤ t ≤ 8.75.

In the above example, we were given a written description of the situation. We followed the steps of modeling a problem 
to analyze the information. However, the information provided may not always be the same. Sometimes we might be 
provided with an intercept. Other times we might be provided with an output value. We must be careful to analyze 
the information we are given, and use it appropriately to build a linear model.

Using a Given Intercept to Build a Model

Some real-world problems provide the y-intercept, which is the constant or initial value. Once the y-intercept is 
known, the x-intercept can be calculated. Suppose, for example, that Hannah plans to pay off a no-interest loan from 
her parents. Her loan balance is $1,000. She plans to pay $250 per month until her balance is $0. The y-intercept is the 
initial amount of her debt, or $1,000. The rate of change, or slope, is −$250 per month. We can then use the slope-
intercept form and the given information to develop a linear model.

 f (x) = mx + b

 = −250x + 1000
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Now we can set the function equal to 0, and solve for x to find the x-intercept.

 0 = −250x + 1000

 1000 = 250x

 4 = x

 x = 4

The x-intercept is the number of months it takes her to reach a balance of $0. The x-intercept is 4 months, so it will 
take Hannah four months to pay off her loan.

Using a Given Input and Output to Build a Model

Many real-world applications are not as direct as the ones we just considered. Instead they require us to identify some 
aspect of a linear function. We might sometimes instead be asked to evaluate the linear model at a given input or set 
the equation of the linear model equal to a specified output.

How To…
Given a word problem that includes two pairs of input and output values, use the linear function to solve a problem.

1. Identify the input and output values.
2. Convert the data to two coordinate pairs.
3. Find the slope.
4. Write the linear model.
5. Use the model to make a prediction by evaluating the function at a given x-value.
6. Use the model to identify an x-value that results in a given y-value.
7. Answer the question posed.

Example 1 Using a Linear Model to Investigate a Town’s Population

  A town’s population has been growing linearly. In 2004 the population was 6,200. By 2009 the population had grown 
to 8,100. Assume this trend continues.

a. Predict the population in 2013.

b. Identify the year in which the population will reach 15,000.

Solution The two changing quantities are the population size and time. While we could use the actual year value as 
the input quantity, doing so tends to lead to very cumbersome equations because the y-intercept would correspond to 
the year 0, more than 2,000 years ago! 

To make computation a little nicer, we will define our input as the number of years since 2004:

•	 Input: t, years since 2004

•	 Output: P(t), the town’s population

To predict the population in 2013 (t = 9), we would first need an equation for the population. Likewise, to find when 
the population would reach 15,000, we would need to solve for the input that would provide an output of 15,000. To 
write an equation, we need the initial value and the rate of change, or slope.

To determine the rate of change, we will use the change in output per change in input.

m =   
change in output

  __  
change in input

  

The problem gives us two input-output pairs. Converting them to match our defined variables, the year 2004 would 
correspond to t = 0, giving the point (0, 6200). Notice that through our clever choice of variable definition, we have 

“given” ourselves the y-intercept of the function. The year 2009 would correspond to t = 5, giving the point (5, 8100).

The two coordinate pairs are (0, 6200) and (5, 8100). Recall that we encountered examples in which we were provided 
two points earlier in the chapter. We can use these values to calculate the slope.
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 m =   8100 − 6200 __________ 5 − 0  

 =   1900 ____ 5  

 = 380 people per year

We already know the y-intercept of the line, so we can immediately write the equation:

 P(t) = 380t + 6200

To predict the population in 2013, we evaluate our function at t = 9.

 P(9) = 380(9) + 6,200
 = 9,620

If the trend continues, our model predicts a population of 9,620 in 2013.

To find when the population will reach 15,000, we can set P(t) = 15000 and solve for t.
 15000 = 380t + 6200
 8800 = 380t
 t ≈ 23.158

Our model predicts the population will reach 15,000 in a little more than 23 years after 2004, or somewhere around 
the year 2027.

Try It #1

A company sells doughnuts. They incur a fixed cost of $25,000 for rent, insurance, and other expenses. It costs $0.25 
to produce each doughnut.

a.  Write a linear model to repre sent the cost C of the company as a function of x, the number of doughnuts produced.
b.  Find and interpret the y-intercept.

Try It #2

A city’s population has been growing linearly. In 2008, the population was 28,200. By 2012, the population was 
36,800. Assume this trend continues.

a. Predict the population in 2014.

b.  Identify the year in which the population will reach 54,000.

Using a Diagram to Model a Problem

It is useful for many real-world applications to draw a picture to gain a sense of how the variables representing the 
input and output may be used to answer a question. To draw the picture, first consider what the problem is asking 
for. Then, determine the input and the output. The diagram should relate the variables. Often, geometrical shapes or 
figures are drawn. Distances are often traced out. If a right triangle is sketched, the Pythagorean Theorem relates the 
sides. If a rectangle is sketched, labeling width and height is helpful.

Example 2 Using a Diagram to Model Distance Walked

Anna and Emanuel start at the same intersection. Anna walks east at 4 miles per hour while Emanuel walks south at 
3 miles per hour. They are communicating with a two-way radio that has a range of 2 miles. How long after they start 
walking will they fall out of radio contact?

Solution In essence, we can partially answer this question by saying they will fall out of radio contact when they 
are 2 miles apart, which leads us to ask a new question:

“How long will it take them to be 2 miles apart?”
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In this problem, our changing quantities are time and position, but ultimately we need to know how long will it take for 
them to be 2 miles apart. We can see that time will be our input variable, so we’ll define our input and output variables.

•	 Input: t, time in hours.

•	 Output: A(t), distance in miles, and E(t), distance in miles

Because it is not obvious how to define our output variable, we’ll start by drawing a picture such as Figure 2.

Anna walking east, 4 miles/hour

Distance between them

Emanuel walking south,
3 miles/hour

Figure 2 

Initial Value: They both start at the same intersection so when t = 0, the distance traveled by each person should also 
be 0. Thus the initial value for each is 0.

Rate of Change: Anna is walking 4 miles per hour and Emanuel is walking 3 miles per hour, which are both rates of 
change. The slope for A is 4 and the slope for E is 3.

Using those values, we can write formulas for the distance each person has walked.

 A(t) = 4t

 E(t) = 3t

For this problem, the distances from the starting point are important. To notate these, we can define a coordinate 
system, identifying the “starting point” at the intersection where they both started. Then we can use the variable, A, 
which we introduced above, to represent Anna’s position, and define it to be a measurement from the starting point in 
the eastward direction. Likewise, can use the variable, E, to represent Emanuel’s position, measured from the starting 
point in the southward direction. Note that in defining the coordinate system, we specified both the starting point of 
the measurement and the direction of measure.

We can then define a third variable, D, to be the measurement of the distance between Anna and Emanuel.

Showing the variables on the diagram is often helpful, as we can see from Figure 3.

Recall that we need to know how long it takes for D, the distance between them, to equal 2 miles. Notice that for any 
given input t, the outputs A(t), E(t), and D(t) represent distances.

A

D

E

Figure 3

Figure 3 shows us that we can use the Pythagorean Theorem because we have drawn a right angle.

Using the Pythagorean Theorem, we get:



SECTION 2.3 modeling with linear Functions 167

 D(t)2 = A(t)2 + E(t)2

 = (4t)2 + (3t)2

 = 16t2 + 9t2

 = 25t2

 D(t) = ± √
—

 25t2    Solve for D(t) using the square root.
 = ±5 | t  |  
In this scenario we are considering only positive values of t, so our distance D(t) will always be positive. We can simplify 
this answer to D(t) = 5t. This means that the distance between Anna and Emanuel is also a linear function. Because 
D is a linear function, we can now answer the question of when the distance between them will reach 2 miles. We will 
set the output D(t) = 2 and solve for t.
 D(t) = 2

 5t = 2

 t =   2 __ 5   = 0.4

They will fall out of radio contact in 0.4 hours, or 24 minutes.

Q & A…
Should I draw diagrams when given information based on a geometric shape?

Yes. Sketch the figure and label the quantities and unknowns on the sketch.

Example 3 Using a Diagram to Model Distance Between Cities

There is a straight road leading from the town of Westborough to Agritown 30 miles east and 10 miles north. Partway 
down this road, it junctions with a second road, perpendicular to the first, leading to the town of Eastborough. If the 
town of Eastborough is located 20 miles directly east of the town of Westborough, how far is the road junction from 
Westborough?

Solution It might help here to draw a picture of the situation. See Figure 4. It would then be helpful to introduce a 
coordinate system. While we could place the origin anywhere, placing it at Westborough seems convenient. This puts 
Agritown at coordinates (30, 10), and Eastborough at (20, 0).

Agritown

EastboroughWestborough 20 miles
(0, 0)

(30, 10)

(20, 0)

Figure 4

Using this point along with the origin, we can find the slope of the line from Westborough to Agritown:

 m =   10 − 0 ______ 30 − 0   =   1 __ 3  

The equation of the road from Westborough to Agritown would be

 W(x) =   1 __ 3  x 

From this, we can determine the perpendicular road to Eastborough will have slope m = −3. Because the town of 
Eastborough is at the point (20, 0), we can find the equation:

 E(x) = −3x + b
 0 = −3(20) + b Substitute in (20, 0).
 b = 60
 E(x) = −3x + 60
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We can now find the coordinates of the junction of the roads by finding the intersection of these lines. Setting them equal,

   1 __ 3  x = −3x + 60

   10 __ 3  x = 60

 10x = 180

 x = 18 Substitute this back into W(x).

 y = W(18)

 =   1 __ 3  (18)

 = 6

The roads intersect at the point (18, 6). Using the distance formula, we can now find the distance from Westborough 
to the junction.
 distance =  √

—
  (x2 − x1)

2 + (y2 − y1)
2  

 =  √
——

  (18 − 0)2 + (6 − 0)2  

 ≈ 18.974 miles

Analysi s One nice use of linear models is to take advantage of the fact that the graphs of these functions are lines. This 
means real-world applications discussing maps need linear functions to model the distances between reference points.

Try It #3

There is a straight road leading from the town of Timpson to Ashburn 60 miles east and 12 miles north. Partway down 
the road, it junctions with a second road, perpendicular to the first, leading to the town of Garrison. If the town of 
Garrison is located 22 miles directly east of the town of Timpson, how far is the road junction from Timpson?

Building Systems of linear Models
Real-world situations including two or more linear functions may be modeled with a system of linear equations. 
Remember, when solving a system of linear equations, we are looking for points the two lines have in common. 
Typically, there are three types of answers possible, as shown in Figure 5.

y y y

x
g f

x
gf

x

Exactly
one
solution

In�nitely
many
solutions

No
solutions

(a) (b) (c)

Figure 5

How To…
Given a situation that represents a system of linear equations, write the system of equations and identify the solution.

1. Identify the input and output of each linear model.
2. Identify the slope and y-intercept of each linear model.
3. Find the solution by setting the two linear functions equal to one another and solving for x, or find the point of 

intersection on a graph.
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Example 4  Building a System of Linear Models to Choose a Truck Rental Company

Jamal is choosing between two truck-rental companies. The first, Keep on Trucking, Inc., charges an up-front fee of 
$20, then 59 cents a mile. The second, Move It Your Way, charges an up-front fee of $16, then 63 cents a mile[9]. When 
will Keep on Trucking, Inc. be the better choice for Jamal?

Solution The two important quantities in this problem are the cost and the number of miles driven. Because we have 
two companies to consider, we will define two functions.

Input d, distance driven in miles

Outputs K(d): cost, in dollars, for renting from Keep on Trucking
M(d) cost, in dollars, for renting from Move It Your Way

Initial Value Up-front fee: K(0) = 20 and M(0) = 16

Rate of Change K(d) = $0.59/mile and P(d) = $0.63/mile

Table 1

A linear function is of the form f (x) = mx + b. Using the rates of change and initial charges, we can write the equations

K(d) = 0.59d + 20

M(d) = 0.63d + 16

Using these equations, we can determine when Keep on Trucking, Inc., will be the better choice. Because all we have 
to make that decision from is the costs, we are looking for when Move It Your Way, will cost less, or when K(d) < M(d). 
The solution pathway will lead us to find the equations for the two functions, find the intersection, and then see where 
the K(d) function is smaller.

These graphs are sketched in Figure 6, with K(d) in red.
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(100, 80)
K(d) = 0.59d + 20

M(d) = 0.63d + 16

Figure 6

To find the intersection, we set the equations equal and solve:

 K(d) = M(d)

 0.59d + 20 = 0.63d + 16

 4 = 0.04d

 100 = d

 d = 100

This tells us that the cost from the two companies will be the same if 100 miles are driven. Either by looking at the 
graph, or noting that K(d) is growing at a slower rate, we can conclude that Keep on Trucking, Inc. will be the cheaper 
price when more than 100 miles are driven, that is d > 100.

Access this online resources for additional instruction and practice with linear function models.
•	 Interpreting a linear Function (http://openstaxcollege.org/l/interpretlinear)

9 Rates retrieved Aug 2, 2010 from http://www.budgettruck.com and http://www.uhaul.com/

http://openstaxcollege.org/l/interpretlinear
http://www.budgettruck.com
http://www.uhaul.com/
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2.3 SeCTIOn exeRCISeS

VeRBAl

1. Explain how to find the input variable in a word 
problem that uses a linear function.

2. Explain how to find the output variable in a word 
problem that uses a linear function.

3. Explain how to interpret the initial value in a word 
problem that uses a linear function.

4. Explain how to determine the slope in a word 
problem that uses a linear function.

AlGeBRAIC

5. Find the area of a parallelogram bounded by the 
y-axis, the line x = 3, the line f (x) = 1 + 2x, and the 
line parallel to f (x) passing through (2, 7).

6. Find the area of a triangle bounded by the x-axis, 
the line f (x) = 12 –   1 __ 3  x, and the line perpendicular 
to f (x) that passes through the origin.

7. Find the area of a triangle bounded by the y-axis, 
the line f (x) = 9 –   6 __ 7  x, and the line perpendicular to 
f (x) that passes through the origin.

8. Find the area of a parallelogram bounded by the 
x-axis, the line g (x) = 2, the line f (x) = 3x, and the 
line parallel to f (x) passing through (6, 1).

For the following exercises, consider this scenario: A town’s population has been decreasing at a constant rate. In 
2010 the population was 5,900. By 2012 the population had dropped 4,700. Assume this trend continues.

9. Predict the population in 2016. 10. Identify the year in which the population will reach 0.

For the following exercises, consider this scenario: A town’s population has been increased at a constant rate. In 
2010 the population was 46,020. By 2012 the population had increased to 52,070. Assume this trend continues.

11. Predict the population in 2016. 12. Identify the year in which the population will reach 
75,000.

For the following exercises, consider this scenario: A town has an initial population of 75,000. It grows at a constant 
rate of 2,500 per year for 5 years.

13. Find the linear function that models the town’s 
population P as a function of the year, t, where t is 
the number of years since the model began.

14. Find a reasonable domain and range for the 
function P.

15. If the function P is graphed, find and interpret the 
x-and y-intercepts.

16. If the function P is graphed, find and interpret the 
slope of the function.

17. When will the output reached 100,000? 18. What is the output in the year 12 years from the 
onset of the model?
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For the following exercises, consider this scenario: The weight of a newborn is 7.5 pounds. The baby gained one-half 
pound a month for its first year.

19. Find the linear function that models the baby’s 
weight, W, as a function of the age of the baby, in 
months, t.

20. Find a reasonable domain and range for the 
function W.

21. If the function W is graphed, find and interpret the 
x- and y-intercepts.

22. If the function W is graphed, find and interpret the 
slope of the function.

23. When did the baby weight 10.4 pounds? 24. What is the output when the input is 6.2? Interpret 
your answer.

For the following exercises, consider this scenario: The number of people afflicted with the common cold in the 
winter months steadily decreased by 205 each year from 2005 until 2010. In 2005, 12,025 people were afflicted.

25. Find the linear function that models the number 
of people inflicted with the common cold, C, as a 
function of the year, t.

26. Find a reasonable domain and range for the 
function C.

27. If the function C is graphed, find and interpret the 
x-and y-intercepts.

28. If the function C is graphed, find and interpret the 
slope of the function.

29. When will the output reach 0? 30. In what year will the number of people be 9,700?

GRAPHICAl

For the following exercises, use the graph in Figure 7, which shows the profit, y, in thousands of dollars, of a company 
in a given year, t, where t represents the number of years since 1980.
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Figure 7

31. Find the linear function y, where y depends on t, the number of years since 1980.

32. Find and interpret the y-intercept.

33. Find and interpret the x-intercept.

34. Find and interpret the slope.
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For the following exercises, use the graph in Figure 8, which shows the profit, y, in thousands of dollars, of a company 
in a given year, t, where t represents the number of years since 1980.
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35. Find the linear function y, where y depends on t, the number of years since 1980. 

36. Find and interpret the y-intercept.

37. Find and interpret the x-intercept.

38. Find and interpret the slope.

nUMeRIC

For the following exercises, use the median home values in Mississippi and Hawaii (adjusted for inflation) shown in 
Table 2. Assume that the house values are changing linearly.

Year Mississippi Hawaii
1950 $25,200 $74,400
2000 $71,400 $272,700

Table 2

39. In which state have home values increased at a higher rate?

40. If these trends were to continue, what would be the median home value in Mississippi in 2010?

41. If we assume the linear trend existed before 1950 and continues after 2000, the two states’ median house values 
will be (or were) equal in what year? (The answer might be absurd.)

For the following exercises, use the median home values in Indiana and Alabama (adjusted for inflation) shown in 
Table 3. Assume that the house values are changing linearly.

Year Indiana Alabama
1950 $37,700 $27,100
2000 $94,300 $85,100

Table 3

42. In which state have home values increased at a higher rate?

43. If these trends were to continue, what would be the median home value in Indiana in 2010?

44. If we assume the linear trend existed before 1950 and continues after 2000, the two states’ median house values 
will be (or were) equal in what year? (The answer might be absurd.) 
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ReAl-WORlD APPlICATIOnS

45. In 2004, a school population was 1,001. By 2008 
the population had grown to 1,697. Assume the 
population is changing linearly.
a. How much did the population grow between the 

year 2004 and 2008?
b. How long did it take the population to grow from 

1,001 students to 1,697 students?
c. What is the average population growth per year?
d. What was the population in the year 2000?
e. Find an equation for the population, P, of the 

school t years after 2000.
f. Using your equation, predict the population of 

the school in 2011.

46. In 2003, a town’s population was 1,431. By 2007 
the population had grown to 2,134. Assume the 
population is changing linearly.
a. How much did the population grow between the 

year 2003 and 2007?
b. How long did it take the population to grow from 

1,431 people to 2,134 people?
c. What is the average population growth per year?
d. What was the population in the year 2000?
e. Find an equation for the population, P of the 

town t years after 2000.
f. Using your equation, predict the population of 

the town in 2014.

47. A phone company has a monthly cellular plan 
where a customer pays a flat monthly fee and then 
a certain amount of money per minute used on the 
phone. If a customer uses 410 minutes, the monthly 
cost will be $71.50. If the customer uses 720 minutes, 
the monthly cost will be $118.
a. Find a linear equation for the monthly cost of 

the cell plan as a function of x, the number of 
monthly minutes used.

b. Interpret the slope and y-intercept of the 
equation.

c. Use your equation to find the total monthly cost 
if 687 minutes are used.

48. A phone company has a monthly cellular data plan 
where a customer pays a flat monthly fee of $10 and 
then a certain amount of money per megabyte (MB) 
of data used on the phone. If a customer uses 20 MB, 
the monthly cost will be $11.20. If the customer uses 
130 MB, the monthly cost will be $17.80.
a. Find a linear equation for the monthly cost of the 

data plan as a function of x , the number of MB 
used.

b. Interpret the slope and y-intercept of the 
equation.

c. Use your equation to find the total monthly cost 
if 250 MB are used.

49. In 1991, the moose population in a park was 
measured to be 4,360. By 1999, the population was 
measured again to be 5,880. Assume the population 
continues to change linearly.
a. Find a formula for the moose population,  

P since 1990.
b. What does your model predict the moose 

population to be in 2003?

50. In 2003, the owl population in a park was measured 
to be 340. By 2007, the population was measured 
again to be 285. The population changes linearly. Let 
the input be years since 1990.
a. Find a formula for the owl population, P. Let the 

input be years since 2003.
b. What does your model predict the owl 

population to be in 2012?

51. The Federal Helium Reserve held about 16 billion 
cubic feet of helium in 2010 and is being depleted by 
about 2.1 billion cubic feet each year.
a. Give a linear equation for the remaining federal 

helium reserves, R, in terms of t, the number of 
years since 2010.

b. In 2015, what will the helium reserves be?
c. If the rate of depletion doesn’t change, in what 

year will the Federal Helium Reserve be depleted?

52. Suppose the world’s oil reserves in 2014 are 1,820 
billion barrels. If, on average, the total reserves are 
decreasing by 25 billion barrels of oil each year:
a. Give a linear equation for the remaining oil 

reserves, R, in terms of t, the number of years 
since now.

b. Seven years from now, what will the oil  
reserves be?

c. If the rate at which the reserves are decreasing 
is constant, when will the world’s oil reserves be 
depleted?
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53. You are choosing between two different prepaid cell 
phone plans. The first plan charges a rate of 26 cents 
per minute. The second plan charges a monthly 
fee of $19.95 plus 11 cents per minute. How many 
minutes would you have to use in a month in order 
for the second plan to be preferable?

54. You are choosing between two different window 
washing companies. The first charges $5 per window. 
The second charges a base fee of $40 plus $3 per 
window. How many windows would you need to 
have for the second company to be preferable?

55. When hired at a new job selling jewelry, you are 
given two pay options:
•	 Option A: Base salary of $17,000 a year with a 

commission of 12% of your sales
•	 Option B: Base salary of $20,000 a year with a 

commission of 5% of your sales
How much jewelry would you need to sell for option 
A to produce a larger income?

56. When hired at a new job selling electronics, you are 
given two pay options:
•	 Option A: Base salary of $14,000 a year with a 

commission of 10% of your sales
•	 Option B: Base salary of $19,000 a year with a 

commission of 4% of your sales
How much electronics would you need to sell for 
option A to produce a larger income?

57. When hired at a new job selling electronics, you are 
given two pay options:
•	 Option A: Base salary of $20,000 a year with a 

commission of 12% of your sales
•	 Option B: Base salary of $26,000 a year with a 

commission of 3% of your sales
How much electronics would you need to sell for 
option A to produce a larger income?

58. When hired at a new job selling electronics, you are 
given two pay options:
•	 Option A: Base salary of $10,000 a year with a 

commission of 9% of your sales
•	 Option B: Base salary of $20,000 a year with a 

commission of 4% of your sales
How much electronics would you need to sell for 
option A to produce a larger income?
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2.4 FITTInG lIneAR MODelS TO DATA

A professor is attempting to identify trends among final exam scores. His class has a mixture of students, so he wonders 
if there is any relationship between age and final exam scores. One way for him to analyze the scores is by creating 
a diagram that relates the age of each student to the exam score received. In this section, we will examine one such 
diagram known as a scatter plot.

Drawing and Interpreting Scatter Plots
A scatter plot is a graph of plotted points that may show a relationship between two sets of data. If the relationship is 
from a linear model, or a model that is nearly linear, the professor can draw conclusions using his knowledge of linear 
functions. Figure 1 shows a sample scatter plot.
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Figure 1 A scatter plot of age and final exam score variables.

Notice this scatter plot does not indicate a linear relationship. The points do not appear to follow a trend. In other 
words, there does not appear to be a relationship between the age of the student and the score on the final exam.

Example 1 Using a Scatter Plot to Investigate Cricket Chirps

Table 1 shows the number of cricket chirps in 15 seconds, for several different air temperatures, in degrees Fahrenheit[10]. 
Plot this data, and determine whether the data appears to be linearly related.

Chirps 44 35 20.4 33 31 35 18.5 37 26
Temperature 80.5 70.5 57 66 68 72 52 73.5 53

Table 1

Solution Plotting this data, as depicted in Figure 2 suggests that there may be a trend. We can see from the trend 
in the data that the number of chirps increases as the temperature increases. The trend appears to be roughly linear, 
though certainly not perfectly so.

10 Selected data from http://classic.globe.gov/fsl/scientistsblog/2007/10/. Retrieved Aug 3, 2010.

leARnInG OBjeCTIVeS

In this section, you will:

•	  Draw and interpret scatter plots.

•	 Find the line of best fit.

•	  Distinguish between linear and nonlinear relations.

•	  Use a linear model to make predictions.

http://classic.globe.gov/fsl/scientistsblog/2007/10/
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Finding the line of Best Fit
Once we recognize a need for a linear function to model that data, the natural follow-up question is “what is that linear 
function?” One way to approximate our linear function is to sketch the line that seems to best fit the data. Then we 
can extend the line until we can verify the y-intercept. We can approximate the slope of the line by extending it until 
we can estimate the   rise ___ run  .

Example 2 Finding a Line of Best Fit

Find a linear function that fits the data in Table 1 by “eyeballing” a line that seems to fit.

Solution On a graph, we could try sketching a line.

Using the starting and ending points of our hand drawn line, points (0, 30) and (50, 90), this graph has a slope of

m =   60 __ 50   = 1.2

and a y-intercept at 30. This gives an equation of

T(c) = 1.2c + 30

where c is the number of chirps in 15 seconds, and T(c) is the temperature in degrees Fahrenheit. The resulting equation 
is represented in Figure 3.
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Analysis This linear equation can then be used to approximate answers to various questions we might ask about the trend.
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Recognizing Interpolation or Extrapolation

While the data for most examples does not fall perfectly on the line, the equation is our best guess as to how the 
relationship will behave outside of the values for which we have data. We use a process known as interpolation when 
we predict a value inside the domain and range of the data. The process of extrapolation is used when we predict a 
value outside the domain and range of the data.

Figure 4 compares the two processes for the cricket-chirp data addressed in Example 2. We can see that interpolation 
would occur if we used our model to predict temperature when the values for chirps are between 18.5 and 44. 
Extrapolation would occur if we used our model to predict temperature when the values for chirps are less than 18.5 
or greater than 44.
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Figure 4 Interpolation occurs within the domain and range of the provided data whereas extrapolation occurs outside.

There is a difference between making predictions inside the domain and range of values for which we have data and 
outside that domain and range. Predicting a value outside of the domain and range has its limitations. When our 
model no longer applies after a certain point, it is sometimes called model breakdown. For example, predicting a cost 
function for a period of two years may involve examining the data where the input is the time in years and the output 
is the cost. But if we try to extrapolate a cost when x = 50, that is in 50 years, the model would not apply because we 
could not account for factors fifty years in the future.

interpolation and extrapolation 
Different methods of making predictions are used to analyze data.

•	 The method of interpolation involves predicting a value inside the domain  
and/or range of the data.

•	 The method of extrapolation involves predicting a value outside the domain and/or range of the data.

•	 Model breakdown occurs at the point when the model no longer applies.

Example 3 Understanding Interpolation and Extrapolation

Use the cricket data from Table 1 to answer the following questions:

a.  Would predicting the temperature when crickets are chirping 30 times in 15 seconds be interpolation or 
extrapolation? Make the prediction, and discuss whether it is reasonable.

b.  Would predicting the number of chirps crickets will make at 40 degrees be interpolation or extrapolation? Make 
the prediction, and discuss whether it is reasonable.
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Solution
a. The number of chirps in the data provided varied from 18.5 to 44. A prediction at 30 chirps per 15 seconds is 

inside the domain of our data, so would be interpolation. Using our model:

 T(30) = 30 + 1.2(30) 
 = 66 degrees

 Based on the data we have, this value seems reasonable.

b. The temperature values varied from 52 to 80.5. Predicting the number of chirps at 40 degrees is extrapolation 
because 40 is outside the range of our data. Using our model:

 40 = 30 + 1.2c
 10 = 1.2c
 c ≈ 8.33

We can compare the regions of interpolation and extrapolation using Figure 5.
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Analysi s Our model predicts the crickets would chirp 8.33 times in 15 seconds. While this might be possible, we have 
no reason to believe our model is valid outside the domain and range. In fact, generally crickets stop chirping altogether 
below around 50 degrees.

Try It #1

According to the data from Table 1, what temperature can we predict it is if we counted 20 chirps in 15 seconds?

Finding the Line of Best Fit Using a Graphing Utility

While eyeballing a line works reasonably well, there are statistical techniques for fitting a line to data that minimize 
the differences between the line and data values[11]. One such technique is called least squares regression and can be 
computed by many graphing calculators, spreadsheet software, statistical software, and many web-based calculators[12]. 
Least squares regression is one means to determine the line that best fits the data, and here we will refer to this method 
as linear regression.

11 Technically, the method minimizes the sum of the squared differences in the vertical direction between the line and the data values.
12  For example, http://www.shodor.org/unchem/math/lls/leastsq.html

http://www.shodor.org/unchem/math/lls/leastsq.html
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How To…
Given data of input and corresponding outputs from a linear function, find the best fit line using linear regression.

1. Enter the input in List 1 (L1).
2. Enter the output in List 2 (L2).
3. On a graphing utility, select Linear Regression (LinReg).

Example 4 Finding a Least Squares Regression Line

Find the least squares regression line using the cricket-chirp data in Table 1.

Solution

1. Enter the input (chirps) in List 1 (L1).
2. Enter the output (temperature) in List 2 (L2). See Table 2.

L1 44 35 20.4 33 31 35 18.5 37 26
L2 80.5 70.5 57 66 68 72 52 73.5 53

Table 2

3. On a graphing utility, select Linear Regression (LinReg). Using the cricket chirp data from earlier, with 
technology we obtain the equation:

T(c) = 30.281 + 1.143c

Analysi s Notice that this line is quite similar to the equation we “eyeballed” but should fit the data better. Notice also 
that using this equation would change our prediction for the temperature when hearing 30 chirps in 15 seconds from 66 
degrees to:
 T(30) = 30.281 + 1.143(30)
 = 64.571
 ≈ 64.6 degrees

The graph of the scatter plot with the least squares regression line is shown in Figure 6.
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Q & A…
Will there ever be a case where two different lines will serve as the best fit for the data?

No. There is only one best fit line.



CHAPTER 2 linear Functions180

Distinguishing Between linear and non-linear Models
As we saw above with the cricket-chirp model, some data exhibit strong linear trends, but other data, like the final 
exam scores plotted by age, are clearly nonlinear. Most calculators and computer software can also provide us with 
the correlation coefficient, which is a measure of how closely the line fits the data. Many graphing calculators require 
the user to turn a ”diagnostic on” selection to find the correlation coefficient, which mathematicians label as r. The 
correlation coefficient provides an easy way to get an idea of how close to a line the data falls.

We should compute the correlation coefficient only for data that follows a linear pattern or to determine the degree to 
which a data set is linear. If the data exhibits a nonlinear pattern, the correlation coefficient for a linear regression is 
meaningless. To get a sense for the relationship between the value of r and the graph of the data, Figure 7 shows some 
large data sets with their correlation coefficients. Remember, for all plots, the horizontal axis shows the input and the 
vertical axis shows the output.
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−1.0 −1.0 −1.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0

−0.8 −1.0

Figure 7 Plotted data and related correlation coefficients. (credit: “DenisBoigelot,” Wikimedia Commons)

correlation coefficient 
The correlation coefficient is a value, r, between −1 and 1.

•	 r > 0 suggests a positive (increasing) relationship

•	 r < 0 suggests a negative (decreasing) relationship

•	 The closer the value is to 0, the more scattered the data.

•	 The closer the value is to 1 or −1, the less scattered the data is.

Example 5 Finding a Correlation Coefficient

Calculate the correlation coefficient for cricket-chirp data in Table 1.

Solution Because the data appear to follow a linear pattern, we can use technology to calculate r. Enter the inputs 
and corresponding outputs and select the Linear Regression. The calculator will also provide you with the correlation 
coefficient, r = 0.9509. This value is very close to 1, which suggests a strong increasing linear relationship.

Note: For some calculators, the Diagnostics must be turned “on” in order to get the correlation coefficient when linear 
regression is performed: [2nd]>[0]>[alpha][x − 1], then scroll to DIAGNOSTICSON.

Predicting with a Regression line
Once we determine that a set of data is linear using the correlation coefficient, we can use the regression line to make 
predictions. As we learned above, a regression line is a line that is closest to the data in the scatter plot, which means 
that only one such line is a best fit for the data.



SECTION 2.4 Fitting linear models to data 181

Example 6 Using a Regression Line to Make Predictions

Gasoline consumption in the United States has been steadily increasing. Consumption data from 1994 to 2004 is shown 
in Table 3[13]. Determine whether the trend is linear, and if so, find a model for the data. Use the model to predict the 
consumption in 2008.

Year ‘94 ‘95 ‘96 ‘97 ‘98 ‘99 ‘00 ‘01 ‘02 ‘03 ‘04

Consumption   
(billions of gallons) 113 116 118 119 123 125 126 128 131 133 136

Table 3

The scatter plot of the data, including the least squares regression line, is shown in Figure 8.
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Solution We can introduce new input variable, t, representing years since 1994.

The least squares regression equation is:
C(t) = 113.318 + 2.209t

Using technology, the correlation coefficient was calculated to be 0.9965, suggesting a very strong increasing linear 
trend.

Using this to predict consumption in 2008 (t = 14),

 C(14) = 113.318 + 2.209(14)

 = 144.244

The model predicts 144.244 billion gallons of gasoline consumption in 2008.

Try It #2

Use the model we created using technology in Example 6 to predict the gas consumption in 2011. Is this an 
interpolation or an extrapolation?

Access these online resources for additional instruction and practice with fitting linear models to data.

•	 Introduction to Regression Analysis (http://openstaxcollege.org/l/introregress)

•	 linear Regression (http://openstaxcollege.org/l/linearregress) 

13 http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html

http://openstaxcollege.org/l/introregress
http://openstaxcollege.org/l/linearregress
http://www.bts.gov/publications/national_transportation_statistics/2005/html/table_04_10.html
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2.4 SeCTIOn exeRCISeS

VeRBAl

1. Describe what it means if there is a model 
breakdown when using a linear model.

2. What is interpolation when using a linear model?

3. What is extrapolation when using a linear model? 4. Explain the difference between a positive and a 
negative correlation coefficient.

5. Explain how to interpret the absolute value of a 
correlation coefficient.

AlGeBRAIC

6. A regression was run to determine whether there is 
a relationship between hours of TV watched per day 
(x) and number of sit-ups a person can do (y). The 
results of the regression are given below. Use this to 
predict the number of situps a person who watches 
11 hours of TV can do.

y = ax + b

a = −1.341

b = 32.234

r = −0.896

7. A regression was run to determine whether there is a 
relationship between the diameter of a tree  
(x, in inches) and the tree’s age (y, in years). The 
results of the regression are given below. Use this to 
predict the age of a tree with diameter 10 inches.

y = ax + b

a = 6.301

b = −1.044

r = −0.970

For the following exercises, draw a scatter plot for the data provided. Does the data appear to be linearly related?

8. 0 2 4 6 8 10
−22 −19 −15 −11 −6 −2

9. 1 2 3 4 5 6
46 50 59 75 100 136

10. 
100 250 300 450 600 750

12 12.6 13.1 14 14.5 15.2

11. 
1 3 5 7 9 11

1 9 28 65 125 216

12. For the following data, draw a scatter plot. If we 
wanted to know when the population would reach 
15,000, would the answer involve interpolation or 
extrapolation? Eyeball the line, and estimate the 
answer.

Year 1990 1995 2000 2005 2010
Population 11,500 12,100 12,700 13,000 13,750

13. For the following data, draw a scatter plot. If we 
wanted to know when the temperature would reach 
28°F, would the answer involve interpolation or 
extrapolation? Eyeball the line and estimate the 
answer.

Temperature, °F 16 18 20 25 30
Time, seconds 46 50 54 55 62
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GRAPHICAl

For the following exercises, match each scatterplot with one of the four specified correlations in Figure 9 and Figure 10.

(a) (b)

Figure 9

(c) (d)
Figure 10

14. r = 0.95 15. r = −0.89

16. r = 0.26 17. r = −0.39

For the following exercises, draw a best-fit line for the plotted data.
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nUMeRIC

22. The U.S. Census tracks the percentage of persons 25 years or older who are college graduates. That data for 
several years is given in Table 4[14]. Determine whether the trend appears linear. If so, and assuming the trend 
continues, in what year will the percentage exceed 35%?

Year 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
Percent Graduates 21.3 21.4 22.2 23.6 24.4 25.6 26.7 27.7 28 29.4

Table 4

23. The U.S. import of wine (in hectoliters) for several years is given in Table 5. Determine whether the trend appears 
linear. If so, and assuming the trend continues, in what year will imports exceed 12,000 hectoliters?

Year 1992 1994 1996 1998 2000 2002 2004 2006 2008 2009

Imports 2665 2688 3565 4129 4584 5655 6549 7950 8487 9462

Table 5

24. Table 6 shows the year and the number of people unemployed in a particular city for several years. Determine 
whether the trend appears linear. If so, and assuming the trend continues, in what year will the number of unemployed 
reach 5 people?

Year 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
Number Unemployed 750 670 650 605 550 510 460 420 380 320

Table 6

TeCHnOlOGY

For the following exercises, use each set of data to calculate the regression line using a calculator or other technology 
tool, and determine the correlation coefficient to 3 decimal places of accuracy.

25. x 8 15 26 31 56
y 23 41 53 72 103

26. x 5 7 10 12 15
y 4 12 17 22 24

14 http://www.census.gov/hhes/socdemo/education/data/cps/historical/index.html. Accessed 5/1/2014. 

http://www.census.gov/hhes/socdemo/education/data/cps/historical/index.html
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27. x 3 4 5 6 7 8 9 10
y 21.9 22.22 22.74 22.26 20.78 17.6 16.52 18.54

x 11 12 13 14 15 16 17 18
y 15.76 13.68 14.1 14.02 11.94 12.76 11.28 9.1

28. x 4 5 6 7 8 9 10 11 12 13
y 44.8 43.1 38.8 39 38 32.7 30.1 29.3 27 25.8

29. x 21 25 30 31 40 50
y 17 11 2 −1 −18 −40

30. x 100 80 60 55 40 20
y 2000 1798 1589 1580 1390 1202

31. x 900 988 1000 1010 1200 1205
y 70 80 82 84 105 108

exTenSIOnS

32. Graph f (x) = 0.5x + 10. Pick a set of 5 ordered 
pairs using inputs x = −2, 1, 5, 6, 9 and use linear 
regression to verify that the function is a good fit for 
the data.

33. Graph f (x) = −2x − 10. Pick a set of 5 ordered 
pairs using inputs x = −2, 1, 5, 6, 9 and use linear 
regression to verify the function.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. 
The following ordered pairs shows dollars and the number of units sold in hundreds and the profit in thousands of 
over the ten-year span, (number of units sold, profit) for specific recorded years:

(46, 600), (48, 550), (50, 505), (52, 540), (54, 495).

34. Use linear regression to determine a function P 
where the profit in thousands of dollars depends on 
the number of units sold in hundreds.

35. Find to the nearest tenth and interpret the 
x-intercept.

36. Find to the nearest tenth and interpret the 
y-intercept.



186 CHAPTER 2 linear Functions

ReAl-WORlD APPlICATIOnS

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. 
The following ordered pairs shows the population and the year over the ten-year span, (population, year) for specific 
recorded years:

(2500, 2000), (2650, 2001), (3000, 2003), (3500, 2006), (4200, 2010)

37. Use linear regression to determine a function y, 
where the year depends on the population. Round 
to three decimal places of accuracy.

38. Predict when the population will hit 8,000.

For the following exercises, consider this scenario: The profit of a company increased steadily over a ten-year span. The 
following ordered pairs show the number of units sold in hundreds and the profit in thousands of over the ten-year 
span, (number of units sold, profit) for specific recorded years:

(46, 250), (48, 305), (50, 350), (52, 390), (54, 410).

39. Use linear regression to determine a function y, 
where the profit in thousands of dollars depends on 
the number of units sold in hundreds.

40. Predict when the profit will exceed one million 
dollars.

For the following exercises, consider this scenario: The profit of a company decreased steadily over a ten-year span. 
The following ordered pairs show dollars and the number of units sold in hundreds and the profit in thousands of 
over the ten-year span (number of units sold, profit) for specific recorded years:

(46, 250), (48, 225), (50, 205), (52, 180), (54, 165).

41. Use linear regression to determine a function y, 
where the profit in thousands of dollars depends on 
the number of units sold in hundreds.

42. Predict when the profit will dip below the $25,000 
threshold.
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CHAPTeR 2 ReVIeW

Key Terms
correlation coefficient a value, r, between −1 and 1 that indicates the degree of linear correlation of variables, or how 

closely a regression line fits a data set.

decreasing linear function a function with a negative slope: If f (x) = mx + b, then m < 0.

extrapolation predicting a value outside the domain and range of the data

horizontal line a line defined by f (x) = b, where b is a real number. The slope of a horizontal line is 0.

increasing linear function a function with a positive slope: If f (x) = mx + b, then m > 0.

interpolation predicting a value inside the domain and range of the data

least squares regression a statistical technique for fitting a line to data in a way that minimizes the differences between 
the line and data values

linear function a function with a constant rate of change that is a polynomial of degree 1, and whose graph is a straight line

model breakdown when a model no longer applies after a certain point

parallel lines two or more lines with the same slope

perpendicular lines two lines that intersect at right angles and have slopes that are negative reciprocals of each other

point-slope form the equation for a line that represents a linear function of the form y − y1 = m(x − x1)

slope the ratio of the change in output values to the change in input values; a measure of the steepness of a line

slope-intercept form the equation for a line that represents a linear function in the form f (x) = mx + b

vertical line a line defined by x = a, where a is a real number. The slope of a vertical line is undefined.

x-intercept the point on the graph of a linear function when the output value is 0; the point at which the graph crosses 
the horizontal axis

y-intercept the value of a function when the input value is zero; also known as initial value

Key equations
slope-intercept form of a line f (x) = mx + b

slope  m =   
change in output (rise)

  __  
change in input (run)

   =   
∆y

 _ 
∆x

   =   
y2 − y1 _ x2 − x1

  

point-slope form of a line y − y1 = m(x − x1)

Key Concepts

2.1 Linear Functions

•	 The ordered pairs given by a linear function represent points on a line.

•	 Linear functions can be represented in words, function notation, tabular form, and graphical form. See Example 1.

•	 The rate of change of a linear function is also known as the slope.

•	An equation in the slope-intercept form of a line includes the slope and the initial value of the function.

•	 The initial value, or y-intercept, is the output value when the input of a linear function is zero. It is the y-value of 
the point at which the line crosses the y-axis.

•	An increasing linear function results in a graph that slants upward from left to right and has a positive slope.

•	A decreasing linear function results in a graph that slants downward from left to right and has a negative slope.

•	A constant linear function results in a graph that is a horizontal line.
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•	Analyzing the slope within the context of a problem indicates whether a linear function is increasing, decreasing, 
or constant. See Example 2.

•	 The slope of a linear function can be calculated by dividing the difference between y-values by the difference in 
corresponding x-values of any two points on the line. See Example 3 and Example 4.

•	 The slope and initial value can be determined given a graph or any two points on the line.

•	 One type of function notation is the slope-intercept form of an equation.

•	 The point-slope form is useful for finding a linear equation when given the slope of a line and one point. See 
Example 5.

•	 The point-slope form is also convenient for finding a linear equation when given two points through which a 
line passes. See Example 6.

•	 The equation for a linear function can be written if the slope m and initial value b are known. See Example 7, 
Example 8, and Example 9.

•	A linear function can be used to solve real-world problems. See Example 10 and Example 11.

•	A linear function can be written from tabular form. See Example 12.

2.2 Graphs of Linear Functions

•	 Linear functions may be graphed by plotting points or by using the y-intercept and slope. See Example 1 and 
Example 2.

•	 Graphs of linear functions may be transformed by using shifts up, down, left, or right, as well as through stretches, 
compressions, and reflections. See Example 3.

•	 The y-intercept and slope of a line may be used to write the equation of a line.

•	 The x-intercept is the point at which the graph of a linear function crosses the x-axis. See Example 4 and 
Example 5.

•	 Horizontal lines are written in the form, f (x) = b. See Example 6.

•	 Vertical lines are written in the form, x = b. See Example 7.

•	 Parallel lines have the same slope.

•	 Perpendicular lines have negative reciprocal slopes, assuming neither is vertical. See Example 8.

•	A line parallel to another line, passing through a given point, may be found by substituting the slope value of the 
line and the x- and y-values of the given point into the equation, f (x) = mx + b, and using the b that results. Similarly, 
the point-slope form of an equation can also be used. See Example 9.

•	A line perpendicular to another line, passing through a given point, may be found in the same manner, with the 
exception of using the negative reciprocal slope. See Example 10 and Example 11.

•	A system of linear equations may be solved setting the two equations equal to one another and solving for x. The 
y-value may be found by evaluating either one of the original equations using this x-value.

•	 A system of linear equations may also be solved by finding the point of intersection on a graph. See Example 12 
and Example 13.

2.3 Modeling with Linear Functions

•	 We can use the same problem strategies that we would use for any type of function.

•	 When modeling and solving a problem, identify the variables and look for key values, including the slope and 
y-intercept. See Example 1.

•	 Draw a diagram, where appropriate. See Example 2 and Example 3.
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•	 Check for reasonableness of the answer.

•	 Linear models may be built by identifying or calculating the slope and using the y-intercept.

•	 The x-intercept may be found by setting y = 0, which is setting the expression mx + b equal to 0.

•	 The point of intersection of a system of linear equations is the point where the x- and y-values are the same. See 
Example 4.

•	A graph of the system may be used to identify the points where one line falls below (or above) the other line.

2.4 Fitting Linear Models to Data

•	 Scatter plots show the relationship between two sets of data. See Example 1.

•	 Scatter plots may represent linear or non-linear models.

•	 The line of best fit may be estimated or calculated, using a calculator or statistical software. See Example 2.

•	 Interpolation can be used to predict values inside the domain and range of the data, whereas extrapolation can 
be used to predict values outside the domain and range of the data. See Example 3.

•	 The correlation coefficient, r, indicates the degree of linear relationship between data. See Example 5.

•	A regression line best fits the data. See Example 6.

•	 The least squares regression line is found by minimizing the squares of the distances of points from a line passing 
through the data and may be used to make predictions regarding either of the variables. See Example 4.
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CHAPTeR 2 ReVIeW exeRCISeS

lIneAR FUnCTIOnS

1. Determine whether the algebraic equation is linear.  
2x + 3y = 7

2. Determine whether the algebraic equation is linear.  
6x 2 − y = 5

3. Determine whether the function is increasing or 
decreasing. f (x) = 7x − 2

4. Determine whether the function is increasing or 
decreasing. g(x) = −x + 2

5. Given each set of information, find a linear equation 
that satisfies the given conditions, if possible. Passes 
through (7, 5) and (3, 17)

6. Given each set of information, find a linear equation 
that satisfies the given conditions, if possible. 
x-intercept at (6, 0) and y-intercept at (0, 10)

7. Find the slope of the line shown in the graph.
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8. Find the slope of the line shown in the graph.
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9. Write an equation in slope-intercept form for the line 
shown.
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10. Does the following table represent a linear function? 
If so, find the linear equation that models the data.

x –4 0 2 10

g(x) 18 –2 –12 –52

11. Does the following table represent a linear function? 
If so, find the linear equation that models the data.

x 6 8 12 26

g(x) –8 –12 –18 –46

12. On June 1st, a company has $4,000,000 profit. 
If the company then loses 150,000 dollars per 
day thereafter in the month of June, what is the 
company’s profit nth day after June 1st?

GRAPHS OF lIneAR FUnCTIOnS

For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or 
neither parallel nor perpendicular:

13. 2x − 6y = 12

 −x + 3y = 1

14. y =   1 __ 3  x − 2

3x + y = − 9
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For the following exercises, find the x- and y-intercepts of the given equation

15. 7x + 9y = −63 16. f (x) = 2x − 1

For the following exercises, use the descriptions of the pairs of lines to find the slopes of Line 1 and Line 2. Is each pair 
of lines parallel, perpendicular, or neither?

17. Line 1: Passes through (5, 11) and (10, 1) 
Line 2: Passes through (−1, 3) and (−5, 11)

18. Line 1: Passes through (8, −10) and (0, −26) 
Line 2: Passes through (2, 5) and (4, 4)

19. Write an equation for a line perpendicular to  
f (x) = 5x − 1 and passing through the point (5, 20).

20. Find the equation of a line with a y-intercept of  
(0, 2) and slope −  1 __ 2  .

21. Sketch a graph of the linear function f (t) = 2t − 5. 22. Find the point of intersection for the 2 linear 
functions: x = y + 6

2x − y = 13
23. A car rental company offers two plans for renting a car.

Plan A: 25 dollars per day and 10 cents per mile 
Plan B: 50 dollars per day with free unlimited mileage 
How many miles would you need to drive for plan B to save you money?

MODelInG WITH lIneAR FUnCTIOnS

24. Find the area of a triangle bounded by the y-axis, the line f (x) = 10 − 2x, and the line perpendicular to f that 
passes through the origin.

25.  A town’s population increases at a constant rate. In 2010 the population was 55,000. By 2012 the population had 
increased to 76,000. If this trend continues, predict the population in 2016.

26. The number of people afflicted with the common cold in the winter months dropped steadily by 50 each year 
since 2004 until 2010. In 2004, 875 people were inflicted.
Find the linear function that models the number of people afflicted with the common cold C as a function of the 
year, t. When will no one be afflicted?

For the following exercises, use the graph in Figure 1 showing the profit, y, in thousands of dollars, of a company in 
a given year, x, where x represents years since 1980.

5 10 15 20 25 300
2,000
4,000
6,000
8,000

10,000
12,000

x

y

Figure 1

27. Find the linear function y, where y depends on x, the number of years since 1980.

28. Find and interpret the y-intercept.
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For the following exercise, consider this scenario: In 2004, a school population was 1,700. By 2012 the population had 
grown to 2,500.

29. Assume the population is changing linearly.
a. How much did the population grow between the year 2004 and 2012?
b. What is the average population growth per year?
c. Find an equation for the population, P, of the school t years after 2004.

For the following exercises, consider this scenario: In 2000, the moose population in a park was measured to be 6,500. 
By 2010, the population was measured to be 12,500. Assume the population continues to change linearly.

30. Find a formula for the moose population, P.

31. What does your model predict the moose population to be in 2020?

For the following exercises, consider this scenario: The median home values in subdivisions Pima Central and East 
Valley (adjusted for inflation) are shown in Table 1. Assume that the house values are changing linearly.

Year Pima Central East Valley
1970 32,000 120,250
2010 85,000 150,000

Table 1

32. In which subdivision have home values increased at a higher rate?

33. If these trends were to continue, what would be the median home value in Pima Central in 2015?

FITTInG lIneAR MODelS TO DATA
34. Draw a scatter plot for the data in Table 2. Then determine whether the data appears to be linearly related.

0 2 4 6 8 10
–105 –50 1 55 105 160

Table 2 

35. Draw a scatter plot for the data in Table 3. If we wanted to know when the population would reach 15,000, 
would the answer involve interpolation or extrapolation?

Year 1990 1995 2000 2005 2010
Population 5,600 5,950 6,300 6,600 6,900

Table 3 

36. Eight students were asked to estimate their score on a 10-point quiz. Their estimated and actual scores are given 
in Table 4. Plot the points, then sketch a line that fits the data.

Predicted 6 7 7 8 7 9 10 10
Actual 6 7 8 8 9 10 10 9

Table 4 
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37. Draw a best-fit line for the plotted data.
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For the following exercises, consider the data in Table 5, which shows the percent of unemployed in a city of people 
25 years or older who are college graduates is given below, by year.

Year 2000 2002 2005 2007 2010
Percent Graduates 6.5 7.0 7.4 8.2 9.0

Table 5

38. Determine whether the trend appears to be linear. 
If so, and assuming the trend continues, find a 
linear regression model to predict the percent of 
unemployed in a given year to three decimal places.

39. In what year will the percentage exceed 12%?

40. Based on the set of data given in Table 6, calculate 
the regression line using a calculator or other 
technology tool, and determine the correlation 
coefficient to three decimal places.

x 17 20 23 26 29
y 15 25 31 37 40

Table 6

41. Based on the set of data given in Table 7, calculate 
the regression line using a calculator or other 
technology tool, and determine the correlation 
coefficient to three decimal places.

x 10 12 15 18 20
y 36 34 30 28 22

Table 7

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. 
The following ordered pairs show the population and the year over the ten-year span (population, year) for specific 
recorded years:

(3,600, 2000); (4,000, 2001); (4,700, 2003); (6,000, 2006)

42. Use linear regression to determine a function y, 
where the year depends on the population, to three 
decimal places of accuracy.

43. Predict when the population will hit 12,000.

44. What is the correlation coefficient for this model to 
three decimal places of accuracy?

45. According to the model, what is the population 
in 2014?
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CHAPTeR 2 PRACTICe TeST

1. Determine whether the following algebraic equation 
can be written as a linear function.  
2x + 3y = 7

2. Determine whether the following function is 
increasing or decreasing. f (x) = −2x + 5

3. Determine whether the following function is 
increasing or decreasing. f (x) = 7x + 9

4. Given the following set of information, find a linear 
equation satisfying the conditions, if possible. Passes 
through (5, 1) and (3, −9)

5. Given the following set of information, find a linear equation satisfying the conditions, if possible.  
x-intercept at (−4, 0) and y-intercept at (0, −6)

6. Find the slope of the line in Figure 1.
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7. Write an equation for line in Figure 2.
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8. Does Table 1 represent a linear function? If so, find 
a linear equation that models the data.

x −6 0 2 4
g(x) 14 32 38 44

Table 1 

9. Does Table 2 represent a linear function? If so, find 
a linear equation that models the data.

x 1 3 7 11
g(x) 4 9 19 12

Table 2 

10. At 6 am, an online company has sold 120 items that day. If the company sells an average of 30 items per hour 
for the remainder of the day, write an expression to represent the number of items that were sold n after 6 am.

For the following exercises, determine whether the lines given by the equations below are parallel, perpendicular, or 
neither parallel nor perpendicular:

11. y =   3 __ 4  x − 9
−4x − 3y = 8

12. −2x + y = 3

3x +   3 __ 2  y = 5

13. Find the x- and y-intercepts of the equation  
2x + 7y = −14.

14. Given below are descriptions of two lines. Find the slopes of Line 1 and Line 2. Is the pair of lines parallel, 
perpendicular, or neither?
Line 1: Passes through (−2, −6) and (3, 14)
Line 2: Passes through (2, 6) and (4, 14)
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15. Write an equation for a line perpendicular to  
f (x) = 4x + 3 and passing through the point (8, 10).

16. Sketch a line with a y-intercept of (0, 5) and slope −  5 __ 2  .

17. Graph of the linear function f (x) = −x + 6 . 18. For the two linear functions, find the point of 
intersection: x = y + 2

 2x − 3y = −1

19. A car rental company offers two plans for renting  
a car.

Plan A: $25 per day and $0.10 per mile
Plan B: $40 per day with free unlimited mileage

How many miles would you need to drive for plan B 
to save you money?

20. Find the area of a triangle bounded by the y-axis, 
the line f (x) = 12 − 4x, and the line perpendicular 
to f that passes through the origin.

21. A town’s population increases at a constant rate. 
In 2010 the population was 65,000. By 2012 the 
population had increased to 90,000. Assuming this 
trend continues, predict the population in 2018.

22. The number of people afflicted with the common 
cold in the winter months dropped steadily by 
25 each year since 2002 until 2012. In 2002, 8,040 
people were inflicted. Find the linear function that 
models the number of people afflicted with the 
common cold C as a function of the year, t. When 
will less than 6,000 people be afflicted?

For the following exercises, use the graph in Figure 3, showing the profit, y, in thousands of dollars, of a company 
in a given year, x, where x represents years since 1980.
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Figure 3  

23. Find the linear function y , where y depends on x, 
the number of years since 1980.

24. Find and interpret the y-intercept.

25. In 2004, a school population was 1250. By 2012 the population had dropped to 875. Assume the population is 
changing linearly.
a. How much did the population drop between the year 2004 and 2012?
b. What is the average population decline per year?
c. Find an equation for the population, P, of the school t years after 2004.



196 CHAPTER 2 linear Functions

26. Draw a scatter plot for the data provided in Table 3. 
Then determine whether the data appears to be 
linearly related.

0 2 4 6 8 10
−450 −200 10 265 500 755

Table 3 

27. Draw a best-fit line for the plotted data.
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For the following exercises, use Table 4 which shows the percent of unemployed persons 25 years or older who are 
college graduates in a particular city, by year.

Year 2000 2002 2005 2007 2010
Percent Graduates 8.5 8.0 7.2 6.7 6.4

Table 4

28. Determine whether the trend appears linear. If so, and assuming the trend continues, find a linear regression 
model to predict the percent of unemployed in a given year to three decimal places.

29. In what year will the percentage drop below 4%?

30. Based on the set of data given in Table 5, calculate the regression line using a calculator or other technology 
tool, and determine the correlation coefficient. Round to three decimal places of accuracy.

x 16 18 20 24 26
y 106 110 115 120 125

Table 5 

For the following exercises, consider this scenario: The population of a city increased steadily over a ten-year span. The 
following ordered pairs shows the population (in hundreds) and the year over the ten-year span, (population, year) 
for specific recorded years:

(4,500, 2000); (4,700, 2001); (5,200, 2003); (5,800, 2006)

31. Use linear regression to determine a function y, where the year depends on the population. Round to three 
decimal places of accuracy.

32. Predict when the population will hit 20,000.

33. What is the correlation coefficient for this model?



3
Polynomial and Rational Functions

197

Polynomial and Rational Functions

Figure 1 35-mm film, once the standard for capturing photographic images, has been made largely obsolete by digital photography. 
(credit “film”: modification of work by Horia Varlan; credit “memory cards”: modification of work by Paul Hudson)

CHAPTeR OUTlIne

3.1 Complex numbers
3.2 Quadratic Functions
3.3 Power Functions and Polynomial Functions
3.4 Graphs of Polynomial Functions
3.5 Dividing Polynomials
3.6 Zeros of Polynomial Functions
3.7 Rational Functions
3.8 Inverses and Radical Functions
3.9 Modeling Using Variation

Introduction
Digital photography has dramatically changed the nature of photography. No longer is an image etched in the emulsion 
on a roll of film. Instead, nearly every aspect of recording and manipulating images is now governed by mathematics. 
An image becomes a series of numbers, representing the characteristics of light striking an image sensor. When we 
open an image file, software on a camera or computer interprets the numbers and converts them to a visual image. 
Photo editing software uses complex polynomials to transform images, allowing us to manipulate the image in order 
to crop details, change the color palette, and add special effects. Inverse functions make it possible to convert from one 
file format to another. In this chapter, we will learn about these concepts and discover how mathematics can be used 
in such applications.



CHAPTER 3 polynomial and rational Functions198

3.1 COMPlex nUMBeRS

The study of mathematics continuously builds upon itself. Negative integers, for example, fill a void left by the set of 
positive integers. The set of rational numbers, in turn, fills a void left by the set of integers. The set of real numbers 
fills a void left by the set of rational numbers. Not surprisingly, the set of real numbers has voids as well. For example, 
we still have no solution to equations such as

x 2 + 4 = 0
Our best guesses might be +2 or −2. But if we test +2 in this equation, it does not work. If we test −2, it does not 
work. If we want to have a solution for this equation, we will have to go farther than we have so far. After all, to this 
point we have described the square root of a negative number as undefined. Fortunately, there is another system of 
numbers that provides solutions to problems such as these. In this section, we will explore this number system and 
how to work within it.

expressing Square Roots of negative numbers as Multiples of i
We know how to find the square root of any positive real number. In a similar way, we can find the square root of a 
negative number. The difference is that the root is not real. If the value in the radicand is negative, the root is said to 
be an imaginary number. The imaginary number i is defined as the square root of negative 1.

 √
—

 −1   = i
So, using properties of radicals,

i2 = ( √
—

 −1  )2 = −1
We can write the square root of any negative number as a multiple of i. Consider the square root of −25.

  √
—

 −25   =  √
—

 25 ⋅ (−1)  
 =  √

—
 25    √

—
 −1  

 = 5i
We use 5i and not −5i because the principal root of 25 is the positive root.

A complex number is the sum of a real number and an imaginary number. A complex number is expressed in standard 
form when written a + bi where a is the real part and bi is the imaginary part. For example, 5 + 2i is a complex number. 
So, too, is 3 + 4 √

—
 3i  .

5 + 2i
↗        ↖

Real part Imaginary part

Imaginary numbers are distinguished from real numbers because a squared imaginary number produces a negative 
real number. Recall, when a positive real number is squared, the result is a positive real number and when a negative 
real number is squared, again, the result is a positive real number. Complex numbers are a combination of real and 
imaginary numbers.

imaginary and complex numbers 
A complex number is a number of the form a + bi where
•	 a is the real part of the complex number.
•	 bi is the imaginary part of the complex number.
If b = 0, then a + bi is a real number. If a = 0 and b is not equal to 0, the complex number is called an 
imaginary number. An imaginary number is an even root of a negative number.

leARnInG OBjeCTIVeS

In this section, you will:

•	  Express square roots of negative numbers as multiples of i.

•	  Plot complex numbers on the complex plane.

•	  Add and subtract complex numbers.

•	  Multiply and divide complex numbers.
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How To…
Given an imaginary number, express it in standard form.

1. Write  √
—

 −a   as  √
—

 a    √
—

 −1  .
2. Express  √

—
 −1   as i.

3. Write  √
—

 a   ⋅ i in simplest form.

Example 1 Expressing an Imaginary Number in Standard Form

Express  √
—

 −9   in standard form.

Solution  √
— −9   =  √

—
 9    √

—
 −1   = 3i

In standard form, this is 0 + 3i. 

Try It #1

Express  √
—

 −24   in standard form.

Plotting a Complex number on the Complex Plane
We cannot plot complex numbers on a number line as we might real numbers. However, we can still represent 
them graphically. To represent a complex number we need to address the two components of the number. We use 
the complex plane, which is a coordinate system in which the horizontal axis represents the real component and 
the vertical axis represents the imaginary component. Complex numbers are the points on the plane, expressed as 
ordered pairs (a, b), where a represents the coordinate for the horizontal axis and b represents the coordinate for the 
vertical axis.

Let’s consider the number −2 + 3i. The real part of the complex number is −2 and the imaginary part is 3i. We plot 
the ordered pair (−2, 3) to represent the complex number −2 + 3i as shown in Figure 1.

2

3

r

i

–1–2–3

1

2 31

Figure 1

complex plane

In the complex plane, the horizontal axis is the real axis, and the 
vertical axis is the imaginary axis as shown in Figure 2.

imaginary

real

Figure 2  
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How To…
Given a complex number, represent its components on the complex plane.

1. Determine the real part and the imaginary part of the complex number.
2. Move along the horizontal axis to show the real part of the number.
3. Move parallel to the vertical axis to show the imaginary part of the number.
4. Plot the point.

Example 2 Plotting a Complex Number on the Complex Plane

Plot the complex number 3 − 4i on the complex plane.

Solution The real part of the complex number is 3, and the imaginary part is −4i. We plot the ordered pair (3, −4) 
as shown in Figure 3.
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Figure 3

Try It #2

Plot the complex number −4 − i on the complex plane.

Adding and Subtracting Complex numbers
Just as with real numbers, we can perform arithmetic operations on complex numbers. To add or subtract complex 
numbers, we combine the real parts and combine the imaginary parts.

complex numbers: addition and subtraction 
Adding complex numbers:

(a + bi) + (c + di) = (a + c) + (b + d)i
Subtracting complex numbers:

(a + bi) − (c + di) = (a − c) + (b − d)i

How To…
Given two complex numbers, find the sum or difference.

1. Identify the real and imaginary parts of each number.
2. Add or subtract the real parts.
3. Add or subtract the imaginary parts.

Example 3 Adding Complex Numbers

Add 3 − 4i and 2 + 5i.
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Solution We add the real parts and add the imaginary parts.

 (a + bi) + (c + di) = (a + c) + (b + d)i

 (3 − 4i) + (2 + 5i) = (3 + 2) + (−4 + 5)i

 = 5 + i

Try It #3

Subtract 2 + 5i from 3 − 4i.

Multiplying Complex numbers
Multiplying complex numbers is much like multiplying binomials. The major difference is that we work with the real 
and imaginary parts separately.

Multiplying a Complex Numbers by a Real Number

Let’s begin by multiplying a complex number by a real number. We distribute the real number just as we would with 
a binomial. So, for example:

 3(6 + 2i) = (3 ⋅ 6) + (3 ⋅ 2i) Distribute.

 = 18 + 6i Simplify.

How To…
Given a complex number and a real number, multiply to find the product.

1. Use the distributive property.
2. Simplify.

Example 4 Multiplying a Complex Number by a Real Number

Find the product 4(2 + 5i).

Solution Distribute the 4.

 4(2 + 5i) = (4 ⋅ 2) + (4 ⋅ 5i)

 = 8 + 20i

Try It #4

Find the product −4(2 + 6i).

Multiplying Complex Numbers Together

Now, let’s multiply two complex numbers. We can use either the distributive property or the FOIL method. Recall 
that FOIL is an acronym for multiplying First, Outer, Inner, and Last terms together. Using either the distributive 
property or the FOIL method, we get

 (a + bi)(c + di) = ac + adi + bci + bdi2

Because i2 = −1, we have

 (a + bi)(c + di) = ac + adi + bci − bd

To simplify, we combine the real parts, and we combine the imaginary parts.

 (a + bi)(c + di) = (ac − bd) + (ad + bc)i
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How To…
Given two complex numbers, multiply to find the product.

1. Use the distributive property or the FOIL method.
2. Simplify.

Example 5 Multiplying a Complex Number by a Complex Number

Multiply (4 + 3i)(2 − 5i).

Solution Use (a + bi)(c + di) = (ac − bd) + (ad + bc)i

 (4 + 3i)(2 − 5i) = (4 ⋅ 2 − 3 ⋅ (−5)) + (4 ⋅ (−5) + 3 ⋅ 2)i

 = (8 + 15) + (−20 + 6)i

 = 23 − 14i

Try It #5

Multiply (3 − 4i)(2 + 3i).

Dividing Complex numbers
Division of two complex numbers is more complicated than addition, subtraction, and multiplication because we 
cannot divide by an imaginary number, meaning that any fraction must have a real-number denominator. We need to 
find a term by which we can multiply the numerator and the denominator that will eliminate the imaginary portion of 
the denominator so that we end up with a real number as the denominator. This term is called the complex conjugate 
of the denominator, which is found by changing the sign of the imaginary part of the complex number. In other words, 
the complex conjugate of a + bi is a − bi.

Note that complex conjugates have a reciprocal relationship: The complex conjugate of a + bi is a − bi, and the complex 
conjugate of a − bi is a + bi. Further, when a quadratic equation with real coefficients has complex solutions, the 
solutions are always complex conjugates of one another.

Suppose we want to divide c + di by a + bi, where neither a nor b equals zero. We first write the division as a fraction, 
then find the complex conjugate of the denominator, and multiply.

   c + di _____ a + bi   where a ≠ 0 and b ≠ 0

Multiply the numerator and denominator by the complex conjugate of the denominator.

   (c + di) ______ (a + bi)   ⋅   (a − bi) _______ (a − bi)   =   (c + di)(a − bi)  ____________  (a + bi)(a − bi)  

Apply the distributive property.

 =    ca − cbi + adi − bdi2
  ________________  a2 − abi + abi − b2i2   

Simplify, remembering that i2 = −1.

 =   ca − cbi + adi − bd( − 1)  ____________________  a2 − abi + abi − b2(− 1)  

 =   (ca + bd) + (ad − cb)i  __________________  a2 + b2  
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the complex conjugate 
The complex conjugate of a complex number a + bi is a − bi. It is found by changing the sign of the imaginary 
part of the complex number. The real part of the number is left unchanged.
•	When a complex number is multiplied by its complex conjugate, the result is a real number.
•	When a complex number is added to its complex conjugate, the result is a real number.

Example 6 Finding Complex Conjugates

Find the complex conjugate of each number.

a. 2 + i √
—

 5    b. −  1 __ 2  i

Solution

a.  The number is already in the form a + bi. The complex conjugate is a − bi, or 2 − i √
—

 5  .

b.  We can rewrite this number in the form a + bi as 0 −  1 __ 2  i. The complex conjugate is a − bi, or 0 +   1 __ 2  i. This can 
be written simply as   1 __ 2  i.

Analysis Although we have seen that we can find the complex conjugate of an imaginary number, in practice we 
generally find the complex conjugates of only complex numbers with both a real and an imaginary component. To obtain 
a real number from an imaginary number, we can simply multiply by i.

How To…
Given two complex numbers, divide one by the other.

1. Write the division problem as a fraction.
2. Determine the complex conjugate of the denominator.
3. Multiply the numerator and denominator of the fraction by the complex conjugate of the denominator.
4. Simplify.

Example 7 Dividing Complex Numbers

Divide (2 + 5i) by (4 − i).

Solution We begin by writing the problem as a fraction.

  (2 + 5i) _______ (4 − i)  

Then we multiply the numerator and denominator by the complex conjugate of the denominator.

  (2 + 5i) _______ (4 − i)   ⋅   (4 + i) ______ (4 + i)  

To multiply two complex numbers, we expand the product as we would with polynomials (the process commonly 
called FOIL).

   (2 + 5i) _______ (4 − i)   ⋅   (4 + i) ______ (4 + i)   =   8 + 2i + 20i + 5i2
  ______________  16 + 4i − 4i − i2  

 =    8 + 2i + 20i + 5(−1)  __________________  16 + 4i − 4i − (−1)   Because i2 = −1

 =   3 + 22i ______ 17  

 =   3 __ 17   +    22 ___ 17  i  Separate real and imaginary parts.

Note that this expresses the quotient in standard form.
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Example 8 Substituting a Complex Number into a Polynomial Function

Let f(x) = x2 − 5x + 2. Evaluate f (3 + i).

Solution Substitute x = 3 + i into the function f(x) = x2 − 5x + 2 and simplify.

 f (3 + i) = (3 + i)2 − 5(3 + i) + 2 Substitute 3 + i for x.

 = (3 + 6i + i2) − (15 + 5i) + 2 Multiply.

 = 9 + 6i + (−1) −15 −5i + 2 Substitute −1 for i2.

 = −5 + i Combine like terms.

Analysi s We write f (3 + i) = −5 + i. Notice that the input is 3 + i and the output is −5 + i.

Try It #6

Let f(x) = 2x2 − 3x. Evaluate f (8 − i).

Example 9 Substituting an Imaginary Number in a Rational Function

Let f(x) =   2 + x _____ x + 3  . Evaluate f (10i).

Solution Substitute x = 10i and simplify.

   2 + 10i _______ 10i + 3   Substitute 10i for x.

   2 + 10i _______ 3 + 10i    Rewrite the denominator in standard form.

   2 + 10i _______ 3 + 10i   ⋅   
3 − 10i _______ 3 − 10i    

Prepare to multiply the numerator and denominator 
by the complex conjugate of the denominator.

   6 − 20i + 30i − 100i2
  __________________  9 − 30i + 30i − 100i2   

 Multiply using the distributive property or the  
FOIL method.

   6 − 20i + 30i − 100( −1)   ______________________  9 − 30i + 30i − 100( −1)   Substitute −1 for i 2.

   106 + 10i ________ 109   Simplify.

   106 ____ 109   +   10 ___ 109  i Separate the real and imaginary parts.

Try It #7

Let f(x) =   x + 1 _____ x − 4  . Evaluate f (−i).

Simplifying Powers of i
The powers of i are cyclic. Let’s look at what happens when we raise i to increasing powers.

 i1 = i
 i2 = −1
 i3 = i2 ⋅ i = −1 ⋅ i = −i
 i4 = i3 ⋅ i = −i ⋅ i = −i2 = −(−1) = 1
 i5 = i4 ⋅ i = 1 ⋅ i = i
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We can see that when we get to the fifth power of i, it is equal to the first power. As we continue to multiply i by itself 
for increasing powers, we will see a cycle of 4. Let’s examine the next 4 powers of i.

 i6 = i5 ⋅ i = i ⋅ i = i2 = −1
 i7 = i6 ⋅ i = i2 ⋅ i = i3 = −i
 i8 = i7 ⋅ i = i3 ⋅ i = i4 = 1
 i9 = i8 ⋅ i = i4 ⋅ i = i5 = i

Example 10 Simplifying Powers of i

Evaluate i35.

Solution Since i4 = 1, we can simplify the problem by factoring out as many factors of i4 as possible. To do so, first 
determine how many times 4 goes into 35: 35 = 4 ⋅ 8 + 3.

i35 = i4 ⋅ 8 + 3 = i4 ⋅ 8 ⋅ i3 = (i4)8 ⋅ i3 = 18 ⋅ i3 = i3 = −i

Q & A…
Can we write i35 in other helpful ways?

As we saw in Example 10, we reduced i35 to i3 by dividing the exponent by 4 and using the remainder to find the 
simplified form. But perhaps another factorization of i35 may be more useful. Table 1 shows some other possible 
factorizations.

Factorization of i35 i34 ⋅ i i33 ⋅ i2 i31 ⋅ i4 i19 ⋅ i16

Reduced form (i2)17⋅ i i33 ⋅ (−1) i31 ⋅ 1 i19 ⋅(i4)4

Simplified form (−1)17 ⋅ i −i33 i31 i19

Table 1

Each of these will eventually result in the answer we obtained above but may require several more steps than our 
earlier method.

Access these online resources for additional instruction and practice with complex numbers.

•	 Adding and Subtracting Complex numbers (http://openstaxcollege.org/l/addsubcomplex)

•	 Multiply Complex numbers (http://openstaxcollege.org/l/multiplycomplex)

•	 Multiplying Complex Conjugates (http://openstaxcollege.org/l/multcompconj)

•	 Raising i to Powers (http://openstaxcollege.org/l/raisingi)

http://openstaxcollege.org/l/addsubcomplex
http://openstaxcollege.org/l/multiplycomplex
http://openstaxcollege.org/l/multcompconj
http://openstaxcollege.org/l/raisingi
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3.1 SeCTIOn exeRCISeS

VeRBAl

1. Explain how to add complex numbers. 2. What is the basic principle in multiplication of 
complex numbers?

3. Give an example to show the product of two 
imaginary numbers is not always imaginary.

4. What is a characteristic of the plot of a real number 
in the complex plane?

AlGeBRAIC

For the following exercises, evaluate the algebraic expressions.

5. If f (x) = x2 + x − 4, evaluate f (2i). 6. If f (x) = x3 − 2, evaluate f (i).

7. If f (x) = x2 + 3x + 5, evaluate f (2 + i). 8. If f (x) = 2x2 + x − 3, evaluate f (2 − 3i).

9. If f (x) =   x + 1 _____ 2 − x  , evaluate f (5i). 10. If f (x) =   1 + 2x ______ x + 3  , evaluate f (4i).

GRAPHICAl

For the following exercises, determine the number of real and nonreal solutions for each quadratic function shown.

11. y

x

12. y

x

For the following exercises, plot the complex numbers on the complex plane.

13. 1 − 2i 14. −2 + 3i
15. i 16. −3 − 4i

nUMeRIC

For the following exercises, perform the indicated operation and express the result as a simplified complex number.

17. (3 + 2i) + (5 − 3i) 18. (−2 − 4i) + (1 + 6i) 19. (−5 + 3i) − (6 − i)

20. (2 − 3i) − (3 + 2i) 21. (−4 + 4i) − (−6 + 9i) 22. (2 + 3i)(4i)

23. (5 − 2i)(3i) 24. (6 − 2i)(5) 25. (−2 + 4i)(8)

26. (2 + 3i)(4 − i) 27. (−1 + 2i)(−2 + 3i) 28. (4 − 2i)(4 + 2i)

29. (3 + 4i)(3 − 4i) 30.   3 + 4i _____ 2  31.   6 − 2i _____ 3  

32.   −5 + 3i ______ 2i  33.   6 + 4i _____ i  34.   2 − 3i _____ 4 + 3i  
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35.   3 + 4i _____ 2 − i  36.   2 + 3i _____ 2 − 3i  37.  √
—

 −9   + 3  √
—

 −16  

38.  − √
—

 −4   − 4 √
—

 −25  39.   2 +  √
—

 −12   _________ 2  40.   4 +  √
—

 −20   _________ 2  

41. i8 42. i15 43. i22

TeCHnOlOGY

For the following exercises, use a calculator to help answer the questions.

44. Evaluate (1 + i)k for k = 4, 8, and 12. Predict the 
value if k = 16.

45. Evaluate (1 − i)k for k = 2, 6, and 10. Predict the 
value if k = 14.

46. Evaluate (1 + i)k − (1 − i)k for k = 4, 8, and 12 . 
Predict the value for k = 16.

47. Show that a solution of x6 + 1 = 0 is    √
—
 3   ____ 2   +   1 __ 2  i.

48. Show that a solution of x8 − 1 = 0 is    √
—
 2   ____ 2   +    √

—
 2   ____ 2  i.

exTenSIOnS

For the following exercises, evaluate the expressions, writing the result as a simplified complex number.

49.   1 __ i   +   4 __ i3  50.   1 __ i11   −   1 __ i21  51. i7(1 + i2)

52. i−3 + 5i7 53.   (2 + i)(4 − 2i)  ___________ (1 + i)  54.   (1 + 3i)(2 − 4i)  ____________ (1 + 2i)  

55.   (3 + i)2
 _______ (1 + 2i)2  56.   3 + 2i _____ 2 + i   + (4 + 3i) 57.   4 + i ____ i   +   3 − 4i _____ 1 − i  

58.   3 + 2i _____ 1 + 2i   −   2 − 3i _____ 3 + i  
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3.2 QUADRATIC FUnCTIOnS

Figure 1  An array of satellite dishes. (credit: Matthew Colvin de Valle, Flickr)

Curved antennas, such as the ones shown in Figure 1 are commonly used to focus microwaves and radio waves to 
transmit television and telephone signals, as well as satellite and spacecraft communication. The cross-section of the 
antenna is in the shape of a parabola, which can be described by a quadratic function.

In this section, we will investigate quadratic functions, which frequently model problems involving area and projectile 
motion. Working with quadratic functions can be less complex than working with higher degree functions, so they 
provide a good opportunity for a detailed study of function behavior.

Recognizing Characteristics of Parabolas
The graph of a quadratic function is a U-shaped curve called a parabola. One important feature of the graph is that it 
has an extreme point, called the vertex. If the parabola opens up, the vertex represents the lowest point on the graph, or 
the minimum value of the quadratic function. If the parabola opens down, the vertex represents the highest point on 
the graph, or the maximum value. In either case, the vertex is a turning point on the graph. The graph is also symmetric 
with a vertical line drawn through the vertex, called the axis of symmetry. These features are illustrated in Figure 2.
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Figure 2

leARnInG OBjeCTIVeS

In this section, you will:

•	  Recognize characteristics of parabolas.

•	  Understand how the graph of a parabola is related to its quadratic function.

•	  Determine a quadratic function’s minimum or maximum value.

•	  Solve problems involving a quadratic function’s minimum or maximum value.
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The y-intercept is the point at which the parabola crosses the y-axis. The x-intercepts are the points at which the 
parabola crosses the x-axis. If they exist, the x-intercepts represent the zeros, or roots, of the quadratic function, the 
values of x at which y = 0.

Example 1  Identifying the Characteristics of a Parabola

Determine the vertex, axis of symmetry, zeros, and y-intercept of the parabola shown in Figure 3.
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Figure 3

Solution The vertex is the turning point of the graph. We can see that the vertex is at (3, 1). Because this parabola opens 
upward, the axis of symmetry is the vertical line that intersects the parabola at the vertex. So the axis of symmetry is x = 3. 
This parabola does not cross the x-axis, so it has no zeros. It crosses the y-axis at (0, 7) so this is the y-intercept.

Understanding How the Graphs of Parabolas are Related to Their Quadratic Functions
The general form of a quadratic function presents the function in the form

f(x) = ax 2 + bx + c

where a, b, and c are real numbers and a ≠ 0. If a > 0, the parabola opens upward. If a < 0, the parabola opens 
downward. We can use the general form of a parabola to find the equation for the axis of symmetry.

The axis of symmetry is defined by x = −    b __ 2a  . If we use the quadratic formula, x =    −b ±  √
—

 b2 − 4ac      _______________ 2a  , to solve 
ax 2 + bx + c = 0 for the x-intercepts, or zeros, we find the value of x halfway between them is always x = −    b __ 2a  , the 
equation for the axis of symmetry.

Figure 4 represents the graph of the quadratic function written in general form as y = x2 + 4x + 3. In this form, 
a = 1, b = 4, and c = 3. Because a > 0, the parabola opens upward. The axis of symmetry is x = −   4 ____ 2(1)   = −2. This 

also makes sense because we can see from the graph that the vertical line x = −2 divides the graph in half. The vertex 
always occurs along the axis of symmetry. For a parabola that opens upward, the vertex occurs at the lowest point 
on the graph, in this instance, (−2, −1). The x-intercepts, those points where the parabola crosses the x-axis, occur at 
(−3, 0) and (−1, 0).
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The standard form of a quadratic function presents the function in the form

f(x) = a(x − h)2 + k

where (h, k) is the vertex. Because the vertex appears in the standard form of the quadratic function, this form is also 
known as the vertex form of a quadratic function.

As with the general form, if a > 0, the parabola opens upward and the vertex is a minimum. If a < 0, the parabola opens 
downward, and the vertex is a maximum. Figure 5 represents the graph of the quadratic function written in standard form  
as y = −3(x + 2)2 + 4. Since x − h = x + 2 in this example, h = −2. In this form, a = −3, h = −2, and k = 4. Because 
a < 0, the parabola opens downward. The vertex is at (−2, 4).
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Figure 5

The standard form is useful for determining how the graph is transformed from the graph of y = x  2. Figure 6 is the 
graph of this basic function.
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Figure 6

If k > 0, the graph shifts upward, whereas if k < 0, the graph shifts downward. In Figure 5, k > 0, so the graph is 
shifted 4 units upward. If h > 0, the graph shifts toward the right and if h < 0, the graph shifts to the left. In Figure 
5, h < 0, so the graph is shifted 2 units to the left. The magnitude of a indicates the stretch of the graph. If ∣a∣ > 1, the 
point associated with a particular x-value shifts farther from the x-axis, so the graph appears to become narrower, 
and there is a vertical stretch. But if ∣a∣ < 1, the point associated with a particular x-value shifts closer to the x-axis, 
so the graph appears to become wider, but in fact there is a vertical compression. In Figure 5, ∣a∣ > 1, so the graph 
becomes narrower.

The standard form and the general form are equivalent methods of describing the same function. We can see this by 
expanding out the general form and setting it equal to the standard form.

 a(x − h)2 + k = ax 2 + bx + c

 ax 2 − 2ahx + (ah2 + k) = ax 2 + bx + c

For the linear terms to be equal, the coefficients must be equal.

 −2ah = b, so h = −   b __ 2a  .
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This is the axis of symmetry we defined earlier. Setting the constant terms equal:

 ah 2 + k = c

 k = c − ah2

 = c − a   −  b __ 2a    
2

 = c −   b
2
 __ 4a  

In practice, though, it is usually easier to remember that k is the output value of the function when the input is h, so 
f(h) = k.

forms of quadratic functions 
A quadratic function is a function of degree two. The graph of a quadratic function is a parabola. The general form 
of a quadratic function is f(x) = ax 2 + bx + c where a, b, and c are real numbers and a ≠ 0.

The standard form of a quadratic function is f(x) = a(x − h)2 + k.

The vertex (h, k) is located at

h = −    b __ 
2a

  , k = f(h) = f       −b ___ 2a    .

How To…
Given a graph of a quadratic function, write the equation of the function in general form.

1. Identify the horizontal shift of the parabola; this value is h. Identify the vertical shift of the parabola; this value is k.
2. Substitute the values of the horizontal and vertical shift for h and k. in the function f(x) = a(x − h)2 + k.
3. Substitute the values of any point, other than the vertex, on the graph of the parabola for x and f (x).
4. Solve for the stretch factor, ∣a∣.
5. If the parabola opens up, a > 0. If the parabola opens down, a < 0 since this means the graph was reflected about 

the x-axis.
6. Expand and simplify to write in general form.

Example 2 Writing the Equation of a Quadratic Function from the Graph

Write an equation for the quadratic function g in Figure 7 as a transformation of f(x) = x 2, and then expand the 
formula, and simplify terms to write the equation in general form.
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–4

–4–6 2 4

4

6

Figure 7 

Solution We can see the graph of g is the graph of f(x) = x 2 shifted to the left 2 and down 3, giving a formula in the 
form g(x) = a(x + 2)2 − 3.
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Substituting the coordinates of a point on the curve, such as (0, −1), we can solve for the stretch factor.

 −1 = a(0 + 2)2 − 3

 2 = 4a

 a =   1 __ 2  

In standard form, the algebraic model for this graph is g (x) =   1 __ 2  (x + 2)2 − 3.

To write this in general polynomial form, we can expand the formula and simplify terms.

 g(x) =   1 __ 2  (x + 2)2 − 3

 =   1 __ 2  (x + 2)(x + 2) − 3

 =   1 __ 2  (x 2 + 4x + 4) − 3

 =   1 __ 2  x 2 + 2x + 2 − 3

 =   1 __ 2  x 2 + 2x − 1

Notice that the horizontal and vertical shifts of the basic graph of the quadratic function determine the location of 
the vertex of the parabola; the vertex is unaffected by stretches and compressions.

Analysi s We can check our work using the table feature on a graphing utility. First enter Y1 =   1 __ 2  (x + 2) 2 − 3. Next, 
select TBLSET, then use TblStart = − 6 and ΔTbl = 2, and select TABLE. See Table 1.

x −6 −4 −2 0 2

y 5 −1 −3 −1 5

Table 1

The ordered pairs in the table correspond to points on the graph.

Try It #1

A coordinate grid has been superimposed over the quadratic path of a basketball in Figure 8 Find an equation for 
the path of the ball. Does the shooter make the basket?

Figure 8 (credit: modification of work by Dan Meyer)

How To…
Given a quadratic function in general form, find the vertex of the parabola.

1. Identify a, b, and c.
2. Find h, the x-coordinate of the vertex, by substituting a and b into h = −  b __ 2a  .

3. Find k, the y-coordinate of the vertex, by evaluating k = f (h) = f    −  b __ 2a    .



SECTION 3.2 Quadratic Functions 213

Example 3 Finding the Vertex of a Quadratic Function

Find the vertex of the quadratic function f (x) = 2x2 − 6x + 7. Rewrite the quadratic in standard form (vertex form).

Solution The horizontal coordinate of the vertex will be at

 h = −    b __ 2a  

 = −  −6 ____ 2(2)  

 =   6 __ 4  

 =   3 __ 2  

The vertical coordinate of the vertex will be at
 k = f(h)

 = f      3 __ 2    

 = 2     3 __ 2    
2
 − 6     3 __ 2     + 7

 =   5 __ 2  

Rewriting into standard form, the stretch factor will be the same as the a in the original quadratic.

f  (x) = ax2 + bx + c

f  (x) = 2x2 − 6x + 7

Using the vertex to determine the shifts,
f  (x) = 2   x −   3 __ 2    

2
 +   5 __ 2  

Analysi s One reason we may want to identify the vertex of the parabola is that this point will inform us where the 
maximum or minimum value of the output occurs, (k), and where it occurs, (x).

Try It #2

Given the equation g (x) = 13 + x 2 − 6x, write the equation in general form and then in standard form.

Finding the Domain and Range of a Quadratic Function
Any number can be the input value of a quadratic function. Therefore, the domain of any quadratic function is all 
real numbers. Because parabolas have a maximum or a minimum point, the range is restricted. Since the vertex of a 
parabola will be either a maximum or a minimum, the range will consist of all y-values greater than or equal to the 
y-coordinate at the turning point or less than or equal to the y-coordinate at the turning point, depending on whether 
the parabola opens up or down.

domain and range of a quadratic function 

The domain of any quadratic function is all real numbers.
The range of a quadratic function written in general form f(x) = ax2 + bx + c with a positive a value is  

f (x) ≥ f   −   b __ 2a    , or   f   −   b __ 2a    , ∞   .

The range of a quadratic function written in general form with a negative a value is f (x) ≤ f   −   b __ 2a    , or   −∞,  f   −   b __ 2a       . 
The range of a quadratic function written in standard form f (x) = a(x − h)2 + k with a positive a value is 
f (x) ≥ k; the range of a quadratic function written in standard form with a negative a value is f (x) ≤ k.
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How To…
Given a quadratic function, find the domain and range.

1. Identify the domain of any quadratic function as all real numbers.
2. Determine whether a is positive or negative. If a is positive, the parabola has a minimum. If a is negative, the 

parabola has a maximum.
3. Determine the maximum or minimum value of the parabola, k.
4. If the parabola has a minimum, the range is given by f(x) ≥ k, or [k, ∞). If the parabola has a maximum, the range 

is given by f (x) ≤ k, or (−∞, k].

Example 4 Finding the Domain and Range of a Quadratic Function

Find the domain and range of f (x) = −5x2 + 9x − 1.

Solution As with any quadratic function, the domain is all real numbers.

Because a is negative, the parabola opens downward and has a maximum value. We need to determine the maximum 
value. We can begin by finding the x-value of the vertex.

 h = −   b __ 2a  

 = −   9 _____ 2(−5)  

 =   9 __ 10  

The maximum value is given by f (h).

 f     9 __ 10     = −5    9 __ 10    
2
 + 9    9 __ 10     − 1

 =   61 ___ 20  

The range is f (x) ≤   61 ___ 20  , or   −∞,   61 ___ 20     .

Try It #3

Find the domain and range of f (x) = 2   x −   4 __ 7    
2
 +   8 __ 11  .

Determining the Maximum and Minimum Values of Quadratic Functions
The output of the quadratic function at the vertex is the maximum or minimum value of the function, depending on 
the orientation of the parabola. We can see the maximum and minimum values in Figure 9.
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Figure 9

There are many real-world scenarios that involve finding the maximum or minimum value of a quadratic function, 
such as applications involving area and revenue.
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Example 5 Finding the Maximum Value of a Quadratic Function

A backyard farmer wants to enclose a rectangular space for a new garden within her fenced backyard. She has purchased 
80 feet of wire fencing to enclose three sides, and she will use a section of the backyard fence as the fourth side.

a.  Find a formula for the area enclosed by the fence if the sides of fencing perpendicular to the existing fence have 
length L.

b. What dimensions should she make her garden to maximize the enclosed area?

Solution Let’s use a diagram such as Figure 10 to record the given information. It is also helpful to introduce a temporary 
variable, W, to represent the width of the garden and the length of the fence section parallel to the backyard fence.

Garden

Backyard

W

L

Figure 10

 a. We know we have only 80 feet of fence available, and L + W + L = 80, or more simply, 2L + W = 80. This 
allows us to represent the width, W, in terms of L.

 W = 80 − 2L
Now we are ready to write an equation for the area the fence encloses. We know the area of a rectangle is length 
multiplied by width, so

 A = LW = L(80 − 2L)
 A(L) = 80L − 2L2

This formula represents the area of the fence in terms of the variable length L. The function, written in general 
form, is

 A(L) = −2L2 + 80L.
 b. The quadratic has a negative leading coefficient, so the graph will open downward, and the vertex will be the 

maximum value for the area. In finding the vertex, we must be careful because the equation is not written in 
standard polynomial form with decreasing powers. This is why we rewrote the function in general form above. 
Since a is the coefficient of the squared term, a = −2, b = 80, and c = 0.

To find the vertex:
 h = −   80 _ 

2(−2)
    k = A(20)

 = 20 and = 80(20) − 2(20)2

   = 800
The maximum value of the function is an area of 800 square feet, which occurs when L = 20 feet. When the shorter 
sides are 20 feet, there is 40 feet of fencing left for the longer side. To maximize the area, she should enclose the 
garden so the two shorter sides have length 20 feet and the longer side parallel to the existing fence has length 40 feet.

Analysi s This problem also could be solved by graphing the quadratic function. We can see where the maximum area 
occurs on a graph of the quadratic function in Figure 11.
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How To…
Given an application involving revenue, use a quadratic equation to find the maximum.

1. Write a quadratic equation for revenue.
2. Find the vertex of the quadratic equation.
3. Determine the y-value of the vertex.

Example 6 Finding Maximum Revenue

The unit price of an item affects its supply and demand. That is, if the unit price goes up, the demand for the item will 
usually decrease. For example, a local newspaper currently has 84,000 subscribers at a quarterly charge of $30. Market 
research has suggested that if the owners raise the price to $32, they would lose 5,000 subscribers. Assuming that 
subscriptions are linearly related to the price, what price should the newspaper charge for a quarterly subscription to 
maximize their revenue?

Solution Revenue is the amount of money a company brings in. In this case, the revenue can be found by multiplying 
the price per subscription times the number of subscribers, or quantity. We can introduce variables, p for price per 
subscription and Q for quantity, giving us the equation Revenue = pQ.

Because the number of subscribers changes with the price, we need to find a relationship between the variables. We 
know that currently p = 30 and Q = 84,000. We also know that if the price rises to $32, the newspaper would lose 5,000 
subscribers, giving a second pair of values, p = 32 and Q = 79,000. From this we can find a linear equation relating 
the two quantities. The slope will be

 m =   79,000 − 84,000  _____________  32 − 30  

 =   −5,000 _______ 2  

 = −2,500

This tells us the paper will lose 2,500 subscribers for each dollar they raise the price. We can then solve for the 
y-intercept.
 Q = −2,500p + b Substitute in the point Q = 84,000 and p = 30

 84,000 = −2,500(30) + b Solve for b

 b = 159,000

This gives us the linear equation Q = −2,500p + 159,000 relating cost and subscribers. We now return to our revenue 
equation.
 Revenue = pQ

 Revenue = p(−2,500p + 159,000)

 Revenue = −2,500p2 + 159,000p

We now have a quadratic function for revenue as a function of the subscription charge. To find the price that will 
maximize revenue for the newspaper, we can find the vertex.

 h = −   159,000 _________ 2(−2,500)  

 = 31.8

The model tells us that the maximum revenue will occur if the newspaper charges $31.80 for a subscription. To find 
what the maximum revenue is, we evaluate the revenue function.

 maximum revenue = −2,500(31.8)2 + 159,000(31.8)

 = 2,528,100

Analysi s This could also be solved by graphing the quadratic as in Figure 12. We can see the maximum revenue on a 
graph of the quadratic function.
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Finding the x- and y-Intercepts of a Quadratic Function

Much as we did in the application problems above, we also need to find intercepts of quadratic equations for graphing 
parabolas. Recall that we find the y-intercept of a quadratic by evaluating the function at an input of zero, and we find 
the x-intercepts at locations where the output is zero. Notice in Figure 13 that the number of x-intercepts can vary 
depending upon the location of the graph.
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Figure 13 number of x-intercepts of a parabola

How To…
Given a quadratic function f (x), find the y- and x-intercepts.

1. Evaluate f (0) to find the y-intercept.
2. Solve the quadratic equation f (x) = 0 to find the x-intercepts.

Example 7 Finding the y- and x-Intercepts of a Parabola

Find the y- and x-intercepts of the quadratic f(x) = 3x2 + 5x − 2.

Solution We find the y-intercept by evaluating f (0).

 f(0) = 3(0)2 + 5(0) − 2
 = −2
So the y-intercept is at (0, −2).

For the x-intercepts, we find all solutions of f(x) = 0.
 0 = 3x2 + 5x − 2

In this case, the quadratic can be factored easily, providing the simplest method for solution.

 0 = (3x − 1)(x + 2)

 0 = 3x − 1 0 = x + 2

 x =   1 __ 3   or x = −2

So the x-intercepts are at     1 __ 3  , 0   and (−2, 0).
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Analysi s By graphing the function, we can confirm that the graph crosses 
the y-axis at (0, −2). We can also confirm that the graph crosses the x-axis 
at     1 __ 3  , 0   and (−2, 0). See Figure 14. –3 –2 –1 1 2 3
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–2

–1

1
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f (x) = 3x2 + 5x − 2
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1
3 , 0))

Figure 14   

Rewriting Quadratics in Standard Form

In Example 7, the quadratic was easily solved by factoring. However, there are many quadratics that cannot be factored. 
We can solve these quadratics by first rewriting them in standard form.

How To…
Given a quadratic function, find the x-intercepts by rewriting in standard form.

1. Substitute a and b into h = −  b __ 2a  .

2. Substitute x = h into the general form of the quadratic function to find k.
3. Rewrite the quadratic in standard form using h and k.
4. Solve for when the output of the function will be zero to find the x-intercepts.

Example 8 Finding the x-Intercepts of a Parabola

Find the x-intercepts of the quadratic function f (x) = 2x2 + 4x − 4.

Solution We begin by solving for when the output will be zero.

0 = 2x2 + 4x − 4

Because the quadratic is not easily factorable in this case, we solve for the intercepts by first rewriting the quadratic 
in standard form.

f (x) = a(x − h)2 + k

We know that a = 2. Then we solve for h and k.

 h = −   b __ 2a   k = f (−1)

 = −   4 ___ 2(2)   = 2(−1)2 + 4(−1) − 4

 = −1 = −6
So now we can rewrite in standard form.
 f(x) = 2(x + 1)2 − 6

We can now solve for when the output will be zero.
 0 = 2(x + 1)2 − 6

 6 = 2(x + 1)2

 3 = (x + 1)2

 x + 1 = ± √
—
 3  

 x = −1 ± √
—
 3  

The graph has x-intercepts at (−1 −  √
—
 3  , 0) and (−1 +  √

—
 3  , 0).
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Analysis We can check our work by graphing the given function on a 
graphing utility and observing the x-intercepts. See Figure 15.
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Figure 15  

Try It #4

In a separate Try It, we found the standard and general form for the function g(x) = 13 + x2 − 6x. Now find the y- 
and x-intercepts (if any).

Example 9 Solving a Quadratic Equation with the Quadratic Formula

Solve x2 + x + 2 = 0.

Solution Let’s begin by writing the quadratic formula: x =   −b ±  √
—

 b2 − 4ac    _______________ 2a  .

When applying the quadratic formula, we identify the coefficients a, b and c. For the equation x2 + x + 2 = 0, we have 
a = 1, b = 1, and c = 2. Substituting these values into the formula we have:

 x =   −b ±  √
—

 b2 − 4ac    _______________ 2a  

 =   −1 ±  √
—

  12 − 4 ⋅ 1 ⋅ (2)    ___________________  2 ⋅ 1  

 =   −1 ±  √
—

 1 − 8    ____________ 2  

 =   −1 ±  √
—

 −7   __________ 2  

 =   −1 ± i √
—
 7   _________ 2  

The solutions to the equation are    −1 + i √
—
 7   _________ 2   and   −1 − i √

—
 7   _________ 2   or   −1 ___ 2   +    i √

—
 7   ____ 2   and    −1 ___ 2   −   i √

—
 7   ____ 2  .

Example 10 Applying the Vertex and x-Intercepts of a Parabola

A ball is thrown upward from the top of a 40 foot high building at a speed of 80 feet per second. The ball’s height above 
ground can be modeled by the equation H(t) = −16t 2 + 80t + 40.

a. When does the ball reach the maximum height?
b. What is the maximum height of the ball?
c. When does the ball hit the ground?

Solution
a. The ball reaches the maximum height at the vertex of the parabola.

 h = −   80 ______ 2(−16)  

 =   80 ___ 32  

 =   5 __ 2  

 = 2.5

The ball reaches a maximum height after 2.5 seconds.
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b.  To find the maximum height, find the y-coordinate of the vertex of the parabola.

 k = H    −    b __ 2a    

 = H(2.5)

 = −16(2.5)2 + 80(2.5) + 40

 = 140

The ball reaches a maximum height of 140 feet.

c.  To find when the ball hits the ground, we need to determine when the height is zero, H(t) = 0. We use the 
quadratic formula.

 t =    −80 ±  √
—

  802 − 4(−16)(40)     _______________________  2(−16)  

 =    −80 ±  √
—

 8960    _____________ 
−32  

Because the square root does not simplify nicely, we can use a calculator to approximate the values of the 
solutions.

 t =   −80 −  √
—

 8960    _____________ 
−32   ≈ 5.458 or t =    −80 +  √

—
 8960    _____________ 

−32   ≈ −0.458

The second answer is outside the reasonable domain of our model, so we conclude the ball will hit the ground 
after about 5.458 seconds. See Figure 16.
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Try It #5

A rock is thrown upward from the top of a 112-foot high cliff overlooking the ocean at a speed of 96 feet per second. 
The rock’s height above ocean can be modeled by the equation  
H(t) = −16t 2 + 96t + 112.

a.  When does the rock reach the maximum height?

b.  What is the maximum height of the rock?

c.  When does the rock hit the ocean?

Access these online resources for additional instruction and practice with quadratic equations.

•	 Graphing Quadratic Functions in General Form (http://openstaxcollege.org/l/graphquadgen)

•	 Graphing Quadratic Functions in Standard Form (http://openstaxcollege.org/l/graphquadstan)

•	 Quadratic Function Review (http://openstaxcollege.org/l/quadfuncrev)

•	 Characteristics of a Quadratic Function (http://openstaxcollege.org/l/characterquad)

http://openstaxcollege.org/l/graphquadgen
http://openstaxcollege.org/l/graphquadstan
http://openstaxcollege.org/l/quadfuncrev
http://openstaxcollege.org/l/characterquad
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3.2 SeCTIOn exeRCISeS

VeRBAl

1. Explain the advantage of writing a quadratic 
function in standard form.

2. How can the vertex of a parabola be used in solving 
real world problems?

3. Explain why the condition of a ≠ 0 is imposed in 
the definition of the quadratic function.

4. What is another name for the standard form of a 
quadratic function?

5. What two algebraic methods can be used to find the 
horizontal intercepts of a quadratic function?

AlGeBRAIC

For the following exercises, rewrite the quadratic functions in standard form and give the vertex.

6. f (x) = x 2 − 12x + 32 7. g(x) = x 2 + 2x − 3 8. f (x) = x 2 − x

9. f (x) = x 2 + 5x − 2 10. h(x) = 2x 2 + 8x − 10 11. k(x) = 3x 2 − 6x − 9

12. f (x) = 2x 2 − 6x 13. f (x) = 3x 2 − 5x − 1

For the following exercises, determine whether there is a minimum or maximum value to each quadratic function.  
Find the value and the axis of symmetry.

14. y(x) = 2x 2 + 10x + 12 15. f(x) = 2x 2 − 10x + 4 16. f(x) = −x 2 + 4x + 3

17. f(x) = 4x 2 + x − 1 18. h(t) = −4t 2 + 6t − 1 19. f(x) =   1 __ 2  x 2 + 3x + 1

20. f(x) = −  1 __ 3  x 2 − 2x + 3

For the following exercises, determine the domain and range of the quadratic function.

21. f(x) = (x − 3)2 + 2 22. f(x) = −2(x + 3)2 − 6 23. f(x) = x 2 + 6x + 4

24. f(x) = 2x 2 − 4x + 2 25. k(x) = 3x 2 − 6x − 9

For the following exercises, solve the equations over the complex numbers.

26. x 2 = −25 27. x 2 = −8 28. x 2 + 36 = 0

29. x 2 + 27 = 0 30. x 2 + 2x + 5 = 0 31. x 2 − 4x + 5 = 0

32. x 2 + 8x + 25 = 0 33. x2 − 4x + 13 = 0 34. x 2 + 6x + 25 = 0

35. x 2 − 10x + 26 = 0 36. x 2 − 6x + 10 = 0 37. x(x − 4) = 20

38. x(x − 2) = 10 39. 2x 2 + 2x + 5 = 0 40. 5x 2 − 8x + 5 = 0

41. 5x 2 + 6x + 2 = 0 42. 2x 2 − 6x + 5 = 0 43. x 2 + x + 2 = 0

44. x 2 − 2x + 4 = 0

For the following exercises, use the vertex (h, k) and a point on the graph (x, y) to find the general form of the 
equation of the quadratic function.

45. (h, k) = (2, 0), (x, y) = (4, 4) 46. (h, k) = (−2, −1), (x, y) = (−4, 3) 47. (h, k) = (0, 1), (x, y) = (2, 5)

48. (h, k) = (2, 3), (x, y) = (5, 12) 49. (h, k) = (−5, 3), (x, y) = (2, 9) 50. (h, k) = (3, 2), (x, y) = (10, 1)

51. (h, k) = (0, 1), (x, y) = (1, 0) 52. (h, k) = (1, 0), (x, y) = (0, 1)
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GRAPHICAl
For the following exercises, sketch a graph of the quadratic function and give the vertex, axis of symmetry, and 
intercepts.

53. f(x) = x 2 − 2x 54. f(x) = x 2 − 6x − 1 55. f(x) = x 2 − 5x − 6

56. f(x) = x 2 − 7x + 3 57. f(x) = −2x 2 + 5x − 8 58. f(x) = 4x 2 − 12x − 3

For the following exercises, write the equation for the graphed function.
59. 
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nUMeRIC
For the following exercises, use the table of values that represent points on the graph of a quadratic function.  
By determining the vertex and axis of symmetry, find the general form of the equation of the quadratic function.

65.  66.  67. 

68. 69. 

TeCHnOlOGY
For the following exercises, use a calculator to find the answer.

70. Graph on the same set of axes the functions  
f (x) = x2, f(x) = 2x 2, and f(x) =   1 __ 3  x 2. What appears 
to be the effect of changing the coefficient?

71. Graph on the same set of axes f(x) = x 2, f(x) = x 2 + 2 
and f(x) = x 2, f(x) = x 2 + 5 and f(x) = x 2 − 3. What 
appears to be the effect of adding a constant?

72. Graph on the same set of axes f(x) = x 2,  
f(x) = (x − 2)2, f(x − 3)2, and f(x) = (x + 4)2. 
What appears to be the effect of adding or subtracting 
those numbers?

73. The path of an object projected at a 45 degree angle 
with initial velocity of 80 feet per second is given 
by the function h(x) =   −32 ____ (80)2  x 2 + x where x is the 

horizontal distance traveled and h(x) is the height 
in feet. Use the [TRACE] feature of your calculator 
to determine the height of the object when it has 
traveled 100 feet away horizontally.
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74. A suspension bridge can be modeled by the quadratic function h(x) = 0.0001x 2 with −2000 ≤ x ≤ 2000 where  
∣ x ∣  is the number of feet from the center and h(x) is height in feet. Use the [TRACE] feature of your calculator to 
estimate how far from the center does the bridge have a height of 100 feet.

exTenSIOnS
For the following exercises, use the vertex of the graph of the quadratic function and the direction the graph opens  
to find the domain and range of the function.

75. Vertex (1, −2), opens up. 76. Vertex (−1, 2) opens down.

77. Vertex (−5, 11), opens down. 78. Vertex (−100, 100), opens up.

For the following exercises, write the equation of the quadratic function that contains the given point and has the  
same shape as the given function.

79. Contains (1, 1) and has shape of f(x) = 2x 2.  
Vertex is on the y-axis.

80. Contains (−1, 4) and has the shape of f(x) = 2x 2. 
Vertex is on the y-axis.

81. Contains (2, 3) and has the shape of f(x) = 3x 2. 
Vertex is on the y-axis.

82. Contains (1, −3) and has the shape of f(x) = −x 2. 
Vertex is on the y-axis.

83. Contains (4, 3) and has the shape of f(x) = 5x 2. 
Vertex is on the y-axis.

84. Contains (1, −6) has the shape of f(x) = 3x 2. Vertex 
has x-coordinate of −1.

ReAl-WORlD APPlICATIOnS

85. Find the dimensions of the rectangular corral 
producing the greatest enclosed area given 200 feet 
of fencing.

86. Find the dimensions of the rectangular corral split 
into 2 pens of the same size producing the greatest 
possible enclosed area given 300 feet of fencing.

87. Find the dimensions of the rectangular corral 
producing the greatest enclosed area split into  
3 pens of the same size given 500 feet of fencing.

88. Among all of the pairs of numbers whose sum is 6, 
find the pair with the largest product. What is the 
product?

89. Among all of the pairs of numbers whose difference 
is 12, find the pair with the smallest product. What 
is the product?

90. Suppose that the price per unit in dollars of  
a cell phone production is modeled by  
p = $45 − 0.0125x, where x is in thousands of 
phones produced, and the revenue represented 
by thousands of dollars is R = x ⋅ p. Find the 
production level that will maximize revenue.

91. A rocket is launched in the air. Its height, in meters 
above sea level, as a function of time, in seconds, 
is given by h(t) = −4.9t 2 + 229t + 234. Find the 
maximum height the rocket attains.

92. A ball is thrown in the air from the top of a building. 
Its height, in meters above ground, as  
a function of time, in seconds, is given by  
h(t) = −4.9t2 + 24t + 8. How long does it take to 
reach maximum height?

93. A soccer stadium holds 62,000 spectators. With a 
ticket price of $11, the average attendance has been 
26,000. When the price dropped to $9, the average 
attendance rose to 31,000. Assuming that attendance 
is linearly related to ticket price, what ticket price 
would maximize revenue?

94. A farmer finds that if she plants 75 trees per acre, 
each tree will yield 20 bushels of fruit. She estimates 
that for each additional tree planted per acre, the 
yield of each tree will decrease by 3 bushels. How 
many trees should she plant per acre to maximize 
her harvest?
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Identify power functions.

•	  Identify end behavior of power functions.

•	  Identify polynomial functions.

•	  Identify the degree and leading coefficient of polynomial functions.

3.3 POWeR FUnCTIOnS AnD POlYnOMIAl FUnCTIOnS

Figure 1 (credit: Jason Bay, Flickr)

Suppose a certain species of bird thrives on a small island. Its population over the last few years is shown in Table 1.

Year 2009 2010 2011 2012 2013
Bird Population 800 897 992 1,083 1,169

Table 1

The population can be estimated using the function P(t) = −0.3t3 + 97t + 800, where P(t) represents the bird population 
on the island t years after 2009. We can use this model to estimate the maximum bird population and when it will occur. 
We can also use this model to predict when the bird population will disappear from the island. In this section, we will 
examine functions that we can use to estimate and predict these types of changes.

Identifying Power Functions
In order to better understand the bird problem, we need to understand a specific type of function. A power function 
is a function with a single term that is the product of a real number, a coefficient, and a variable raised to a fixed real 
number. (A number that multiplies a variable raised to an exponent is known as a coefficient.)

As an example, consider functions for area or volume. The function for the area of a circle with radius r is

 A(r) = πr  2

and the function for the volume of a sphere with radius r is

 V(r) =   4 __ 3  πr   3

Both of these are examples of power functions because they consist of a coefficient, π or   4 _ 3  π, multiplied by a variable 
r raised to a power.

power function 
A power function is a function that can be represented in the form

f (x) = kxp

where k and p are real numbers, and k is known as the coefficient.
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Q & A…
Is f (x) = 2x a power function?

No. A power function contains a variable base raised to a fixed power. This function has a constant base raised to a 
variable power. This is called an exponential function, not a power function.

Example 1 Identifying Power Functions

Which of the following functions are power functions?

 f (x) = 1 Constant function 

 f (x) = x Identify function

 f (x) = x 2 Quadratic function

 f (x) = x 3 Cubic function

 f (x) =   1 __ x   Reciprocal function

 f (x) =   1 __ x2   Reciprocal squared function

 f (x) =  √
—
 x   Square root function

 f (x) =   3 √
—
 x    Cube root function

Solution All of the listed functions are power functions.

The constant and identity functions are power functions because they can be written as f (x) = x0 and f (x) = x1 
respectively.

The quadratic and cubic functions are power functions with whole number powers f (x) = x 2 and f (x) = x 3.

The reciprocal and reciprocal squared functions are power functions with negative whole number powers because they 
can be written as f (x) = x −1 and f (x) = x −2.

The square and cube root functions are power functions with fractional powers because they can be written as 
f (x) = x1/2 or f (x) = x 1/3.

Try It #1

Which functions are power functions? 

f (x) = 2x 2 ⋅ 4x 3    g(x) = −x 5 + 5x  3 − 4x     h(x) =   2x5 − 1 _ 
3x2 + 4

  

Identifying end Behavior of Power Functions
Figure 2 shows the graphs of f (x) = x  2, g(x) = x  4 and h(x) = x  6, which are all power functions with even, whole-number 
powers. Notice that these graphs have similar shapes, very much like that of the quadratic function in the toolkit. 
However, as the power increases, the graphs flatten somewhat near the origin and become steeper away from the origin.

–2 –1 1 2

1

2

3

4

f (x) = x6 g(x) = x4

h(x) = x2

x

y

Figure 2 even-power functions
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To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol ∞ for positive 
infinity and −∞ for negative infinity. When we say that “x approaches infinity,” which can be symbolically written as  
x → ∞, we are describing a behavior; we are saying that x is increasing without bound.

With the even-power function, as the input increases or decreases without bound, the output values become very large, 
positive numbers. Equivalently, we could describe this behavior by saying that as x approaches positive or negative 
infinity, the f (x) values increase without bound. In symbolic form, we could write

as x → ±∞, f (x) → ∞
Figure 3 shows the graphs of f (x) = x 3, g(x) = x 5, and h(x) = x 7, which are all power functions with odd, whole-number 
powers. Notice that these graphs look similar to the cubic function in the toolkit. Again, as the power increases, the 
graphs flatten near the origin and become steeper away from the origin.

–2 –1 1 2

–4

–2

2

4

h(x) = x7

g(x) = x5

f (x) = x3

x

y

Figure 3 Odd-power functions

These examples illustrate that functions of the form f (x) = xn reveal symmetry of one kind or another. First, in Figure 
2 we see that even functions of the form f (x) = xn, n even, are symmetric about the y-axis. In Figure 3 we see that odd 
functions of the form f (x) = xn, n odd, are symmetric about the origin.

For these odd power functions, as x approaches negative infinity, f (x) decreases without bound. As x approaches 
positive infinity, f (x) increases without bound. In symbolic form we write

    as x → −∞, f (x) → −∞    as x → ∞,    f (x) → ∞
The behavior of the graph of a function as the input values get very small (x → −∞) and get very large (x → ∞) is 
referred to as the end behavior of the function. We can use words or symbols to describe end behavior.

Figure 4 shows the end behavior of power functions in the form f (x) = kxn where n is a non-negative integer depending 
on the power and the constant.

Even power Odd power

Positive constant  
k > 0

y

x

x → −∞, f (x) → ∞
and x → ∞, f (x) → ∞

y

x

x → −∞, f (x) → −∞
and x → ∞, f (x) → ∞

Negative constant  
k < 0

y

x

x → −∞, f (x) → −∞
and x → ∞, f (x) → −∞

y

x

x → −∞, f (x) → ∞
and x → ∞, f (x) → −∞

Figure 4
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How To…
Given a power function f (x) = kx n where n is a non-negative integer, identify the end behavior.

1. Determine whether the power is even or odd.
2. Determine whether the constant is positive or negative.
3. Use Figure 4 to identify the end behavior.

Example 2 Identifying the End Behavior of a Power Function

Describe the end behavior of the graph of f (x) = x8.

Solution The coefficient is 1 (positive) and the exponent of the power function is 8 (an even number). As x approaches 
infinity, the output (value of f (x)) increases without bound. We write as x → ∞, f (x) → ∞. As x approaches negative 
infinity, the output increases without bound. In symbolic form, as x → −∞, f (x) → ∞. We can graphically represent 
the function as shown in Figure 5.
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Figure 5

Example 3 Identifying the End Behavior of a Power Function

Describe the end behavior of the graph of f (x) = −x  9.

Solution The exponent of the power function is 9 (an odd number). Because the coefficient is −1 (negative), the graph 
is the reflection about the x-axis of the graph of f (x) = x 9. Figure 6 shows that as x approaches infinity, the output 
decreases without bound. As x approaches negative infinity, the output increases without bound. In symbolic form, 
we would write

as x → −∞, f (x) → ∞
   as x → ∞,      f (x) → −∞
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Figure 6
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Analysi s We can check our work by using the table feature on a graphing utility.

x f  (x)
−10 1,000,000,000
−5 1,953,125

0 0
5 −1,953,125

10 −1,000,000,000

Table 2

We can see from Table 2 that, when we substitute very small values for x, the output is very large, and when we substitute 
very large values for x, the output is very small (meaning that it is a very large negative value).

Try It #2

Describe in words and symbols the end behavior of f (x) = −5x 4.

Identifying Polynomial Functions
An oil pipeline bursts in the Gulf of Mexico, causing an oil slick in a roughly circular shape. The slick is currently  
24 miles in radius, but that radius is increasing by 8 miles each week. We want to write a formula for the area covered 
by the oil slick by combining two functions. The radius r of the spill depends on the number of weeks w that have 
passed. This relationship is linear.
 r(w) = 24 + 8w

We can combine this with the formula for the area A of a circle.

 A(r) = πr 2

Composing these functions gives a formula for the area in terms of weeks.

 A(w) = A(r(w))

 = A(24 + 8w)

 = π(24 + 8w)2

Multiplying gives the formula.
 A(w) = 576π + 384πw + 64πw 2

This formula is an example of a polynomial function. A polynomial function consists of either zero or the sum of 
a finite number of non-zero terms, each of which is a product of a number, called the coefficient of the term, and a 
variable raised to a non-negative integer power.

polynomial functions 
Let n be a non-negative integer. A polynomial function is a function that can be written in the form

f  (x) = an x n + ... + a2 x 2 + a1 x + a0

This is called the general form of a polynomial function. Each ai is a coefficient and can be any real number, but an 
cannot = 0. Each product ai   x i is a term of a polynomial function.

Example 4 Identifying Polynomial Functions

Which of the following are polynomial functions?

f (x) = 2x 3 ⋅ 3x + 4  g(x) = −x(x2 − 4)  h(x) = 5 √
—
 x   + 2

Solution The first two functions are examples of polynomial functions because they can be written in the form  
f (x) = an x

n + ... + a2 x
2 + a1 x + a0, where the powers are non-negative integers and the coefficients are real numbers. 
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•	 f (x) can be written as f (x) = 6x4 + 4.

•	 g(x) can be written as g(x) = −x3 + 4x.

•	 h(x) cannot be written in this form and is therefore not a polynomial function.

Identifying the Degree and leading Coefficient of a Polynomial Function
Because of the form of a polynomial function, we can see an infinite variety in the number of terms and the power of 
the variable. Although the order of the terms in the polynomial function is not important for performing operations, 
we typically arrange the terms in descending order of power, or in general form. The degree of the polynomial is the 
highest power of the variable that occurs in the polynomial; it is the power of the first variable if the function is in 
general form. The leading term is the term containing the highest power of the variable, or the term with the highest 
degree. The leading coefficient is the coefficient of the leading term.

terminology of polynomial functions 
We often rearrange polynomials so that the powers are descending.

Leading coefficient Degree

f (x) = an  x n + … + a2  x 2 + a1x + a0

Leading term

When a polynomial is written in this way, we say that it is in general form.

How To…
Given a polynomial function, identify the degree and leading coefficient.

1. Find the highest power of x to determine the degree function.
2. Identify the term containing the highest power of x to find the leading term.
3. Identify the coefficient of the leading term.

Example 5  Identifying the Degree and Leading Coefficient of a Polynomial Function

Identify the degree, leading term, and leading coefficient of the following polynomial functions.

f (x) = 3 + 2x 2 − 4x 3

 g(t) = 5t 5 − 2t 3 + 7t

 h(p) = 6p − p 3 − 2

Solution For the function f (x), the highest power of x is 3, so the degree is 3. The leading term is the term containing 
that degree, −4x3. The leading coefficient is the coefficient of that term, −4.

For the function g(t), the highest power of t is 5, so the degree is 5. The leading term is the term containing that degree, 
5t5. The leading coefficient is the coefficient of that term, 5.

For the function h(p), the highest power of p is 3, so the degree is 3. The leading term is the term containing that degree,  
 −p3; the leading coefficient is the coefficient of that term, −1.

Try It #3

Identify the degree, leading term, and leading coefficient of the polynomial f (x) = 4x 2 − x 6 + 2x − 6.
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Identifying End Behavior of Polynomial Functions

Knowing the degree of a polynomial function is useful in helping us predict its end behavior. To determine its end 
behavior, look at the leading term of the polynomial function. Because the power of the leading term is the highest, 
that term will grow significantly faster than the other terms as x gets very large or very small, so its behavior will 
dominate the graph. For any polynomial, the end behavior of the polynomial will match the end behavior of the term 
of highest degree. See Table 3.

Polynomial Function Leading Term Graph of Polynomial Function

f (x) = 5x4 + 2x3 − x − 4 5x4
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Table 3
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Example 6 Identifying End Behavior and Degree of a Polynomial Function

Describe the end behavior and determine a possible degree of the polynomial function in Figure 7.
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Solution As the input values x get very large, the output values f (x) increase without bound. As the input values x get 
very small, the output values f (x) decrease without bound. We can describe the end behavior symbolically by writing

    as x → −∞, f (x) → −∞
as x → ∞,    f (x) → ∞

In words, we could say that as x values approach infinity, the function values approach infinity, and as x values 
approach negative infinity, the function values approach negative infinity.

We can tell this graph has the shape of an odd degree power function that has not been reflected, so the degree of the 
polynomial creating this graph must be odd and the leading coefficient must be positive.

Try It #4

Describe the end behavior, and determine a possible degree of the 
polynomial function in Figure 8. 2
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Figure 8  

Example 7 Identifying End Behavior and Degree of a Polynomial Function

Given the function f (x) = −3x2(x − 1)(x + 4), express the function as a polynomial in general form, and determine 
the leading term, degree, and end behavior of the function.

Solution Obtain the general form by expanding the given expression for f (x).

 f (x) = −3x2(x − 1)(x + 4)

 = −3x2(x2 + 3x − 4)

 = −3x4 − 9x3 + 12x2

The general form is f (x) = −3x4 − 9x3 + 12x2. The leading term is −3x4; therefore, the degree of the polynomial is 4. 
The degree is even (4) and the leading coefficient is negative (−3), so the end behavior is

as x → −∞, f (x) → −∞

as x → ∞,    f (x) → −∞
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Try It #5

Given the function f (x) = 0.2(x − 2)(x + 1)(x − 5), express the function as a polynomial in general form and 
determine the leading term, degree, and end behavior of the function.

Identifying Local Behavior of Polynomial Functions

In addition to the end behavior of polynomial functions, we are also interested in what happens in the “middle” of 
the function. In particular, we are interested in locations where graph behavior changes. A turning point is a point 
at which the function values change from increasing to decreasing or decreasing to increasing.

We are also interested in the intercepts. As with all functions, the y-intercept is the point at which the graph 
intersects the vertical axis. The point corresponds to the coordinate pair in which the input value is zero. Because a 
polynomial is a function, only one output value corresponds to each input value so there can be only one y-intercept  
(0, a0). The x-intercepts occur at the input values that correspond to an output value of zero. It is possible to have more 
than one x-intercept. See Figure 9.

x-intercepts

←y-intercept

Turning point

Turning 
point

x

y

Figure 9

intercepts and turning points of polynomial functions 

A turning point of a graph is a point at which the graph changes direction from increasing to decreasing or 
decreasing to increasing. The y-intercept is the point at which the function has an input value of zero. The 
x-intercepts are the points at which the output value is zero.

How To…
Given a polynomial function, determine the intercepts.

1. Determine the y-intercept by setting x = 0 and finding the corresponding output value.
2. Determine the x-intercepts by solving for the input values that yield an output value of zero.

Example 8 Determining the Intercepts of a Polynomial Function

Given the polynomial function f (x) = (x − 2)(x + 1)(x − 4), written in factored form for your convenience, determine 
the y- and x-intercepts.

Solution The y-intercept occurs when the input is zero so substitute 0 for x.

 f (0) = (0 − 2)(0 + 1)(0 − 4)

 = (−2)(1)(− 4)

 = 8

The y-intercept is (0, 8).



SECTION 3.3 power Functions and polynomial Functions 233

The x-intercepts occur when the output is zero.

 0 = (x − 2)(x + 1)(x − 4)
 x − 2 = 0 or x + 1 = 0      or x − 4 = 0
 x = 2 or     x = −1 or      x = 4 
The x-intercepts are (2, 0), (–1, 0), and (4, 0).

We can see these intercepts on the graph of the function shown in Figure 10.
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Example 9  Determining the Intercepts of a Polynomial Function with Factoring

Given the polynomial function f (x) = x4 − 4x2 − 45, determine the y- and x-intercepts.

Solution The y-intercept occurs when the input is zero.
 f (0) = (0)4 − 4(0)2 − 45
 = −45
The y-intercept is (0, −45).

The x-intercepts occur when the output is zero. To determine when the output is zero, we will need to factor the 
polynomial.
 f (x) = x4 − 4x2 − 45
 = (x2 − 9)(x2 + 5)
 = (x − 3)(x + 3)(x2 + 5)
 0 = (x − 3)(x + 3)(x2 + 5)
 x − 3 = 0 or x + 3 = 0   or x2 + 5 = 0
 x = 3 or      x = −3 or (no real solution)
The x-intercepts are (3, 0) and (−3, 0).

We can see these intercepts on the graph of the function shown in Figure 11. We can see that the function is even 
because f (x) = f (−x).
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Try It #6
Given the polynomial function f (x) = 2x3 − 6x2 − 20x, determine the y- and x-intercepts.
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Comparing Smooth and Continuous Graphs

The degree of a polynomial function helps us to determine the number of x-intercepts and the number of turning 
points. A polynomial function of nth degree is the product of n factors, so it will have at most n roots or zeros, or 
x-intercepts. The graph of the polynomial function of degree n must have at most n − 1 turning points. This means the 
graph has at most one fewer turning point than the degree of the polynomial or one fewer than the number of factors.

A continuous function has no breaks in its graph: the graph can be drawn without lifting the pen from the paper. 
A smooth curve is a graph that has no sharp corners. The turning points of a smooth graph must always occur at 
rounded curves. The graphs of polynomial functions are both continuous and smooth.

intercepts and turning points of polynomials 
A polynomial of degree n will have, at most, n x-intercepts and n − 1 turning points.

Example 10  Determining the Number of Intercepts and Turning Points of a Polynomial

Without graphing the function, determine the local behavior of the function by finding the maximum number of 
x-intercepts and turning points for f (x) = −3x10 + 4x7 − x4 + 2x3.

Solution The polynomial has a degree of 10, so there are at most 10 x-intercepts and at most 10 − 1 = 9 turning points.

Try It #7

Without graphing the function, determine the maximum number of x-intercepts and turning points for  
f (x) = 108 − 13x9 − 8x4 + 14x12 + 2x3

Example 11  Drawing Conclusions about a Polynomial Function from the Graph

What can we conclude about the polynomial represented by the graph shown in Figure 12 based on its intercepts and 
turning points?
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Solution The end behavior of the graph tells us this is the graph of an even-degree polynomial. See Figure 13.
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The graph has 2 x-intercepts, suggesting a degree of 2 or greater, and 3 turning points, suggesting a degree of 4 or 
greater. Based on this, it would be reasonable to conclude that the degree is even and at least 4.
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Try It #8

What can we conclude about the polynomial represented by the graph shown in Figure 14 based on its intercepts 
and turning points?
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Example 12  Drawing Conclusions about a Polynomial Function from the Factors

Given the function f (x) = −4x(x + 3)(x − 4), determine the local behavior.

Solution The y-intercept is found by evaluating f (0).

 f (0) = −4(0)(0 + 3)(0 − 4)

 = 0

The y-intercept is (0, 0).

The x-intercepts are found by determining the zeros of the function.

 0 = −4x(x + 3)(x − 4)

 x = 0 or x + 3 = 0       or x − 4 = 0

 x = 0 or      x = −3 or   x = 4

The x-intercepts are (0, 0), (−3, 0), and (4, 0).

The degree is 3 so the graph has at most 2 turning points.

Try It #9

Given the function f (x) = 0.2(x − 2)(x + 1)(x − 5), determine the local behavior.

Access these online resources for additional instruction and practice with power and polynomial functions.

•	 Find Key Information about a Given Polynomial Function (http://openstaxcollege.org/l/keyinfopoly)

•	 end Behavior of a Polynomial Function (http://openstaxcollege.org/l/endbehavior)

•	 Turning Points and x-Intercepts of Polynomial Functions (http://openstaxcollege.org/l/turningpoints)

•	 least Possible Degree of a Polynomial Function (http://openstaxcollege.org/l/leastposdegree)

http://openstaxcollege.org/l/keyinfopoly
http://openstaxcollege.org/l/endbehavior
http://openstaxcollege.org/l/turningpoints
http://openstaxcollege.org/l/leastposdegree
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3.3 SeCTIOn exeRCISeS

VeRBAl

1. Explain the difference between the coefficient  
of a power function and its degree.

2. If a polynomial function is in factored form, what 
would be a good first step in order to determine the 
degree of the function?

3. In general, explain the end behavior of a power 
function with odd degree if the leading coefficient is 
positive.

4. What is the relationship between the degree of a 
polynomial function and the maximum number  
of turning points in its graph?

5. What can we conclude if, in general, the graph of a  
polynomial function exhibits the following end 
behavior? As x → −∞, f (x) → −∞ and as x → ∞,  
f (x) → −∞.

AlGeBRAIC

For the following exercises, identify the function as a power function, a polynomial function, or neither.

6. f (x) = x5 7. f (x) = (x2)3 8. f (x) = x − x4

9. f (x) =   x2
 _____ x2 − 1  10. f (x) = 2x(x + 2)(x − 1)2 11. f (x) = 3x + 1

For the following exercises, find the degree and leading coefficient for the given polynomial.

12.  −3x 13. 7 − 2x2 14.  −2x2 − 3x5 + x − 6

15. x(4 − x2)(2x + 1) 16. x 2 (2x − 3)2

For the following exercises, determine the end behavior of the functions.

17. f (x) = x4 18. f (x) = x3 19. f (x) = −x4

20. f (x) = −x9 21. f (x) = −2x4 − 3x2 + x − 1 22. f (x) = 3x2 + x − 2

23. f (x) = x2(2x3 − x + 1) 24. f (x) = (2 − x)7

For the following exercises, find the intercepts of the functions.

25. f (t) = 2(t − 1)(t + 2)(t − 3) 26. g(n) = −2(3n − 1)(2n + 1) 27. f (x) = x4 − 16

28. f (x) = x3 + 27 29. f (x) = x(x2 − 2x − 8) 30. f (x) = (x + 3)(4x2 − 1)

GRAPHICAl

For the following exercises, determine the least possible degree of the polynomial function shown.
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For the following exercises, determine whether the graph of the function provided is a graph of a polynomial function.  
If so, determine the number of turning points and the least possible degree for the function.
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nUMeRIC

For the following exercises, make a table to confirm the end behavior of the function.

46. f (x) = −x3 47. f (x) = x4 − 5x2 48. f (x) = x2(1 − x)2

49. f (x) = (x − 1)(x − 2)(3 − x) 50. f (x) =   x
5
 __ 10   − x4

TeCHnOlOGY

For the following exercises, graph the polynomial functions using a calculator. Based on the graph, determine  
the intercepts and the end behavior.

51. f (x) = x3(x − 2) 52. f (x) = x(x − 3)(x + 3) 53. f (x) = x(14 − 2x)(10 − 2x)

54. f (x) = x(14 − 2x)(10 − 2x)2 55. f (x) = x3 − 16x 56. f (x) = x3 − 27

57. f (x) = x4 − 81 58. f (x) = −x3 + x2 + 2x 59. f (x) = x3 − 2x2 − 15x

60. f (x) = x3 − 0.01x

exTenSIOnS

For the following exercises, use the information about the graph of a polynomial function to determine the function. 
Assume the leading coefficient is 1 or −1. There may be more than one correct answer.

61. The y-intercept is (0, −4). The x-intercepts are (−2, 0), 
 (2, 0). Degree is 2. End behavior: as x → −∞,  
f (x) → ∞, as x → ∞, f (x) → ∞.

62. The y-intercept is (0, 9). The x-intercepts are (−3, 0), 
(3, 0). Degree is 2. End behavior: as x → −∞,  
f (x) → −∞, as x → ∞, f (x) → −∞.

63. The y-intercept is (0, 0). The x-intercepts are (0, 0),  
(2, 0). Degree is 3. End behavior: as x → −∞,  
f (x) → −∞, as x → ∞, f (x) → ∞.

64. The y-intercept is (0, 1). The x-intercept is (1, 0). 
Degree is 3. End behavior: as x → −∞, f (x) → ∞, as  
x → ∞, f (x) → −∞.

65. The y-intercept is (0, 1). There is no x-intercept.  
Degree is 4. End behavior: as x → −∞, f (x) → ∞, as  
x → ∞, f (x) → ∞.

ReAl-WORlD APPlICATIOnS

For the following exercises, use the written statements to construct a polynomial function that represents the required 
information.

66.  An oil slick is expanding as a circle. The radius of 
the circle is increasing at the rate of 20 meters per 
day. Express the area of the circle as a function of d, 
the number of days elapsed.

67.  A cube has an edge of 3 feet. The edge is increasing 
at the rate of 2 feet per minute. Express the volume 
of the cube as a function of m, the number of 
minutes elapsed.

68.  A rectangle has a length of 10 inches and a width of  
6 inches. If the length is increased by x inches and 
the width increased by twice that amount, express 
the area of the rectangle as a function of x.

69.  An open box is to be constructed by cutting out 
square corners of x-inch sides from a piece of 
cardboard 8 inches by 8 inches and then folding 
up the sides. Express the volume of the box as a 
function of x.

70.  A rectangle is twice as long as it is wide. Squares of 
side 2 feet are cut out from each corner. Then the 
sides are folded up to make an open box. Express the 
volume of the box as a function of the width (x).
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Recognize characteristics of graphs of polynomial functions.

•	  Use factoring to find zeros of polynomial functions.

•	  Identify zeros and their multiplicities.

•	  Determine end behavior.

•	  Understand the relationship between degree and turning points.

•	  Graph polynomial functions.

•	  Use the Intermediate Value Theorem.

3.4 GRAPHS OF POlYnOMIAl FUnCTIOnS

The revenue in millions of dollars for a fictional cable company from 2006 through 2013 is shown in Table 1.

Year 2006 2007 2008 2009 2010 2011 2012 2013

Revenues 52.4 52.8 51.2 49.5 48.6 48.6 48.7 47.1

Table 1

The revenue can be modeled by the polynomial function

R(t) = −0.037t4 + 1.414t3 − 19.777t2 + 118.696t − 205.332

where R represents the revenue in millions of dollars and t represents the year, with t = 6 corresponding to 2006. 
Over which intervals is the revenue for the company increasing? Over which intervals is the revenue for the company 
decreasing? These questions, along with many others, can be answered by examining the graph of the polynomial 
function. We have already explored the local behavior of quadratics, a special case of polynomials. In this section we 
will explore the local behavior of polynomials in general.

Recognizing Characteristics of Graphs of Polynomial Functions
Polynomial functions of degree 2 or more have graphs that do not have sharp corners; recall that these types of graphs 
are called smooth curves. Polynomial functions also display graphs that have no breaks. Curves with no breaks are 
called continuous. Figure 1 shows a graph that represents a polynomial function and a graph that represents a function 
that is not a polynomial.
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y
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Figure 1
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Example 1 Recognizing Polynomial Functions

Which of the graphs in Figure 2 represents a polynomial function?

y

f

h k

g

x

y

x

y

x x

y

Figure 2

Solution The graphs of f and h are graphs of polynomial functions. They are smooth and continuous.

The graphs of g and k are graphs of functions that are not polynomials. The graph of function g has a sharp corner. 
The graph of function k is not continuous.

Q & A…
Do all polynomial functions have as their domain all real numbers?
Yes. Any real number is a valid input for a polynomial function.

Using Factoring to Find Zeros of Polynomial Functions
Recall that if f is a polynomial function, the values of x for which f (x) = 0 are called zeros of f. If the equation of the 
polynomial function can be factored, we can set each factor equal to zero and solve for the zeros.

We can use this method to find x-intercepts because at the x-intercepts we find the input values when the output value 
is zero. For general polynomials, this can be a challenging prospect. While quadratics can be solved using the relatively 
simple quadratic formula, the corresponding formulas for cubic and fourth-degree polynomials are not simple enough 
to remember, and formulas do not exist for general higher-degree polynomials. Consequently, we will limit ourselves 
to three cases in this section:

1. The polynomial can be factored using known methods: greatest common factor and trinomial factoring.
2. The polynomial is given in factored form.
3. Technology is used to determine the intercepts.

How To…
Given a polynomial function f, find the x-intercepts by factoring.
1. Set f (x) = 0.
2. If the polynomial function is not given in factored form:

a. Factor out any common monomial factors.
b. Factor any factorable binomials or trinomials.

3. Set each factor equal to zero and solve to find the x-intercepts.
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Example 2 Finding the x-Intercepts of a Polynomial Function by Factoring

Find the x-intercepts of f (x) = x 6 − 3x  4 + 2x2.

Solution We can attempt to factor this polynomial to find solutions for f (x) = 0.

 x 6 − 3x 4 + 2x 2 = 0 Factor out the greatest common factor.

 x 2(x 4 − 3x2 + 2) = 0 Factor the trinomial.

 x 2(x 2 − 1)(x 2 − 2) = 0 Set each factor equal to zero.

 (x 2 − 1) = 0 (x 2 − 2) = 0

x 2 = 0 or x 2 = 1 or x 2 = 2

 x = 0  x = ± 1    x = ± √
—
 2  

This gives us five x-intercepts: (0, 0), (1, 0), (−1, 0),    √
—
 2  , 0  , and   − √

—
 2  , 0  . See Figure 3. We can see that this is an 

even function.
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Figure 3

Example 3 Finding the x-Intercepts of a Polynomial Function by Factoring

Find the x-intercepts of f (x) = x 3 − 5x 2 − x + 5.

Solution Find solutions for f (x) = 0 by factoring.

 x 3 − 5x 2 − x + 5 = 0 Factor by grouping.

 x 2(x − 5) − (x − 5) = 0 Factor out the common factor.

 (x 2 − 1)(x − 5) = 0 Factor the difference of squares.

 (x + 1)(x − 1)(x − 5) = 0 Set each factor equal to zero.

x + 1 = 0 or x − 1 = 0 or x − 5 = 0

x = −1           x = 1      x = 5

There are three x-intercepts: (−1, 0), (1, 0), and (5, 0). See Figure 4.
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Example 4 Finding the y- and x-Intercepts of a Polynomial in Factored Form

Find the y- and x-intercepts of g(x) = (x − 2)2(2x + 3).

Solution The y-intercept can be found by evaluating g(0).

 g(0) = (0 − 2)2(2(0) + 3)

 = 12

So the y-intercept is (0, 12).

The x-intercepts can be found by solving g(x) = 0.

(x − 2)2(2x + 3) = 0

 (x − 2)2 = 0 (2x + 3) = 0

 x − 2 = 0      or x = −  3 __ 2  

 x = 2

So the x-intercepts are (2, 0) and   −  3 __ 2  , 0  .

Analysi s We can always check that our answers are reasonable by using a graphing calculator to graph the polynomial 
as shown in Figure 5.
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Figure 5

Example 5 Finding the x-Intercepts of a Polynomial Function Using a Graph

Find the x-intercepts of h(x) = x3 + 4x2 + x − 6.

Solution This polynomial is not in factored form, has no common factors, and does not appear to be factorable using 
techniques previously discussed. Fortunately, we can use technology to find the intercepts. Keep in mind that some 
values make graphing difficult by hand. In these cases, we can take advantage of graphing utilities.

Looking at the graph of this function, as shown in Figure 6, it apears that there are x-intercepts at x = −3, −2, and 1.
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We can check whether these are correct by substituting these values for x and verifying that

 h(−3) = h(−2) = h(1) = 0.

Since h(x) = x 3 + 4x 2 + x − 6, we have:

 h(−3) = (−3)3 + 4(−3)2 + (−3) − 6 = −27 + 36 − 3 − 6 = 0

 h(−2) = (−2)3 + 4(−2)2 + (−2) − 6 = −8 + 16 − 2 − 6 = 0

 h(1) = (1)3 + 4(1)2 + (1) − 6 = 1 + 4 + 1 − 6 = 0

Each x-intercept corresponds to a zero of the polynomial function and each zero yields a factor, so we can now write 
the polynomial in factored form.

 h(x) = x3 + 4x2 + x − 6

 = (x + 3)(x + 2)(x − 1)

Try It #1

Find the y- and x-intercepts of the function f (x) = x 4 − 19x 2 + 30x.

Identifying Zeros and Their Multiplicities
Graphs behave differently at various x-intercepts. Sometimes, the graph will cross over the horizontal axis at an 
intercept. Other times, the graph will touch the horizontal axis and bounce off.

Suppose, for example, we graph the function

f (x) = (x + 3)(x − 2)2(x + 1)3.

Notice in Figure 7 that the behavior of the function at each of the x-intercepts is different.
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f (x) = (x + 3)(x − 2)2(x + 1)3

Figure 7 Identifying the behavior of the graph at an x-intercept by examining the multiplicity of the zero.

The x-intercept x = −3 is the solution of equation (x + 3) = 0. The graph passes directly through the x-intercept 
at x = −3. The factor is linear (has a degree of 1), so the behavior near the intercept is like that of a line—it passes 
directly through the intercept. We call this a single zero because the zero corresponds to a single factor of the function.

The x-intercept x = 2 is the repeated solution of equation (x − 2)2 = 0. The graph touches the axis at the intercept and 
changes direction. The factor is quadratic (degree 2), so the behavior near the intercept is like that of a quadratic—it 
bounces off of the horizontal axis at the intercept.

(x − 2)2 = (x − 2)(x − 2)

The factor is repeated, that is, the factor (x − 2) appears twice. The number of times a given factor appears in the 
factored form of the equation of a polynomial is called the multiplicity. The zero associated with this factor, x = 2, 
has multiplicity 2 because the factor (x − 2) occurs twice.
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The x-intercept x = −1 is the repeated solution of factor (x + 1)3 = 0. The graph passes through the axis at the intercept, 
but flattens out a bit first. This factor is cubic (degree 3), so the behavior near the intercept is like that of a cubic—
with the same S-shape near the intercept as the toolkit function f (x) = x 3. We call this a triple zero, or a zero with 
multiplicity 3.

For zeros with even multiplicities, the graphs touch or are tangent to the x-axis. For zeros with odd multiplicities, the 
graphs cross or intersect the x-axis. See Figure 8 for examples of graphs of polynomial functions with multiplicity 1, 
2, and 3.
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Single zero Zero with multiplicity 2

p =1 p = 2 p = 3

x

y

x

Zero with multiplicity 3

y

x

Figure 8

For higher even powers, such as 4, 6, and 8, the graph will still touch and bounce off of the horizontal axis but, for 
each increasing even power, the graph will appear flatter as it approaches and leaves the x-axis.

For higher odd powers, such as 5, 7, and 9, the graph will still cross through the horizontal axis, but for each increasing 
odd power, the graph will appear flatter as it approaches and leaves the x-axis.

graphical behavior of polynomials at x-intercepts 
If a polynomial contains a factor of the form (x − h)p, the behavior near the x-intercept h is determined by the 
power p. We say that x = h is a zero of multiplicity p.

The graph of a polynomial function will touch the x-axis at zeros with even multiplicities. The graph will cross 
the x-axis at zeros with odd multiplicities.

The sum of the multiplicities is the degree of the polynomial function.

How To…
Given a graph of a polynomial function of degree n, identify the zeros and their multiplicities.

1. If the graph crosses the x-axis and appears almost linear at the intercept, it is a single zero.
2. If the graph touches the x-axis and bounces off of the axis, it is a zero with even multiplicity.
3. If the graph crosses the x-axis at a zero, it is a zero with odd multiplicity.
4. The sum of the multiplicities is n.

Example 6 Identifying Zeros and Their Multiplicities 

Use the graph of the function of degree 6 in Figure 9 to identify the zeros of the function and their possible 
multiplicities.
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Solution The polynomial function is of degree n. The sum of the multiplicities must be n.

Starting from the left, the first zero occurs at x = −3. The graph touches the x-axis, so the multiplicity of the zero must 
be even. The zero of −3 has multiplicity 2.

The next zero occurs at x = −1. The graph looks almost linear at this point. This is a single zero of multiplicity 1.

The last zero occurs at x = 4. The graph crosses the x-axis, so the multiplicity of the zero must be odd. We know 
that the multiplicity is likely 3 and that the sum of the multiplicities is likely 6.

Try It #2

Use the graph of the function of degree 5 in Figure 10 to identify the zeros of the function and their multiplicities.
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Determining end Behavior
As we have already learned, the behavior of a graph of a polynomial function of the form

f (x) = an x n + ... + a2 x 2 + a1 x + a0

will either ultimately rise or fall as x increases without bound and will either rise or fall as x decreases without bound. 
This is because for very large inputs, say 100 or 1,000, the leading term dominates the size of the output. The same is 
true for very small inputs, say −100 or −1,000.

Recall that we call this behavior the end behavior of a function. As we pointed out when discussing quadratic equations, 
when the leading term of a polynomial function, anxn, is an even power function, as x increases or decreases without 
bound, f (x) increases without bound. When the leading term is an odd power function, as x decreases without bound, 
f (x) also decreases without bound; as x increases without bound, f (x) also increases without bound. If the leading term 
is negative, it will change the direction of the end behavior. Figure 11 summarizes all four cases.



CHAPTER 3 polynomial and rational Functions246

Even Degree Odd Degree

Positive Leading Coefficient, an > 0
y

x

End Behavior:

x → ∞, f (x) → ∞
x → −∞, f (x) → ∞

Positive Leading Coefficient, an > 0
y

x

End Behavior:

x → ∞, f (x) → ∞
x → −∞, f (x) → ∞

Negative Leading Coefficient, an < 0
y

x

End Behavior:

x → ∞, f (x) → −∞
x → −∞, f (x) → −∞

Negative Leading Coefficient, an < 0
y

x

End Behavior:

x → ∞, f (x) → −∞
x → −∞, f (x) → ∞

Figure 11

Understanding the Relationship Between Degree and Turning Points
In addition to the end behavior, recall that we can analyze a polynomial function’s local behavior. It may have a turning 
point where the graph changes from increasing to decreasing (rising to falling) or decreasing to increasing (falling 
to rising). Look at the graph of the polynomial function f (x) = x4 − x3 − 4x2 + 4x in Figure 12. The graph has three 
turning points.
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Decreasing
Decreasing

Increasing

Increasing

Turning points

x

Figure 12

This function f is a 4th degree polynomial function and has 3 turning points. The maximum number of turning points 
of a polynomial function is always one less than the degree of the function.
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interpreting turning points 
A turning point is a point of the graph where the graph changes from increasing to decreasing (rising to falling) 
or decreasing to increasing (falling to rising).

A polynomial of degree n will have at most n − 1 turning points.

Example 7  Finding the Maximum Number of Turning Points Using the Degree of a Polynomial Function

Find the maximum number of turning points of each polynomial function.
a. f (x) = −x 3 + 4x 5 − 3x 2 + 1   b. f (x) = −(x − 1)2(1 + 2x2)

Solution

  a. f (x) = −x3 + 4x 5 − 3x 2 + 1

First, rewrite the polynomial function in descending order: f (x) = 4x 5 − x 3 − 3x 2 + 1 
Identify the degree of the polynomial function. This polynomial function is of degree 5.
The maximum number of turning points is 5 − 1 = 4.

  b. f (x) = −(x − 1)2(1 + 2x2)

First, identify the leading term of the polynomial function if the function were expanded.

f (x) = −(x − 1)2(1 + 2x2)

 an = −(x 2)(2x 2) − 2x 4

Then, identify the degree of the polynomial function. This polynomial function is of degree 4.

The maximum number of turning points is 4 − 1 = 3.

Graphing Polynomial Functions
We can use what we have learned about multiplicities, end behavior, and turning points to sketch graphs of polynomial 
functions. Let us put this all together and look at the steps required to graph polynomial functions.

How To…
Given a polynomial function, sketch the graph.

1. Find the intercepts.
2. Check for symmetry. If the function is an even function, its graph is symmetrical about the y-axis, that is, 

f (−x) = f (x). If a function is an odd function, its graph is symmetrical about the origin, that is, f (−x) = −f (x).
3. Use the multiplicities of the zeros to determine the behavior of the polynomial at the x-intercepts.
4. Determine the end behavior by examining the leading term.
5. Use the end behavior and the behavior at the intercepts to sketch a graph.
6. Ensure that the number of turning points does not exceed one less than the degree of the polynomial.
7. Optionally, use technology to check the graph.

Example 8 Sketching the Graph of a Polynomial Function

Sketch a graph of f (x) = −2(x + 3)2(x − 5).

Solution This graph has two x-intercepts. At x = −3, the factor is squared, indicating a multiplicity of 2. The graph 
will bounce at this x-intercept. At x = 5, the function has a multiplicity of one, indicating the graph will cross through 
the axis at this intercept.

The y-intercept is found by evaluating f (0).
 f (0) = −2(0 + 3)2(0 − 5)
 = −2 ⋅ 9 ⋅ (−5)
 = 90
The y-intercept is (0, 90).
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Additionally, we can see the leading term, if this polynomial were multiplied out, would be −2x3, so the end behavior 
is that of a vertically reflected cubic, with the outputs decreasing as the inputs approach infinity, and the outputs 
increasing as the inputs approach negative infinity. See Figure 13.

y

x

Figure 13

To sketch this, we consider that:

•	 As x → −∞ the function f (x) → ∞, so we know the graph starts in the second quadrant and is decreasing toward 
the x-axis.

•	 Since f (−x) = −2(−x + 3)2 (−x − 5) is not equal to f (x), the graph does not display symmetry.

•	At (−3, 0), the graph bounces off of the x-axis, so the function must start increasing. At (0, 90), the graph crosses 
the y-axis at the y-intercept. See Figure 14.

y

x
(−3, 0)

(0, 90)

Figure 14

Somewhere after this point, the graph must turn back down or start decreasing toward the horizontal axis because 
the graph passes through the next intercept at (5, 0). See Figure 15.

y

x
(−3, 0) (5, 0)

(0, 90)

Figure 15

As x → ∞ the function f (x) → −∞, so we know the graph continues to decrease, and we can stop drawing the graph 
in the fourth quadrant.
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Using technology, we can create the graph for the polynomial function, shown in Figure 16, and verify that the 
resulting graph looks like our sketch in Figure 15.
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f (x) = −2(x + 3)2(x − 5)

Figure 16 The complete graph of the polynomial function f (x ) = −2(x + 3)2(x − 5)

Try It #3
Sketch a graph of f (x) =   1 __ 4  x(x − 1)4(x + 3)3.

Using the Intermediate Value Theorem
In some situations, we may know two points on a graph but not the zeros. If those two points are on opposite sides 
of the x-axis, we can confirm that there is a zero between them. Consider a polynomial function f whose graph is 
smooth and continuous. The Intermediate Value Theorem states that for two numbers a and b in the domain of f, 
if a < b and f (a) ≠ f (b), then the function f takes on every value between f (a) and f (b). We can apply this theorem 
to a special case that is useful in graphing polynomial functions. If a point on the graph of a continuous function f 
at x = a lies above the x-axis and another point at x = b lies below the x-axis, there must exist a third point between 
x = a and x = b where the graph crosses the x-axis. Call this point (c, f (c)). This means that we are assured there is a 
solution c where f (c) = 0.

In other words, the Intermediate Value Theorem tells us that when a polynomial function changes from a negative 
value to a positive value, the function must cross the x-axis. Figure 17 shows that there is a zero between a and b.
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f(a) is negative

f (b) is positive

f (c) = 0

Figure 17 Using the Intermediate Value Theorem to show there exists a zero

Intermediate Value Theorem 
Let f be a polynomial function. The Intermediate Value Theorem states that if f (a) and f (b) have opposite signs, 
then there exists at least one value c between a and b for which f (c) = 0.
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Example 9 Using the Intermediate Value Theorem

Show that the function f (x) = x3 − 5x2 + 3x + 6 has at least two real zeros between x = 1 and x = 4.

Solution As a start, evaluate f (x) at the integer values x = 1, 2, 3, and 4. See Table 2.

x 1 2 3 4
f (x) 5 0 −3 2

Table 2

We see that one zero occurs at x = 2. Also, since f (3) is negative and f (4) is positive, by the Intermediate Value Theorem, 
there must be at least one real zero between 3 and 4.

We have shown that there are at least two real zeros between x = 1 and x = 4.

Analysi s We can also see on the graph of the function in Figure 18 that there are two real zeros between x = 1 and 
x = 4.

4

f (3) = −3 is negative

f (4) = 2 is positive

f (1) = 5 is positive
y
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–4
–6
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10

Figure 18

Try It #4

Show that the function f (x) = 7x5 − 9x4 − x2 has at least one real zero between x = 1 and x = 2.

Writing Formulas for Polynomial Functions

Now that we know how to find zeros of polynomial functions, we can use them to write formulas based on graphs. 
Because a polynomial function written in factored form will have an x-intercept where each factor is equal to zero, we 
can form a function that will pass through a set of x-intercepts by introducing a corresponding set of factors.

factored form of polynomials 
If a polynomial of lowest degree p has horizontal intercepts at x = x1, x2, …, xn, then the polynomial can be written 
in the factored form: f (x) = a(x − x1)p1

 (x − x2)p2 … (x − xn)pn where the powers pi on each factor can be determined 
by the behavior of the graph at the corresponding intercept, and the stretch factor a can be determined given a 
value of the function other than the x-intercept.

How To…
Given a graph of a polynomial function, write a formula for the function.

1. Identify the x-intercepts of the graph to find the factors of the polynomial.
2. Examine the behavior of the graph at the x-intercepts to determine the multiplicity of each factor.
3. Find the polynomial of least degree containing all the factors found in the previous step.
4. Use any other point on the graph (the y-intercept may be easiest) to determine the stretch factor.
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Example 10 Writing a Formula for a Polynomial Function from the Graph

Write a formula for the polynomial function shown in Figure 19.
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Figure 19

Solution This graph has three x-intercepts: x = −3, 2, and 5. The y-intercept is located at (0, −2). At x = −3 and x = 5, 
the graph passes through the axis linearly, suggesting the corresponding factors of the polynomial will be linear. At 
x = 2, the graph bounces at the intercept, suggesting the corresponding factor of the polynomial will be second degree 
(quadratic). Together, this gives us
 f (x) = a(x + 3)(x − 2)2(x − 5)

To determine the stretch factor, we utilize another point on the graph. We will use the y-intercept (0, −2), to solve for a.

 f (0) = a(0 + 3)(0 − 2)2(0 − 5)

 −2 = a(0 + 3)(0 − 2)2(0 − 5)

 −2 = −60a

 a =   1 __ 30  

The graphed polynomial appears to represent the function f (x) =   1 __ 30  (x + 3)(x − 2)2 (x − 5).

Try It #5

Given the graph shown in Figure 20, write a formula for the function shown.
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Figure 20  

Using Local and Global Extrema

With quadratics, we were able to algebraically find the maximum or minimum value of the function by finding the 
vertex. For general polynomials, finding these turning points is not possible without more advanced techniques from 
calculus. Even then, finding where extrema occur can still be algebraically challenging. For now, we will estimate the 
locations of turning points using technology to generate a graph.

Each turning point represents a local minimum or maximum. Sometimes, a turning point is the highest or lowest 
point on the entire graph. In these cases, we say that the turning point is a global maximum or a global minimum. 
These are also referred to as the absolute maximum and absolute minimum values of the function.
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local and global extrema 

A local maximum or local minimum at x = a (sometimes called the relative maximum or minimum, respectively) 
is the output at the highest or lowest point on the graph in an open interval around  x = a. If a function has a local 
maximum at a, then f (a) ≥ f (x) for all x in an open interval around x = a. If a function has a local minimum at a, 
then f (a) ≤ f (x) for all x in an open interval around x = a.

A global maximum or global minimum is the output at the highest or lowest point of the function. If a function 
has a global maximum at a, then f (a) ≥ f (x) for all x. If a function has a global minimum at a, then f (a) ≤ f (x) 
for all x.

We can see the difference between local and global extrema in Figure 21.
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Q & A…
Do all polynomial functions have a global minimum or maximum?

No. Only polynomial functions of even degree have a global minimum or maximum. For example, f (x) = x has neither 
a global maximum nor a global minimum.

Example 11 Using Local Extrema to Solve Applications

An open-top box is to be constructed by cutting out squares from each corner of a 14 cm by 20 cm sheet of plastic 
then folding up the sides. Find the size of squares that should be cut out to maximize the volume enclosed by the box.

Solution We will start this problem by drawing a picture like that in Figure 22, labeling the width of the cut-out 
squares with a variable, w.
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w

w

w

w

w

w

w

Figure 22

Notice that after a square is cut out from each end, it leaves a  (14 − 2w) cm by (20 − 2w) cm rectangle for the base of 
the box, and the box will be w cm tall. This gives the volume

 V(w) = (20 − 2w)(14 − 2w)w

 = 280w − 68w2 + 4w3
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Notice, since the factors are w, 20 − 2w and 14 − 2w, the three zeros are 10, 7, and 0, respectively. Because a height of  
0 cm is not reasonable, we consider the only the zeros 10 and 7. The shortest side is 14 and we are cutting off two squares, 
so values w may take on are greater than zero or less than 7. This means we will restrict the domain of this function to  
0 < w < 7. Using technology to sketch the graph of V(w) on this reasonable domain, we get a graph like that in Figure 
23. We can use this graph to estimate the maximum value for the volume, restricted to values for w that are reasonable 
for this problem—values from 0 to 7.
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V(w) = 280w − 68w2 + 4w3

Figure 23

From this graph, we turn our focus to only the portion on the reasonable domain, [0, 7]. We can estimate the maximum 
value to be around 340 cubic cm, which occurs when the squares are about 2.75 cm on each side. To improve this estimate, 
we could use advanced features of our technology, if available, or simply change our window to zoom in on our graph 
to produce Figure 24.
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Figure 24

From this zoomed-in view, we can refine our estimate for the maximum volume to about 339 cubic cm, when the 
squares measure approximately 2.7 cm on each side.

Try It #6

Use technology to find the maximum and minimum values on the interval [−1, 4] of the function  
f (x) = −0.2(x − 2)3(x + 1)2(x − 4).

Access the following online resource for additional instruction and practice with graphing polynomial functions.

•	 Intermediate Value Theorem (http://openstaxcollege.org/l/ivt)

http://openstaxcollege.org/l/ivt
http://openstaxcollege.org/l/ivt
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3.4 SeCTIOn exeRCISeS

VeRBAl

1. What is the difference between an x-intercept and  
a zero of a polynomial function f ?

2. If a polynomial function of degree n has n distinct 
zeros, what do you know about the graph of the 
function?

3. Explain how the Intermediate Value Theorem can 
assist us in finding a zero of a function.

4. Explain how the factored form of the polynomial 
helps us in graphing it.

5. If the graph of a polynomial just touches the x-axis 
and then changes direction, what can we conclude 
about the factored form of the polynomial?

AlGeBRAIC

For the following exercises, find the x- or t-intercepts of the polynomial functions.

6. C(t) = 2(t − 4)(t + 1)(t − 6) 7. C(t) = 3(t + 2)(t − 3)(t + 5) 8. C(t) = 4t(t − 2)2(t + 1)

9. C(t) = 2t(t − 3)(t + 1)2 10. C(t) = 2t4 − 8t3 + 6t2 11. C(t) = 4t4 + 12t3 − 40t2

12. f (x) = x4 − x2 13. f (x) = x3 + x2 − 20x 14. f (x) = x3 + 6x2 − 7x

15. f (x) = x3 + x2 − 4x − 4 16. f (x) = x3 + 2x2 − 9x − 18 17. f (x) = 2x3 − x2 − 8x + 4

18. f (x) = x6 − 7x3 − 8 19. f (x) = 2x4 + 6x2 − 8 20. f (x) = x3 − 3x2 − x + 3

21. f (x) = x6 − 2x4 − 3x2 22. f (x) = x6 − 3x4 − 4x2 23. f (x) = x5 − 5x3 + 4x

For the following exercises, use the Intermediate Value Theorem to confirm that the given polynomial has at least 
one zero within the given interval.

24. f (x) = x3 − 9x, between x = −4 and x = −2. 25. f (x) = x3 − 9x, between x = 2 and x = 4.

26. f (x) = x5 − 2x, between x = 1 and x = 2. 27. f (x) = −x4 + 4, between x = 1 and x = 3.

28. f (x) = −2x3 − x, between x = −1 and x = 1. 29. f (x) = x3 − 100x + 2, between x = 0.01 and x = 0.1

For the following exercises, find the zeros and give the multiplicity of each.

30. f (x) = (x + 2)3(x − 3)2 31. f (x) = x2(2x + 3)5(x − 4)2

32. f (x) = x3 (x − 1)3(x + 2) 33. f (x) = x2(x2 + 4x + 4)

34. f (x) = (2x + 1)3(9x2 − 6x + 1) 35. f (x) = (3x + 2)5(x2 − 10x + 25)

36. f (x) = x(4x2 − 12x + 9)(x2 + 8x + 16) 37. f (x) = x6 − x5 − 2x4

38. f (x) = 3x4 + 6x3 + 3x2 39. f (x) = 4x5 − 12x4 + 9x3

40. f (x) = 2x4(x3 − 4x2 + 4x) 41. f (x) = 4x4(9x4 − 12x3 + 4x2)

GRAPHICAl

For the following exercises, graph the polynomial functions. Note x- and y-intercepts, multiplicity, and end behavior.

42. f (x) = (x + 3)2(x − 2) 43. g(x) = (x + 4)(x − 1)2 44. h(x) = (x − 1)3(x + 3)2

45. k(x) = (x − 3)3(x − 2)2 46. m(x) = −2x(x − 1)(x + 3) 47. n(x) = −3x(x + 2)(x − 4)
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For the following exercises, use the graphs to write the formula for a polynomial function of least degree.
48.  
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For the following exercises, use the graph to identify zeros and multiplicity.
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55.  
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For the following exercises, use the given information about the polynomial graph to write the equation.

57. Degree 3. Zeros at x = −2, x = 1, and x = 3. 
y-intercept at (0, −4).

58. Degree 3. Zeros at x = −5, x = −2, and x = 1. 
y-intercept at (0, 6)

59. Degree 5. Roots of multiplicity 2 at x = 3 and x = 1, 
and a root of multiplicity 1 at x = −3. y-intercept at 
(0, 9)

60. Degree 4. Root of multiplicity 2 at x = 4, and roots 
of multiplicity 1 at x = 1 and x = −2. y-intercept at 
(0, −3).
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61. Degree 5. Double zero at x = 1, and triple zero at 
x = 3. Passes through the point (2, 15).

62. Degree 3. Zeros at x = 4, x = 3, and x = 2. 
y-intercept at (0, −24).

63. Degree 3. Zeros at x = −3, x = −2 and x = 1. 
y-intercept at (0, 12).

64. Degree 5. Roots of multiplicity 2 at x = −3 and x = 2 
and a root of multiplicity 1 at x = −2. y-intercept at (0, 4).

65. Degree 4. Roots of multiplicity 2 at x =   1 _ 
2

   and roots 
of multiplicity 1 at x = 6 and x = −2. y-intercept  
at (0,18).

66. Double zero at x = −3 and triple zero at x = 0. 
Passes through the point (1, 32).

TeCHnOlOGY
For the following exercises, use a calculator to approximate local minima and maxima or the global minimum and 
maximum.

67. f (x) = x3 − x − 1 68. f (x) = 2x3 − 3x − 1 69. f (x) = x4 + x

70. f (x) = −x4 + 3x − 2 71. f (x) = x4 − x3 + 1

exTenSIOnS
For the following exercises, use the graphs to write a polynomial function of least degree.
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ReAl-WORlD APPlICATIOnS
For the following exercises, write the polynomial function that models the given situation.

75. A rectangle has a length of 10 units and a width of  
8 units. Squares of x by x units are cut out of each 
corner, and then the sides are folded up to create 
an open box. Express the volume of the box as a 
polynomial function in terms of x.

76. Consider the same rectangle of the preceding 
problem. Squares of 2x by 2x units are cut out of 
each corner. Express the volume of the box as a 
polynomial in terms of x.

77. A square has sides of 12 units. Squares x + 1 by  
x + 1 units are cut out of each corner, and then the 
sides are folded up to create an open box. Express 
the volume of the box as a function in terms of x.

78. A cylinder has a radius of x + 2 units and a height of  
3 units greater. Express the volume of the cylinder as 
a polynomial function.

79. A right circular cone has a radius of 3x + 6 and a 
height 3 units less. Express the volume of the cone  
as a polynomial function. The volume of a cone is  
V =   1 __ 3  πr2h for radius r and height h.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Use long division to divide polynomials.

•	  Use synthetic division to divide polynomials.

3.5 DIVIDInG POlYnOMIAlS

Figure 1 lincoln Memorial, Washington, D.C. (credit: Ron Cogswell, Flickr)

The exterior of the Lincoln Memorial in Washington, D.C., is a large rectangular solid with length 61.5 meters ( m ), 
width 40 m, and height 30 m.[15] We can easily find the volume using elementary geometry.
 V = l ⋅ w ⋅ h

 = 61.5 ⋅ 40 ⋅ 30
 = 73,800

So the volume is 73,800 cubic meters (m3). Suppose we knew the volume, length, and width. We could divide to find 
the height.
 h =   V ____ l ⋅ w  

 =   73,800 _______ 61.5 ⋅ 40  

 = 30

As we can confirm from the dimensions above, the height is 30 m. We can use similar methods to find any of the 
missing dimensions. We can also use the same method if any or all of the measurements contain variable expressions. 
For example, suppose the volume of a rectangular solid is given by the polynomial 3x4 − 3x3 − 33x2 + 54x. The length 
of the solid is given by 3x; the width is given by x − 2. To find the height of the solid, we can use polynomial division, 
which is the focus of this section.

Using long Division to Divide Polynomials
We are familiar with the long division algorithm for ordinary arithmetic. We begin by dividing into the digits of the 
dividend that have the greatest place value. We divide, multiply, subtract, include the digit in the next place value 
position, and repeat. For example, let’s divide 178 by 3 using long division.

Long Division
 Step 1: 5 × 3 = 15 and 17 − 15 = 2
 Step 2: Bring down the 8 
 Step 3: 9 × 3 = 27 and 28 − 27 = 1
 Answer: 59 R 1 or 59  1 __ 3   

15.  National Park Service. “Lincoln Memorial Building Statistics.” http://www.nps.gov/linc/historyculture/lincoln-memorial-building-statistics.htm.  
Accessed 4/3/2014/

59
3)178
−15

28
−27

1

http://www.nps.gov/linc/historyculture/lincoln-memorial-building-statistics.htm
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Another way to look at the solution is as a sum of parts. This should look familiar, since it is the same method used to 
check division in elementary arithmetic.

 dividend = (divisor ⋅ quotient) + remainder

 178 = (3 ⋅ 59) + 1

 = 177 + 1

 = 178

We call this the Division Algorithm and will discuss it more formally after looking at an example.

Division of polynomials that contain more than one term has similarities to long division of whole numbers. We can 
write a polynomial dividend as the product of the divisor and the quotient added to the remainder. The terms of the 
polynomial division correspond to the digits (and place values) of the whole number division. This method allows 
us to divide two polynomials. For example, if we were to divide 2x3 − 3x2 + 4x + 5 by x + 2 using the long division 
algorithm, it would look like this:

 Set up the division problem.

 2x3 divided by x is 2x2.

 Multiply x + 2 by 2x2.
 Subtract.
 Bring down the next term.

 −7x2 divided by x is −7x.
 Multiply x + 2 by −7x. 
 Subtract. Bring down the next term.

 18x divided by x is 18.
 Multiply x + 2 by 18. 
 Subtract.
We have found

  2x3 − 3x2 + 4x + 5  __ x + 2   = 2x2 − 7x + 18 −   31 _ x + 2  

or

   2x3 − 3x2 + 4x + 5  __ x + 2   = (x + 2)(2x2 − 7x + 18) − 31

We can identify the dividend, the divisor, the quotient, and the remainder.

2x3 – 3x2 + 4x + 5 = (x + 2) (2x2 – 7x + 18) + (–31)

Dividend Divisor Quotient Remainder

Writing the result in this manner illustrates the Division Algorithm.

x + 2)2x3 − 3x2 +   4x + 5
2x2

x + 2)2x3 − 3x2 +   4x + 5
2x2

x + 2)2x3 − 3x2 +   4x + 5
−(2x3 + 4x2)

−7x2 +   4x
2x2 −   7x

x + 2)2x3 − 3x2 +   4x + 5
−(2x3 + 4x2)

−7x2 +   4x
−(−7x2 + 14x)

   18x + 5
     2x2 −   7x + 18

x + 2)2x3 − 3x2 +   4x + 5
−(2x3 + 4x2)

−7x2 +   4x
−(−7x2 + 14x)

  18x + 5
−18x + 36

−31
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the Division Algorithm 
The Division Algorithm states that, given a polynomial dividend f (x) and a non-zero polynomial divisor d(x) where 
the degree of d(x) is less than or equal to the degree of f (x), there exist unique polynomials q(x) and r(x) such that

f (x) = d(x)q(x) + r(x)

q(x) is the quotient and r(x) is the remainder. The remainder is either equal to zero or has degree strictly less 
than d(x).

If r(x) = 0, then d(x) divides evenly into f (x). This means that, in this case, both d(x) and q(x) are factors of f (x).

How To…
Given a polynomial and a binomial, use long division to divide the polynomial by the binomial.

1. Set up the division problem.
2. Determine the first term of the quotient by dividing the leading term of the dividend by the leading term of the 

divisor.
3. Multiply the answer by the divisor and write it below the like terms of the dividend.
4. Subtract the bottom binomial from the top binomial.
5. Bring down the next term of the dividend.
6. Repeat steps 2–5 until reaching the last term of the dividend.
7. If the remainder is non-zero, express as a fraction using the divisor as the denominator.

Example 1 Using Long Division to Divide a Second-Degree Polynomial

Divide 5x2 + 3x − 2 by x + 1.

Solution

 Set up division problem.

 5x2 divided by x is 5x.

 Multiply x + 1 by 5x.
 Subtract. Bring down the next term.

   
 −2x divided by x is −2.

 Multiply x + 1 by −2.  
 Subtract.

The quotient is 5x − 2. The remainder is 0. We write the result as

   5x2 + 3x − 2 __________ x + 1   = 5x − 2

or

 5x2 + 3x − 2 = (x + 1)(5x − 2)

Analysi s This division problem had a remainder of 0. This tells us that the dividend is divided evenly by the divisor, 
and that the divisor is a factor of the dividend.

x + 1)5x2 + 3x − 2
5x

x + 1)5x2 + 3x − 2
5x

x + 1)5x2 + 3x − 2
−(5x2 + 5x)

−2x − 2
5x − 2

x + 1)5x2 + 3x − 2
−(5x2 + 5x)

−2x − 2
−(−2x − 2)

0
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Example 2 Using Long Division to Divide a Third-Degree Polynomial

Divide 6x3 + 11x2 − 31x + 15 by 3x − 2.
Solution

 6x3 divided by 3x is 2x2.

 Multiply 3x − 2 by 2x2.
  Subtract. Bring down the next term. 15x2 divided by 3x is 5x.
 Multiply 3x − 2 by 5x.
  Subtract. Bring down the next term. −21x divided by 3x is −7.
 Multiply 3x − 2 by −7.
 Subtract. The remainder is 1.

There is a remainder of 1. We can express the result as:

   6x3 + 11x2 − 31x + 15  __________________  3x − 2   = 2x2 + 5x − 7 +   1 _____ 3x − 2  

Analysi s We can check our work by using the Division Algorithm to rewrite the solution. Then multiply.

 (3x − 2)(2x2 + 5x − 7) + 1 = 6x3 + 11x2 − 31x + 15

Notice, as we write our result,

•	 the dividend is 6x3 + 11x2 − 31x + 15

•	 the divisor is 3x − 2

•	 the quotient is 2x2 + 5x − 7

•	 the remainder is 1

Try It #1

Divide 16x3 − 12x2 + 20x − 3 by 4x + 5.

Using Synthetic Division to Divide Polynomials
As we’ve seen, long division of polynomials can involve many steps and be quite cumbersome. Synthetic division is a 
shorthand method of dividing polynomials for the special case of dividing by a linear factor whose leading coefficient 
is 1.

To illustrate the process, recall the example at the beginning of the section.

Divide 2x3 − 3x2 + 4x + 5 by x + 2 using the long division algorithm.

The final form of the process looked like this:
2x2 +     x + 18

x + 2)2x3 − 3x2 +   4x + 5
−(2x3 + 4x2)

−7x2 +   4x
−(−7x2 − 14x)

18x + 5
−(18x + 36)

−31

There is a lot of repetition in the table. If we don’t write the variables but, instead, line up their coefficients in columns 
under the division sign and also eliminate the partial products, we already have a simpler version of the entire problem.

   2x2 +    5x − 7
 3x − 2)6x3 + 11x2 − 31x + 1

−(6x3 −   4x2)
15x2 − 31x

−(15x2 − 10x)
−21x + 15

−(−21x + 14)
1
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2)2 −3 4 5
−2 −4

−7 14
18 −36

−31

Synthetic division carries this simplification even a few more steps. Collapse the table by moving each of the rows up 
to fill any vacant spots. Also, instead of dividing by 2, as we would in division of whole numbers, then multiplying 
and subtracting the middle product, we change the sign of the “divisor” to −2, multiply and add. The process starts 
by bringing down the leading coefficient.

−2 2 −3   4     5
−4 14 −36

2 −7 18 −31

We then multiply it by the “divisor” and add, repeating this process column by column, until there are no entries left. The bottom 
row represents the coefficients of the quotient; the last entry of the bottom row is the remainder. In this case, the quotient is  
2x2 − 7x + 18 and the remainder is −31. The process will be made more clear in Example 3.

synthetic division 
Synthetic division is a shortcut that can be used when the divisor is a binomial in the form x − k. In synthetic 
division, only the coefficients are used in the division process.

How To…
Given two polynomials, use synthetic division to divide.

1. Write k for the divisor.
2. Write the coefficients of the dividend.
3. Bring the lead coefficient down.
4. Multiply the lead coefficient by k. Write the product in the next column.
5. Add the terms of the second column.
6. Multiply the result by k. Write the product in the next column.
7. Repeat steps 5 and 6 for the remaining columns.
8. Use the bottom numbers to write the quotient. The number in the last column is the remainder and has degree 0, 

the next number from the right has degree 1, the next number from the right has degree 2, and so on.

Example 3 Using Synthetic Division to Divide a Second-Degree Polynomial

Use synthetic division to divide 5x2 − 3x − 36 by x − 3.

Solution Begin by setting up the synthetic division. Write k and the coefficients.
3 5 −3 −36

Bring down the lead coefficient. Multiply the lead coefficient by k.
3 5 −3 −36

15
5

Continue by adding the numbers in the second column. Multiply the resulting number by k. Write the result in the 
next column. Then add the numbers in the third column.

3 5 −3 −36
15 −36

5 12 0

The result is 5x + 12. The remainder is 0. So x − 3 is a factor of the original polynomial.
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Analysi s Just as with long division, we can check our work by multiplying the quotient by the divisor and adding the 
remainder.

(x − 3)(5x + 12) + 0 = 5x2 − 3x − 36

Example 4 Using Synthetic Division to Divide a Third-Degree Polynomial

Use synthetic division to divide 4x 3 + 10x 2 − 6x − 20 by x + 2.

Solution The binomial divisor is x + 2 so k = −2. Add each column, multiply the result by −2, and repeat until the 
last column is reached.

−2 4 10  −6 −20
−8  −4   20

4   2 −10     0

The result is 4x 2 + 2x − 10. The remainder is 0. Thus, x + 2 is a factor of 4x3 + 10x2 − 6x − 20.

Analysis The graph of the polynomial function f (x) = 4x3 + 10x2 − 6x − 20 in Figure 2 shows a zero at x = k = −2.  
This confirms that x + 2 is a factor of 4x 3 + 10x2 − 6x − 20.

x

y

–1–2–3–4–5 –2
–4
–6
–8

–10
–12
–14
–16
–18
–20
–22

321

2
4
6
8

10
12
14

4 5

−2 −1.8

Figure 2

Example 5 Using Synthetic Division to Divide a Fourth-Degree Polynomial

Use synthetic division to divide −9x4 + 10x3 + 7x2 − 6 by x − 1.

Solution Notice there is no x-term. We will use a zero as the coefficient for that term.

1 −9 10 7 0 −6
−9 1 8 8

−9 1 8 8 2

The result is −9x3 + x2 + 8x + 8 +   2 _ 
x − 1

  .

Try It #2

Use synthetic division to divide 3x4 + 18x3 − 3x + 40 by x + 7.

Using Polynomial Division to Solve Application Problems
Polynomial division can be used to solve a variety of application problems involving expressions for area and volume. 
We looked at an application at the beginning of this section. Now we will solve that problem in the following example.
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Example 6 Using Polynomial Division in an Application Problem

The volume of a rectangular solid is given by the polynomial 3x4 − 3x3 − 33x2 + 54x. The length of the solid is given 
by 3x and the width is given by x − 2. Find the height of the solid.

Solution There are a few ways to approach this problem. We need to divide the expression for the volume of the solid 
by the expressions for the length and width. Let us create a sketch as in Figure 3.

Length 3x

Height

Width x − 2

Figure 3

We can now write an equation by substituting the known values into the formula for the volume of a rectangular solid.

 V = l ⋅ w ⋅ h

 3x4 − 3x3 − 33x2 + 54x = 3x ⋅ (x − 2) ⋅ h

To solve for h, first divide both sides by 3x.

   3x ⋅ (x − 2) ⋅ h  ____________ 3x   =   3x4 − 3x3 − 33x2 + 54x  ___________________ 3x  

 (x − 2)h = x3 − x2 − 11x + 18

Now solve for h using synthetic division.

 h =   x
3 − x2 − 11x + 18  ________________ x − 2  

2 1 −1 −11   18
  2     2 −18

1   1  −9     0
The quotient is x2 + x − 9 and the remainder is 0. The height of the solid is x2 + x − 9.

Try It #3

The area of a rectangle is given by 3x3 + 14x2 − 23x + 6. The width of the rectangle is given by x + 6. Find an expression 
for the length of the rectangle.

Access these online resources for additional instruction and practice with polynomial division.
•	 Dividing a Trinomial by a Binomial Using long Division (http://openstaxcollege.org/l/dividetribild)

•	 Dividing a Polynomial by a Binomial Using long Division (http://openstaxcollege.org/l/dividepolybild)

•	 ex 2: Dividing a Polynomial by a Binomial Using Synthetic Division (http://openstaxcollege.org/l/dividepolybisd2)

•	 ex 4: Dividing a Polynomial by a Binomial Using Synthetic Division (http://openstaxcollege.org/l/dividepolybisd4)

http://openstaxcollege.org/l/dividetribild
http://openstaxcollege.org/l/dividepolybild
http://openstaxcollege.org/l/dividepolybisd2
http://openstaxcollege.org/l/dividepolybisd4


264 CHAPTER 3 polynomial and rational Functions

3.5 SeCTIOn exeRCISeS

VeRBAl

1. If division of a polynomial by a binomial results  
in a remainder of zero, what can be conclude?

2. If a polynomial of degree n is divided by a binomial  
of degree 1, what is the degree of the quotient?

AlGeBRAIC

For the following exercises, use long division to divide. Specify the quotient and the remainder.

3. (x2 + 5x − 1) ÷ (x − 1) 4. (2x2 − 9x − 5) ÷ (x − 5) 5. (3x2 + 23x + 14) ÷ (x + 7)
6. (4x2 − 10x + 6) ÷ (4x + 2) 7. (6x2 − 25x − 25) ÷ (6x + 5) 8. (−x2 − 1) ÷ (x + 1)
9. (2x2 − 3x + 2) ÷ (x + 2) 10. (x3 − 126) ÷ (x − 5) 11. (3x2 − 5x + 4) ÷ (3x + 1)

12. (x3 − 3x2 + 5x − 6) ÷ (x − 2) 13. (2x3 + 3x2 − 4x + 15) ÷ (x + 3)

For the following exercises, use synthetic division to find the quotient.

14. (3x3 − 2x2 + x − 4) ÷ (x + 3) 15. (2x3 − 6x2 − 7x + 6) ÷ (x − 4)
16. (6x3 − 10x2 − 7x − 15) ÷ (x + 1) 17. (4x3 − 12x2 − 5x − 1) ÷ (2x + 1)
18. (9x3 − 9x2 + 18x + 5) ÷ (3x − 1) 19. (3x3 − 2x2 + x − 4) ÷ (x + 3)
20. (−6x3 + x2 − 4) ÷ (2x − 3) 21. (2x3 + 7x2 − 13x − 3) ÷ (2x − 3)
22. (3x3 − 5x2 + 2x + 3) ÷ (x + 2) 23. (4x3 − 5x2 + 13) ÷ (x + 4)
24. (x3 − 3x + 2) ÷ (x + 2) 25. (x3 − 21x2 + 147x − 343) ÷ (x − 7)
26. (x3 − 15x2 + 75x − 125) ÷ (x − 5) 27. (9x3 − x + 2) ÷ (3x − 1)
28. (6x3 − x2 + 5x + 2) ÷ (3x + 1) 29. (x4 + x3 − 3x2 − 2x + 1) ÷ (x + 1)
30. (x4 − 3x2 + 1) ÷ (x − 1) 31. (x4 + 2x3 − 3x2 + 2x + 6) ÷ (x + 3)
32. (x4 − 10x3 + 37x2 − 60x + 36) ÷ (x − 2) 33. (x4 − 8x3 + 24x2 − 32x + 16) ÷ (x − 2)
34. (x4 + 5x3 − 3x2 − 13x + 10) ÷ (x + 5) 35. (x4 − 12x3 + 54x2 − 108x + 81) ÷ (x − 3)
36. (4x4 − 2x3 − 4x + 2) ÷ (2x − 1) 37. (4x4 + 2x3 − 4x2 + 2x + 2) ÷ (2x + 1)

For the following exercises, use synthetic division to determine whether the first expression is a factor of the second.  
If it is, indicate the factorization.

38. x − 2, 4x3 − 3x2 − 8x + 4 39. x − 2, 3x4 − 6x3 − 5x + 10 40. x + 3, −4x3 + 5x2 + 8

41. x − 2, 4x4 − 15x2 − 4 42. x −   1 __ 2  , 2x4 − x3 + 2x − 1 43. x +   1 __ 3  , 3x4 + x3 − 3x + 1

GRAPHICAl

For the following exercises, use the graph of the third-degree polynomial and one factor to write the factored form  
of the polynomial suggested by the graph. The leading coefficient is one.

44. Factor is x2 − x + 3

6

x

y

–2

–6

–4

–12

–6

–18

2 4

12

6

18

45. Factor is x2 + 2x + 4

6

x

y

–2

–6

–4

–12

–6

–18

2 4

12

6

18

46. Factor is x2 + 2x + 5

x

y

–2–4–6

–10

–20

–30

2

10

20

30

4 6
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47. Factor is x2 + x + 1

x

y

–2–4–6

–20

–40

–60

2

20

40

60

4 6

48. Factor is x2 + 2x + 2

x

y

–2–4–6

– 6

–12

–18

2

6

12

18

4 6

For the following exercises, use synthetic division to find the quotient and remainder.

49.   4x3 − 33 _______ x − 2  50.   2x3 + 25 _______ x + 3  51.   3x3 + 2x − 5 __________ x − 1  

52.   −4x3 − x2 − 12  ____________ x + 4  53.   x
4 − 22 ______ x + 2  

TeCHnOlOGY

For the following exercises, use a calculator with CAS to answer the questions.

54. Consider   x
k − 1 ______ x − 1   with k = 1, 2, 3. What do you 

expect the result to be if k = 4?
55. Consider   x

k + 1 ______ x + 1   for k = 1, 3, 5. What do you expect  
the result to be if k = 7?

56. Consider   x
4 − k4

 ______ x − k   for k = 1, 2, 3. What do you 
expect the result to be if k = 4?

57. Consider   xk
 _____ x + 1   with k = 1, 2, 3. What do you expect  

the result to be if k = 4?

58. Consider   xk
 _____ x − 1   with k = 1, 2, 3. What do you expect  

the result to be if k = 4?

exTenSIOnS

For the following exercises, use synthetic division to determine the quotient involving a complex number.

59.   x + 1 _____ x − i  60.   x
2 + 1 _____ x − i  61.   x + 1 _____ x + i  

62.   x
2 + 1 _____ x + i  63.   x

3 + 1 _____ x − i  

ReAl-WORlD APPlICATIOnS

For the following exercises, use the given length and area of a rectangle to express the width algebraically.

64. Length is x + 5, area is 2x2 + 9x − 5. 65. Length is 2x + 5, area is 4x3 + 10x2 + 6x + 15
66. Length is 3x − 4, area is 6x4 − 8x3 + 9x2 − 9x − 4

For the following exercises, use the given volume of a box and its length and width to express the height of  
the box algebraically.

67. Volume is 12x3 + 20x2 − 21x − 36,  
length is 2x + 3, width is 3x − 4.

68. Volume is 18x3 − 21x2 − 40x + 48,  
length is 3x − 4, width is 3x − 4.

69. Volume is 10x3 + 27x2 + 2x − 24, length is 5x − 4, 
width is 2x + 3.

70. Volume is 10x3 + 30x2 − 8x − 24, length is 2,  
width is x + 3.

For the following exercises, use the given volume and radius of a cylinder to express the height of the cylinder  
algebraically.

71. Volume is π(25x3 − 65x2 − 29x − 3), radius is 5x + 1. 72. Volume is π(4x3 + 12x2 − 15x − 50), radius is 2x + 5.
73. Volume is π(3x4 + 24x3 + 46x2 − 16x − 32),  

radius is x + 4.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Evaluate a polynomial using the Remainder Theorem.

•	 Use the Factor Theorem to solve a polynomial equation.

•	 Use the Rational Zero Theorem to find rational zeros.

•	 Find zeros of a polynomial function.

•	 Use the Linear Factorization Theorem to find polynomials with given zeros.

•	 Use Decartes' Rule of Signs.

•	 Solve real-world applications of polynomial equations.

3.6 ZeROS OF POlYnOMIAl FUnCTIOnS

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The bakery wants 
the volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want the length 
of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. 
What should the dimensions of the cake pan be?

This problem can be solved by writing a cubic function and solving a cubic equation for the volume of the cake. In 
this section, we will discuss a variety of tools for writing polynomial functions and solving polynomial equations.

evaluating a Polynomial Using the Remainder Theorem
In the last section, we learned how to divide polynomials. We can now use polynomial division to evaluate polynomials 
using the Remainder Theorem. If the polynomial is divided by x − k, the remainder may be found quickly by 
evaluating the polynomial function at k, that is, f (k) Let’s walk through the proof of the theorem.

Recall that the Division Algorithm states that, given a polynomial dividend f (x) and a non-zero polynomial divisor d(x) 
where the degree of d(x) is less than or equal to the degree of f (x), there exist unique polynomials q(x) and r(x) such that

 f (x) = d(x)q(x) + r(x)

If the divisor, d(x), is x − k, this takes the form

f (x) = (x − k)q(x) + r

Since the divisor x − k is linear, the remainder will be a constant, r. And, if we evaluate this for x = k, we have

 f (k) = (k − k)q(k) + r

 = 0 ⋅ q(k) + r

 = r

In other words, f (k) is the remainder obtained by dividing f (x) by x − k.

the Remainder Theorem 
If a polynomial f (x) is divided by x − k, then the remainder is the value f (k).

How To…
Given a polynomial function f, evaluate f (x) at x = k using the Remainder Theorem.

1. Use synthetic division to divide the polynomial by x − k.
2. The remainder is the value f (k).



SECTION 3.6 Zeros oF polynomial Functions 267

Example 1 Using the Remainder Theorem to Evaluate a Polynomial

Use the Remainder Theorem to evaluate f (x) = 6x4 − x3 − 15x2 + 2x − 7 at x = 2.

Solution To find the remainder using the Remainder Theorem, use synthetic division to divide the polynomial by 
x − 2.

2 6 −1 −15  2 −7
12  22 14 32

6 11  7 16 25

The remainder is 25. Therefore, f (2) = 25.

Analysi s We can check our answer by evaluating f (2).

 f (x) = 6x4 − x3 − 15x2 + 2x − 7

 f (2) = 6(2)4 − (2)3 − 15(2)2 + 2(2) − 7

 = 25

Try It #1

Use the Remainder Theorem to evaluate f (x) = 2x5 − 3x4 − 9x3 + 8x2 + 2 at x = −3.

Using the Factor Theorem to Solve a Polynomial equation
The Factor Theorem is another theorem that helps us analyze polynomial equations. It tells us how the zeros of a 
polynomial are related to the factors. Recall that the Division Algorithm tells us

f (x) = (x − k)q(x) + r.

If k is a zero, then the remainder r is f (k) = 0 and f (x) = (x − k)q(x) + 0 or f (x) = (x − k)q(x).

Notice, written in this form, x − k is a factor of f (x). We can conclude if k is a zero of f (x), then x − k is a factor of f (x).

Similarly, if x − k is a factor of f (x), then the remainder of the Division Algorithm f (x) = (x − k)q(x) + r is 0. This 
tells us that k is a zero.

This pair of implications is the Factor Theorem. As we will soon see, a polynomial of degree n in the complex number 
system will have n zeros. We can use the Factor Theorem to completely factor a polynomial into the product of n factors. 
Once the polynomial has been completely factored, we can easily determine the zeros of the polynomial.

the Factor Theorem 
According to the Factor Theorem, k is a zero of f (x) if and only if (x − k) is a factor of f (x).

How To…
Given a factor and a third-degree polynomial, use the Factor Theorem to factor the polynomial.

1. Use synthetic division to divide the polynomial by (x − k).
2. Confirm that the remainder is 0.
3. Write the polynomial as the product of (x − k) and the quadratic quotient.
4. If possible, factor the quadratic.
5. Write the polynomial as the product of factors.

Example 2 Using the Factor Theorem to Solve a Polynomial Equation

Show that (x + 2) is a factor of x3 − 6x2 − x + 30. Find the remaining factors. Use the factors to determine the zeros 
of the polynomial.
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Solution We can use synthetic division to show that (x + 2) is a factor of the polynomial.

−2 1 −6 −1  30

−2 16 −30

1 −8 15  0

The remainder is zero, so (x + 2) is a factor of the polynomial. We can use the Division Algorithm to write the 
polynomial as the product of the divisor and the quotient:

(x + 2)(x2 − 8x + 15)

We can factor the quadratic factor to write the polynomial as

(x + 2)(x − 3)(x − 5)

By the Factor Theorem, the zeros of x3 − 6x2 − x + 30 are −2, 3, and 5.

Try It #2

Use the Factor Theorem to find the zeros of f (x) = x3 + 4x2 − 4x − 16 given that (x − 2) is a factor of the polynomial.

Using the Rational Zero Theorem to Find Rational Zeros

Another use for the Remainder Theorem is to test whether a rational number is a zero for a given polynomial. But 
first we need a pool of rational numbers to test. The Rational Zero Theorem helps us to narrow down the number of 
possible rational zeros using the ratio of the factors of the constant term and factors of the leading coefficient of the 
polynomial. 

Consider a quadratic function with two zeros, x =   2 __ 5   and x =   3 __ 4  . By the Factor Theorem, these zeros have factors 
associated with them. Let us set each factor equal to 0, and then construct the original quadratic function absent its 
stretching factor.

 x −   2 __ 5   = 0 or x −   3 __ 4   = 0 Set each factor equal to 0.

 5x − 2 = 0 or 4x − 3 = 0  Multiply both sides of the equation to eliminate fractions.

 f (x) = (5x − 2)(4x − 3)  Create the quadratic function, multiplying the factors.

 f (x) = 20x2 − 23x + 6 Expand the polynomial. 

 f (x) = (5 ⋅ 4)x2 − 23x + (2 ⋅ 3)

Notice that two of the factors of the constant term, 6, are the two numerators from the original rational roots: 2 
and 3. Similarly, two of the factors from the leading coefficient, 20, are the two denominators from the original 
rational roots: 5 and 4.

We can infer that the numerators of the rational roots will always be factors of the constant term and the denominators 
will be factors of the leading coefficient. This is the essence of the Rational Zero Theorem; it is a means to give us a 
pool of possible rational zeros.

the Rational Zero Theorem 
The Rational Zero Theorem states that, if the polynomial f (x) = anxn + an − 1 x

n − 1 + ... + a1 x + a0 has integer 
coefficients, then every rational zero of f (x) has the form   

p
 _ q   where p is a factor of the constant term a0 and q is a 

factor of the leading coefficient an.

When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.



SECTION 3.6 Zeros oF polynomial Functions 269

How To…
Given a polynomial function f (x), use the Rational Zero Theorem to find rational zeros.

1. Determine all factors of the constant term and all factors of the leading coefficient.

2. Determine all possible values of   
p

 _ q  , where p is a factor of the constant term and q is a factor of the leading coefficient. 
Be sure to include both positive and negative candidates.

3. Determine which possible zeros are actual zeros by evaluating each case of f     
p

 _ q    .

Example 3 Listing All Possible Rational Zeros

List all possible rational zeros of f (x) = 2x4 − 5x3 + x2 − 4.

Solution The only possible rational zeros of f (x) are the quotients of the factors of the last term, −4, and the factors 
of the leading coefficient, 2.

The constant term is −4; the factors of −4 are p = ±1, ±2, ±4.

The leading coefficient is 2; the factors of 2 are q = ±1, ±2.

If any of the four real zeros are rational zeros, then they will be of one of the following factors of −4 divided by one 
of the factors of 2.

   
p

 _ q   = ±  1 __ 1  , ±  1 __ 2     
p

 _ q   = ±  2 __ 1  , ±  2 __ 2     
p

 _ q   = ±  4 __ 1  , ±  4 __ 2  

Note that   2 __ 2   = 1 and   4 __ 2   = 2, which have already been listed. So we can shorten our list.

   
p

 _ q   =   Factors of the last  __  
Factors of the first

   = ±1, ±2, ±4, ±  1 __ 2  

Example 4 Using the Rational Zero Theorem to Find Rational Zeros

Use the Rational Zero Theorem to find the rational zeros of f (x) = 2x3 + x2 − 4x + 1.

Solution  The Rational Zero Theorem tells us that if   
p

 _ q   is a zero of f (x), then p is a factor of 1 and q is a factor of 2.

   
p

 _ q   =   factor of constant term  ___   
factor of leading coefficient

  

 =   factor of 1 _ 
factor of 2

  

The factors of 1 are ±1 and the factors of 2 are ±1 and ±2. The possible values for   
p

 _ q   are ±1 and ±  1 _ 2  . These are the 
possible rational zeros for the function. We can determine which of the possible zeros are actual zeros by substituting 
these values for x in f (x).

 f (−1) = 2(−1)3 + (−1)2 − 4(−1) + 1 = 4

 f (1) = 2(1)3 + (1)2 − 4(1) + 1 = 0

 f    −  1 __ 2     = 2   −  1 __ 2    
3
 +   −  1 __ 2    

2
 − 4   −  1 __ 2     + 1 = 3

 f      1 __ 2     = 2     1 __ 2    
3
 +     1 __ 2    

2
 − 4     1 __ 2     + 1 = −  1 _ 

2
  

Of those, −1, −  1 __ 
2

  , and   1 __ 2   are not zeros of f (x). 1 is the only rational zero of f (x).

Try It #3
Use the Rational Zero Theorem to find the rational zeros of f (x) = x3 − 5x2 + 2x + 1.
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Finding the Zeros of Polynomial Functions
The Rational Zero Theorem helps us to narrow down the list of possible rational zeros for a polynomial function. Once 
we have done this, we can use synthetic division repeatedly to determine all of the zeros of a polynomial function.

How To…
Given a polynomial function f, use synthetic division to find its zeros.

1. Use the Rational Zero Theorem to list all possible rational zeros of the function.
2. Use synthetic division to evaluate a given possible zero by synthetically dividing the candidate into the polynomial. 

If the remainder is 0, the candidate is a zero. If the remainder is not zero, discard the candidate.
3. Repeat step two using the quotient found with synthetic division. If possible, continue until the quotient is a 

quadratic.
4. Find the zeros of the quadratic function. Two possible methods for solving quadratics are factoring and using the 

quadratic formula.

Example 5  Finding the Zeros of a Polynomial Function with Repeated Real Zeros

Find the zeros of f (x) = 4x3 − 3x − 1.
Solution The Rational Zero Theorem tells us that if   

p
 _ q   is a zero of f (x), then p is a factor of −1 and q is a factor of 4.

   
p

 _ q   =   factor of constant term  ___   
factor of leading coefficient

  

 =   factor of −1 __ 
factor of 4

  

The factors of −1 are ±1 and the factors of 4 are ±1, ±2, and ±4. The possible values for   
p

 _ q   are ±1, ±  1 __ 2  , and ±  1 __ 4  . These 
are the possible rational zeros for the function. We will use synthetic division to evaluate each possible zero until we 
find one that gives a remainder of 0. Let’s begin with 1.

1 4 0 −3 −1
4 4 1

4 4 1 0
Dividing by (x − 1) gives a remainder of 0, so 1 is a zero of the function. The polynomial can be written as

(x − 1)(4x2 + 4x + 1).

The quadratic is a perfect square. f (x) can be written as

(x − 1)(2x + 1)2.

We already know that 1 is a zero. The other zero will have a multiplicity of 2 because the factor is squared. To find the 
other zero, we can set the factor equal to 0.
 2x + 1 = 0
 x = −  1 __ 2  

The zeros of the function are 1 and −  1 __ 2   with multiplicity 2.

Analysis Look at the graph of the function f in Figure 1. Notice, at x = −0.5, the graph bounces off the x-axis, indicating 
the even multiplicity (2, 4, 6…) for the zero −0.5. At x = 1, the graph crosses the x-axis, indicating the odd multiplicity  
(1, 3, 5…) for the zero x = 1.
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–0.5–1–1.5–2–2.5
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2 2.5
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Figure 1
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Using the Fundamental Theorem of Algebra
Now that we can find rational zeros for a polynomial function, we will look at a theorem that discusses the number 
of complex zeros of a polynomial function. The Fundamental Theorem of Algebra tells us that every polynomial 
function has at least one complex zero. This theorem forms the foundation for solving polynomial equations.

Suppose f is a polynomial function of degree four, and f (x) = 0. The Fundamental Theorem of Algebra states that 
there is at least one complex solution, call it c1. By the Factor Theorem, we can write f (x) as a product of x − c1 and 
a polynomial quotient. Since x − c1 is linear, the polynomial quotient will be of degree three. Now we apply the 
Fundamental Theorem of Algebra to the third-degree polynomial quotient. It will have at least one complex zero, call 
it c2. So we can write the polynomial quotient as a product of x − c2 and a new polynomial quotient of degree two. 
Continue to apply the Fundamental Theorem of Algebra until all of the zeros are found. There will be four of them 
and each one will yield a factor of f (x).

The Fundamental Theorem of Algebra 
The Fundamental Theorem of Algebra states that, if f (x) is a polynomial of degree n > 0, then f (x) has at least one 
complex zero. We can use this theorem to argue that, if f (x) is a polynomial of degree n > 0, and a is a non-zero 
real number, then f (x) has exactly n linear factors

f (x) = a(x − c1)(x − c2)...(x − cn)

where c1, c2, ..., cn are complex numbers. Therefore, f (x) has n roots if we allow for multiplicities.

Q & A…
Does every polynomial have at least one imaginary zero?
No. A complex number is not necessarily imaginary. Real numbers are also complex numbers.

Example 6 Finding the Zeros of a Polynomial Function with Complex Zeros

Find the zeros of f (x) = 3x3 + 9x2 + x + 3.

Solution The Rational Zero Theorem tells us that if   
p

 _ q   is a zero of f (x), then p is a factor of 3 and q is a factor of 3.

   
p

 _ q   =   factor of constant term  ___   
factor of leading coefficient

  

 =   factor of 3 _ 
factor of 3

  

The factors of 3 are ±1 and ±3. The possible values for   
p

 _ q  , and therefore the possible rational zeros for the function, are 
±3, ±1, and ±  1 __ 3  . We will use synthetic division to evaluate each possible zero until we find one that gives a remainder 
of 0. Let’s begin with −3.

−3 3   9 1   3

−9 0 −3
3   0 1   0

Dividing by (x + 3) gives a remainder of 0, so −3 is a zero of the function. The polynomial can be written as

(x + 3)(3x2 + 1)

We can then set the quadratic equal to 0 and solve to find the other zeros of the function.

 3x2 + 1 = 0

 x2 = −  1 __ 
3

  

 x = ± √ 
____

 −  1 __ 3     = ±  i √
—
 3   _ 

3
  

The zeros of f (x) are −3 and ±  i √
—
 3   _ 

3
  .
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Analysi s Look at the graph of the function f in Figure 2. Notice that, at x = −3, the graph crosses the x-axis, indicating an 
odd multiplicity (1) for the zero x = −3. Also note the presence of the two turning points. This means that, since there is a 
3rd degree polynomial, we are looking at the maximum number of turning points. So, the end behavior of increasing without 
bound to the right and decreasing without bound to the left will continue. Thus, all the x-intercepts for the function are shown. 
So either the multiplicity of x = −3 is 1 and there are two complex solutions, which is what we found, or the multiplicity at  
x = −3 is three. Either way, our result is correct.

x

y

–2–4–6

–6

–12

–18

2

6

12

18

4 6

Cross

Figure 2

Try It #4

Find the zeros of f (x) = 2x3 + 5x2 − 11x + 4.

Using the linear Factorization Theorem to Find Polynomials with Given Zeros
A vital implication of the Fundamental Theorem of Algebra, as we stated above, is that a polynomial function of degree 
n will have n zeros in the set of complex numbers, if we allow for multiplicities. This means that we can factor the 
polynomial function into n factors. The Linear Factorization Theorem tells us that a polynomial function will have 
the same number of factors as its degree, and that each factor will be in the form (x − c), where c is a complex number.

Let f be a polynomial function with real coefficients, and suppose a + bi, b ≠ 0, is a zero of f (x). Then, by the Factor 
Theorem, x − (a + bi) is a factor of f (x). For f to have real coefficients, x − (a − bi) must also be a factor of f (x). This is 
true because any factor other than x − (a − bi), when multiplied by x − (a + bi), will leave imaginary components in 
the product. Only multiplication with conjugate pairs will eliminate the imaginary parts and result in real coefficients. 
In other words, if a polynomial function f with real coefficients has a complex zero a + bi, then the complex conjugate 
a − bi must also be a zero of f (x). This is called the Complex Conjugate Theorem.

complex conjugate theorem 
According to the Linear Factorization Theorem, a polynomial function will have the same number of factors as 
its degree, and each factor will be in the form (x − c), where c is a complex number.

If the polynomial function f has real coefficients and a complex zero in the form a + bi, then the complex 
conjugate of the zero, a − bi, is also a zero.

How To…
Given the zeros of a polynomial function f and a point (c, f (c)) on the graph of f, use the Linear Factorization Theorem 
to find the polynomial function.

1. Use the zeros to construct the linear factors of the polynomial.
2. Multiply the linear factors to expand the polynomial.
3. Substitute (c, f (c)) into the function to determine the leading coefficient.
4. Simplify.



SECTION 3.6 Zeros oF polynomial Functions 273

Example 7  Using the Linear Factorization Theorem to Find a Polynomial with Given Zeros

Find a fourth degree polynomial with real coefficients that has zeros of −3, 2, i, such that f (−2) = 100.

Solution Because x = i is a zero, by the Complex Conjugate Theorem x = −i is also a zero. The polynomial must 
have factors of (x + 3), (x − 2), (x − i), and (x + i). Since we are looking for a degree 4 polynomial, and now have four 
zeros, we have all four factors. Let’s begin by multiplying these factors.

 f (x) = a(x + 3)(x − 2)(x − i)(x + i)

 f (x) = a(x2 + x − 6)(x2 + 1)

 f (x) = a(x4 + x3 − 5x2 + x − 6)

We need to find a to ensure f (−2) = 100. Substitute x = −2 and f (2) = 100 into f (x).

 100 = a((−2)4 + (−2)3 − 5(−2)2 + (−2) − 6)

 100 = a(−20)

 −5 = a

So the polynomial function is

 f (x) = −5(x4 + x3 − 5x2 + x − 6)

or

 f (x) = −5x4 − 5x3 + 25x2 − 5x + 30

Analysis We found that both i and −i were zeros, but only one of these zeros needed to be given. If i is a zero of a 
polynomial with real coefficients, then −i must also be a zero of the polynomial because −i is the complex conjugate of i.

Q & A…
If 2 + 3i were given as a zero of a polynomial with real coefficients, would 2 − 3i also need to be a zero?

Yes. When any complex number with an imaginary component is given as a zero of a polynomial with real coefficients, 
the conjugate must also be a zero of the polynomial.

Try It #5

Find a third degree polynomial with real coefficients that has zeros of 5 and −2i such that f (1) = 10.

Using Descartes’ Rule of Signs
There is a straightforward way to determine the possible numbers of positive and negative real zeros for any polynomial 
function. If the polynomial is written in descending order, Descartes’ Rule of Signs tells us of a relationship between 
the number of sign changes in f (x) and the number of positive real zeros. For example, the polynomial function below 
has one sign change.

 f (x) = x 4 + x 3 + x 2 + x − 1

This tells us that the function must have 1 positive real zero.

There is a similar relationship between the number of sign changes in f (−x) and the number of negative real zeros.

 f (−x) = (−x)4 + (−x)3 + (−x)2 + (−x) − 1

 f (−x) =+x 4 − x 3 + x 2 − x − 1

In this case, f (−x) has 3 sign changes. This tells us that f (x) could have 3 or 1 negative real zeros.
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Descartes’ Rule of Signs 
According to Descartes’ Rule of Signs, if we let f (x) = anxn + an − 1 x

n − 1 + ... + a1 x + a0 be a polynomial function 
with real coefficients:
•	 The number of positive real zeros is either equal to the number of sign changes of f (x) or is less than the number 

of sign changes by an even integer.
•	 The number of negative real zeros is either equal to the number of sign changes of f (−x) or is less than the 

number of sign changes by an even integer.

Example 8 Using Descartes’ Rule of Signs

Use Descartes’ Rule of Signs to determine the possible numbers of positive and negative real zeros for  
f (x) = −x4 − 3x3 + 6x2 − 4x − 12.
Solution Begin by determining the number of sign changes.

 f (x) = −x 4 − 3x 3 + 6x 2 − 4x − 12

Figure 3

There are two sign changes, so there are either 2 or 0 positive real roots. Next, we examine f (−x) to determine the 
number of negative real roots.
 f (−x) = −(−x)4 − 3(−x)3 + 6(−x)2 − 4(−x) − 12
 f (−x) = −x 4 + 3x 3 + 6x 2 + 4x − 12

 f (−x) = −x 4 + 3x 3 + 6x 2 + 4x − 12
Figure 4

Again, there are two sign changes, so there are either 2 or 0 negative real roots.

There are four possibilities, as we can see in Table 1.

Positive Real Zeros  Negative Real Zeros Complex Zeros Total Zeros
2 2 0 4
2 0 2 4
0 2 2 4
0 0 4 4

Table 1

Analysi s We can confirm the numbers of positive and negative 
real roots by examining a graph of the function. See  
Figure 5. We can see from the graph that the function has 0 
positive real roots and 2 negative real roots.
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f (x) = − x4  − 3x3 + 6x2  − 4x − 12
x = −4.42

Figure 5  

Try It #6

Use Descartes’ Rule of Signs to determine the maximum possible numbers of positive and negative real zeros for  
f (x) = 2x4 − 10x3 + 11x2 − 15x + 12. Use a graph to verify the numbers of positive and negative real zeros for the 
function.

Solving Real-World Applications
We have now introduced a variety of tools for solving polynomial equations. Let’s use these tools to solve the bakery 
problem from the beginning of the section.
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Example 9 Solving Polynomial Equations

A new bakery offers decorated sheet cakes for children’s birthday parties and other special occasions. The bakery wants 
the volume of a small cake to be 351 cubic inches. The cake is in the shape of a rectangular solid. They want the length 
of the cake to be four inches longer than the width of the cake and the height of the cake to be one-third of the width. 
What should the dimensions of the cake pan be?

Solution Begin by writing an equation for the volume of the cake. The volume of a rectangular solid is given by V = lwh. 
We were given that the length must be four inches longer than the width, so we can express the length of the cake as l = w + 4.  
We were given that the height of the cake is one-third of the width, so we can express the height of the cake as  
h =   1 __ 3  w. Let’s write the volume of the cake in terms of width of the cake.

 V = (w + 4)(w)    1 __ 3  w  

 V =   1 __ 3  w 3 +   4 __ 3  w 2

Substitute the given volume into this equation.

 351 =   1 __ 3  w 3 +   4 __ 3  w 2 Substitute 351 for V.

 1053 = w 3 + 4w 2 Multiply both sides by 3.

 0 = w 3 + 4w 2 − 1053 Subtract 1053 from both sides.

Descartes’ rule of signs tells us there is one positive solution. The Rational Zero Theorem tells us that the possible rational 
zeros are ±1, ±3, ±9, ±13, ±27, ±39, ±81, ±117, ±351, and ±1053. We can use synthetic division to test these possible 
zeros. Only positive numbers make sense as dimensions for a cake, so we need not test any negative values. Let’s begin 
by testing values that make the most sense as dimensions for a small sheet cake. Use synthetic division to check x = 1.

1 1 4 0 −1053
1 5    5

1 5 5 −1048
Since 1 is not a solution, we will check x = 3.

3 1 4  0 −1053
3 21   63

1 7 21 −990
Since 3 is not a solution either, we will test x = 9.

9 1  4  0 −1053
 9 117  1053

1 13 117     0

Synthetic division gives a remainder of 0, so 9 is a solution to the equation. We can use the relationships between the 
width and the other dimensions to determine the length and height of the sheet cake pan.

l = w + 4 = 9 + 4 = 13 and h =   1 __ 3  w =   1 __ 3  (9) = 3

The sheet cake pan should have dimensions 13 inches by 9 inches by 3 inches.

Try It #7

A shipping container in the shape of a rectangular solid must have a volume of 84 cubic meters. The client tells the 
manufacturer that, because of the contents, the length of the container must be one meter longer than the width, and 
the height must be one meter greater than twice the width. What should the dimensions of the container be?

Access these online resources for additional instruction and practice with zeros of polynomial functions.
•	 Real Zeros, Factors, and Graphs of Polynomial Functions (http://openstaxcollege.org/l/realzeros)
•	 Complex Factorization Theorem (http://openstaxcollege.org/l/factortheorem)
•	 Find the Zeros of a Polynomial Function (http://openstaxcollege.org/l/findthezeros)
•	 Find the Zeros of a Polynomial Function 2 (http://openstaxcollege.org/l/findthezeros2)
•	 Find the Zeros of a Polynomial Function 3 (http://openstaxcollege.org/l/findthezeros3)

http://openstaxcollege.org/l/realzeros
http://openstaxcollege.org/l/factortheorem
http://openstaxcollege.org/l/findthezeros
http://openstaxcollege.org/l/findthezeros2
http://openstaxcollege.org/l/findthezeros3
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3.6 SeCTIOn exeRCISeS

VeRBAl

1. Describe a use for the Remainder Theorem. 2. Explain why the Rational Zero Theorem does not 
guarantee finding zeros of a polynomial function.

3. What is the difference between rational and real 
zeros?

4. If Descartes’ Rule of Signs reveals a no change 
of signs or one sign of changes, what specific 
conclusion can be drawn?

5. If synthetic division reveals a zero, why should we 
try that value again as a possible solution?

AlGeBRAIC

For the following exercises, use the Remainder Theorem to find the remainder.

6. (x4 − 9x2 + 14) ÷ (x − 2) 7. (3x3 − 2x2 + x − 4) ÷ (x + 3)

8. (x4 + 5x3 − 4x − 17) ÷ (x + 1) 9. (−3x2 + 6x + 24) ÷ (x − 4)

10. (5x5 − 4x4 + 3x3 − 2x2 + x − 1) ÷ (x + 6) 11. (x4 − 1) ÷ (x − 4)

12. (3x3 + 4x2 − 8x + 2) ÷ (x − 3) 13. (4x3 + 5x2 − 2x + 7) ÷ (x + 2)

For the following exercises, use the Factor Theorem to find all real zeros for the given polynomial function and one 
factor.

14. f (x) = 2x3 − 9x2 + 13x − 6; x − 1 15. f (x) = 2x3 + x2 − 5x + 2; x + 2

16. f (x) = 3x3 + x2 − 20x + 12; x + 3 17. f (x) = 2x3 + 3x2 + x + 6; x + 2

18. f (x) = −5x3 + 16x2 − 9; x − 3 19. x3 + 3x2 + 4x + 12; x + 3

20. 4x3 − 7x + 3; x − 1 21. 2x3 + 5x2 − 12x − 30, 2x + 5

For the following exercises, use the Rational Zero Theorem to find all real zeros.

22. x3 − 3x2 − 10x + 24 = 0 23. 2x3 + 7x2 − 10x − 24 = 0 24. x3 + 2x2 − 9x − 18 = 0

25. x3 + 5x2 − 16x − 80 = 0 26. x3 − 3x2 − 25x + 75 = 0 27. 2x3 − 3x2 − 32x − 15 = 0

28. 2x3 + x2 − 7x − 6 = 0 29. 2x3 − 3x2 − x + 1 = 0 30. 3x3 − x2 − 11x − 6 = 0

31. 2x3 − 5x2 + 9x − 9 = 0 32. 2x3 − 3x2 + 4x + 3 = 0 33. x4 − 2x3 − 7x2 + 8x + 12 = 0

34. x4 + 2x3 − 9x2 − 2x + 8 = 0 35. 4x4 + 4x3 − 25x2 − x + 6 = 0 36. 2x4 − 3x3 − 15x2 + 32x − 12 = 0

37. x4 + 2x3 − 4x2 − 10x − 5 = 0 38. 4x3 − 3x + 1 = 0 39. 8x4 + 26x3 + 39x2 + 26x + 6

For the following exercises, find all complex solutions (real and non-real).

40. x3 + x2 + x + 1 = 0 41. x3 − 8x2 + 25x − 26 = 0 42. x3 + 13x2 + 57x + 85 = 0

43. 3x3 − 4x2 + 11x + 10 = 0 44. x4 + 2x3 + 22x2 + 50x − 75 = 0 45. 2x3 − 3x2 + 32x + 17 = 0

GRAPHICAl

For the following exercises, use Descartes’ Rule to determine the possible number of positive and negative solutions. 
Then graph to confirm which of those possibilities is the actual combination.

46. f (x) = x3 − 1 47. f (x) = x4 − x2 − 1 48. f (x) = x3 − 2x2 − 5x + 6

49. f (x) = x3 − 2x2 + x − 1 50. f (x) = x4 + 2x3 − 12x2 + 14x − 5 51. f (x) = 2x3 + 37x2 + 200x + 300
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52. f (x) = x3 − 2x2 − 16x + 32 53. f (x) = 2x4 − 5x3 − 5x2 + 5x + 3 54. f (x) = 2x4 − 5x3 − 14x2 + 20x + 8

55. f (x) = 10x4 − 21x2 + 11

nUMeRIC

For the following exercises, list all possible rational zeros for the functions.

56. f (x) = x4 + 3x3 − 4x + 4 57. f (x) = 2x3 + 3x2 − 8x + 5 58. f (x) = 3x3 + 5x2 − 5x + 4

59. f (x) = 6x4 − 10x2 + 13x + 1 60. f (x) = 4x5 − 10x4 + 8x3 + x2 − 8

TeCHnOlOGY

For the following exercises, use your calculator to graph the polynomial function. Based on the graph, find the rational 
zeros. All real solutions are rational.

61. f (x) = 6x3 − 7x2 + 1 62. f (x) = 4x3 − 4x2 − 13x − 5

63. f (x) = 8x3 − 6x2 − 23x + 6 64. f (x) = 12x4 + 55x3 + 12x2 − 117x + 54

65. f (x) = 16x4 − 24x3 + x2 − 15x + 25

exTenSIOnS

For the following exercises, construct a polynomial function of least degree possible using the given information.
66. Real roots: −1, 1, 3 and (2, f (2)) = (2, 4) 67. Real roots: −1, 1 (with multiplicity 2 and 1) and  

(2, f (2)) = (2, 4)

68. Real roots: −2,   1 __ 2   (with multiplicity 2) and  
(−3, f (−3)) = (−3, 5)

69. Real roots: −  1 __ 2  , 0,   1 __ 2   and (−2, f (−2)) = (−2, 6)

70. Real roots: −4, −1, 1, 4 and (−2, f (−2)) = (−2, 10)

ReAl-WORlD APPlICATIOnS

For the following exercises, find the dimensions of the box described.

71. The length is twice as long as the width. The height  
is 2 inches greater than the width. The volume is  
192 cubic inches.

72. The length, width, and height are consecutive whole 
numbers. The volume is 120 cubic inches.

73. The length is one inch more than the width, which is 
one inch more than the height. The volume is  
86.625 cubic inches.

74. The length is three times the height and the height is 
one inch less than the width. The volume is  
108 cubic inches.

75. The length is 3 inches more than the width. The 
width is 2 inches more than the height. The volume 
is 120 cubic inches.

For the following exercises, find the dimensions of the right circular cylinder described.

76. The radius is 3 inches more than the height. The 
volume is 16π cubic meters.

77. The height is one less than one half the radius.  
The volume is 72π cubic meters.

78. The radius and height differ by one meter. The  
radius is larger and the volume is 48π cubic meters.

79. The radius and height differ by two meters.  
The height is greater and the volume is 28.125π 
cubic meters.

80. The radius is   1 __ 3   meter greater than the height. The 

volume is   98 ___ 9π  π cubic meters.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Use arrow notation.

•	 Solve applied problems involving rational functions.

•	 Find the domains of rational functions.

•	 Identify vertical asymptotes.

•	 Identify horizontal asymptotes.

•	 Graph rational functions.

3.7 RATIOnAl FUnCTIOnS

Suppose we know that the cost of making a product is dependent on the number of items, x, produced. This is given 
by the equation C(x) = 15,000x − 0.1x2 + 1000. If we want to know the average cost for producing x items, we would 
divide the cost function by the number of items, x.

The average cost function, which yields the average cost per item for x items produced, is

 f (x) =   15,000x − 0.1x2 + 1000  __________________  x  

Many other application problems require finding an average value in a similar way, giving us variables in the 
denominator. Written without a variable in the denominator, this function will contain a negative integer power.

In the last few sections, we have worked with polynomial functions, which are functions with non-negative integers 
for exponents. In this section, we explore rational functions, which have variables in the denominator.

Using Arrow notation
We have seen the graphs of the basic reciprocal function and the squared reciprocal function from our study of toolkit 
functions. Examine these graphs, as shown in Figure 1, and notice some of their features.

Graphs of Toolkit Functions
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Figure 1 

Several things are apparent if we examine the graph of f (x) =   1 _ x  .

1. On the left branch of the graph, the curve approaches the x-axis (y = 0) as x → −∞.

2. As the graph approaches x = 0 from the left, the curve drops, but as we approach zero from the right, the curve 
rises.

3. Finally, on the right branch of the graph, the curves approaches the x-axis (y = 0) as x → ∞.

To summarize, we use arrow notation to show that x or f (x) is approaching a particular value. See Table 1.
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Symbol Meaning
x → a− x approaches a from the left (x < a but close to a)

x → a+ x approaches a from the right (x > a but close to a)

x → ∞ x approaches infinity (x increases without bound)

x → −∞ x approaches negative infinity (x decreases without bound)

f (x) → ∞ The output approaches infinity (the output increases without bound)

f (x) → −∞ The output approaches negative infinity (the output decreases without bound)

f (x) → a The output approaches a

Table 1 Arrow Notation

Local Behavior of f   (x ) =    1 __ x    

Let’s begin by looking at the reciprocal function, f (x) =   1 _ x  . We cannot divide by zero, which means the function is 
undefined at x = 0; so zero is not in the domain. As the input values approach zero from the left side (becoming very 
small, negative values), the function values decrease without bound (in other words, they approach negative infinity). 
We can see this behavior in Table 2.

x −0.1 −0.01 −0.001 −0.0001

f (x) =   1 __ x  −10 −100 −1000 −10,000

Table 2

We write in arrow notation
as x → 0−, f (x) → −∞

As the input values approach zero from the right side (becoming very small, positive values), the function values 
increase without bound (approaching infinity). We can see this behavior in Table 3.

x 0.1 0.01 0.001 0.0001

f (x) =   1 __ x  10 100 1000 10,000

Table 3

We write in arrow notation
As x → 0+, f (x) → ∞.

See Figure 2.
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Figure 2
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This behavior creates a vertical asymptote, which is a vertical line that the graph approaches but never crosses. In this 
case, the graph is approaching the vertical line x = 0 as the input becomes close to zero. See Figure 3.
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Figure 3

vertical asymptote 
A vertical asymptote of a graph is a vertical line x = a where the graph tends toward positive or negative infinity 
as the inputs approach a. We write

As x → a, f (x) → ∞, or as x → a, f (x) → −∞.

End Behavior of f (x ) =   1 _ x  

As the values of x approach infinity, the function values approach 0. As the values of x approach negative infinity, the 
function values approach 0. See Figure 4. Symbolically, using arrow notation

As x → ∞, f (x) → 0, and as x → −∞, f (x) → 0.
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Based on this overall behavior and the graph, we can see that the function approaches 0 but never actually reaches 0; it 
seems to level off as the inputs become large. This behavior creates a horizontal asymptote, a horizontal line that the graph 
approaches as the input increases or decreases without bound. In this case, the graph is approaching the horizontal line  
y = 0. See Figure 5.
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horizontal asymptote 
A horizontal asymptote of a graph is a horizontal line y = b where the graph approaches the line as the inputs 
increase or decrease without bound. We write

As x → ∞ or x → −∞, f (x) → b.

Example 1 Using Arrow Notation

Use arrow notation to describe the end behavior and local behavior of the function graphed in Figure 6.
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Solution Notice that the graph is showing a vertical asymptote at x = 2, which tells us that the function is undefined 
at x = 2.

As x → 2−, f (x) → −∞, and as x → 2+,  f (x) → ∞.

And as the inputs decrease without bound, the graph appears to be leveling off at output values of 4, indicating a 
horizontal asymptote at y = 4. As the inputs increase without bound, the graph levels off at 4.

As x → ∞, f (x) → 4 and as x → −∞, f (x) → 4.

Try It #1

Use arrow notation to describe the end behavior and local behavior for the reciprocal squared function.

Example 2 Using Transformations to Graph a Rational Function

Sketch a graph of the reciprocal function shifted two units to the left and up three units. Identify the horizontal and 
vertical asymptotes of the graph, if any.

Solution Shifting the graph left 2 and up 3 would result in the function

f (x) =   1 _____ x + 2   + 3

or equivalently, by giving the terms a common denominator,

 f (x) =   3x + 7 ______ x + 2  

The graph of the shifted function is displayed in Figure 7.
y
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Notice that this function is undefined at x = −2, and the graph also is showing a vertical asymptote at x = −2.

As x → −2−, f (x) → −∞, and as x → −2+, f (x) → ∞.

As the inputs increase and decrease without bound, the graph appears to be leveling off at output values of 3, indicating 
a horizontal asymptote at y = 3.

As x → ±∞, f (x) → 3.

Analysi s Notice that horizontal and vertical asymptotes are shifted left 2 and up 3 along with the function.

Try It #2

Sketch the graph, and find the horizontal and vertical asymptotes of the reciprocal squared function that has been 
shifted right 3 units and down 4 units.

Solving Applied Problems Involving Rational Functions
In Example 2, we shifted a toolkit function in a way that resulted in the function f (x) =   3x + 7 ______ x + 2  . This is an example of 
a rational function. A rational function is a function that can be written as the quotient of two polynomial functions. 
Many real-world problems require us to find the ratio of two polynomial functions. Problems involving rates and 
concentrations often involve rational functions.

rational function 
A rational function is a function that can be written as the quotient of two polynomial functions P(x) and Q(x).

f (x) =   P(x) ____ Q(x)   =   
ap x  p + ap − 1 x  p − 1 + ... + a1 x + a0

   ___   
bq  x  q + bq − 1  x  q − 1 + ... + b1  x + b0

   , Q(x) ≠ 0

Example 3 Solving an Applied Problem Involving a Rational Function

A large mixing tank currently contains 100 gallons of water into which 5 pounds of sugar have been mixed. A tap will 
open pouring 10 gallons per minute of water into the tank at the same time sugar is poured into the tank at a rate of 1 
pound per minute. Find the concentration (pounds per gallon) of sugar in the tank after 12 minutes. Is that a greater 
concentration than at the beginning?

Solution Let t be the number of minutes since the tap opened. Since the water increases at 10 gallons per minute, and 
the sugar increases at 1 pound per minute, these are constant rates of change. This tells us the amount of water in the 
tank is changing linearly, as is the amount of sugar in the tank. We can write an equation independently for each:

 water: W(t) = 100 + 10t in gallons

 sugar: S(t) = 5 + 1t in pounds

The concentration, C, will be the ratio of pounds of sugar to gallons of water

 C(t) =   5 + t ________ 100 + 10t  

The concentration after 12 minutes is given by evaluating C(t) at t = 12.

C(12) =   5 + 12 __________  100 + 10(12)  

=   17 ___ 220  

This means the concentration is 17 pounds of sugar to 220 gallons of water.

At the beginning, the concentration is
C(0) =   5 + 0 _________ 100 + 10(0)  

 =   1 __ 20  

Since   17 ___ 220   ≈ 0.08 >   1 __ 20   = 0.05, the concentration is greater after 12 minutes than at the beginning.
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Analysi s To find the horizontal asymptote, divide the leading coefficient in the numerator by the leading coefficient in 
the denominator:
   1 __ 10   = 0.1

Notice the horizontal asymptote is y = 0.1. This means the concentration, C, the ratio of pounds of sugar to gallons of 
water, will approach 0.1 in the long term.

Try It #3

There are 1,200 freshmen and 1,500 sophomores at a prep rally at noon. After 12 p.m., 20 freshmen arrive at the rally 
every five minutes while 15 sophomores leave the rally. Find the ratio of freshmen to sophomores at 1 p.m.

Finding the Domains of Rational Functions
A vertical asymptote represents a value at which a rational function is undefined, so that value is not in the domain 
of the function. A reciprocal function cannot have values in its domain that cause the denominator to equal zero. In 
general, to find the domain of a rational function, we need to determine which inputs would cause division by zero.

domain of a rational function 
The domain of a rational function includes all real numbers except those that cause the denominator to equal zero.

How To…
Given a rational function, find the domain.

1. Set the denominator equal to zero.
2. Solve to find the x-values that cause the denominator to equal zero.
3. The domain is all real numbers except those found in Step 2.

Example 4 Finding the Domain of a Rational Function

Find the domain of f (x) =   x + 3 _ 
x2 − 9

  .

Solution Begin by setting the denominator equal to zero and solving.

 x2 − 9 = 0

 x2 = 9

 x = ±3

The denominator is equal to zero when x = ±3. The domain of the function is all real numbers except x = ±3.

Analysi s A graph of this function, as shown in Figure 8, confirms that the function is not defined when x = ±3.
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Figure 8

There is a vertical asymptote at x = 3 and a hole in the graph at x = −3. We will discuss these types of holes in greater 
detail later in this section.
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Try It #4

Find the domain of f (x) =   4x _____________  5(x − 1)(x − 5)  .

Identifying Vertical Asymptotes of Rational Functions
By looking at the graph of a rational function, we can investigate its local behavior and easily see whether there 
are asymptotes. We may even be able to approximate their location. Even without the graph, however, we can still 
determine whether a given rational function has any asymptotes, and calculate their location.

Vertical Asymptotes

The vertical asymptotes of a rational function may be found by examining the factors of the denominator that are not 
common to the factors in the numerator. Vertical asymptotes occur at the zeros of such factors.

How To…
Given a rational function, identify any vertical asymptotes of its graph.

1. Factor the numerator and denominator.
2. Note any restrictions in the domain of the function.
3. Reduce the expression by canceling common factors in the numerator and the denominator.
4. Note any values that cause the denominator to be zero in this simplified version. These are where the vertical asymptotes 

occur.
5. Note any restrictions in the domain where asymptotes do not occur. These are removable discontinuities.

Example 5 Identifying Vertical Asymptotes

Find the vertical asymptotes of the graph of k(x) =   5 + 2x2
 _________ 2 − x − x2  .

Solution First, factor the numerator and denominator.

k(x) =   5 + 2x2
 ________ 2 − x − x2  

 =   5 + 2x2
 ___________  (2 + x)(1 − x)  

To find the vertical asymptotes, we determine where this function will be undefined by setting the denominator equal 
to zero:

 (2 + x)(1 − x) = 0

 x = −2, 1

Neither x = −2 nor x = 1 are zeros of the numerator, so the two values indicate two vertical asymptotes. The graph 
in Figure 9 confirms the location of the two vertical asymptotes.
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Removable Discontinuities

Occasionally, a graph will contain a hole: a single point where the graph is not defined, indicated by an open circle. 
We call such a hole a removable discontinuity.

For example, the function f (x) =   x2 − 1 __________ x2 − 2x − 3    may be re-written by factoring the numerator and the denominator.

f (x) =    (x + 1)(x − 1)   ____________   (x + 1)(x − 3)  

Notice that x + 1 is a common factor to the numerator and the denominator. The zero of this factor, x = −1, is the 
location of the removable discontinuity. Notice also that x − 3 is not a factor in both the numerator and denominator. 
The zero of this factor, x = 3, is the vertical asymptote. See Figure 10.
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Figure 10

removable discontinuities of rational functions 
A removable discontinuity occurs in the graph of a rational function at x = a if a is a zero for a factor in the 
denominator that is common with a factor in the numerator. We factor the numerator and denominator and 
check for common factors. If we find any, we set the common factor equal to 0 and solve. This is the location of 
the removable discontinuity. This is true if the multiplicity of this factor is greater than or equal to that in the 
denominator. If the multiplicity of this factor is greater in the denominator, then there is still an asymptote at 
that value.

Example 6  Identifying Vertical Asymptotes and Removable Discontinuities for a Graph

Find the vertical asymptotes and removable discontinuities of the graph of k(x) =   x − 2 _____ x2 − 4  .

Solution Factor the numerator and the denominator.

k(x) =   x − 2 ___________  (x − 2)(x + 2)  

Notice that there is a common factor in the numerator and the denominator, x − 2. The zero for this factor is x = 2. 
This is the location of the removable discontinuity.

Notice that there is a factor in the denominator that is not in the numerator, x + 2. The zero for this factor is x = −2. 
The vertical asymptote is x = −2. See Figure 11.
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The graph of this function will have the vertical asymptote at x = −2, but at x = 2 the graph will have a hole.

Try It #5

Find the vertical asymptotes and removable discontinuities of the graph of f (x) =   x2 − 25 ___________ x3 − 6x2 + 5x  .

Identifying Horizontal Asymptotes of Rational Functions
While vertical asymptotes describe the behavior of a graph as the output gets very large or very small, horizontal 
asymptotes help describe the behavior of a graph as the input gets very large or very small. Recall that a polynomial’s 
end behavior will mirror that of the leading term. Likewise, a rational function’s end behavior will mirror that of the 
ratio of the leading terms of the numerator and denominator functions.

There are three distinct outcomes when checking for horizontal asymptotes:

Case 1: If the degree of the denominator > degree of the numerator, there is a horizontal asymptote at y = 0.

Example: f (x) =   4x + 2 _________ x2 + 4x − 5  

In this case, the end behavior is f (x) ≈   4x _ 
x2

   =   4 _ x  . This tells us that, as the inputs increase or decrease without bound, this 
function will behave similarly to the function g(x) =   4 _ x  , and the outputs will approach zero, resulting in a horizontal 
asymptote at y = 0. See Figure 12. Note that this graph crosses the horizontal asymptote.
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Figure 12 Horizontal Asymptote y  = 0 when f(x ) =   p(x ) ____ q(x )  , q(x ) ≠ 0 where degree of p  < degree of q.

Case 2: If the degree of the denominator < degree of the numerator by one, we get a slant asymptote.

Example: f (x) =   3x2 − 2x + 1 __________ x − 1  

In this case, the end behavior is f (x) ≈   3x2
 _ x   = 3x. This tells us that as the inputs increase or decrease without bound, this 

function will behave similarly to the function g(x) = 3x. As the inputs grow large, the outputs will grow and not level off, 
so this graph has no horizontal asymptote. However, the graph of g(x) = 3x looks like a diagonal line, and since f will 
behave similarly to g, it will approach a line close to y = 3x. This line is a slant asymptote.
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To find the equation of the slant asymptote, divide   3x2 − 2x + 1 ___________ x − 1  . The quotient is 3x + 1, and the remainder is 2. The 
slant asymptote is the graph of the line g(x) = 3x + 1. See Figure 13.
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Figure 13 Slant Asymptote when f( x ) =   p( x ) ____ q( x )  ,  q( x ) ≠ 0 where degree of p  > degree of q by 1.

Case 3: If the degree of the denominator = degree of the numerator, there is a horizontal asymptote at y =   
an _ 
bn

  , where an and bn  
are the leading coefficients of p(x) and q(x) for f (x) =   p(x) ____ q(x)  , q(x) ≠ 0.

Example: f (x) =   3x2 + 2 _________ x2 + 4x − 5  

In this case, the end behavior is f (x) ≈   3x2
 _ 

x2
   = 3. This tells us that as the inputs grow large, this function will behave like 

the function g(x) = 3, which is a horizontal line. As x → ±∞, f (x) → 3, resulting in a horizontal asymptote at y = 3. See  
Figure 14. Note that this graph crosses the horizontal asymptote.
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Figure 14 Horizontal Asymptote when f ( x ) =   
p( x )

 _ 
q( x )

  , q( x ) ≠ 0 where degree of p = degree of q.

Notice that, while the graph of a rational function will never cross a vertical asymptote, the graph may or may not cross 
a horizontal or slant asymptote. Also, although the graph of a rational function may have many vertical asymptotes, 
the graph will have at most one horizontal (or slant) asymptote.

It should be noted that, if the degree of the numerator is larger than the degree of the denominator by more than one, 
the end behavior of the graph will mimic the behavior of the reduced end behavior fraction. For instance, if we had 
the function

f (x) =   3x5 − x2
 _______ x + 3  

with end behavior
     f (x) ≈   3x5

 ___ x   = 3x4,

the end behavior of the graph would look similar to that of an even polynomial with a positive leading coefficient.
x → ±∞,  f (x) → ∞

horizontal asymptotes of rational functions 
The horizontal asymptote of a rational function can be determined by looking at the degrees of the numerator and 
denominator.
•	 Degree of numerator is less than degree of denominator: horizontal asymptote at y = 0.
•	 Degree of numerator is greater than degree of denominator by one: no horizontal asymptote; slant asymptote.
•	 Degree of numerator is equal to degree of denominator: horizontal asymptote at ratio of leading coefficients.
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Example 7 Identifying Horizontal and Slant Asymptotes

For the functions below, identify the horizontal or slant asymptote.

a. g(x) =   6x3 − 10x ________ 2x3 + 5x2   b. h(x) =   x
2 − 4x + 1 _________ x + 2   c. k(x) =   x

2 + 4x ______ x3 − 8  

Solution For these solutions, we will use f (x) =   p(x) ____ q(x)  , q(x) ≠ 0.

a.  g(x) =   6x3 − 10x _ 
2x3 + 5x2

  : The degree of p = degree of q = 3, so we can find the hori zontal asymptote by taking the ratio 

of the leading terms. There is a horizontal asymptote at y =   6 _ 2   or y = 3.

b.  h(x) =   x
2 − 4x + 1 _ 

x + 2
  : The degree of p = 2 and degree of q = 1. Since p > q by 1, there is a slant asymptote found 

at   x
2 − 4x + 1 _ 

x + 2
  . 

  The quotient is x − 2 and the remainder is 13. There is a slant asymptote at y = x − 2.
c.  k(x) =   x

2 + 4x _ 
x3 − 8

  : The degree of p = 2 < degree of q = 3, so there is a horizontal asymptote y = 0.

Example 8 Identifying Horizontal Asymptotes

In the sugar concentration problem earlier, we created the equation C(t) =   5 + t ________ 100 + 10t  .

Find the horizontal asymptote and interpret it in context of the problem.

Solution Both the numerator and denominator are linear (degree 1). Because the degrees are equal, there will be a 
horizontal asymptote at the ratio of the leading coefficients. In the numerator, the leading term is t, with coefficient 1. In 
the denominator, the leading term is 10t, with coefficient 10. The horizontal asymptote will be at the ratio of these values:

t → ∞, C(t) →   1 __ 10  

This function will have a horizontal asymptote at y =   1 __ 10  .

This tells us that as the values of t increase, the values of C will approach   1 __ 10  . In context, this means that, as more time 
goes by, the concentration of sugar in the tank will approach one-tenth of a pound of sugar per gallon of water 
or   1 __ 10   pounds per gallon.

Example 9 Identifying Horizontal and Vertical Asymptotes

Find the horizontal and vertical asymptotes of the function

f (x) =   (x − 2)(x + 3)  _________________  (x − 1)(x + 2)(x − 5)  

Solution First, note that this function has no common factors, so there are no potential removable discontinuities.

The function will have vertical asymptotes when the denominator is zero, causing the function to be undefined. The 
denominator will be zero at x = 1, −2, and 5, indicating vertical asymptotes at these values.

The numerator has degree 2, while the denominator has degree 3. Since the degree of the denominator is greater 
than the degree of the numerator, the denominator will grow faster than the numerator, causing the outputs to tend 
towards zero as the inputs get large, and so as x → ±∞, f (x) → 0. This function will have a horizontal asymptote at  
y = 0. See Figure 15.
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Try It #6

Find the vertical and horizontal asymptotes of the function:

 f (x) =    (2x − 1)(2x + 1)  _____________  (x − 2)(x + 3)  

intercepts of rational functions 
A rational function will have a y-intercept when the input is zero, if the function is defined at zero. A rational 
function will not have a y-intercept if the function is not defined at zero.

Likewise, a rational function will have x-intercepts at the inputs that cause the output to be zero. Since a 
fraction is only equal to zero when the numerator is zero, x-intercepts can only occur when the numerator of 
the rational function is equal to zero.

Example 10 Finding the Intercepts of a Rational Function

Find the intercepts of f (x) =    (x − 2)(x + 3)  __________________  (x − 1)(x + 2)(x − 5)   .

Solution We can find the y-intercept by evaluating the function at zero

 f (0) =    (0 − 2)(0 + 3)  _________________  (0 − 1)(0 + 2)(0 − 5)  

 =   −6 ___ 10  

 = −  3 __ 5  

 = −0.6

The x-intercepts will occur when the function is equal to zero:

 0 =   (x − 2)(x + 3)  _________________  (x − 1)(x + 2)(x − 5)   This is zero when the numerator is zero.

 0 = (x − 2)(x + 3)

 x = 2, −3

The y-intercept is (0, −0.6), the x-intercepts are (2, 0) and (−3, 0). See Figure 16.
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Figure 16

Try It #7

Given the reciprocal squared function that is shifted right 3 units and down 4 units, write this as a rational function. 
Then, find the x- and y-intercepts and the horizontal and vertical asymptotes.
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Graphing Rational Functions
In Example 9, we see that the numerator of a rational function reveals the x-intercepts of the graph, whereas the 
denominator reveals the vertical asymptotes of the graph. As with polynomials, factors of the numerator may have 
integer powers greater than one. Fortunately, the effect on the shape of the graph at those intercepts is the same as we 
saw with polynomials.

The vertical asymptotes associated with the factors of the denominator will mirror one of the two toolkit reciprocal functions. 
When the degree of the factor in the denominator is odd, the distinguishing characteristic is that on one side of the vertical 
asymptote the graph heads towards positive infinity, and on the other side the graph heads towards negative infinity. See 
Figure 17.
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When the degree of the factor in the denominator is even, the distinguishing characteristic is that the graph either 
heads toward positive infinity on both sides of the vertical asymptote or heads toward negative infinity on both sides. 
See Figure 18.

x
–1–2–3–4–5 –1

–2
–3
–4
–5

321

1
2
3
4
5

4 5

x = 0

y = x2
1

Figure 18

For example, the graph of f (x) =    (x + 1)2(x − 3)  _____________   (x + 3)2(x − 2)   is shown in Figure 19.
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•	At the x-intercept x = −1 corresponding to the (x + 1)2 factor of the numerator, the graph bounces, consistent 
with the quadratic nature of the factor.

•	At the x-intercept x = 3 corresponding to the (x − 3) factor of the numerator, the graph passes through the axis 
as we would expect from a linear factor.

•	At the vertical asymptote x = −3 corresponding to the (x + 3)2 factor of the denominator, the graph heads towards 
positive infinity on both sides of the asymptote, consistent with the behavior of the function f (x) =   1 _ 

x 2
  .

•	At the vertical asymptote x = 2, corresponding to the (x − 2) factor of the denominator, the graph heads towards 
positive infinity on the left side of the asymptote and towards negative infinity on the right side, consistent with the 
behavior of the function f (x) =   1 __ x  .

How To…
Given a rational function, sketch a graph.

1. Evaluate the function at 0 to find the y-intercept.
2. Factor the numerator and denominator.
3. For factors in the numerator not common to the denominator, determine where each factor of the numerator is 

zero to find the x-intercepts.
4. Find the multiplicities of the x-intercepts to determine the behavior of the graph at those points.
5. For factors in the denominator, note the multiplicities of the zeros to determine the local behavior. For those factors 

not common to the numerator, find the vertical asymptotes by setting those factors equal to zero and then solve.
6. For factors in the denominator common to factors in the numerator, find the removable discontinuities by setting 

those factors equal to 0 and then solve.
7. Compare the degrees of the numerator and the denominator to determine the horizontal or slant asymptotes.
8. Sketch the graph.

Example 11 Graphing a Rational Function

Sketch a graph of f (x) =    (x + 2)(x − 3)   ____________  (x + 1)2(x − 2)   .

Solution We can start by noting that the function is already factored, saving us a step.

Next, we will find the intercepts. Evaluating the function at zero gives the y-intercept:

f (0) =   
(0 + 2)(0 − 3)

  __  
(0 + 1)2(0 − 2)

  

 = 3

To find the x-intercepts, we determine when the numerator of the function is zero. Setting each factor equal to zero, we find 
x-intercepts at x = −2 and x = 3. At each, the behavior will be linear (multiplicity 1), with the graph passing through the 
intercept.

We have a y-intercept at (0, 3) and x-intercepts at (−2, 0) and (3, 0).

To find the vertical asymptotes, we determine when the denominator is equal to zero. This occurs when x + 1 = 0 and 
when x − 2 = 0, giving us vertical asymptotes at x = −1 and x = 2.

There are no common factors in the numerator and denominator. This means there are no removable discontinuities.

Finally, the degree of denominator is larger than the degree of the numerator, telling us this graph has a horizontal asymptote 
at y = 0.

To sketch the graph, we might start by plotting the three intercepts. Since the graph has no x-intercepts between the 
vertical asymptotes, and the y-intercept is positive, we know the function must remain positive between the asymptotes, 
letting us fill in the middle portion of the graph as shown in Figure 20.
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Figure 20

The factor associated with the vertical asymptote at x = −1 was squared, so we know the behavior will be the same 
on both sides of the asymptote. The graph heads toward positive infinity as the inputs approach the asymptote on the 
right, so the graph will head toward positive infinity on the left as well.

For the vertical asymptote at x = 2, the factor was not squared, so the graph will have opposite behavior on either side 
of the asymptote. See Figure 21. After passing through the x-intercepts, the graph will then level off toward an output 
of zero, as indicated by the horizontal asymptote.
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Figure 21

Try It #8

Given the function f (x) =   (x + 2)2(x − 2)  ______________  2(x − 1)2 (x − 3)  , use the characteristics of polynomials and rational functions to describe 

its behavior and sketch the function.

Writing Rational Functions
Now that we have analyzed the equations for rational functions and how they relate to a graph of the function, we 
can use information given by a graph to write the function. A rational function written in factored form will have 
an x-intercept where each factor of the numerator is equal to zero. (An exception occurs in the case of a removable 
discontinuity.) As a result, we can form a numerator of a function whose graph will pass through a set of x-intercepts 
by introducing a corresponding set of factors. Likewise, because the function will have a vertical asymptote where 
each factor of the denominator is equal to zero, we can form a denominator that will produce the vertical asymptotes 
by introducing a corresponding set of factors.

writing rational functions from intercepts and asymptotes 
If a rational function has x-intercepts at x = x1, x2, ... , xn, vertical asymptotes at x = v1, v2, … , vm, and no xi = any vj, 
then the function can be written in the form:

f (x) = a   
(x − x1)

 p
1(x − x2)

 p
2 … (x − xn)

 p
n

   ___   
(x − v1)

 q
1(x − v2)

 q
2 … (x − vm) q

n

  where the powers pi or qi on each factor can be determined by the behavior of the graph at the corresponding 
intercept or asymptote, and the stretch factor a can be determined given a value of the function other than the 
x-intercept or by the horizontal asymptote if it is nonzero.
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How To…
Given a graph of a rational function, write the function.

1. Determine the factors of the numerator. Examine the behavior of the graph at the x-intercepts to determine the zeroes 
and their multiplicities. (This is easy to do when finding the “simplest” function with small multiplicities—such as 1  
or 3—but may be difficult for larger multiplicities—such as 5 or 7, for example.)

2. Determine the factors of the denominator. Examine the behavior on both sides of each vertical asymptote to 
determine the factors and their powers.

3. Use any clear point on the graph to find the stretch factor.

Example 12 Writing a Rational Function from Intercepts and Asymptotes

Write an equation for the rational function shown in Figure 22.
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Solution The graph appears to have x-intercepts at x = −2 and x = 3. At both, the graph passes through the intercept, 
suggesting linear factors. The graph has two vertical asymptotes. The one at x = −1 seems to exhibit the basic behavior 
similar to   1 __ x  , with the graph heading toward positive infinity on one side and heading toward negative infinity on the 
other. The asymptote at x = 2 is exhibiting a behavior similar to   1 _ 

x 2
  , with the graph heading toward negative infinity 

on both sides of the asymptote. See Figure 23.
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Figure 23

We can use this information to write a function of the form

f (x) = a  
(x + 2)(x − 3)

  __  
 (x + 1)(x − 2)2
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To find the stretch factor, we can use another clear point on the graph, such as the y-intercept (0, −2).

 −2 = a   
(0 + 2)(0 − 3)

  __  
(0 + 1)(0 − 2)2

  

 −2 = a  −6 _ 4  

 a =   −8 _ 
−6

   =   4 _ 
3

  

This gives us a final function of f (x) =    4(x + 2)(x − 3)   ______________   3(x + 1)(x − 2)2  .

Access these online resources for additional instruction and practice with rational functions.

•	 Graphing Rational Functions (http://openstaxcollege.org/l/graphrational)

•	 Find the equation of a Rational Function (http://openstaxcollege.org/l/equatrational)

•	 Determining Vertical and Horizontal Asymptotes (http://openstaxcollege.org/l/asymptote)

•	 Find the Intercepts, Asymptotes, and Hole of a Rational Function (http://openstaxcollege.org/l/interasymptote)

http://openstaxcollege.org/l/graphrational
http://openstaxcollege.org/l/equatrational
http://openstaxcollege.org/l/asymptote
http://openstaxcollege.org/l/interasymptote
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3.7 SeCTIOn exeRCISeS

VeRBAl

1. What is the fundamental difference in the algebraic 
representation of a polynomial function and a rational 
function?

2. What is the fundamental difference in the graphs  
of polynomial functions and rational functions?

3. If the graph of a rational function has a removable 
discontinuity, what must be true of the functional 
rule?

4. Can a graph of a rational function have no vertical 
asymptote? If so, how?

5. Can a graph of a rational function have no 
x-intercepts? If so, how?

AlGeBRAIC

For the following exercises, find the domain of the rational functions.

6. f (x) =   x − 1 _____ x + 2  7. f (x) =   x + 1 _____ x2 − 1  8. f (x) =   x2 + 4 _________ x2 − 2x − 8  

9. f (x) =   x
2 + 4x − 3 _________  x4 − 5x2 + 4  

For the following exercises, find the domain, vertical asymptotes, and horizontal asymptotes of the functions.

10. f (x) =   4 ____ x − 1  11. f (x) =   2 _____ 5x + 2  12. f (x) =   x _____ x2 − 9  

13. f (x) =   x __________  x2 + 5x − 36  14. f (x) =   3 + x ______ x3 − 27  15. f (x) =   3x − 4 _______ x3 − 16x  

16. f (x) =   x2 − 1 ___________  x3 + 9x2 + 14x  17. f (x) =   x + 5 ______ x2 − 25  18. f (x) =   x − 4 _____ x − 6  

19. f (x) =   4 − 2x ______ 3x − 1  

For the following exercises, find the x- and y-intercepts for the functions.

20. f (x) =   x + 5 _____ x2 + 4  21. f (x) =   x _____ x2 − x  22. f (x) =   x2 + 8x + 7 ___________  x2 + 11x + 30  

23. f (x) =   x2 + x + 6 ___________  x2 − 10x + 24  24. f (x) =   94 − 2x2
 _______ 3x2 − 12  

For the following exercises, describe the local and end behavior of the functions.

25. f (x) =   x _____ 2x + 1  26. f (x) =   2x _____ x − 6  27. f (x) =   −2x _____ x − 6  

28. f (x) =   x
2 − 4x + 3 _________ x2 − 4x − 5  29. f (x) =   2x2 − 32 ___________  6x2 + 13x − 5  

For the following exercises, find the slant asymptote of the functions.

30. f (x) =   24x2 + 6x ________ 2x + 1  31. f (x) =   4x2 − 10 _______ 2x − 4  32. f (x) =   81x2 − 18 ________ 3x − 2  

33. f (x) =   6x3 − 5x _______ 3x2 + 4  34. f (x) =   x
2 + 5x + 4 _________ x − 1  
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GRAPHICAl

For the following exercises, use the given transformation to graph the function. Note the vertical and horizontal  
asymptotes.

35. The reciprocal function shifted up two units. 36. The reciprocal function shifted down one unit and  
left three units.

37. The reciprocal squared function shifted to the right  
2 units.

38. The reciprocal squared function shifted down 2 units 
and right 1 unit.

For the following exercises, find the horizontal intercepts, the vertical intercept, the vertical asymptotes, and the  
horizontal or slant asymptote of the functions. Use that information to sketch a graph.

39. p(x) =   2x − 3 ______ x + 4  40. q(x) =   x − 5 _____ 3x − 1  41. s(x) =   4 ______ (x − 2)2  

42. r(x) =   5 ______ (x + 1)2  43. f (x) =   3x 2 − 14x − 5  __  
3x 2 + 8x − 16

  44. g(x) =   2x 2 + 7x − 15  __  
3x 2 − 14 + 15

  

45. a(x) =   x 2 + 2x − 3 _ 
x 2 − 1

  46. b(x) =   x 2 − x − 6 _ 
x 2 − 4

  47. h(x) =   2x 2 + x − 1 _ x − 4  

48. k(x) =   2x 2 − 3x − 20  __ x − 5  49. w(x) =   
(x − 1)(x + 3)(x − 5)

  __  
(x + 2)2(x − 4)

  50. z(x) =   
(x + 2)2(x − 5)

  __  
(x − 3)(x + 1)(x + 4)

  

For the following exercises, write an equation for a rational function with the given characteristics.

51. Vertical asymptotes at x = 5 and 
x = −5, x-intercepts at (2, 0) and 
(−1, 0), y-intercept at (0, 4)

52. Vertical asymptotes at x = −4 
and x = −1, x-intercepts at (1, 0) 
and (5, 0), y-intercept at (0, 7)

53. Vertical asymptotes at x = −4 
and x = −5, x-intercepts at 
(4, 0) and (−6, 0), horizontal 
asymptote at y = 7

54. Vertical asymptotes at x = −3 
and x = 6, x-intercepts at (−2, 0) 
and (1, 0), horizontal asymptote 
at y = −2

55. Vertical asymptote at x = −1, 
double zero at x = 2, y-intercept 
at (0, 2)

56. Vertical asymptote at x = 3, 
double zero at x = 1, y-intercept 
at (0, 4)

For the following exercises, use the graphs to write an equation for the function.
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60. y
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nUMeRIC

For the following exercises, make tables to show the behavior of the function near the vertical asymptote and reflecting  
the horizontal asymptote.

65. f (x) =   1 _____ x − 2  66. f (x) =   x _____ x − 3  67. f (x) =   2x _____ x + 4  

68. f (x) =   2x ______ (x − 3)2  69. f (x) =   x2
 _________ x2 + 2x + 1  

TeCHnOlOGY

For the following exercises, use a calculator to graph f (x). Use the graph to solve f (x) > 0.

70. f (x) =   2 _____ x + 1  71. f (x) =   4 _____ 2x − 3  72. f (x) =   2 ___________  (x − 1)(x + 2)  

73. f (x) =   x + 2 ___________  (x − 1)(x − 4)  74. f (x) =   (x + 3)2
 ____________  (x − 1)2(x + 1)  

exTenSIOnS

For the following exercises, identify the removable discontinuity.

75. f (x) =   x
2 − 4 _____ x − 2  76. f (x) =   x

3 + 1 _____ x + 1  77. f (x) =   x
2 + x − 6 ________ x − 2  

78. f (x) =   2x2 + 5x − 3 __________ x + 3  79. f (x) =   x
3 + x2

 ______ x + 1  
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ReAl-WORlD APPlICATIOnS

For the following exercises, express a rational function that describes the situation.

80. A large mixing tank currently contains 200 gallons 
of water, into which 10 pounds of sugar have been 
mixed. A tap will open, pouring 10 gallons of water 
per minute into the tank at the same time sugar 
is poured into the tank at a rate of 3 pounds per 
minute. Find the concentration (pounds per gallon) 
of sugar in the tank after t minutes.

81. A large mixing tank currently contains 300 gallons  
of water, into which 8 pounds of sugar have been 
mixed. A tap will open, pouring 20 gallons of water  
per minute into the tank at the same time sugar 
is poured into the tank at a rate of 2 pounds per 
minute. Find the concentration (pounds per gallon) 
of sugar in the tank after t minutes.

For the following exercises, use the given rational function to answer the question.

82. The concentration C of a drug in a patient’s 
bloodstream t hours after injection in given by  
C(t) =   2t _ 

3 + t2
  . What happens to the concentration of 

the drug as t increases?

83. The concentration C of a drug in a patient’s 
bloodstream t hours after injection is given by  
C(t) =   100t _ 

2t2 + 75
  . Use a calculator to approximate the 

time when the concentration is highest.

For the following exercises, construct a rational function that will help solve the problem. Then, use a calculator to 
answer the question.

84. An open box with a square base is to have a volume 
of 108 cubic inches. Find the dimensions of the box 
that will have minimum surface area. Let x = length 
of the side of the base.

85. A rectangular box with a square base is to have a 
volume of 20 cubic feet. The material for the base 
costs 30 cents/square foot. The material for the sides 
costs 10 cents/square foot. The material for the top 
costs 20 cents/square foot. Determine the dimensions 
that will yield minimum cost. Let x = length of the 
side of the base.

86. A right circular cylinder has volume of 100 cubic 
inches. Find the radius and height that will yield 
minimum surface area. Let x = radius.

87. A right circular cylinder with no top has a volume of  
50 cubic meters. Find the radius that will yield 
minimum surface area. Let x = radius.

88. A right circular cylinder is to have a volume of  
40 cubic inches. It costs 4 cents/square inch 
to construct the top and bottom and 1 cent/square 
inch to construct the rest of the cylinder. Find the 
radius to yield minimum cost. Let x = radius.
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Find the inverse of a polynomial function.

•	  Restrict the domain to find the inverse of a polynomial function.

3.8 InVeRSeS AnD RADICAl FUnCTIOnS

A mound of gravel is in the shape of a cone with the height equal to twice the radius.

Figure 1 

The volume is found using a formula from elementary geometry.

 V =   1 __ 3  πr 2 h

 =   1 __ 3  πr 2(2r)

 =   2 __ 3  πr 3

We have written the volume V in terms of the radius r. However, in some cases, we may start out with the volume and 
want to find the radius. For example: A customer purchases 100 cubic feet of gravel to construct a cone shape mound with 
a height twice the radius. What are the radius and height of the new cone? To answer this question, we use the formula

 r =  
3

 √ 
____

   3V ___ 2π    

This function is the inverse of the formula for V in terms of r.

In this section, we will explore the inverses of polynomial and rational functions and in particular the radical functions 
we encounter in the process.

Finding the Inverse of a Polynomial Function
Two functions f and g are inverse functions if for every coordinate pair in f, (a, b), there exists a corresponding 
coordinate pair in the inverse function, g, (b, a). In other words, the coordinate pairs of the inverse functions have 
the input and output interchanged.

For a function to have an inverse function the function to create a new function that is one-to-one and would have 
an inverse function.

For example, suppose a water runoff collector is built in the shape of a parabolic trough as shown in Figure 2. We 
can use the information in the figure to find the surface area of the water in the trough as a function of the depth of 
the water.

18 in

3 �
12 in

Figure 2
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Because it will be helpful to have an equation for the parabolic cross-sectional shape, we will impose a coordinate 
system at the cross section, with x measured horizontally and y measured vertically, with the origin at the vertex of 
the parabola. See Figure 3.
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Figure 3

From this we find an equation for the parabolic shape. We placed the origin at the vertex of the parabola, so we know 
the equation will have form y(x) = ax2. Our equation will need to pass through the point (6, 18), from which we can 
solve for the stretch factor a.
 18 = a62

 a =   18 __ 36  

 =   1 __ 2  

Our parabolic cross section has the equation

 y(x) =   1 __ 2  x2

We are interested in the surface area of the water, so we must determine the width at the top of the water as a function 
of the water depth. For any depth y the width will be given by 2x, so we need to solve the equation above for x and 
find the inverse function. However, notice that the original function is not one-to-one, and indeed, given any output 
there are two inputs that produce the same output, one positive and one negative.

To find an inverse, we can restrict our original function to a limited domain on which it is one-to-one. In this case, it 
makes sense to restrict ourselves to positive x values. On this domain, we can find an inverse by solving for the input 
variable:
 y =   1 __ 2  x2

 2y = x2

 x = ± √
—

 2y  

This is not a function as written. We are limiting ourselves to positive x values, so we eliminate the negative solution, 
giving us the inverse function we’re looking for.
 y =   x

2
 __ 2  , x > 0

Because x is the distance from the center of the parabola to either side, the entire width of the water at the top will be 2x.

The trough is 3 feet (36 inches) long, so the surface area will then be:
 Area = l ⋅ w
 = 36 ⋅ 2x
 = 72x
 = 72 √

—
 2y  

This example illustrates two important points:

1. When finding the inverse of a quadratic, we have to limit ourselves to a domain on which the function is one-to-one.

2.  The inverse of a quadratic function is a square root function. Both are toolkit functions and different types of power 
functions.
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Functions involving roots are often called radical functions. While it is not possible to find an inverse of most 
polynomial functions, some basic polynomials do have inverses. Such functions are called invertible functions, and 
we use the notation f −1(x).

Warning: f −1(x) is not the same as the reciprocal of the function f (x). This use of “−1” is reserved to denote inverse 
functions. To denote the reciprocal of a function f (x), we would need to write ( f (x))−1 =   1 _ 

f (x)
  .

An important relationship between inverse functions is that they “undo” each other. If f −1 is the inverse of a function f, 
then f is the inverse of the function f −1. In other words, whatever the function f does to x, f −1 undoes it—and viceversa. 
More formally, we write
 f −1 ( f (x)) = x, for all x in the domain of f
and
 f ( f −1 (x)) = x, for all x in the domain of f −1

verifying two functions are inverses of one another 
Two functions, f and g, are inverses of one another if for all x in the domain of f and g.

g( f (x)) = f ( g(x)) = x

How To…
Given a polynomial function, find the inverse of the function by restricting the domain in such a way that the new 
function is one-to-one.

1. Replace f (x) with y.
2. Interchange x and y.
3. Solve for y, and rename the function f −1(x).

Example 1 Verifying Inverse Functions

Show that f (x) =   1 _ 
x + 1

   and f −1(x) =   1 __ x   − 1 are inverses, for x ≠ 0, −1.

Solution We must show that f −1( f (x)) = x and f ( f −1(x)) = x. 

f −1(f (x)) = f −1    1 _____ x + 1    

 =   1 _ 
  1 _____ x + 1  

   − 1

 = (x + 1) − 1

 = x

 f (f −1(x)) = f     1 __ x   − 1  

 =   1 __  
    1 __ x   − 1   + 1

  

 =   1 _ 
  1 __ x  

  

 = x

Therefore, f (x) =   1 _____ x + 1   and f −1 (x) =   1 __ x   − 1 are inverses.

Try It #1

Show that f (x) =   x + 5 _____ 3   and f −1(x) = 3x − 5 are inverses.
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Example 2 Finding the Inverse of a Cubic Function

Find the inverse of the function f (x) = 5x3 + 1.

Solution This is a transformation of the basic cubic toolkit function, and based on our knowledge of that function, 
we know it is one-to-one. Solving for the inverse by solving for x.

 y = 5x3 + 1

 x = 5y3 + 1

 x − 1 = 5y3

   x − 1 _____ 5   = y3

 f −1(x) =   
3
 √ 
—

   x − 1 _____ 5    

Analysi s Look at the graph of f and f −1. Notice that the two graphs are symmetrical about the line y = x. This is always 
the case when graphing a function and its inverse function.

Also, since the method involved interchanging x and y, notice corresponding points. If (a, b) is on the graph of f , then (b, a) is on 
the graph of f −1. Since  (0, 1) is on the graph of f, then (1, 0) is on the graph of f−1. Similarly, since (1, 6) is on the graph of f, then  
(6, 1) is on the graph of f −1. See Figure 4.
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y

(1, 6)

(0, 1) (6, 1)

(1, 0)

f (x) = 5x3 + 1

y = x 

Figure 4

Try It #2

Find the inverse function of f (x) =   
3
 √
—

 x + 4  

Restricting the Domain to Find the Inverse of a Polynomial Function
So far, we have been able to find the inverse functions of cubic functions without having to restrict their domains. 
However, as we know, not all cubic polynomials are one-to-one. Some functions that are not one-to-one may have their 
domain restricted so that they are one-to-one, but only over that domain. The function over the restricted domain 
would then have an inverse function. Since quadratic functions are not one-to-one, we must restrict their domain in 
order to find their inverses.

restricting the domain 
If a function is not one-to-one, it cannot have an inverse. If we restrict the domain of the function so that it becomes 
one-to-one, thus creating a new function, this new function will have an inverse.
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How To…
Given a polynomial function, restrict the domain of a function that is not one-to-one and then find the inverse.

1. Restrict the domain by determining a domain on which the original function is  one-to-one.
2. Replace f (x) with y.
3. Interchange x and y.
4. Solve for y, and rename the function or pair of functions f −1(x).
5. Revise the formula for f −1(x) by ensuring that the outputs of the inverse function  correspond to the restricted 

domain of the original function.

Example 3  Restricting the Domain to Find the Inverse of a Polynomial Function

Find the inverse function of f :
a. f (x) = (x − 4)2, x ≥ 4  b. f (x) = (x − 4)2, x ≤ 4

Solution The original function f (x) = (x − 4)2 is not one-to-one, but the function is restricted to a domain of x ≥ 4 or  
x ≤ 4 on which it is one-to-one. See Figure 5.
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To find the inverse, start by replacing f (x) with the simple variable y.

 y = (x − 4)2 Interchange x and y.

 x = (y − 4)2 Take the square root.

 ± √
—
 x   = y − 4 Add 4 to both sides.

 4 ±  √
—
 x   = y

This is not a function as written. We need to examine the restrictions on the domain of the original function to 
determine the inverse. Since we reversed the roles of x and y for the original f (x), we looked at the domain: the values 
x could assume. When we reversed the roles of x and y, this gave us the values y could assume. For this function,  
x ≥ 4, so for the inverse, we should have y ≥ 4, which is what our inverse function gives.

a.  The domain of the original function was restricted to x ≥ 4, so the outputs of the inverse need to be the same,  
f (x) ≥ 4, and we must use the + case:

f −1(x) = 4 +  √
—
 x  

b.  The domain of the original function was restricted to x ≤ 4, so the outputs of the inverse need to be the same,  
f (x) ≤ 4, and we must use the − case:

f −1(x) = 4 −  √
—
 x  

Analysi s On the graphs in Figure 6, we see the original function graphed on the same set of axes as its inverse function. 
Notice that together the graphs show symmetry about the line y = x. The coordinate pair (4, 0) is on the graph of f  and the 
coordinate pair (0, 4) is on the graph of f −1. For any coordinate pair, if (a, b) is on the graph of f, then (b, a) is on the graph of  
f  −1. Finally, observe that the graph of f intersects the graph of f −1 on the line y = x. Points of intersection for the graphs  
of f and f −1 will always lie on the line y = x.
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Example 4  Finding the Inverse of a Quadratic Function When the Restriction Is Not Specified

Restrict the domain and then find the inverse of
 f (x) = (x − 2)2 − 3.

Solution  We can see this is a parabola with vertex at (2, −3) that opens upward. Because the graph will be decreasing 
on one side of the vertex and increasing on the other side, we can restrict this function to a domain on which it will 
be one-to-one by limiting the domain to x ≥ 2.

To find the inverse, we will use the vertex form of the quadratic. We start by replacing f (x) with a simple variable, y, 
then solve for x.
 y = (x − 2)2 − 3 Interchange x and y.
 x = (y − 2)2 − 3 Add 3 to both sides.
 x + 3 = (y − 2)2 Take the square root.
 ± √

—
 x + 3   = y − 2 Add 2 to both sides.

 2 ±  √
—

 x + 3   = y Rename the function.
 f −1(x) = 2 ± √

—
 x + 3  

Now we need to determine which case to use. Because we restricted our original function to a domain of x ≥ 2, the 
outputs of the inverse should be the same, telling us to utilize the + case

 f −1(x) = 2 +  √
—

 x + 3  

If the quadratic had not been given in vertex form, rewriting it into vertex form would be the first step. This way we 
may easily observe the coordinates of the vertex to help us restrict the domain.

Analysis Notice that we arbitrarily decided to restrict the domain on x ≥ 2. We could just have easily opted to restrict the 
domain on x ≤ 2, in which case f −1(x) = 2 −  √

—
 x + 3  . Observe the original function graphed on the same set of axes as its 

inverse function in Figure 7. Notice that both graphs show symmetry about the line y = x. The coordinate pair (2, −3) is on 
the graph of f and the coordinate pair (−3, 2) is on the graph of f −1. Observe from the graph of both functions on the same set 
of axes that
 domain of f = range of f −1 = [2, ∞)
and
 domain of f −1 = range of f = [−3, ∞)
Finally, observe that the graph of f intersects the graph of f −1 along the line y = x.
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Try It #3

Find the inverse of the function f (x) = x2 + 1, on the domain x ≥ 0.

Solving Applications of Radical Functions

Notice that the functions from previous examples were all polynomials, and their inverses were radical functions. If 
we want to find the inverse of a radical function, we will need to restrict the domain of the answer because the range 
of the original function is limited.

How To…
Given a radical function, find the inverse.

1. Determine the range of the original function.
2. Replace f (x) with y, then solve for x.
3. If necessary, restrict the domain of the inverse function to the range of the original function.

Example 5 Finding the Inverse of a Radical Function

Restrict the domain and then find the inverse of the function f (x) =  √
—

 x − 4  .

Solution Note that the original function has range f (x) ≥ 0. Replace f (x) with y, then solve for x.

 y =  √
—

 x − 4   Replace f (x) with y.

 x =  √
—

 y − 4   Interchange x and y.

 x =  √
—

 y − 4   Square each side.

 x2 = y − 4 Add 4.

 x2 + 4 = y Rename the function f−1(x).

 f −1(x) = x2 + 4

Recall that the domain of this function must be limited to the range of the original function.

f −1(x) = x2 + 4, x ≥ 0

Analysis Notice in Figure 8 that the inverse is a reflection of the original function over the line y = x. Because the 
original function has only positive outputs, the inverse function has only positive inputs.
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Try It #4

Restrict the domain and then find the inverse of the function f (x) =  √
—

 2x + 3  .
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Solving Applications of Radical Functions

Radical functions are common in physical models, as we saw in the section opener. We now have enough tools to be 
able to solve the problem posed at the start of the section.

Example 6 Solving an Application with a Cubic Function

A mound of gravel is in the shape of a cone with the height equal to twice the radius. The volume of the cone in terms 
of the radius is given by
 V =   2 __ 3  πr 3

Find the inverse of the function V =   2 __ 3  πr 3 that determines the volume V of a cone and is a function of the radius r. 
Then use the inverse function to calculate the radius of such a mound of gravel measuring 100 cubic feet. Use π = 3.14.

Solution Start with the given function for V. Notice that the meaningful domain for the function is r ≥ 0 since 
negative radii would not make sense in this context. Also note the range of the function (hence, the domain of the 
inverse function) is V ≥ 0. Solve for r in terms of V, using the method outlined previously.

 V =   2 __ 3  πr 3

 r 3 =   3V ___ 2π   Solve for r 3.

 r =  
3

 √ 
____

   3V ___ 2π     Solve for r.

This is the result stated in the section opener. Now evaluate this for V = 100 and π = 3.14.

 r =  
3

 √ 
____

   3V ___ 2π    

 =   
3

 √ 
_______

   3 ⋅ 100 ______ 2 ⋅ 3.14    

≈   3 √
—

 47.7707  

≈ 3.63
Therefore, the radius is about 3.63 ft.

Determining the Domain of a Radical Function Composed with Other Functions

When radical functions are composed with other functions, determining domain can become more complicated.

Example 7  Finding the Domain of a Radical Function Composed with a Rational Function

Find the domain of the function f (x) =  √ 
___________

    (x + 2)(x − 3)  ____________ (x − 1)    .

Solution Because a square root is only defined when the quantity under the radical is non-negative, we need to determine 
where   (x + 2)(x − 3)  ____________ (x − 1)   ≥ 0. The output of a rational function can change signs (change from positive to negative or vice 
versa) at x-intercepts and at vertical asymptotes. For this equation, the graph could change signs at x = −2, 1, and 3.

To determine the intervals on which the rational expression is positive, we could test some values in the expression or 
sketch a graph. While both approaches work equally well, for this example we will use a graph as shown in Figure 9.
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This function has two x-intercepts, both of which exhibit linear behavior near the x-intercepts. There is one vertical 
asymptote, corresponding to a linear factor; this behavior is similar to the basic reciprocal toolkit function, and there 
is no horizontal asymptote because the degree of the numerator is larger than the degree of the denominator. There 
is a y-intercept at (0,  √

—
 6  ).

From the y-intercept and x-intercept at x = −2, we can sketch the left side of the graph. From the behavior at the 
asymptote, we can sketch the right side of the graph.

From the graph, we can now tell on which intervals the outputs will be non-negative, so that we can be sure that the 
original function f (x) will be defined. f (x) has domain −2 ≤ x < 1 or x ≥ 3, or in interval notation, [−2, 1) ∪ [3, ∞).

Finding Inverses of Rational Functions

As with finding inverses of quadratic functions, it is sometimes desirable to find the inverse of a rational function, 
particularly of rational functions that are the ratio of linear functions, such as in concentration applications.

Example 8 Finding the Inverse of a Rational Function

The function C =   20 + 0.4n ________ 100 + n   represents the concentration C of an acid solution after n mL of 40% solution has been 

added to 100 mL of a 20% solution. First, find the inverse of the function; that is, find an expression for n in terms 
of C. Then use your result to determine how much of the 40% solution should be added so that the final mixture is a 
35% solution.

Solution We first want the inverse of the function. We will solve for n in terms of C.

 C =   20 + 0.4n ________ 100 + n  

 C(100 + n) = 20 + 0.4n

 100C + Cn = 20 + 0.4n

 100C − 20 = 0.4n − Cn

 100C − 20 = (0.4 − C)n

 n =   100C − 20 _________ 0.4 − C  

Now evaluate this function for C = 0.35 (35%).

 n =   100(0.35) − 20  ____________  0.4 − 0.35  

 =   15 ___ 0.05  

 = 300

We can conclude that 300 mL of the 40% solution should be added.

Try It #5

Find the inverse of the function f (x) =   x + 3 _____ x − 2  . 

 

Access these online resources for additional instruction and practice with inverses and radical functions.

•	 Graphing the Basic Square Root Function (http://openstaxcollege.org/l/graphsquareroot)

•	 Find the Inverse of a Square Root Function (http://openstaxcollege.org/l/inversesquare)

•	 Find the Inverse of a Rational Function (http://openstaxcollege.org/l/inverserational)

•	 Find the Inverse of a Rational Function and an Inverse Function Value (http://openstaxcollege.org/l/rationalinverse)

•	 Inverse Functions (http://openstaxcollege.org/l/inversefunction)

http://openstaxcollege.org/l/graphsquareroot
http://openstaxcollege.org/l/inversesquare
http://openstaxcollege.org/l/inverserational
http://openstaxcollege.org/l/rationalinverse
http://openstaxcollege.org/l/inversefunction
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3.8 SeCTIOn exeRCISeS

VeRBAl

1. Explain why we cannot find inverse functions for all 
polynomial functions.

2. Why must we restrict the domain of a quadratic 
function when finding its inverse?

3. When finding the inverse of a radical function, what 
restriction will we need to make?

4. The inverse of a quadratic function will always take 
what form?

AlGeBRAIC

For the following exercises, find the inverse of the function on the given domain.

5. f (x) = (x − 4)2, [4, ∞) 6. f (x) = (x + 2)2, [−2, ∞) 7. f (x) = (x + 1)2 − 3, [−1, ∞)

8. f (x) = 2 −  √
—

 3 + x  9. f (x) = 3x  2 + 5, (−∞, 0] 10. f (x) = 12 − x 2, [0, ∞)

11. f (x) = 9 − x  2, [0, ∞) 12. f (x) = 2x  2 + 4, [0, ∞)

For the following exercises, find the inverse of the functions.

13. f (x) = x  3 + 5 14. f (x) = 3x 3 + 1 15. f (x) = 4 − x  3

16. f (x) = 4 − 2x 3

For the following exercises, find the inverse of the functions.

17. f (x) =  √
—

 2x + 1  18. f (x) =  √
—

 3 − 4x  19. f (x) = 9 +  √
—

 4x − 4  

20. f (x) =  √
—

 6x − 8   + 5 21. f (x) = 9 + 2  3 √
—
 x  22. f (x) = 3 −   3 √

—
 x  

23. f (x) =   2 _____ x + 8  24. f (x) =   3 _____ x − 4  25. f (x) =   x + 3 _____ x + 7  

26. f (x) =   x − 2 _____ x + 7  27. f (x) =   3x + 4 ______ 5 − 4x  28. f (x) =   5x + 1 ______ 2 − 5x  

29. f (x) = x 2 + 2x, [−1, ∞) 30. f (x) = x 2 + 4x + 1, [−2, ∞) 31. f (x) = x 2 − 6x + 3, [3, ∞)

GRAPHICAl

For the following exercises, find the inverse of the function and graph both the function and its inverse.

32. f (x) = x 2 + 2, x ≥ 0 33. f (x) = 4 − x 2, x ≥ 0 34. f (x) = (x + 3)2, x ≥ −3

35. f (x) = (x − 4)2, x ≥ 4 36. f (x) = x 3 + 3 37. f (x) = 1 − x 3

38. f (x) = x 2 + 4x, x ≥ −2 39. f (x) = x 2 − 6x + 1, x ≥ 3 40. f (x) =   2 __ x  

41. f (x) =   1 __ x2  , x ≥ 0

For the following exercises, use a graph to help determine the domain of the functions.

42. f (x) =  √ 
_____________

    
(x + 1)(x − 1)

  __ x    43. f (x) =  √ 
_____________

    
(x + 2)(x − 3)

  __ 
x − 1

    44. f (x) =  √ 
________

   
x(x + 3)

 _ x − 4    

45. f (x) =  √ 
___________

   x
2 − x − 20 _ 

x − 2
    46. f (x) =  √ 

______

   9 − x2
 _ x + 4    
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TeCHnOlOGY

For the following exercises, use a calculator to graph the function. Then, using the graph, give three points on the 
graph of the inverse with y-coordinates given.

47. f (x) = x3 − x − 2, y = 1, 2, 3 48. f (x) = x3 + x − 2, y = 0, 1, 2 49. f (x) = x3 + 3x − 4, y = 0, 1, 2

50. f (x) = x3 + 8x − 4, y = −1, 0, 1 51. f (x) = x4 + 5x + 1, y = −1, 0, 1

exTenSIOnS

For the following exercises, find the inverse of the functions with a, b, c positive real numbers.

52. f (x) = ax3 + b 53. f (x) = x2 + bx 54. f (x) =  √
—

 ax2 + b  

55. f (x) =   3
 √
—

 ax + b  56. f (x) =   ax + b ______ x + c  

ReAl-WORlD APPlICATIOnS

For the following exercises, determine the function described and then use it to answer the question.

57. An object dropped from a height of 200 meters has 
a height, h(t), in meters after t seconds have lapsed, 
such that h(t) = 200 − 4.9t 2. Express t as a function 
of height, h, and find the time to reach a height of 
50 meters.

58. An object dropped from a height of 600 feet has 
a height, h(t), in feet after t seconds have elapsed, 
such that h(t) = 600 − 16t 2. Express t as a function 
of height h, and find the time to reach a height of 400 
feet.

59. The volume, V, of a sphere in terms of its radius, r, 
is given by V(r) =   4 __ 3  πr 3. Express r as a function of 
V, and find the radius of a sphere with volume of 200 
cubic feet.

60. The surface area, A, of a sphere in terms of its radius, 
r, is given by A(r) = 4πr 2. Express r as a function of 
V, and find the radius of a sphere with a surface area 
of 1000 square inches.

61. A container holds 100 ml of a solution that is  
25 ml acid. If n ml of a solution that is 60% acid is 
added, the function C(n) =   25 + 0.6n ________ 100 + n   gives the 
concentration, C, as a function of the number of ml 
added, n. Express n as a function of C and determine 
the number of mL that need to be added to have a 
solution that is 50% acid.

62. The period T, in seconds, of a simple pendulum  
as a function of its length l, in feet, is given by  
T(l) = 2π  √ 

____

    l ____ 32.2    . Express l as a function of T and 

determine the length of a pendulum with period  
of 2 seconds.

63. The volume of a cylinder, V, in terms of radius, r, 
and height, h, is given by V = πr 2h. If a cylinder has 
a height of 6 meters, express the radius as a function 
of V and find the radius of a cylinder with volume of  
300 cubic meters.

64. The surface area, A, of a cylinder in terms of its 
radius, r, and height, h, is given by A = 2πr2 + 2πrh. 
If the height of the cylinder is 4 feet, express the radius 
as a function of V and find the radius if the surface 
area is 200 square feet.

65. The volume of a right circular cone, V, in terms of its 
radius, r, and its height, h, is given by V =   1 _ 

3
  πr 2h.  

Express r in terms of h if the height of the cone is 
12 feet and find the radius of a cone with volume of  
50 cubic inches.

66. Consider a cone with height of 30 feet. Express the 
radius, r, in terms of the volume, V, and find the 
radius of a cone with volume of 1000 cubic feet.
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Solve direct variation problems.

•	  Solve inverse variation problems.

•	  Solve problems involving joint variation.

3.9 MODelInG USInG VARIATIOn

A used-car company has just offered their best candidate, Nicole, a position in sales. The position offers 16% commission 
on her sales. Her earnings depend on the amount of her sales. For instance, if she sells a vehicle for $4,600, she will 
earn $736. She wants to evaluate the offer, but she is not sure how. In this section, we will look at relationships, such 
as this one, between earnings, sales, and commission rate.

Solving Direct Variation Problems
In the example above, Nicole’s earnings can be found by multiplying her sales by her commission. The formula 
e = 0.16s tells us her earnings, e, come from the product of 0.16, her commission, and the sale price of the vehicle. If 
we create a table, we observe that as the sales price increases, the earnings increase as well, which should be intuitive. 
See Table 1.

s, sales prices e = 0.16s Interpretation

$4,600 e = 0.16(4,600) = 736 A sale of a $4,600 vehicle results in $736 earnings.

$9,200 e = 0.16(9,200) = 1,472 A sale of a $9,200 vehicle results in $1472 earnings.

$18,400 e = 0.16(18,400) = 2,944 A sale of a $18,400 vehicle results in $2944 earnings.

Table 1

Notice that earnings are a multiple of sales. As sales increase, earnings increase in a predictable way. Double the sales of 
the vehicle from $4,600 to $9,200, and we double the earnings from $736 to $1,472. As the input increases, the output 
increases as a multiple of the input. A relationship in which one quantity is a constant multiplied by another quantity 
is called direct variation. Each variable in this type of relationship varies directly with the other.

Figure 1 represents the data for Nicole’s potential earnings. We say that earnings vary directly with the sales price of the 
car. The formula y = kxn is used for direct variation. The value k is a nonzero constant greater than zero and is called  
the constant of variation. In this case, k = 0.16 and n = 1.
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direct variation 
If x and y are related by an equation of the form

y = kx n

then we say that the relationship is direct variation and y varies directly with the nth power of x. In direct 
variation relationships, there is a nonzero constant ratio k =   

y
 _ xn  , where k is called the constant of variation, 

which help defines the relationship between the variables.

How To…
Given a description of a direct variation problem, solve for an unknown.

1. Identify the input, x, and the output, y.
2. Determine the constant of variation. You may need to divide y by the specified power of x to determine the constant 

of variation.
3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

Example 1 Solving a Direct Variation Problem

The quantity y varies directly with the cube of x. If y = 25 when x = 2, find y when x is 6.

Solution The general formula for direct variation with a cube is y = kx 3. The constant can be found by dividing y by 
the cube of x.
 k =   

y
 _ 

x3
  

 =   25 __ 23  

 =   25 __ 8  

Now use the constant to write an equation that represents this relationship.

 y =   25 __ 8  x3

Substitute x = 6 and solve for y.

 y =   25 __ 8  (6)3

 = 675

Analysi s The graph of this equation is a simple cubic, as shown in Figure 2.

(2, 25)

(6, 675)

0

200

2 4 6 8 10

400

600

800

y

x

Figure 2



CHAPTER 3 polynomial and rational Functions312

Q & A…
Do the graphs of all direct variation equations look like Example 1?

No. Direct variation equations are power functions—they may be linear, quadratic, cubic, quartic, radical, etc. But 
all of the graphs pass through (0,0).

Try It #1

The quantity y varies directly with the square of x. If y = 24 when x = 3, find y when x is 4.

Solving Inverse Variation Problems
Water temperature in an ocean varies inversely to the water’s depth. Between the depths of 250 feet and 500 feet, the formula 
T =   14,000 ______ d   gives us the temperature in degrees Fahrenheit at a depth in feet below Earth’s surface. Consider the Atlantic 
Ocean, which covers 22% of Earth’s surface. At a certain location, at the depth of 500 feet, the temperature may be 28°F.  
If we create Table 2, we observe that, as the depth increases, the water temperature decreases.

d, depth T =   14,000 _ 
d

  Interpretation

500 ft   14,000 _ 
500

   = 28 At a depth of 500 ft, the water temperature is 28° F.

350 ft   14,000 _ 
350

   = 40 At a depth of 350 ft, the water temperature is 40° F.

250 ft   14,000 _ 
250

   = 56 At a depth of 250 ft, the water temperature is 56° F.

Table 2

We notice in the relationship between these variables that, as one quantity increases, the other decreases. The two 
quantities are said to be inversely proportional and each term varies inversely with the other. Inversely proportional 
relationships are also called inverse variations.

For our example, Figure 3 depicts the inverse variation. We say the water temperature varies inversely with the depth 
of the water because, as the depth increases, the temperature decreases. The formula y =   k _ x   for inverse variation in 
this case uses k = 14,000.
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inverse variation 
If x and y are related by an equation of the form

y =   k __ xn  

where k is a nonzero constant, then we say that y varies inversely with the nth power of x. In inversely 
proportional relationships, or inverse variations, there is a constant multiple k = xny.
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Example 2 Writing a Formula for an Inversely Proportional Relationship

A tourist plans to drive 100 miles. Find a formula for the time the trip will take as a function of the speed the tourist 
drives.

Solution Recall that multiplying speed by time gives distance. If we let t represent the drive time in hours, and v represent 
the velocity (speed or rate) at which the tourist drives, then vt = distance. Because the distance is fixed at 100 miles,  
vt = 100. Solving this relationship for the time gives us our function.

 t(v) =   100 ___ v  

 = 100v −1

We can see that the constant of variation is 100 and, although we can write the relationship using the negative exponent, 
it is more common to see it written as a fraction.

How To…
Given a description of an indirect variation problem, solve for an unknown.

1. Identify the input, x, and the output, y.
2. Determine the constant of variation. You may need to multiply y by the specified power of x to determine the 

constant of variation.
3. Use the constant of variation to write an equation for the relationship.
4. Substitute known values into the equation to find the unknown.

Example 3 Solving an Inverse Variation Problem

A quantity y varies inversely with the cube of x. If y = 25 when x = 2, find y when x is 6.

Solution The general formula for inverse variation with a cube is y =   k __ x3  . The constant can be found by multiplying 
y by the cube of x.
 k = x3 y
 = 23 ⋅ 25
 = 200
Now we use the constant to write an equation that represents this relationship.

y =   k __ x3  , k = 200

 y =   200 ___ x3  
Substitute x = 6 and solve for y.
 y =   200 ___ 63  

 =   25 __ 27  

Analysi s The graph of this equation is a rational function, as shown in Figure 4.

(2, 25)
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Figure 4

Try It #2
A quantity y varies inversely with the square of x. If y = 8 when x = 3, find y when x is 4.
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Solving Problems Involving joint Variation
Many situations are more complicated than a basic direct variation or inverse variation model. One variable often 
depends on multiple other variables. When a variable is dependent on the product or quotient of two or more 
variables, this is called joint variation. For example, the cost of busing students for each school trip varies with the 
number of students attending and the distance from the school. The variable c, cost, varies jointly with the number 
of students, n, and the distance, d.

joint variation 
Joint variation occurs when a variable varies directly or inversely with multiple variables.

For instance, if x varies directly with both y and z, we have x = kyz. If x varies directly with y and inversely with 
z, we have x =   ky __ z  . Notice that we only use one constant in a joint variation equation.

Example 4 Solving Problems Involving Joint Variation

A quantity x varies directly with the square of y and inversely with the cube root of z. If x = 6 when y = 2 and z = 8, 
find x when y = 1 and z = 27.

Solution Begin by writing an equation to show the relationship between the variables.

 x =   
ky2

 _ 
  3 √

—
 z  
  

Substitute x = 6, y = 2, and z = 8 to find the value of the constant k.

 6 =   k22
 _ 

  3 √
—
 8  
  

 6 =   4k __ 2  

 3 = k

Now we can substitute the value of the constant into the equation for the relationship.

 x =   
3y2

 _ 
  3 √

—
 z  
  

To find x when y = 1 and z = 27, we will substitute values for y and z into our equation.

 x =   
3(1)2

 _ 
  3 √

—
 27  
  

 = 1

Try It #3

x varies directly with the square of y and inversely with z. If x = 40 when y = 4 and z = 2, find x when y = 10 and 
z = 25.

Access these online resources for additional instruction and practice with direct and inverse variation.
•	 Direct Variation (http://openstaxcollege.org/l/directvariation)

•	 Inverse Variation (http://openstaxcollege.org/l/inversevariatio)

•	 Direct and Inverse Variation (http://openstaxcollege.org/l/directinverse)

http://openstaxcollege.org/l/directvariation
http://openstaxcollege.org/l/inversevariatio
http://openstaxcollege.org/l/directinverse
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3.9 SeCTIOn exeRCISeS

VeRBAl
1. What is true of the appearance of graphs that 

reflect a direct variation between two variables?
2. If two variables vary inversely, what will an equation 

representing their relationship look like?
3. Is there a limit to the number of variables that 

can jointly vary? Explain.

AlGeBRAIC
For the following exercises, write an equation describing the relationship of the given variables.

4. y varies directly as x and when x = 6, y = 12. 5. y varies directly as the square of x and when x = 4, y = 80.
6. y varies directly as the square root of x and when  

x = 36, y = 24.
7. y varies directly as the cube of x and when x = 36, y = 24.

8. y varies directly as the cube root of x and when  
x = 27, y = 15.

9. y varies directly as the fourth power of x and when x = 1, 
y = 6.

10. y varies inversely as x and when x = 4, y = 2. 11. y varies inversely as the square of x and when x = 3, y = 2.
12. y varies inversely as the cube of x and when  

x = 2, y = 5.
13. y varies inversely as the fourth power of x and when 

x = 3, y = 1.
14. y varies inversely as the square root of x and 

when x = 25, y = 3.
15. y varies inversely as the cube root of x and when  

x = 64, y = 5.
16. y varies jointly with x and z and when x = 2 and  

z = 3, y = 36.
17. y varies jointly as x, z, and w and when x = 1, z = 2, 

w = 5, then y = 100.

18. y varies jointly as the square of x and the square 
of z and when x = 3 and z = 4, then y = 72.

19. y varies jointly as x and the square root of z and when  
x = 2 and z = 25, then y = 100.

20. y varies jointly as the square of x the cube of z 
and the square root of w. When x = 1, z = 2, and 
w = 36, then y = 48.

21. y varies jointly as x and z and inversely as w. When x = 3, 
z = 5, and w = 6, then y = 10.

22. y varies jointly as the square of x and the square 
root of z and inversely as the cube of w. When  
x = 3, z = 4, and w = 3, then y = 6.

23. y varies jointly as x and z and inversely as the square root 
of w and the square of t. When x = 3, z = 1, w = 25, and 
t = 2, then y = 6.

nUMeRIC
For the following exercises, use the given information to find the unknown value.

24. y varies directly as x. When x = 3, then y = 12. Find 
y when x = 20.

25. y varies directly as the square of x. When x = 2, then  
y = 16. Find y when x = 8.

26. y varies directly as the cube of x. When x = 3, then  
y = 5. Find y when x = 4.

27. y varies directly as the square root of x. When  
x = 16, then y = 4. Find y when x = 36.

28. y varies directly as the cube root of x. When  
x = 125, then y = 15. Find y when x = 1,000.

29. y varies inversely with x. When x = 3, then y = 2. 
Find y when x = 1.

30. y varies inversely with the square of x. When x = 4, 
then y = 3. Find y when x = 2.

31. y varies inversely with the cube of x. When x = 3, 
then y = 1. Find y when x = 1.

32. y varies inversely with the square root of x. When  
x = 64, then y = 12. Find y when x = 36.

33. y varies inversely with the cube root of x. When  
x = 27, then y = 5. Find y when x = 125.

34. y varies jointly as x and z. When x = 4 and z = 2, 
then y = 16. Find y when x = 3 and z = 3.

35. y varies jointly as x, z, and w. When x = 2, z = 1, and 
w = 12, then y = 72. Find y when x = 1, z = 2, and w = 3.

36. y varies jointly as x and the square of z. When  
x = 2 and z = 4, then y = 144. Find y when x = 4  
and z = 5.

37. y varies jointly as the square of x and the square root 
of z. When x = 2 and z = 9, then y = 24. Find y when 
x = 3 and z = 25.

38. y varies jointly as x and z and inversely as w. When  
x = 5, z = 2, and w = 20, then y = 4. Find y when  
x = 3 and z = 8, and w = 48.

39. y varies jointly as the square of x and the cube of z 
and inversely as the square root of w. When x = 2, 
z = 2, and w = 64, then y = 12. Find y when x = 1, 
z = 3, and w = 4.
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40. y varies jointly as the square of x and of z and inversely as the square root of w and of t. When x = 2, z = 3, 
w = 16, and t = 3, then y = 1. Find y when x = 3, z = 2, w = 36, and t = 5.

TeCHnOlOGY
For the following exercises, use a calculator to graph the equation implied by the given variation.

41. y varies directly with the square of x and when x = 2, 
y = 3.

42. y varies directly as the cube of x and when x = 2, y = 4.

43. y varies directly as the square root of x and when  
x = 36, y = 2.

44. y varies inversely with x and when x = 6, y = 2.

45. y varies inversely as the square of x and when  
x = 1, y = 4.

exTenSIOnS
For the following exercises, use Kepler’s Law, which states that the square of the time, T, required for a planet to orbit 
the Sun varies directly with the cube of the mean distance, a, that the planet is from the Sun.

46. Using the Earth’s time of 1 year and mean distance of 
93 million miles, find the equation relating T and a.

47. Use the result from the previous exercise to determine 
the time required for Mars to orbit the Sun if its mean 
distance is 142 million miles.

48. Using Earth’s distance of 150 million kilometers, find 
the equation relating T and a.

49. Use the result from the previous exercise to determine 
the time required for Venus to orbit the Sun if its 
mean distance is 108 million kilometers.

50. Using Earth’s distance of 1 astronomical unit (A.U.), 
determine the time for Saturn to orbit the Sun if its 
mean distance is 9.54 A.U.

ReAl-WORlD APPlICATIOnS
For the following exercises, use the given information to answer the questions.

51. The distance s that an object falls varies directly with 
the square of the time, t, of the fall. If an object falls  
16 feet in one second, how long for it to fall 144 feet?

52. The velocity v of a falling object varies directly to the time, 
t, of the fall. If after 2 seconds, the velocity of the object is 
64 feet per second, what is the velocity after 5 seconds?

53. The rate of vibration of a string under constant tension 
varies inversely with the length of the string. If a string 
is 24 inches long and vibrates 128 times per second, 
what is the length of a string that vibrates 64 times per 
second?

54. The volume of a gas held at constant temperature 
varies indirectly as the pressure of the gas. If the 
volume of a gas is 1200 cubic centimeters when 
the pressure is 200 millimeters of mercury, what is 
the volume when the pressure is 300 millimeters of 
mercury?

55. The weight of an object above the surface of the Earth 
varies inversely with the square of the distance from 
the center of the Earth. If a body weighs 50 pounds 
when it is 3960 miles from Earth’s center, what would it 
weigh it were 3970 miles from Earth’s center?

56. The intensity of light measured in foot-candles varies 
inversely with the square of the distance from the light 
source. Suppose the intensity of a light bulb is 0.08 foot-
candles at a distance of 3 meters. Find the intensity level 
at 8 meters.

57. The current in a circuit varies inversely with its 
resistance measured in ohms. When the current in a 
circuit is 40 amperes, the resistance is 10 ohms. Find the 
current if the resistance is 12 ohms.

58. The force exerted by the wind on a plane surface varies 
jointly with the square of the velocity of the wind and 
with the area of the plane surface. If the area of the 
surface is 40 square feet surface and the wind velocity is 
20 miles per hour, the resulting force is 15 pounds. Find 
the force on a surface of 65 square feet with a velocity of 
30 miles per hour.

59. The horsepower (hp) that a shaft can safely transmit 
varies jointly with its speed (in revolutions per minute 
(rpm)) and the cube of the diameter. If the shaft of a 
certain material 3 inches in diameter can transmit 45 
hp at 100 rpm, what must the diameter be in order to 
transmit 60 hp at 150 rpm?

60. The kinetic energy K of a moving object varies jointly 
with its mass m and the square of its velocity v. If an 
object weighing 40 kilograms with a velocity of  
15 meters per second has a kinetic energy of 1000 joules, 
find the kinetic energy if the velocity is increased to 20 
meters per second.
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Key Terms
arrow notation a way to symbolically represent the local and end behavior of a function by using arrows to indicate 

that an input or output approaches a value
axis of symmetry a vertical line drawn through the vertex of a parabola around which the parabola is symmetric; it is 

defined by x = −    b __ 2a  .
coefficient a nonzero real number multiplied by a variable raised to an exponent
complex conjugate the complex number in which the sign of the imaginary part is changed and the real part of the 

number is left unchanged; when added to or multiplied by the original complex number, the result is a real number
complex number the sum of a real number and an imaginary number, written in the standard form a + bi, where a 

is the real part, and bi is the imaginary part
complex plane a coordinate system in which the horizontal axis is used to represent the real part of a complex number 

and the vertical axis is used to represent the imaginary part of a complex number
constant of variation the non-zero value k that helps define the relationship between variables in direct or inverse 

variation
continuous function a function whose graph can be drawn without lifting the pen from the paper because there are 

no breaks in the graph
degree the highest power of the variable that occurs in a polynomial
Descartes’ Rule of Signs a rule that determines the maximum possible numbers of positive and negative real zeros 

based on the number of sign changes of f (x) and f (−x)
direct variation the relationship between two variables that are a constant multiple of each other; as one quantity 

increases, so does the other
Division Algorithm given a polynomial dividend f (x) and a non-zero polynomial divisor d(x) where the degree of 

d(x) is less than or equal to the degree of f (x), there exist unique polynomials q(x) and r(x) such that f  (x) = d(x)
q(x) + r(x) where q(x) is the quotient and r(x) is the remainder. The remainder is either equal to zero or has degree 
strictly less than d(x).

end behavior the behavior of the graph of a function as the input decreases without bound and increases without bound
Factor Theorem k is a zero of polynomial function f (x) if and only if (x − k) is a factor of f (x)
Fundamental Theorem of Algebra a polynomial function with degree greater than 0 has at least one complex zero
general form of a quadratic function the function that describes a parabola, written in the form f (x) = ax 2 + bx + c,  

where a, b, and c are real numbers and a ≠ 0.
global maximum highest turning point on a graph; f (a) where f (a) ≥ f (x) for all x.
global minimum lowest turning point on a graph; f (a) where f (a) ≤ f (x) for all x.
horizontal asymptote a horizontal line y = b where the graph approaches the line as the inputs increase or decrease 

without bound.
Intermediate Value Theorem for two numbers a and b in the domain of f, if a < b and f (a) ≠ f (b), then the function f 

takes on every value between f (a) and f (b); specifically, when a polynomial function changes from a negative value 
to a positive value, the function must cross the x-axis

inverse variation the relationship between two variables in which the product of the variables is a constant
inversely proportional a relationship where one quantity is a constant divided by the other quantity; as one quantity 

increases, the other decreases
invertible function any function that has an inverse function
imaginary number a number in the form bi where i =  √

—
 −1  

joint variation a relationship where a variable varies directly or inversely with multiple variables
leading coefficient the coefficient of the leading term
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leading term the term containing the highest power of the variable
Linear Factorization Theorem allowing for multiplicities, a polynomial function will have the same number of factors 

as its degree, and each factor will be in the form (x − c), where c is a complex number
multiplicity the number of times a given factor appears in the factored form of the equation of a polynomial; if a 

polynomial contains a factor of the form (x − h)p, x = h is a zero of multiplicity p.
polynomial function a function that consists of either zero or the sum of a finite number of non-zero terms, each of 

which is a product of a number, called the coefficient of the term, and a variable raised to a non-negative integer power.
power function a function that can be represented in the form f (x) = kxp where k is a constant, the base is a variable, 

and the exponent, p, is a constant
rational function a function that can be written as the ratio of two polynomials
Rational Zero Theorem the possible rational zeros of a polynomial function have the form   

p
 _ q   where p is a factor of 

the constant term and q is a factor of the leading coefficient.
Remainder Theorem if a polynomial f (x) is divided by x − k, then the remainder is equal to the value f (k) 
removable discontinuity a single point at which a function is undefined that, if filled in, would make the function 

continuous; it appears as a hole on the graph of a function
smooth curve a graph with no sharp corners
standard form of a quadratic function the function that describes a parabola, written in the form f (x) = a(x − h)2 + k, 

where (h, k) is the vertex.
synthetic division a shortcut method that can be used to divide a polynomial by a binomial of the form x − k

term of a polynomial function any aix
i of a polynomial function in the form f (x) = anx

n + ... + a2x
2 + a1x + a0

turning point the location at which the graph of a function changes direction
varies directly a relationship where one quantity is a constant multiplied by the other quantity
varies inversely a relationship where one quantity is a constant divided by the other quantity
vertex the point at which a parabola changes direction, corresponding to the minimum or maximum value of the 

quadratic function
vertex form of a quadratic function another name for the standard form of a quadratic function
vertical asymptote a vertical line x = a where the graph tends toward positive or negative infinity as the inputs approach a
zeros in a given function, the values of x at which y = 0, also called roots

Key equations

general form of a quadratic function f (x) = ax 2 + bx + c

the quadratic formula x =    −b ±  √
—

 b2 − 4ac    _______________ 2a  

standard form of a quadratic function f (x) = a(x − h)2 + k

general form of a polynomial function f (x) = an x
n + ... + a2 x

2 + a1x + a0

Division Algorithm f (x) = d(x)q(x) + r(x) where q(x) ≠ 0

Rational Function f (x) =    P(x) ____ Q(x)   =   
ap x 

p + ap − 1x 

 

p−1 + ... + a1x + a0
   ___   

bq x 
q + bq − 1 x  

q−1 + ... + b1 x + b0

  , Q(x) ≠ 0

Direct variation y = kx 
n, k is a nonzero constant.

Inverse variation y =   k _ xn  , k is a nonzero constant.
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Key Concepts

3.1 Complex Numbers
•	 The square root of any negative number can be written as a multiple of i. See Example 1.

•	 To plot a complex number, we use two number lines, crossed to form the complex plane. The horizontal axis is the 
real axis, and the vertical axis is the imaginary axis. See Example 2.

•	 Complex numbers can be added and subtracted by combining the real parts and combining the imaginary parts. 
See Example 3.

•	 Complex numbers can be multiplied and divided.

•	 To multiply complex numbers, distribute just as with polynomials. See Example 4, Example 5, and Example 8.

•	 To divide complex numbers, multiply both the numerator and denominator by the complex conjugate of the 
denominator to eliminate the complex number from the denominator. See Example 6, Example 7, and Example 9.

•	 The powers of i are cyclic, repeating every fourth one. See Example 10.

3.2 Quadratic Functions
•	 A polynomial function of degree two is called a quadratic function.

•	 The graph of a quadratic function is a parabola. A parabola is a U-shaped curve that can open either up or down.

•	 The axis of symmetry is the vertical line passing through the vertex. The zeros, or x-intercepts, are the points at which 
the parabola crosses the x-axis. The y-intercept is the point at which the parabola crosses the y-axis. See Example 1, 
Example 7, and Example 8.

•	 Quadratic functions are often written in general form. Standard or vertex form is useful to easily identify the vertex 
of a parabola. Either form can be written from a graph. See Example 2.

•	 The vertex can be found from an equation representing a quadratic function. See Example 3.

•	 The domain of a quadratic function is all real numbers. The range varies with the function. See Example 4.

•	 A quadratic function’s minimum or maximum value is given by the y-value of the vertex.

•	 The minimum or maximum value of a quadratic function can be used to determine the range of the function and 
to solve many kinds of real-world problems, including problems involving area and revenue. See Example 5 and 
Example 6.

•	 Some quadratic equations must be solved by using the quadratic formula. See Example 9.

•	 The vertex and the intercepts can be identified and interpreted to solve real-world problems. See Example 10.

3.3 Power Functions and Polynomial Functions
•	 A power function is a variable base raised to a number power. See Example 1.

•	 The behavior of a graph as the input decreases beyond bound and increases beyond bound is called the end behavior.

•	 The end behavior depends on whether the power is even or odd. See Example 2 and Example 3.

•	 A polynomial function is the sum of terms, each of which consists of a transformed power function with positive 
whole number power. See Example 4.

•	 The degree of a polynomial function is the highest power of the variable that occurs in a polynomial. The term 
containing the highest power of the variable is called the leading term. The coefficient of the leading term is called 
the leading coefficient. See Example 5.

•	 The end behavior of a polynomial function is the same as the end behavior of the power function represented by the 
leading term of the function. See Example 6 and Example 7.

•	 A polynomial of degree n will have at most n x-intercepts and at most n − 1 turning points. See Example 8,  
Example 9, Example 10, Example 11, and Example 12.
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3.4 Graphs of Polynomial Functions
•	 Polynomial functions of degree 2 or more are smooth, continuous functions. See Example 1.

•	 To find the zeros of a polynomial function, if it can be factored, factor the function and set each factor equal to zero. 
See Example 2, Example 3, and Example 4.

•	 Another way to find the x-intercepts of a polynomial function is to graph the function and identify the points at which 
the graph crosses the x-axis. See Example 5.

•	 The multiplicity of a zero determines how the graph behaves at the x-intercepts. See Example 6.

•	 The graph of a polynomial will cross the horizontal axis at a zero with odd multiplicity.

•	 The graph of a polynomial will touch the horizontal axis at a zero with even multiplicity.

•	 The end behavior of a polynomial function depends on the leading term.

•	 The graph of a polynomial function changes direction at its turning points.

•	 A polynomial function of degree n has at most n − 1 turning points. See Example 7.

•	 To graph polynomial functions, find the zeros and their multiplicities, determine the end behavior, and ensure that 
the final graph has at most n − 1 turning points. See Example 8 and Example 10.

•	 Graphing a polynomial function helps to estimate local and global extremas. See Example 11.

•	 The Intermediate Value Theorem tells us that if f (a) and f (b) have opposite signs, then there exists at least one value 
c between a and b for which f (c) = 0. See Example 9.

3.5 Dividing Polynomials
•	 Polynomial long division can be used to divide a polynomial by any polynomial with equal or lower degree. See 

Example 1 and Example 2.

•	 The Division Algorithm tells us that a polynomial dividend can be written as the product of the divisor and the 
quotient added to the remainder.

•	 Synthetic division is a shortcut that can be used to divide a polynomial by a binomial in the form x − k. See Example 3, 
Example 4, and Example 5.

•	 Polynomial division can be used to solve application problems, including area and volume. See Example 6.

3.6 Zeros of Polynomial Functions
•	 To find f (k), determine the remainder of the polynomial f (x) when it is divided by x − k. See Example 1.

•	 k is a zero of f (x) if and only if (x − k) is a factor of f (x). See Example 2.

•	 Each rational zero of a polynomial function with integer coefficients will be equal to a factor of the constant term 
divided by a factor of the leading coefficient. See Example 3 and Example 4.

•	 When the leading coefficient is 1, the possible rational zeros are the factors of the constant term.

•	 Synthetic division can be used to find the zeros of a polynomial function. See Example 5.

•	 According to the Fundamental Theorem, every polynomial function has at least one complex zero. See Example 6.

•	 Every polynomial function with degree greater than 0 has at least one complex zero.

•	 Allowing for multiplicities, a polynomial function will have the same number of factors as its degree. Each factor will 
be in the form (x − c), where c is a complex number. See Example 7.

•	 The number of positive real zeros of a polynomial function is either the number of sign changes of the function or 
less than the number of sign changes by an even integer.

•	 The number of negative real zeros of a polynomial function is either the number of sign changes of f (−x) or less than 
the number of sign changes by an even integer. See Example 8.

•	 Polynomial equations model many real-world scenarios. Solving the equations is easiest done by synthetic division. 
See Example 9.
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3.7 Rational Functions
•	 We can use arrow notation to describe local behavior and end behavior of the toolkit functions f (x) =   1 _ x   and f (x) =   1 _ 

x2
  . 

See Example 1.

•	 A function that levels off at a horizontal value has a horizontal asymptote. A function can have more than one vertical 
asymptote. See Example 2.

•	 Application problems involving rates and concentrations often involve rational functions. See Example 3.

•	 The domain of a rational function includes all real numbers except those that cause the denominator to equal zero. 
See Example 4.

•	 The vertical asymptotes of a rational function will occur where the denominator of the function is equal to zero and 
the numerator is not zero. See Example 5.

•	 A removable discontinuity might occur in the graph of a rational function if an input causes both numerator and 
denominator to be zero. See Example 6.

•	 A rational function’s end behavior will mirror that of the ratio of the leading terms of the numerator and denominator 
functions. See Example 7, Example 8, Example 9, and Example 10.

•	 Graph rational functions by finding the intercepts, behavior at the intercepts and asymptotes, and end behavior. See 
Example 11.

•	 If a rational function has x-intercepts at x = x1, x2, …, xn, vertical asymptotes at x = v1, v2, ..., vm, and no  
xi = any vj, then the function can be written in the form

f (x) = a   
(x − x1)

p
1(x − x2)

p
2...(x − xn)

p
n    ___   

(x − v1)
q

1(x − v2)
q

2...(x − vm)q
n

  

See Example 12.

3.8 Inverses and Radical Functions
•	 The inverse of a quadratic function is a square root function.

•	 If f −l is the inverse of a function f, then f is the inverse of the function f −l. See Example 1.

•	 While it is not possible to find an inverse of most polynomial functions, some basic polynomials are invertible. See 
Example 2.

•	 To find the inverse of certain functions, we must restrict the function to a domain on which it will be one-to-one.  
See Example 3 and Example 4.

•	 When finding the inverse of a radical function, we need a restriction on the domain of the answer. See Example 5  
and Example 7.

•	 Inverse and radical and functions can be used to solve application problems. See Example 6 and Example 8.

3.9 Modeling Using Variation
•	 A relationship where one quantity is a constant multiplied by another quantity is called direct variation. See Example 1.

•	 Two variables that are directly proportional to one another will have a constant ratio.

•	 A relationship where one quantity is a constant divided by another quantity is called inverse variation. See Example 2.

•	 Two variables that are inversely proportional to one another will have a constant multiple. See Example 3.

•	 In many problems, a variable varies directly or inversely with multiple variables. We call this type of relationship 
joint variation. See Example 4.
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CHAPTeR 3 ReVIeW exeRCISeS

You have reached the end of Chapter 3: Polynomial and Rational Functions. Let’s review some of the Key Terms, 
Concepts and Equations you have learned.

COMPlex nUMBeRS

Perform the indicated operation with complex numbers.

1. (4 + 3i) + (−2 − 5i) 2. (6 − 5i) − (10 + 3i)

3. (2 − 3i)(3 + 6i) 4.   2 − i _____ 2 + i  

Solve the following equations over the complex number system.

5. x2 − 4x + 5 = 0 6. x2 + 2x + 10 = 0

QUADRATIC FUnCTIOnS

For the following exercises, write the quadratic function in standard form. Then, give the vertex and axes intercepts. 
Finally, graph the function.

7.  f (x) = x2 − 4x − 5 8. f (x) = −2x2 − 4x

For the following problems, find the equation of the quadratic function using the given information.

9. The vertex is (−2, 3) and a point on the graph is (3, 6). 10. The vertex is (−3, 6.5) and a point on the graph is 
(2, 6).

Answer the following questions.

11. A rectangular plot of land is to be enclosed by 
fencing. One side is along a river and so needs no 
fence. If the total fencing available is 600 meters, 
find the dimensions of the plot to have maximum 
area.

12. An object projected from the ground at a 45 degree 
angle with initial velocity of 120 feet per second has 
height, h, in terms of horizontal distance traveled,  
x, given by h(x) =   −32 _____ (120)2   x2 + x. Find the maximum 

height the object attains.

POWeR FUnCTIOnS AnD POlYnOMIAl FUnCTIOnS

For the following exercises, determine if the function is a polynomial function and, if so, give the degree and leading 
coefficient.

13. f (x) = 4x5 − 3x3 + 2x − 1 14. f (x) = 5x + 1 − x2 15. f (x) = x2(3 − 6x + x2)

For the following exercises, determine end behavior of the polynomial function.

16. f (x) = 2x4 + 3x3 − 5x2 + 7 17. f (x) = 4x3 − 6x2 + 2 18. f (x) = 2x2(1 + 3x − x2)

GRAPHS OF POlYnOMIAl FUnCTIOnS

For the following exercises, find all zeros of the polynomial function, noting multiplicities.

19. f (x) = (x + 3)2(2x − 1)(x + 1)3 20. f (x) = x5 + 4x4 + 4x3 21. f (x) = x3 − 4x2 + x − 4
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For the following exercises, based on the given graph, determine the zeros of the function and note multiplicity.

22. 

x

y

–1–2–4–5 –3 –4
–8

–12
–16
–20

321

4
8

12
16
20

4 5

23. 

x

y

–2–4–8–10 –6
–2
–4
–6
–8

–10

642

2
4
6
8

10

8 10

24. Use the Intermediate Value Theorem to show that at least one zero lies between 2 and 3 for the function 
f (x) = x3 − 5x + 1 

DIVIDInG POlYnOMIAlS

For the following exercises, use long division to find the quotient and remainder.

25.   x
3 − 2x2 + 4x + 4  ______________  x − 2  26.   3x4 − 4x2 + 4x + 8  _______________  x + 1  

For the following exercises, use synthetic division to find the quotient. If the divisor is a factor, then write the factored 
form.

27.   x
3 − 2x2 + 5x − 1  ______________ x + 3  28.   x

3 + 4x + 10 __________ x − 3  

29.   2x3 + 6x2 − 11x − 12  _________________  x + 4  30.   3x4 + 3x3 + 2x + 2  _______________  x + 1  

ZeROS OF POlYnOMIAl FUnCTIOnS

For the following exercises, use the Rational Zero Theorem to help you solve the polynomial equation.

31. 2x3 − 3x2 − 18x − 8 = 0 32. 3x3 + 11x2 + 8x − 4 = 0

33. 2x4 − 17x3 + 46x2 − 43x + 12 = 0 34. 4x4 + 8x3 + 19x2 + 32x + 12 = 0

For the following exercises, use Descartes’ Rule of Signs to find the possible number of positive and negative solutions.

35. x3 − 3x2 − 2x + 4 = 0 36. 2x4 − x3 + 4x2 − 5x + 1 = 0

RATIOnAl FUnCTIOnS

For the following rational functions, find the intercepts and the vertical and horizontal asymptotes, and then use 
them to sketch a graph.

37. f (x) =   x + 2 _____ x − 5  38. f (x) =   x
2 + 1 _____ x2 − 4  

39. f (x) =   3x2 − 27 ________ x2 + x − 2  40. f (x) =   x + 2 _____ x2 − 9  



324 CHAPTER 3 polynomial and rational Functions

For the following exercises, find the slant asymptote.

41. f (x) =   x
2 − 1 _____ x + 2  42. f (x) =   2x3 − x2 + 4 __________ x2 + 1  

InVeRSeS AnD RADICAl FUnCTIOnS
For the following exercises, find the inverse of the function with the domain given.

43. f (x) = (x − 2)2, x ≥ 2 44. f (x) = (x + 4)2 − 3, x ≥ −4 45. f (x) = x2 + 6x − 2, x ≥ −3

46. f (x) = 2x3 − 3 47. f (x) =  √
—

 4x + 5   − 3 48. f (x) =   x − 3 _____ 2x + 1  

MODelInG USInG VARIATIOn

For the following exercises, find the unknown value.

49. y varies directly as the square of x. If when x = 3,  
y = 36, find y if x = 4.

50. y varies inversely as the square root of x. If when  
x = 25, y = 2, find y if x = 4.

51. y varies jointly as the cube of x and as z. If when  
x = 1 and z = 2, y = 6, find y if x = 2 and z = 3.

52. y varies jointly as x and the square of z and inversely 
as the cube of w. If when x = 3, z = 4, and w = 2,  
y = 48, find y if x = 4, z = 5, and w = 3.

For the following exercises, solve the application problem.

53. The weight of an object above the surface of the 
earth varies inversely with the distance from the 
center of the earth.If a person weighs 150 pounds 
when he is on the surface of the earth (3,960 miles 
from center), find the weight of the person if he is 20 
miles above the surface.

54. The volume V of an ideal gas varies directly with the 
temperature T and inversely with the pressure P. 
A cylinder contains oxygen at a temperature of  
310 degrees K and a pressure of 18 atmospheres in a 
volume of 120 liters. Find the pressure if the volume 
is decreased to 100 liters and the temperature is 
increased to 320 degrees K.
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CHAPTeR 3 PRACTICe TeST

Perform the indicated operation or solve the equation.

1. (3 − 4i)(4 + 2i) 2.   1 − 4i _____ 3 + 4i  
3. x2 − 4x + 13 = 0

Give the degree and leading coefficient of the following polynomial function.

4. f (x) = x3(3 − 6x2 − 2x2)

Determine the end behavior of the polynomial function.

5. f (x) = 8x3 − 3x2 + 2x − 4 6. f (x) = −2x2(4 − 3x − 5x2)

Write the quadratic function in standard form. Determine the vertex and axes intercepts and graph the function.

7. f (x) = x2 + 2x − 8

Given information about the graph of a quadratic function, find its equation.

8. Vertex (2, 0) and point on graph (4, 12).

Solve the following application problem.

9. A rectangular field is to be enclosed by fencing. In addition to the enclosing fence, another fence is to divide the 
field into two parts, running parallel to two sides. If 1,200 feet of fencing is available, find the maximum area 
that can be enclosed.

Find all zeros of the following polynomial functions, noting multiplicities.

10. f (x) = (x − 3)3(3x − 1)(x − 1)2 11. f (x) = 2x6 − 12x5 + 18x4

Based on the graph, determine the zeros of the function and multiplicities.

12. 

x

y

–1–2–4–5 –3
–25
–50
–75

–100
–125

321

25
50
75

100
125

4 5

Use long division to find the quotient.

13.   2x3 + 3x − 4 __________ x + 2  

Use synthetic division to find the quotient. If the divisor is a factor, write the factored form.

14.   x
4 + 3x2 − 4 __________ x − 2  15.   2x3 + 5x2 − 7x − 12  ________________  x + 3  
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Use the Rational Zero Theorem to help you find the zeros of the polynomial functions.

16. f (x) = 2x3 + 5x2 − 6x − 9 17. f (x) = 4x4 + 8x3 + 21x2 + 17x + 4
18. f (x) = 4x4 + 16x3 + 13x2 − 15x − 18 19. f (x) = x5 + 6x4 + 13x3 + 14x2 + 12x + 8

Given the following information about a polynomial function, find the function.

20. It has a double zero at x = 3 and zeroes at x = 1 and  
x = −2. Its y-intercept is (0, 12).

21. It has a zero of multiplicity 3 at x =   1 _ 2   and another 
zero at x = −3. It contains the point (1, 8).

Use Descartes’ Rule of Signs to determine the possible number of positive and negative solutions.

22. 8x3 − 21x2 + 6 = 0

For the following rational functions, find the intercepts and horizontal and vertical asymptotes, and sketch a graph.

23. f (x) =   x + 4 _________ x2 − 2x − 3  24. f (x) =   x
2 + 2x − 3 _________ x2 − 4  

Find the slant asymptote of the rational function.

25. f (x) =   x
2 + 3x − 3 _________ x − 1  

Find the inverse of the function.

26. f (x) =  √
—

 x − 2   + 4 27. f (x) = 3x3 − 4

28. f (x) =   2x + 3 ______ 3x − 1  

Find the unknown value.

29. y varies inversely as the square of x and when x = 3, 
y = 2. Find y if x = 1.

30. y varies jointly with x and the cube root of z. If when 
x = 2 and z = 27, y = 12, find y if x = 5 and z = 8.

Solve the following application problem.

31. The distance a body falls varies directly as the square of the time it falls. If an object falls 64 feet in 2 seconds, 
how long will it take to fall 256 feet?
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Figure 1 electron micrograph of E. Coli bacteria (credit: “Mattosaurus,” Wikimedia Commons)

CHAPTeR OUTlIne

4.1 exponential Functions 4.5 logarithmic Properties
4.2 Graphs of exponential Functions 4.6 exponential and logarithmic equations
4.3 logarithmic Functions 4.7 exponential and logarithmic Models
4.4 Graphs of logarithmic Functions 4.8 Fitting exponential Models to Data

Introduction
Focus in on a square centimeter of your skin. Look closer. Closer still. If you could look closely enough, you would see 
hundreds of thousands of microscopic organisms. They are bacteria, and they are not only on your skin, but in your mouth, 
nose, and even your intestines. In fact, the bacterial cells in your body at any given moment outnumber your own cells. But that 
is no reason to feel bad about yourself. While some bacteria can cause illness, many are healthy and even essential to the body.

Bacteria commonly reproduce through a process called binary fission, during which one bacterial cell splits into two. 
When conditions are right, bacteria can reproduce very quickly. Unlike humans and other complex organisms, the time 
required to form a new generation of bacteria is often a matter of minutes or hours, as opposed to days or years.[16]

For simplicity’s sake, suppose we begin with a culture of one bacterial cell that can divide every hour. Table 1 shows 
the number of bacterial cells at the end of each subsequent hour. We see that the single bacterial cell leads to over 
one thousand bacterial cells in just ten hours! And if we were to extrapolate the table to twenty-four hours, we would 
have over 16 million!

Hour 0 1 2 3 4 5 6 7 8 9 10
Bacteria 1 2 4 8 16 32 64 128 256 512 1024

Table 1

In this chapter, we will explore exponential functions, which can be used for, among other things, modeling growth 
patterns such as those found in bacteria. We will also investigate logarithmic functions, which are closely related to 
exponential functions. Both types of functions have numerous real-world applications when it comes to modeling 
and interpreting data.
16. Todar, PhD, Kenneth. Todar’s Online Te xtbook of Bacteriology. http://te xtbookofbacteriology.net/growth_3.html.

Exponential and  Logarithmic  
Functions 

http://textbookofbacteriology.net/growth_3.html
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Evaluate exponential functions.

•	 Find the equation of an exponential function.

•	 Use compound interest formulas.

•	 Evaluate exponential functions with base e.

4.1 exPOnenTIAl FUnCTIOnS

India is the second most populous country in the world with a population of about 1.25 billion people in 2013. The 
population is growing at a rate of about 1.2% each year[17]. If this rate continues, the population of India will e xceed 
China’s population by the year 2031. When populations grow rapidly, we often say that the growth is “exponential,” 
meaning that something is growing very rapidly. To a mathematician, however, the term exponential growth has a 
very specific meaning. In this section, we will take a look at exponential functions, which model this kind of  
rapid growth.

Identifying exponential Functions
When exploring linear growth, we observed a constant rate of change—a constant number by which the output 
increased for each unit increase in input. For example, in the equation f  (x) = 3x + 4, the slope tells us the output 
increases by 3 each time the input increases by 1. The scenario in the India population example is different because 
we have a percent change per unit time (rather than a constant change) in the number of people.

Defining an Exponential Function

A study found that the percent of the population who are vegans in the United States doubled from 2009 to 2011. In 
2011, 2.5% of the population was vegan, adhering to a diet that does not include any animal products—no meat, poultry, 
fish, dairy, or eggs. If this rate continues, vegans will make up 10% of the U.S. population in 2015, 40% in 2019, and 
80% in 2021..

What exactly does it mean to grow exponentially? What does the word double have in common with percent increase? 
People toss these words around errantly. Are these words used correctly? The words certainly appear frequently in 
the media.

•	 Percent change refers to a change based on a percent of the original amount.
•	 Exponential growth refers to an increase based on a constant multiplicative rate of change over equal increments 

of time, that is, a percent increase of the original amount over time.
•	 Exponential decay refers to a decrease based on a constant multiplicative rate of change over equal increments 

of time, that is, a percent decrease of the original amount over time.
For us to gain a clear understanding of exponential growth, let us contrast exponential growth with linear growth. 
We will construct two functions. The first function is exponential. We will start with an input of 0, and increase each 
input by 1. We will double the corresponding consecutive outputs. The second function is linear. We will start with 
an input of 0, and increase each input by 1. We will add 2 to the corresponding consecutive outputs. See Table 1.

x f (x) = 2x  g(x) = 2x
0  1  0
1  2  2
2  4  4
3  8  6
4 16  8
5 32 10
6 64 12

Table 1

17. http://www.worldometers.info/world-population/. Accessed February 24, 2014.

http://www.worldometers.info/world-population/
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From Table 1 we can infer that for these two functions, exponential growth dwarfs linear growth.

•	 Exponential growth refers to the original value from the range increases by the same percentage over equal 
increments found in the domain.

•	 Linear growth refers to the original value from the range increases by the same amount over equal increments 
found in the domain.

 Apparently, the difference between “the same percentage” and “the same amount” is quite significant. For exponential 
growth, over equal increments, the constant multiplicative rate of change resulted in doubling the output whenever 
the input increased by one. For linear growth, the constant additive rate of change over equal increments resulted in 
adding 2 to the output whenever the input was increased by one.

 The general form of the exponential function is f (x) = ab x, where a is any nonzero number, b is a positive real number 
not equal to 1.

•	 If b > 1, the function grows at a rate proportional to its size.

•	 If 0 < b < 1, the function decays at a rate proportional to its size.

Let’s look at the function f (x) = 2x from our example. We will create a table (Table 2) to determine the corresponding 
outputs over an interval in the domain from −3 to 3.

x −3 −2 −1 0 1 2 3

f (x) = 2x 2−3 =   1 _ 8  2−2 =   1 _ 4  2−1 =   1 _ 2  20 = 1 21 = 2 22 = 4 23 = 8

Table 2

Let us examine the graph of f by plotting the ordered pairs we observe on the table in Figure 1, and then make a few 
observations.

f(x) = 2x

y = 0
2

x

y

–1–2–3–4–5 –1
–2

1

3

3

2

(3, 8)

(2, 4)
(1, 2)

(0, 1)
1 4

4

5

5
6
7
8
9

1
2 )

Figure 1 

Let’s define the behavior of the graph of the exponential function f (x) = 2x and highlight some its key characteristics.

•	 the domain is (−∞, ∞),

•	 the range is (0, ∞),

•	 as x → ∞, f (x) → ∞,

•	 as x → −∞, f (x) → 0,

•	 f (x) is always increasing,

•	 the graph of f (x) will never touch the x-axis because base two raised to any exponent never has the result of zero.

•	 y = 0 is the horizontal asymptote.

•	 the y-intercept is 1.
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exponential function
For any real number x, an exponential function is a function with the form

f (x) = ab x

where
•	 a is the a non-zero real number called the initial value and

•	 b is any positive real number such that b ≠ 1.

•	 The domain of f is all real numbers.

•	 The range of f is all positive real numbers if a > 0.

•	 The range of f is all negative real numbers if a < 0.

•	 The y-intercept is (0, a), and the horizontal asymptote is y = 0.

Example 1 Identifying Exponential Functions

Which of the following equations are not exponential functions?

f (x) = 43(x − 2)    g (x) = x3    h (x) =     1 _ 3    
x

    j (x) = (−2)x

Solution B y definition, an exponential function has a constant as a base and an independent variable as an exponent. 
Thus, g(x) = x3 does not represent an exponential function because the base is an independent variable. In fact, g(x) = x3 
is a power function.

Recall that the base b of an exponential function is always a positive constant, and b ≠ 1. Thus, j(x) = (−2)x does not 
represent an exponential function because the base, −2, is less than 0.

Try It #1

Which of the following equations represent exponential functions?

•	 f (x) = 2x2 − 3x + 1

•	 g(x) = 0.875x

•	 h(x) = 1.75x + 2

•	 j(x) = 1095.6−2x

evaluating exponential Functions
Recall that the base of an exponential function must be a positive real number other than 1. Why do we limit the base 
b to positive values? To ensure that the outputs will be real numbers. Observe what happens if the base is not positive:

•	 Let b = −9 and x =   1 _ 2  . Then f (x) = f     1 _ 2     =  (−9)   
1 __ 2    =  √

—
 −9  , which is not a real number.

Why do we limit the base to positive values other than 1? Because base 1 results in the constant function. Observe 
what happens if the base is 1:

•	 Let b = 1. Then f (x) = 1x = 1 for any value of x.

To evaluate an exponential function with the form f (x) = b x, we simply substitute x with the given value, and calculate 
the resulting power. For example:

Let f (x) = 2x. What is f (3)?

 f (x) = 2x

 f (3) = 23 Substitute x = 3.

 = 8 Evaluate the power.

To evaluate an exponential function with a form other than the basic form, it is important to follow the order of 
operations.
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For example:

Let f (x) = 30(2)x. What is f (3)?
 f (x) = 30(2)x

 f (3) = 30(2)3 Substitute x = 3.
 = 30(8) Simplify the power first.
 = 240 Multiply.

Note that if the order of operations were not followed, the result would be incorrect:
f (3) = 30(2)3 ≠ 603 = 216,000

Example 2 Evaluating Exponential Functions

Let f (x) = 5(3)x + 1. Evaluate f (2) without using a calculator.

Solution Follow the order of operations. Be sure to pay attention to the parentheses.
 f (x) = 5(3)x + 1

 f (2) = 5(3)2 + 1 Substitute x = 2.
 = 5(3)3 Add the exponents.
 = 5(27) Simplify the power.
 = 135 Multiply.

Try It #2

Let f (x) = 8(1.2)x − 5. Evaluate f (3) using a calculator. Round to four decimal places. 

Defining Exponential Growth

Because the output of exponential functions increases very rapidly, the term “exponential growth” is often used in 
everyday language to describe anything that grows or increases rapidly. However, exponential growth can be defined 
more precisely in a mathematical sense. If the growth rate is proportional to the amount present, the function models 
exponential growth.

exponential growth 
A function that models exponential growth grows by a rate proportional to the amount present. For any real 
number x and any positive real numbers a and b such that b ≠ 1, an exponential growth function has the form

f (x) = ab x

where
•	 a is the initial or starting value of the function.
•	 b is the growth factor or growth multiplier per unit x.

In more general terms, we have an exponential function, in which a constant base is raised to a variable exponent. To 
differentiate between linear and exponential functions, let’s consider two companies, A and B. Company A has 100 
stores and expands by opening 50 new stores a year, so its growth can be represented by the function A(x) = 100 + 50x.
Company B has 100 stores and expands by increasing the number of stores by 50% each year, so its growth can be 
represented by the function B(x) = 100(1 + 0.5)x.

A few years of growth for these companies are illustrated in Table 3.

Year, x Stores, Company A Stores, Company B
0 100 + 50(0) = 100 100(1 + 0.5)0 = 100
1 100 + 50(1) = 150 100(1 + 0.5)1 = 150
2 100 + 50(2) = 200 100(1 + 0.5)2 = 225
3 100 + 50(3) = 250 100(1 + 0.5)3 = 337.5
x A(x) = 100 + 50x B(x) = 100(1 + 0.5)x

Table 3
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The graphs comparing the number of stores for each company over a five-year period are shown in Figure 2. We can 
see that, with exponential growth, the number of stores increases much more rapidly than with linear growth.
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Figure 2 The graph shows the numbers of stores Companies A and B opened over a five-year period.

Notice that the domain for both functions is [0, ∞), and the range for both functions is [100, ∞). After year 1, Company 
B always has more stores than Company A.

Now we will turn our attention to the function representing the number of stores for Company B, B(x) = 100(1 + 0.5)x. 
In this exponential function, 100 represents the initial number of stores, 0.50 represents the growth rate, and 
1 + 0.5 = 1.5 represents the growth factor. Generalizing further, we can write this function as B(x) = 100(1.5)x, where 
100 is the initial value, 1.5 is called the base, and x is called the exponent.

Example 3 Evaluating a Real-World Exponential Model

At the beginning of this section, we learned that the population of India was about 1.25 billion in the year 2013, with 
an annual growth rate of about 1.2%. This situation is represented by the growth function P(t) = 1.25(1.012)t, where t 
is the number of years since 2013. To the nearest thousandth, what will the population of India be in 2031?

Solution To estimate the population in 2031, we evaluate the models for t = 18, because 2031 is 18 years after 2013. 
Rounding to the nearest thousandth,

P(18) = 1.25(1.012)18 ≈ 1.549

There will be about 1.549 billion people in India in the year 2031.

Try It #3

The population of China was about 1.39 billion in the year 2013, with an annual growth rate of about 0.6%. This 
situation is represented by the growth function P(t) = 1.39(1.006)t, where t is the number of years since 2013. To the 
nearest thousandth, what will the population of China be for the year 2031? How does this compare to the population 
prediction we made for India in Example 3? 

Finding equations of exponential Functions
In the previous examples, we were given an exponential function, which we then evaluated for a given input. Sometimes 
we are given information about an exponential function without knowing the function explicitly. We must use the 
information to first write the form of the function, then determine the constants a and b, and evaluate the function.

How To…
Given two data points, write an exponential model.

1. If one of the data points has the form (0, a), then a is the initial value. Using a, substitute the second point into the 
equation f (x) = a(b)x, and solve for b.

2. If neither of the data points have the form (0, a), substitute both points into two equations with the form f (x) = a(b)x. 
Solve the resulting system of two equations in two unknowns to find a and b.

3. Using the a and b found in the steps above, write the exponential function in the form f (x) = a(b)x.
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Example 4 Writing an Exponential Model When the Initial Value Is Known

In 2006, 80 deer were introduced into a wildlife refuge. By 2012, the population had grown to 180 deer. The population 
was growing exponentially. Write an algebraic function N(t) representing the population (N) of deer over time t.

Solution We let our independent variable t be the number of years after 2006. Thus, the information given in the 
problem can be written as input-output pairs: (0, 80) and (6, 180). Notice that by choosing our input variable to be 
measured as years after 2006, we have given ourselves the initial value for the function, a = 80. We can now substitute 
the second point into the equation N(t) = 80bt to find b:

 N(t) = 80b t

 180 = 80b 6 Substitute using point (6, 180).

   9 __ 4   = b 6 Divide and write in lowest terms.

 b =      9 __ 4       
1 __ 6    Isolate b using properties of exponents.

 b ≈ 1.1447 Round to 4 decimal places.
NOTE: Unless otherwise stated, do not round any intermediate calculations. Then round the final answer to four places 
for the remainder of this section.

The exponential model for the population of deer is N(t) = 80(1.1447)t. (Note that this exponential function models 
short-term growth. As the inputs gets large, the output will get increasingly larger, so much so that the model may 
not be useful in the long term.)

We can graph our model to observe the population growth of deer in the refuge over time. Notice that the graph in 
Figure 3 passes through the initial points given in the problem, (0, 80) and (6, 180). We can also see that the domain 
for the function is [0, ∞), and the range for the function is [80, ∞).
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Figure 3 Graph showing the population of deer over time, N (t) = 80(1.1447)t, t years after 2006.

Try It #4

A wolf population is growing exponentially. In 2011, 129 wolves were counted. By 2013, the population had reached 
236 wolves. What two points can be used to derive an exponential equation modeling this situation? Write the equation 
representing the population N of wolves over time t.

Example 5 Writing an Exponential Model When the Initial Value is Not Known

Find an exponential function that passes through the points (−2, 6) and (2, 1).

Solution Because we don’t have the initial value, we substitute both points into an equation of the form f (x) = ab x, 
and then solve the system for a and b.

•	 Substituting (−2, 6) gives 6 = ab−2

•	 Substituting (2, 1) gives 1 = ab2
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Use the first equation to solve for a in terms of b:

 6 = ab−2

   6 _ 
b−2

   = a Divide.

 a = 6b 2  Use properties of exponents to rewrite the denominator.
Substitute a in the second equation, and solve for b:

 1 = ab 2
 1 = 6b 2b 2 = 6b 4 Substitute a.

 b =      1 _ 
6

       
1 __ 4    Use properties of exponents to isolate b.

 b ≈ 0.6389 Round 4 decimal places.

Use the value of b in the first equation to solve for the value of a:
 a = 6b 2 ≈ 6(0.6389)2 ≈ 2.4492

Thus, the equation is f (x) = 2.4492(0.6389)x.

We can graph our model to check our work. Notice that the graph in Figure 4 passes through the initial points given 
in the problem, (−2, 6) and (2, 1). The graph is an example of an exponential decay function.

2

x

f (x)

–1–2–3–4–5 –1
–2

1

3

3

2

(−2, 6)

(2, 1)

1 4

4

5

5
6
7
8
9

10

Figure 4 The graph of f (x) = 2.4492(0.6389)x models exponential decay.

Try It #5

Given the two points (1, 3) and (2, 4.5), find the equation of the exponential function that passes through these two 
points.

Q & A…
Do two points always determine a unique exponential function?

Yes, provided the two points are either both above the x-axis or both below the x-axis and have different x-coordinates. 
But keep in mind that we also need to know that the graph is, in fact, an exponential function. Not every graph that 
looks exponential really is exponential. We need to know the graph is based on a model that shows the same percent 
growth with each unit increase in x, which in many real world cases involves time.

How To…
Given the graph of an exponential function, write its equation.

1. First, identify two points on the graph. Choose the y-intercept as one of the two points whenever possible. Try to 
choose points that are as far apart as possible to reduce round-off error.

2. If one of the data points is the y-intercept (0, a), then a is the initial value. Using a, substitute the second point into 
the equation f (x) = a(b)x, and solve for b.

3. If neither of the data points have the form (0, a), substitute both points into two equations with the form f (x) = a(b)x.  
Solve the resulting system of two equations in two unknowns to find a and b.

4. Write the exponential function, f (x) = a(b)x.
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Example 6 Writing an Exponential Function Given Its Graph

Find an equation for the exponential function graphed in Figure 5.

6

x

f (x)

–0.5–1.5–2.5–3.5 –1–2–3 0.5 1.5 2.5 3.51 2 3
–3

3

9
12
15
18
21

Figure 5

Solution We can choose the y-intercept of the graph, (0, 3), as our first point. This gives us the initial value, a = 3. 
Next, choose a point on the curve some distance away from (0, 3) that has integer coordinates. One such point is (2, 12).

 y = ab x Write the general form of an exponential equation.
 y = 3b x Substitute the initial value 3 for a.
 12 = 3b2 Substitute in 12 for y and 2 for x.
 4 = b2 Divide by 3.
 b = ±2 Take the square root.

Because we restrict ourselves to positive values of b, we will use b = 2. Substitute a and b into the standard form to 
yield the equation f (x) = 3(2)x.

Try It #6

Find an equation for the exponential function graphed in Figure 6.
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x

f(x)
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3

3
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4
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5
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Figure 6

How To…
Given two points on the curve of an exponential function, use a graphing calculator to find the equation.
1. Press [STAT].
2. Clear any existing entries in columns L1 or L2.
3. In L1, enter the x-coordinates given.
4. In L2, enter the corresponding y-coordinates.
5. Press [STAT] again. Cursor right to CALC, scroll down to ExpReg (Exponential Regression), and press [ENTER].
6. The screen displays the values of a and b in the exponential equation y = a ⋅ b x

Example 7 Using a Graphing Calculator to Find an Exponential Function

Use a graphing calculator to find the exponential equation that includes the points (2, 24.8) and (5, 198.4).

Solution Follow the guidelines above. First press [STAT], [EDIT], [1: Edit…], and clear the lists L1 and L2. Next, in 
the L1 column, enter the x-coordinates, 2 and 5. Do the same in the L2 column for the y-coordinates, 24.8 and 198.4. 
Now press [STAT], [CALC], [0: ExpReg] and press [ENTER]. The values a = 6.2 and b = 2 will be displayed. The 
exponential equation is y = 6.2 ⋅ 2x.

Try It #7
Use a graphing calculator to find the exponential equation that includes the points (3, 75.98) and (6, 481.07).
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Applying the Compound-Interest Formula
Savings instruments in which earnings are continually reinvested, such as mutual funds and retirement accounts, 
use compound interest. The term compounding refers to interest earned not only on the original value, but on the 
accumulated value of the account.

The annual percentage rate (APR) of an account, also called the nominal rate, is the yearly interest rate earned by 
an investment account. The term nominal is used when the compounding occurs a number of times other than once 
per year. In fact, when interest is compounded more than once a year, the effective interest rate ends up being greater 
than the nominal rate! This is a powerful tool for investing.

We can calculate the compound interest using the compound interest formula, which is an exponential function of 
the variables time t, principal P, APR r, and number of compounding periods in a year n:

A(t) = P   1 +   r _ n    
nt

For example, observe Table 4, which shows the result of investing $1,000 at 10% for one year. Notice how the value of 
the account increases as the compounding frequency increases.

Frequency Value after 1 year
Annually $1100
Semiannually $1102.50
Quarterly $1103.81
Monthly $1104.71
Daily $1105.16

Table 4

the compound interest formula
Compound interest can be calculated using the formula

A(t) = P   1 +   r _ n    
nt

where
•	A(t) is the account value,
•	 t is measured in years,
•	 P is the starting amount of the account, often called the principal, or more generally present value,
•	 r is the annual percentage rate (APR) expressed as a decimal, and
•	 n is the number of compounding periods in one year.

Example 8 Calculating Compound Interest

If we invest $3,000 in an investment account paying 3% interest compounded quarterly, how much will the account 
be worth in 10 years?

Solution Because we are starting with $3,000, P = 3000. Our interest rate is 3%, so r = 0.03. Because we are 
compounding quarterly, we are compounding 4 times per year, so n = 4. We want to know the value of the account 
in 10 years, so we are looking for A(10), the value when t = 10.

 A(t) = P   1 +   r _ n    
nt

 Use the compound interest formula.

 A(10) = 3000   1 +   0.03 ____ 4    
4 ⋅ 10

 Substitute using given values.

 ≈ $4,045.05 Round to two decimal places.

The account will be worth about $4,045.05 in 10 years.

Try It #8

An initial investment of $100,000 at 12% interest is compounded weekly (use 52 weeks in a year). What will the  
investment be worth in 30 years?
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Example 9 Using the Compound Interest Formula to Solve for the Principal

A 529 Plan is a college-savings plan that allows relatives to invest money to pay for a child’s future college tuition; the 
account grows tax-free. Lily wants to set up a 529 account for her new granddaughter and wants the account to grow 
to $40,000 over 18 years. She believes the account will earn 6% compounded semi-annually (twice a year). To the 
nearest dollar, how much will Lily need to invest in the account now?

Solution The nominal interest rate is 6%, so r = 0.06. Interest is compounded twice a year, so n = 2. 

We want to find the initial investment, P, needed so that the value of the account will be worth $40,000 in 18 years. 
Substitute the given values into the compound interest formula, and solve for P.

 A(t) = P   1 +   r _ n    
nt

 Use the compound interest formula.

 40,000 = P   1 +   0.06 ____ 2    
2(18)

  Substitute using given values A, r, n, and t.

 40,000 = P(1.03)36 Simplify.

   40,000 ______ (1.03)36   = P  Isolate P.

 P ≈ $13, 801  Divide and round to the nearest dollar.

Lily will need to invest $13,801 to have $40,000 in 18 years.

Try It #9
Refer to Example 9. To the nearest dollar, how much would Lily need to invest if the account is compounded quarterly?

evaluating Functions with Base e
As we saw earlier, the amount earned on an account increases as the compounding frequency increases. Table 5 
shows that the increase from annual to semi-annual compounding is larger than the increase from monthly to daily 
compounding. This might lead us to ask whether this pattern will continue.

Examine the value of $1 invested at 100% interest for 1 year, compounded at various frequencies, listed in Table 5.

Frequency A(t) =   1 +   1 _ n    
n

Value

Annually   1 +   1 _ 1    
1

$2

Semiannually   1 +   1 _ 2    
2

$2.25

Quarterly   1 +   1 _ 4    
4

$2.441406

Monthly   1 +   1 _ 12    
12

$2.613035

Daily   1 +   1 _ 
365

    
365

$2.714567

Hourly   1 +   1 _ 
8760

    
8760

$2.718127

Once per minute   1 +   1 _ 
525600

    
525600

$2.718279

Once per second   1 +   1 ________ 31536000    
31536000

$2.718282

Table 5
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These values appear to be approaching a limit as n increases without bound. In fact, as n gets larger and larger, the 
expression   1 +   1 _ n    

n
 approaches a number used so frequently in mathematics that it has its own name: the letter e. 

This value is an irrational number, which means that its decimal expansion goes on forever without repeating. Its 
approximation to six decimal places is shown below.

the number e
The letter e represents the irrational number

  1 +   1 __ n    
n
, as n increases without bound

The letter e is used as a base for many real-world exponential models. To work with base e, we use the approximation, 
e ≈ 2.718282. The constant was named by the Swiss mathematician Leonhard Euler (1707–1783) who first 
investigated and discovered many of its properties.

Example 10 Using a Calculator to Find Powers of e

Calculate e3.14. Round to five decimal places.

Solution On a calculator, press the button labeled [e x]. The window shows [e^(]. Type 3.14 and then close parenthesis, 
[)]. Press [ENTER]. Rounding to 5 decimal places, e 3.14 ≈ 23.10387. Caution: Many scientific calculators have an “Exp” 
button, which is used to enter numbers in scientific notation. It is not used to find powers of e.

Try It #10

Use a calculator to find e −0.5. Round to five decimal places.

Investigating Continuous Growth
So far we have worked with rational bases for exponential functions. For most real-world phenomena, however, e is 
used as the base for exponential functions. Exponential models that use e as the base are called continuous growth or 
decay models. We see these models in finance, computer science, and most of the sciences, such as physics, toxicology, 
and fluid dynamics.

the continuous growth/decay formula

For all real numbers t, and all positive numbers a and r, continuous growth or decay is represented by the formula
A(t) = aert

where
•	 a is the initial value,
•	 r is the continuous growth rate per unit time,
•	 and t is the elapsed time.
If r  > 0, then the formula represents continuous growth. If r < 0, then the formula represents continuous decay. 

For business applications, the continuous growth formula is called the continuous compounding formula and 
takes the form

A(t) = Pert

where
•	 P is the principal or the initial invested,
•	 r is the growth or interest rate per unit time,
•	 and t is the period or term of the investment.
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How To…
Given the initial value, rate of growth or decay, and time t, solve a continuous growth or decay function.

1. Use the information in the problem to determine a, the initial value of the function.
2. Use the information in the problem to determine the growth rate r.

a. If the problem refers to continuous growth, then r > 0.
b. If the problem refers to continuous decay, then r < 0.

3. Use the information in the problem to determine the time t.
4. Substitute the given information into the continuous growth formula and solve for A(t).

Example 11 Calculating Continuous Growth

A person invested $1,000 in an account earning a nominal 10% per year compounded continuously. How much was 
in the account at the end of one year?

Solution Since the account is growing in value, this is a continuous compounding problem with growth rate r = 0.10. 
The initial investment was $1,000, so P = 1000. We use the continuous compounding formula to find the value after 
t = 1 year:

 A(t) = Pert  Use the continuous compounding formula.

 = 1000(e)0.1  Substitute known values for P, r, and t.

 ≈ 1105.17 Use a calculator to approximate.

The account is worth $1,105.17 after one year.

Try It #11

A person invests $100,000 at a nominal 12% interest per year compounded continuously. What will be the value of the 
investment in 30 years?

Example 12 Calculating Continuous Decay

Radon-222 decays at a continuous rate of 17.3% per day. How much will 100 mg of Radon-222 decay to in 3 days?

Solution Since the substance is decaying, the rate, 17.3%, is negative. So, r = −0.173. The initial amount of radon-
222 was 100 mg, so a = 100. We use the continuous decay formula to find the value after t = 3 days:

 A(t) = aert Use the continuous growth formula.

 = 100e−0.173(3) Substitute known values for a, r, and t.

 ≈ 59.5115 Use a calculator to approximate.

So 59.5115 mg of radon-222 will remain.

Try It #12

Using the data in Example 12, how much radon-222 will remain after one year?

Access these online resources for additional instruction and practice with exponential functions.

•	 exponential Growth Function (http://openstaxcollege.org/l/expgrowth)

•	 Compound Interest (http://openstaxcollege.org/l/compoundint)

http://openstaxcollege.org/l/expgrowth
http://openstaxcollege.org/l/compoundint
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4.1 SeCTIOn exeRCISeS

VeRBAl
1. Explain why the values of an increasing exponential 

function will eventually overtake the values of an 
increasing linear function.

2. Given a formula for an exponential function, is it 
possible to determine whether the function grows or 
decays exponentially just by looking at the formula? 
Explain.

3. The Oxford Dictionary defines the word nominal as 
a value that is “stated or expressed but not 
necessarily corresponding exactly to the real value.”[18] 
Develop a reasonable argument for why the term 
nominal rate is used to describe the annual percentage 
rate of an investment account that compounds 
interest.

AlGeBRAIC
For the following exercises, identify whether the statement represents an exponential function. Explain.

4. The average annual population increase of a pack 
of wolves is 25.

5. A population of bacteria decreases by a factor 
of   1 __ 8   every 24 hours.

6. The value of a coin collection has increased by 3.25% 
annually over the last 20 years.

7. For each training session, a personal trainer charges 
his clients $5 less than the previous training session.

8. The height of a projectile at time t is represented by 
the function h(t) = −4.9t 2 + 18t + 40.

For the following exercises, consider this scenario: For each year t, the population of a forest of trees is represented 
by the function A(t) = 115(1.025)t. In a neighboring forest, the population of the same type of tree is represented 
by the function B(t) = 82(1.029)t. (Round answers to the nearest whole number.)

9. Which forest’s population is growing at a faster rate? 10. Which forest had a greater number of trees initially? 
By how many?

11. Assuming the population growth models continue 
to represent the growth of the forests, which forest 
will have a greater number of trees after 20 years? 
By how many?

12. Assuming the population growth models continue 
to represent the growth of the forests, which forest 
will have a greater number of trees after  
100 years? By how many?

13. Discuss the above results from the previous four 
exercises. Assuming the population growth models 
continue to represent the growth of the forests, 
which forest will have the greater number of trees 
in the long run? Why? What are some factors 
that might influence the long-term validity of the 
exponential growth model?

For the following exercises, determine whether the equation represents exponential growth, exponential decay, or 
neither. Explain.

14. y = 300(1 − t)5 15. y = 220(1.06)x

16. y =  16.5(1.025)   
1 _ x   17. y = 11,701(0.97)t

For the following exercises, find the formula for an exponential function that passes through the two points given.

18. (0, 6) and (3, 750) 19. (0, 2000) and (2, 20) 20.   −1,   3 _ 2     and (3, 24)
21. (−2, 6) and (3, 1) 22. (3, 1) and (5, 4)

18. Oxford Dictionary. http://oxforddictionaries.com/us/definition/american_english/nominal.

http://oxforddictionaries.com/us/definition/american_english/nominal


SECTION 4.1 section exercises 341

For the following exercises, determine whether the table could represent a function that is linear, exponential, or 
neither. If it appears to be exponential, find a function that passes through the points.

23. x 1 2 3 4
f (x) 70 40 10 −20

 24. x 1 2 3 4
h(x) 70 49 34.3 24.01

 

25. x 1 2 3 4
m (x) 80 61 42.9 25.61

 26. x 1 2 3 4
f (x) 10 20 40 80

 

27. x 1 2 3 4
g (x) −3.25 2 7.25 12.5

For the following exercises, use the compound interest formula, A(t) = P   1 +   r _ n    nt.

28. After a certain number of years, the value of an 
investment account is represented by the equation 
10, 250   1 +   0.04 ____ 12    120. What is the value of the 
account?

29. What was the initial deposit made to the account  
in the previous exercise?

30. How many years had the account from the previous 
exercise been accumulating interest?

31. An account is opened with an initial deposit of $6,500 
and earns 3.6% interest compounded semi-annually. 
What will the account be worth in 20 years?

32. How much more would the account in the previous 
exercise have been worth if the interest were 
compounding weekly?

33. Solve the compound interest formula for the  
principal, P.

34. Use the formula found in Exercise #31 to calculate 
the initial deposit of an account that is worth 
$14,472.74 after earning 5.5% interest compounded 
monthly for 5 years. (Round to the nearest dollar.)

35. How much more would the account in Exercises 
#31 and #34 be worth if it were earning interest for 
5 more years?

36. Use properties of rational exponents to solve the 
compound interest formula for the interest rate, r.

37. Use the formula found in the previous exercise to 
calculate the interest rate for an account that was 
compounded semi-annually, had an initial deposit 
of $9,000 and was worth $13,373.53 after 10 years.

38. Use the formula found in the previous exercise to 
calculate the interest rate for an account that was 
compounded monthly, had an initial deposit of 
$5,500, and was worth $38,455 after 30 years.

For the following exercises, determine whether the equation represents continuous growth, continuous decay, or 
neither. Explain.

39. y = 3742(e)0.75t 40. y = 150 (e)   
3.25 _ t   41. y = 2.25(e)−2t

42. Suppose an investment account is opened with 
an initial deposit of $12,000 earning 7.2% interest 
compounded continuously. How much will the 
account be worth after 30 years?

43. How much less would the account from Exercise 
42 be worth after 30 years if it were compounded 
monthly instead?

nUMeRIC
For the following exercises, evaluate each function. Round answers to four decimal places, if necessary.

44. f (x) = 2(5)x, for f (−3) 45. f (x) = −42x + 3, for f (−1) 46. f (x) = e x, for f (3)

47. f (x) = −2e x − 1, for f (−1) 48. f (x) = 2.7(4)−x + 1 + 1.5, for f (−2) 49. f (x) = 1.2e2x − 0.3, for f (3)

50. f (x) = −  3 _ 2  (3)−x +   3 _ 2  , for f (2)
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TeCHnOlOGY
For the following exercises, use a graphing calculator to find the equation of an exponential function given the points 
on the curve.

51. (0, 3) and (3, 375) 52. (3, 222.62) and (10, 77.456) 53. (20, 29.495) and (150, 730.89)

54. (5, 2.909) and (13, 0.005) 55. (11,310.035) and (25,356.3652)

exTenSIOnS
56. The annual percentage yield (APY) of an investment 

account is a representation of the actual interest rate 
earned on a compounding account. It is based on a 
compounding period of one year. Show that the APY 
of an account that compounds monthly can be found 
with the formula APY =    1 +   r __ 12     12  − 1.

57. Repeat the previous exercise to find the formula for 
the APY of an account that compounds daily. Use 
the results from this and the previous exercise to 
develop a function I(n) for the APY of any account 
that compounds n times per year.

58. Recall that an exponential function is any equation 
written in the form f (x) = a . b x such that a and b are 
positive numbers and b ≠ 1. Any positive number 
b can be written as b = en for some value of n. Use 
this fact to rewrite the formula for an exponential 
function that uses the number e as a base.

59. In an exponential decay function, the base of the 
exponent is a value between 0 and 1. Thus, for some 
number b > 1, the exponential decay function can 
be written as f (x) = a .      1 _ 

b
     

x
 . Use this formula, along 

with the fact that b = e n, to show that an exponential 
decay function takes the form f (x) =  a(e) −nx  for some 
positive number n.

60. The formula for the amount A in an investment 
account with a nominal interest rate r at any time 
t is given by A(t) = a(e)rt, where a is the amount of 
principal initially deposited into an account that 
compounds continuously. Prove that the percentage 
of interest earned to principal at any time t can be 
calculated with the formula I(t) = e rt − 1.

ReAl-WORlD APPlICATIOnS
61. The fox population in a certain region has an annual 

growth rate of 9% per year. In the year 2012, there 
were 23,900 fox counted in the area. What is the fox 
population predicted to be in the year 2020?

62. A scientist begins with 100 milligrams of a 
radioactive substance that decays exponentially. After 
35 hours, 50 mg of the substance remains. How many 
milligrams will remain after 54 hours?

63. In the year 1985, a house was valued at $110,000. By 
the year 2005, the value had appreciated to $145,000. 
What was the annual growth rate between 1985 and 
2005? Assume that the value continued to grow by the 
same percentage. What was the value of the house in 
the year 2010?

64. A car was valued at $38,000 in the year 2007. By 2013, 
the value had depreciated to $11,000 If the car’s value 
continues to drop by the same percentage, what will 
it be worth by 2017?

65. Jamal wants to save $54,000 for a down payment 
on a home. How much will he need to invest in an 
account with 8.2% APR, compounding daily, in order 
to reach his goal in 5 years?

66. Kyoko has $10,000 that she wants to invest. Her bank 
has several investment accounts to choose from, all 
compounding daily. Her goal is to have $15,000 by 
the time she finishes graduate school in 6 years. To 
the nearest hundredth of a percent, what should her 
minimum annual interest rate be in order to reach her 
goal? (Hint : solve the compound interest formula for 
the interest rate.)

67. Alyssa opened a retirement account with 7.25% APR 
in the year 2000. Her initial deposit was $13,500. 
How much will the account be worth in 2025 if 
interest compounds monthly? How much more would 
she make if interest compounded continuously?

68. An investment account with an annual interest rate 
of 7% was opened with an initial deposit of $4,000 
Compare the values of the account after 9 years 
when the interest is compounded annually, quarterly, 
monthly, and continuously.
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Graph exponential functions.

•	 Graph exponential functions using transformations.

4.2 GRAPHS OF exPOnenTIAl FUnCTIOnS

As we discussed in the previous section, exponential functions are used for many real-world applications such as 
finance, forensics, computer science, and most of the life sciences. Working with an equation that describes a real-
world situation gives us a method for making predictions. Most of the time, however, the equation itself is not enough. 
We learn a lot about things by seeing their pictorial representations, and that is exactly why graphing exponential 
equations is a powerful tool. It gives us another layer of insight for predicting future events.

Graphing exponential Functions
Before we begin graphing, it is helpful to review the behavior of exponential growth. Recall the table of values for a 
function of the form f (x) = b x whose base is greater than one. We’ll use the function f (x) = 2x. Observe how the output 
values in Table 1 change as the input increases by 1.

x −3 −2 −1 0 1 2 3

f (x) = 2x   1 _ 8    1 _ 4    1 _ 2  1 2 4 8

Table 1

Each output value is the product of the previous output and the base, 2. We call the base 2 the constant ratio. In fact, for 
any exponential function with the form f (x) = ab x, b is the constant ratio of the function. This means that as the input 
increases by 1, the output value will be the product of the base and the previous output, regardless of the value of a.

Notice from the table that

•	 the output values are positive for all values of x;

•	 as x increases, the output values increase without bound; and

•	 as x decreases, the output values grow smaller, approaching zero.

Figure 1 shows the exponential growth function f (x) = 2x.

�e x-axis is an asymptote.

(0, 1)
(1, 2)

(2, 4)

(3, 8)

f (x) = 2x

1
8−3,

1
4−2,

1
2−1,

3

x

f (x)

– –1 1

1

–2–3–4–5

2

3

4

21 4

5

5

6
7
8
9

10

Figure 1 notice that the graph gets close to the x-axis, but never touches it.

The domain of f (x) = 2x is all real numbers, the range is (0, ∞), and the horizontal asymptote is y = 0.

To get a sense of the behavior of exponential decay, we can create a table of values for a function of the form f (x) = b x whose 
base is between zero and one. We’ll use the function g(x) =      1 _ 2     

x
 . Observe how the output values in Table 2 change as 

the input increases by 1.
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x −3 −2 −1 0 1 2 3

g(x) =     1 __ 2    
x 8 4 2 1   1 _ 2    1 _ 4    1 _ 8  

Table 2

Again, because the input is increasing by 1, each output value is the product of the previous output and the base, or 
constant ratio   1 _ 2  .

Notice from the table that
•	 the output values are positive for all values of x;
•	 as x increases, the output values grow smaller, approaching zero; and
•	 as x decreases, the output values grow without bound.

Figure 2 shows the exponential decay function, g(x) =      1 _ 2     
x
 .

(0, 1)

(−3, 8)

(–2, 4)

(–1, 2) 1
83,

1
42,

1
21,

g(x) = 1
2

x

�e x-axis is an asymptote.

3

x

g(x)

–1

1

–2–3–4–5

2

3

4

21 4

5

5

6
7
8
9

10

Figure 2

The domain of g(x) =      1 _ 2     
x
  is all real numbers, the range is (0, ∞), and the horizontal asymptote is y = 0.

characteristics of the graph of the parent function f (x) = b x

An exponential function with the form f (x) = b x, b > 0, b ≠ 1, has these characteristics:

•	 one-to-one function
•	 horizontal asymptote: y = 0
•	 domain: (–∞, ∞)
•	 range: (0, ∞)
•	 x-intercept: none
•	 y-intercept: (0, 1)
•	 increasing if b > 1
•	 decreasing if b < 1
Figure 3 compares the graphs of exponential  
growth and decay functions.

(0, 1) (0, 1)

(1, b)
(1, b)

x x

f(x)

f (x) = bx

b > 1
f (x) = bx

0 < b < 1

f(x)

Figure 3 

How To…
Given an exponential function of the form f (x) = b x, graph the function.
1. Create a table of points.
2. Plot at least 3 point from the table, including the y-intercept (0, 1).
3. Draw a smooth curve through the points.
4. State the domain, (−∞, ∞), the range, (0, ∞), and the horizontal asymptote, y = 0.
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Example 1  Sketching the Graph of an Exponential Function of the Form f (x) = b x

Sketch a graph of f (x) = 0.25x. State the domain, range, and asymptote.

Solution Before graphing, identify the behavior and create a table of points for the graph.

•	 Since b = 0.25 is between zero and one, we know the function is decreasing. The left tail of the graph will increase 
without bound, and the right tail will approach the asymptote y = 0.

•	 Create a table of points as in Table 3.

x −3 −2 −1 0 1 2 3

f (x) = 0.25x 64 16 4 1 0.25 0.0625 0.015625

Table 3

•	 Plot the y-intercept, (0, 1), along with two other points. We can use (−1, 4) and (1, 0.25).

Draw a smooth curve connecting the points as in Figure 4.

(−1, 4)

(0, 1)
(1, 0.25)

f(x) = 0.25x

2

x

f(x)

–1–1–2

–2

–3

–3

–4

–4

–5

–5
–6

1

3

3

21 4

4

5

5
6

Figure 4

The domain is (−∞, ∞); the range is (0, ∞); the horizontal asymptote is y = 0.

Try It #1

Sketch the graph of f (x) = 4x. State the domain, range, and asymptote.

Graphing Transformations of exponential Functions
Transformations of exponential graphs behave similarly to those of other functions. Just as with other parent functions, 
we can apply the four types of transformations—shifts, reflections, stretches, and compressions—to the parent function 
f (x) = b x without loss of shape. For instance, just as the quadratic function maintains its parabolic shape when 
shifted, reflected, stretched, or compressed, the exponential function also maintains its general shape regardless of 
the transformations applied.

Graphing a Vertical Shift

The first transformation occurs when we add a constant d to the parent function f  (x) = b x, giving us a vertical shift d units 
in the same direction as the sign. For example, if we begin by graphing a parent function, f (x) = 2x, we can then graph 
two vertical shifts alongside it, using d = 3: the upward shift, g(x) = 2x + 3 and the downward shift, h(x) = 2x − 3. 
Both vertical shifts are shown in Figure 5.

g(x) = 2x + 3
f (x) = 2x

h(x) = 2x − 3

y = 3

y = −3
y = 0x

y

–1––2

–4

–3

–6

–4–5–6

2

3

6

21 4

8

5 6

10
12

2

4

Figure 5



CHAPTER 4 exponential and  logarithmic Functions346

Observe the results of shifting f (x) = 2x vertically:

•	 The domain, (−∞, ∞) remains unchanged.
•	 When the function is shifted up 3 units to g(x) = 2x + 3:

 ◦ The y-intercept shifts up 3 units to (0, 4).
 ◦ The asymptote shifts up 3 units to y = 3.
 ◦ The range becomes (3, ∞).

•	 When the function is shifted down 3 units to h(x) = 2x − 3:
 ◦ The y-intercept shifts down 3 units to (0, −2).
 ◦ The asymptote also shifts down 3 units to y = −3.
 ◦ The range becomes (−3, ∞).

Graphing a Horizontal Shift

The next transformation occurs when we add a constant c to the input of the parent function f (x) = b x, giving us a 
horizontal shift c units in the opposite direction of the sign. For example, if we begin by graphing the parent function 
f (x) = 2x, we can then graph two horizontal shifts alongside it, using c = 3: the shift left, g(x) = 2x + 3, and the shift 
right, h (x) = 2x − 3. Both horizontal shifts are shown in Figure 6.

4

x

y

–2–2–4–6–8–10

2

6

6

42 8

8

10

10

g(x) = 2x + 3

f (x) = 2x

h(x) = 2x − 3

y = 0

Figure 6

Observe the results of shifting f (x) = 2x horizontally:

•	 The domain, (−∞, ∞), remains unchanged.

•	 The asymptote, y = 0, remains unchanged.

•	 The y-intercept shifts such that:

 ◦ When the function is shifted left 3 units to g(x) = 2x + 3, the y-intercept becomes (0, 8). This is because 2x + 3 = (8)2x, 
so the initial value of the function is 8.

 ◦ When the function is shifted right 3 units to h(x) = 2x − 3, the y-intercept becomes   0,   1 _ 8    . Again, see that 2x − 3 =     1 _ 8    2x, 
so the initial value of the function is   1 _ 8  .

shifts of the parent function f (x) = b x

For any constants c and d, the function f (x) = b x + c + d shifts the parent function f (x) = b x

•	 vertically d units, in the same direction of the sign of d.

•	 horizontally c units, in the opposite direction of the sign of c.

•	 The y-intercept becomes 0, bc + d.

•	 The horizontal asymptote becomes y = d.

•	 The range becomes (d, ∞).

•	 The domain, (−∞, ∞), remains unchanged.
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How To…
Given an exponential function with the form f (x) = b x + c + d, graph the translation.

1. Draw the horizontal asymptote y = d.
2. Identify the shift as (−c, d). Shift the graph of f (x) = b x left c units if c is positive, and right c units if c is negative.
3. Shift the graph of f (x) = b x up d units if d is positive, and down d units if d is negative.
4. State the domain, (−∞, ∞), the range, (d, ∞), and the horizontal asymptote y = d.

Example 2 Graphing a Shift of an Exponential Function

Graph f (x) = 2x + 1 − 3. State the domain, range, and asymptote.

Solution We have an exponential equation of the form f (x) = b x + c + d, with b = 2, c = 1, and d = −3.

Draw the horizontal asymptote y = d, so draw y = −3.

Identify the shift as (−c, d), so the shift is (−1, −3).

Shift the graph of f (x) = b x left 1 units and down 3 units.

4

x
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–10

2

3
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5 6
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f (x) = 2x + 1 − 3

y = −3
(−1, −2)

(0, −1)
(1, 1)

Figure 7

The domain is (−∞, ∞); the range is (−3, ∞); the horizontal asymptote is y = −3.

Try It #2

Graph f (x) = 2x − 1 + 3. State domain, range, and asymptote.

How To…
Given an equation of the form f (x) = b x + c + d for x, use a graphing calculator to approximate the solution.

1. Press [Y=]. Enter the given exponential equation in the line headed “Y1=”.
2. Enter the given value for f (x) in the line headed “Y2=”.
3. Press [WINDOW]. Adjust the y-axis so that it includes the value entered for “Y2=”.
4. Press [GRAPH] to observe the graph of the exponential function along with the line for the specified value of f (x).
5. To find the value of x, we compute the point of intersection. Press [2ND] then [CALC]. Select “intersect” and press 

[ENTER] three times. The point of intersection gives the value of x for the indicated value of the function.

Example 3 Approximating the Solution of an Exponential Equation

Solve 42 = 1.2(5)x + 2.8 graphically. Round to the nearest thousandth.

Solution Press [Y=] and enter 1.2(5)x + 2.8 next to Y1=. Then enter 42 next to Y2=. For a window, use the values 
−3 to 3 for x and −5 to 55 for y. Press [GRAPH]. The graphs should intersect somewhere near x = 2.

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three times. The 
x-coordinate of the point of intersection is displayed as 2.1661943. (Your answer may be different if you use a different 
window or use a different value for Guess?) To the nearest thousandth, x ≈ 2.166.
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Try It #3

Solve 4 = 7.85(1.15)x − 2.27 graphically. Round to the nearest thousandth.

Graphing a Stretch or Compression

While horizontal and vertical shifts involve adding constants to the input or to the function itself, a stretch or 
compression occurs when we multiply the parent function f (x) = b x by a constant  ∣ a ∣  > 0. For example, if we begin by 
graphing the parent function f (x) = 2x, we can then graph the stretch, using a = 3, to get g(x) = 3(2)x as shown on the 
left in Figure 8, and the compression, using a =   1 _ 3  , to get h(x) =   1 _ 3  (2)x as shown on the right in Figure 8.
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g(x) = 3(2)x

f (x) = 2x
f (x) = 2x

y = 0 y = 0

h(x) =    (2)x1
3

Figure 8 (a) g(x) = 3(2)x stretches the graph of f (x) = 2x vertically by a factor of 3.  

(b) h(x) =   1 __ 
3

  (2)x compresses the graph of f (x) = 2x vertically by a factor of   1 __ 
3
  .

stretches and compressions of the parent function f ( x ) = b x

For any factor a > 0, the function f (x) = a(b)x

•	 is stretched vertically by a factor of a if  ∣ a ∣  > 1.

•	 is compressed vertically by a factor of a if  ∣ a ∣  < 1.

•	 has a y-intercept of (0, a).

•	 has a horizontal asymptote at y = 0, a range of (0, ∞), and a domain of (−∞, ∞), which are unchanged from 
the parent function.

Example 4 Graphing the Stretch of an Exponential Function

Sketch a graph of f (x) = 4     1 _ 2    x. State the domain, range, and asymptote.

Solution Before graphing, identify the behavior and key points on the graph.

•	 Since b =   1 _ 2   is between zero and one, the left tail of the graph will increase without bound as x decreases, and the 
right tail will approach the x-axis as x increases.

•	 Since a = 4, the graph of f (x) =     1 _ 2    x will be stretched by a factor of 4.

•	 Create a table of points as shown in Table 4.

x −3 −2 −1 0 1 2 3

f (x) = 4    1 __ 2    
x

32 16 8 4 2 1 0.5

Table 4

•	 Plot the y-intercept, (0, 4), along with two other points. We can use (−1, 8) and (1, 2).
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Draw a smooth curve connecting the points, as shown in Figure 9.
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2
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Figure 9

The domain is (−∞, ∞); the range is (0, ∞); the horizontal asymptote is y = 0.

Try It #4

Sketch the graph of f (x) =   1 _ 2  (4)x. State the domain, range, and asymptote.

Graphing Reflections

In addition to shifting, compressing, and stretching a graph, we can also reflect it about the x-axis or the y-axis. When 
we multiply the parent function f (x) = b x by −1, we get a reflection about the x-axis. When we multiply the input by 

−1, we get a reflection about the y-axis. For example, if we begin by graphing the parent function f (x) = 2x, we can then 
graph the two reflections alongside it. The reflection about the x-axis, g(x) = −2x, is shown on the left side of Figure 
10, and the reflection about the y-axis h(x) = 2−x, is shown on the right side of Figure 10.
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Figure 10 (a) g(x) = −2x reflects the graph of f (x) = 2x about the x-axis. (b) g(x) = 2−x reflects the graph of f (x) = 2x about the y-axis.

reflections of the parent function f (x) = b x

The function f (x) = −b x

•	 reflects the parent function f (x) = b x about the x-axis.

•	 has a y-intercept of (0, −1).

•	 has a range of (−∞, 0).

•	 has a horizontal asymptote at y = 0 and domain of (−∞, ∞), which are unchanged from the parent function.

The function f (x) = b−x

•	 reflects the parent function f (x) = b x about the y-axis.

•	 has a y-intercept of (0, 1), a horizontal asymptote at y = 0, a range of (0, ∞), and a domain of (−∞, ∞), which 
are unchanged from the parent function.
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Example 5 Writing and Graphing the Reflection of an Exponential Function

Find and graph the equation for a function, g (x), that reflects f (x) =     1 _ 4    
x
 about the x-axis. State its domain, range, 

and asymptote.

Solution Since we want to reflect the parent function f (x) =     1 _ 4    
x
 about the x-axis, we multiply f (x) by −1 to get,  

g (x) = −    1 _ 4    
x
. Next we create a table of points as in Table 5.

x −3 −2 −1 0 1 2 3

g(x) = −     1 __ 4    
x

−64 −16 −4 −1 −0.25 −0.0625 −0.0156

Table 5

Plot the y-intercept, (0, −1), along with two other points. We can use (−1, −4) and (1, −0.25).

Draw a smooth curve connecting the points:
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Figure 11

The domain is (−∞, ∞); the range is (−∞, 0); the horizontal asymptote is y = 0.

Try It #5

Find and graph the equation for a function, g(x), that reflects f (x) = 1.25x about the y-axis. State its domain, range, and 
asymptote.

Summarizing Translations of the Exponential Function

Now that we have worked with each type of translation for the exponential function, we can summarize them in Table 
6 to arrive at the general equation for translating exponential functions.

Translations of the Parent Function f (x) = b x

Translation Form
Shift

•	 Horizontally c units to the left
•	 Vertically d units up

f (x) = b x + c + d

Stretch and Compress

•	 Stretch if | a | > 1
•	 Compression if 0 < | a | < 1

f (x) = ab x

Reflect about the x-axis f (x) = −b x

Reflect about the y-axis f (x) = b−x =     1 _ 
b

    
x

General equation for all translations f (x) = ab x + c + d
Table 6



SECTION 4.2 graphs oF exponential Functions 351

translations of exponential functions
A translation of an exponential function has the form

f (x) = ab x + c + d

Where the parent function, y = b x, b > 1, is

•	 shifted horizontally c units to the left.

•	 stretched vertically by a factor of  ∣ a ∣  if  ∣ a ∣  > 0.

•	 compressed vertically by a factor of  ∣ a ∣  if 0 <  ∣ a ∣  < 1.

•	 shifted vertically d units.

•	 reflected about the x-axis when a < 0.

Note the order of the shifts, transformations, and reflections follow the order of operations.

Example 6 Writing a Function from a Description

Write the equation for the function described below. Give the horizontal asymptote, the domain, and the range.

•	 f (x) = e x is vertically stretched by a factor of 2, reflected across the y-axis, and then shifted up 4 units.

Solution We want to find an equation of the general form f (x) = ab x + c + d. We use the description provided to find  
a, b, c, and d.

•	 We are given the parent function f (x) = e x, so b = e.

•	 The function is stretched by a factor of 2, so a = 2.

•	 The function is reflected about the y-axis. We replace x with −x to get: e−x.

•	 The graph is shifted vertically 4 units, so d = 4.

Substituting in the general form we get,

f (x) = ab x + c + d

 = 2e−x + 0 + 4

 = 2e−x + 4

The domain is (−∞, ∞); the range is (4, ∞); the horizontal asymptote is y = 4.

Try It #6

Write the equation for function described below. Give the horizontal asymptote, the domain, and the range.

•	 f (x) = e x is compressed vertically by a factor of   1 _ 3  , reflected across the x-axis and then shifted down 2 units.

 

Access this online resource for additional instruction and practice with graphing exponential functions.

•	 Graph exponential Functions (http://openstaxcollege.org/l/graphexpfunc)

http://openstaxcollege.org/l/graphexpfunc
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4.2 SeCTIOn exeRCISeS

VeRBAl

1. What role does the horizontal asymptote of an 
exponential function play in telling us about the end 
behavior of the graph?

2. What is the advantage of knowing how to recognize 
transformations of the graph of a parent function 
algebraically?

AlGeBRAIC

3. The graph of f (x) = 3x is reflected about the y-axis 
and stretched vertically by a factor of 4. What is 
the equation of the new function, g(x)? State its 
y-intercept, domain, and range.

4. The graph of f (x) =     1 _ 2    
−x

 is reflected about the 
y-axis and compressed vertically by a factor of   1 _ 5  . 
What is the equation of the new function, g(x)? State 
its y-intercept, domain, and range.

5. The graph of f (x) = 10x is reflected about the x-axis 
and shifted upward 7 units. What is the equation of 
the new function, g(x)? State its y-intercept, domain, 
and range.

6. The graph of f (x) = (1.68)x is shifted right 3 units, 
stretched vertically by a factor of 2, reflected about 
the x-axis, and then shifted downward 3 units. What 
is the equation of the new function, g(x)? State its 
y-intercept (to the nearest thousandth), domain, and 
range.

7. The graph of f (x) = −  1 _ 2      1 _ 4    
x − 2

+ 4 is shifted 
downward 4 units, and then shifted left 2 units, 
stretched vertically by a factor of 4, and reflected about 
the x-axis. What is the equation of the new function, 
g(x)? State its y-intercept, domain, and range.

GRAPHICAl

For the following exercises, graph the function and its reflection about the y-axis on the same axes, and give the 
y-intercept.

8. f (x) = 3    1 _ 2    
x

9. g(x) = −2(0.25)x 10. h(x) = 6(1.75)−x

For the following exercises, graph each set of functions on the same axes.

11. f (x) = 3    1 _ 4    
x
, g(x) = 3(2)x, and h(x) = 3(4)x 12. f (x) =   1 _ 4  (3)x, g(x) = 2(3)x, and h(x) = 4(3)x

For the following exercises, match each function with one of the graphs in Figure 12.

A

B C D E

F

Figure 12

13. f (x) = 2(0.69)x 14. f (x) = 2(1.28)x 15. f (x) = 2(0.81)x

16. f (x) = 4(1.28)x 17. f (x) = 2(1.59)x 18. f (x) = 4(0.69)x
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For the following exercises, use the graphs shown in Figure 13. All have the form f (x) = ab x.
y

x

A

B C D

E

F

Figure 13

19. Which graph has the largest value for b? 20. Which graph has the smallest value for b?
21. Which graph has the largest value for a? 22. Which graph has the smallest value for a?

For the following exercises, graph the function and its reflection about the x-axis on the same axes.

23. f (x) =   1 _ 2  (4)x 24. f (x) = 3(0.75)x − 1 25. f (x) = −4(2)x + 2

For the following exercises, graph the transformation of f (x) = 2x. Give the horizontal asymptote, the domain, and 
the range.

26. f (x) = 2−x 27. h(x) = 2x + 3 28. f (x) = 2x − 2

For the following exercises, describe the end behavior of the graphs of the functions.

29. f (x) = −5(4)x − 1 30. f (x) = 3     1 _ 2    
x
 − 2 31. f (x) = 3(4)−x + 2

For the following exercises, start with the graph of f (x) = 4x. Then write a function that results from the given 
transformation.

32. Shift f (x) 4 units upward 33. Shift f (x) 3 units downward 34. Shift f (x) 2 units left
35. Shift f (x) 5 units right 36. Reflect f (x) about the x-axis 37. Reflect f (x) about the y-axis

For the following exercises, each graph is a transformation of y = 2x. Write an equation describing the transformation.
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For the following exercises, find an exponential equation for the graph.

41. 
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nUMeRIC

For the following exercises, evaluate the exponential functions for the indicated value of x.

43. g (x) =   1 _ 3  (7)x − 2 for g(6). 44. f (x) = 4(2)x − 1 − 2 for f (5). 45. h(x) = −  1 _ 2      1 _ 2    
x
 + 6 for h(−7).

TeCHnOlOGY

For the following exercises, use a graphing calculator to approximate the solutions of the equation. Round to the 
nearest thousandth. f (x) = ab x + d.

46.  −50 = −    1 _ 2    
−x

47. 116 =   1 _ 4      1 _ 8    
x

48. 12 = 2(3)x + 1

49. 5 = 3    1 _ 2    
x − 1

 − 2 50.  −30 = −4(2)x + 2 + 2

exTenSIOnS

51. Explore and discuss the graphs of f (x) = (b)x and  
g(x) =      1 _ 

b
     

x
 . Then make a conjecture about the 

relationship between the graphs of the functions  
b   x and      1 _ 

b
     

x
  for any real number b > 0.

52. Prove the conjecture made in the previous exercise.

53. Explore and discuss the graphs of f (x) = 4x, 
g(x) = 4x − 2, and h(x) =     1 _ 

16
    4x. Then make a 

conjecture about the relationship between the graphs 
of the functions b x and     1 _ 

bn
    b x for any real number n 

and real number b > 0.

54. Prove the conjecture made in the previous exercise.
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Convert from logarithmic to exponential form.

•	  Convert from exponential to logarithmic form.

•	 Evaluate logarithms.

•	 Use common logarithms.

•	 Use natural logarithms.

4.3 lOGARITHMIC FUnCTIOnS

Figure 1 Devastation of March 11, 2011 earthquake in Honshu, japan. (credit: Daniel Pierce)

In 2010, a major earthquake struck Haiti, destroying or damaging over 285,000 homes[19]. One year later, another, 
stronger earthquake devastated Honshu, Japan, destroying or damaging over 332,000 buildings,[20] like those shown in 
Figure 1. Even though both caused substantial damage, the earthquake in 2011 was 100 times stronger than the 
earthquake in Haiti. How do we know? The magnitudes of earthquakes are measured on a scale known as the Richter 
Scale. The Haitian earthquake registered a 7.0 on the Richter Scale[21] whereas the Japanese earthquake registered a 9.0.[22]

The Richter Scale is a base-ten logarithmic scale. In other words, an earthquake of magnitude 8 is not twice as great 
as an earthquake of magnitude 4. It is 108 − 4 = 104 = 10,000 times as great! In this lesson, we will investigate the 
nature of the Richter Scale and the base-ten function upon which it depends. 

Converting from logarithmic to exponential Form
In order to analyze the magnitude of earthquakes or compare the magnitudes of two different earthquakes, we need 
to be able to convert between logarithmic and exponential form. For example, suppose the amount of energy released 
from one earthquake were 500 times greater than the amount of energy released from another. We want to calculate 
the difference in magnitude. The equation that represents this problem is 10x = 500, where x represents the difference 
in magnitudes on the Richter Scale. How would we solve for x? 
We have not yet learned a method for solving exponential equations. None of the algebraic tools discussed so far 
is sufficient to solve 10x = 500. We know that 102 = 100 and 103 = 1000, so it is clear that x must be some value 
between 2 and 3, since y = 10x is increasing. We can examine a graph, as in Figure 2, to better estimate the solution.
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19 http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/#summary. Accessed 3/4/2013.
20 http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc001xgp/#summary. Accessed 3/4/2013.
21 http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/. Accessed 3/4/2013.
22 http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc001xgp/#details. Accessed 3/4/2013.

http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/#summary
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc001xgp/#summary
http://earthquake.usgs.gov/earthquakes/eqinthenews/2010/us2010rja6/
http://earthquake.usgs.gov/earthquakes/eqinthenews/2011/usc001xgp/#details
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Estimating from a graph, however, is imprecise. To find an algebraic solution, we must introduce a new function. 
Observe that the graph in Figure 2 passes the horizontal line test. The exponential function y = b x is one-to-one, so its 
inverse, x = b y is also a function. As is the case with all inverse functions, we simply interchange x and y and solve for 
y to find the inverse function. To represent y as a function of x, we use a logarithmic function of the form y = logb(x). 
The base b logarithm of a number is the exponent by which we must raise b to get that number.

We read a logarithmic expression as, “The logarithm with base b of x is equal to y,” or, simplified, “log base b of x 
is y.” We can also say, “b raised to the power of y is x,” because logs are exponents. For example, the base 2 logarithm 
of 32 is 5, because 5 is the exponent we must apply to 2 to get 32. Since 25 = 32, we can write log2 32 = 5. We read 
this as “log base 2 of 32 is 5.”

We can express the relationship between logarithmic form and its corresponding exponential form as follows:
logb(x) = y ⇔ b y = x, b > 0, b ≠ 1

Note that the base b is always positive.

logb(x) = y Think 
b to the y = x

=

 to

Because logarithm is a function, it is most correctly written as logb(x), using parentheses to denote function 
evaluation, just as we would with f (x). However, when the input is a single variable or number, it is common to 
see the parentheses dropped and the expression written without parentheses, as logb x. Note that many calculators 
require parentheses around the x. 

We can illustrate the notation of logarithms as follows:

 

logb(c) = a means ba = c

=

 to

Notice that, comparing the logarithm function and the exponential function, the input and the output are switched. 
This means y = logb (x) and y = b x are inverse functions.

definition of the logarithmic function
A logarithm base b of a positive number x satisfies the following definition.
For x > 0, b > 0, b ≠ 1,

y = logb(x) is equivalent to b y = x
where,
•	 we read logb (x) as, “the logarithm with base b of x” or the “log base b of x.”
•	 the logarithm y is the exponent to which b must be raised to get x.

Also, since the logarithmic and exponential functions switch the x and y values, the domain and range of the exponential 
function are interchanged for the logarithmic function. Therefore,
•	 the domain of the logarithm function with base b is (0, ∞).
•	 the range of the logarithm function with base b is ( −∞, ∞).

Q & A…
Can we take the logarithm of a negative number?
No. Because the base of an exponential function is always positive, no power of that base can ever be negative. We can 
never take the logarithm of a negative number. Also, we cannot take the logarithm of zero. Calculators may output a 
log of a negative number when in complex mode, but the log of a negative number is not a real number.

How To…
Given an equation in logarithmic form logb(x) = y, convert it to exponential form.
1. Examine the equation y = logb(x) and identify b, y, and x.
2. Rewrite logb(x) = y as b y = x.
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Example 1 Converting from Logarithmic Form to Exponential Form

Write the following logarithmic equations in exponential form.

a. log6( √
—
 6  ) =   1 _ 2      b. log3(9) = 2

Solution First, identify the values of b, y, and x. Then, write the equation in the form b y = x.

a. log6( √
—
 6  ) =   1 _ 2    Here, b = 6, y =   1 _ 2  , and x =  √

—
 6  . Therefore, the equation log6( √

—
 6  ) =   1 _ 2   is equivalent to  

 6   
1 __ 2    =  √

—
 6  .

b. log3(9) = 2  Here, b = 3, y = 2, and x = 9. Therefore, the equation log3(9) = 2 is equivalent to 32 = 9.

Try It #1

Write the following logarithmic equations in exponential form.

a. log10(1,000,000) = 6    b. log5(25) = 2

Converting From exponential to logarithmic Form
To convert from exponents to logarithms, we follow the same steps in reverse. We identify the base b, exponent x, and 
output y. Then we write x = logb(y).

Example 2 Converting from Exponential Form to Logarithmic Form

Write the following exponential equations in logarithmic form.

a. 23 = 8    b. 52 = 25    c. 10−4 =   1 ______ 10,000  

Solution First, identify the values of b, y, and x. Then, write the equation in the form x = logb(y).

a. 23 = 8 Here, b = 2, x = 3, and y = 8. Therefore, the equation 23 = 8 is equivalent to log2(8) = 3.

b. 52 = 25 Here, b = 5, x = 2, and y = 25. Therefore, the equation 52 = 25 is equivalent to log5(25) = 2.

c. 10−4 =   1 ______ 10,000    Here, b = 10, x = −4, and y =   1 _ 10,000  . Therefore, the equation 10−4 =   1 _ 10,000   is equivalent to  
log10     1 _ 10,000     = −4.

Try It #20

Write the following exponential equations in logarithmic form.

a. 32 = 9    b. 53 = 125    c. 2−1 =   1 __ 2  

evaluating logarithms
Knowing the squares, cubes, and roots of numbers allows us to evaluate many logarithms mentally. For example, 
consider log2(8). We ask, “To what exponent must 2 be raised in order to get 8?” Because we already know 23 = 8, 
it follows that log2(8) = 3.

Now consider solving log7(49) and log3(27) mentally.

•	 We ask, “To what exponent must 7 be raised in order to get 49?” We know 72 = 49. Therefore, log7(49) = 2

•	 We ask, “To what exponent must 3 be raised in order to get 27?” We know 33 = 27. Therefore, log3(27) = 3

Even some seemingly more complicated logarithms can be evaluated without a calculator. For example, let’s evaluate  
log   2 

_
 3        4 _ 9     mentally.

•	 We ask, “To what exponent must   2 _ 3   be raised in order to get   4 _ 9  ?” We know 22 = 4 and 32 = 9, so     2 _ 3    
2
 =   4 _ 9  . 

Therefore, log   2 
_

 3        4 _ 9     = 2.
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How To…
Given a logarithm of the form y = logb(x), evaluate it mentally.

1. Rewrite the argument x as a power of b : b y = x.
2. Use previous knowledge of powers of b identify y by asking, “To what exponent should b be raised in order to get x?”

Example 3 Solving Logarithms Mentally

Solve y = log4(64) without using a calculator.

Solution First we rewrite the logarithm in exponential form: 4y = 64. Next, we ask, “To what exponent must 4 be 
raised in order to get 64?” 
We know 43 = 64 therefore, log4(64) = 3.

Try It #3

Solve y = log121(11) without using a calculator.

Example 4 Evaluating the Logarithm of a Reciprocal

Evaluate y = log3     1 _ 27     without using a calculator.

Solution First we rewrite the logarithm in exponential form:   3 y   =   1 _ 27  . Next, we ask, “To what exponent must 3 be 
raised in order to get   1 _ 27   ?”

We know 33 = 27, but what must we do to get the reciprocal,   1 _ 27  ? Recall from working with exponents that b−a =   1 _ 
ba

  . 
We use this information to write

 3−3 =   1 __ 33  

 =   1 __ 27  
Therefore, log3     1 _ 27     = −3.

Try It #4

Evaluate y = log2     1 _ 32     without using a calculator.

Using Common logarithms
Sometimes we may see a logarithm written without a base. In this case, we assume that the base is 10. In other words, 
the expression log(x) means log10(x). We call a base-10 logarithm a common logarithm. Common logarithms are used 
to measure the Richter Scale mentioned at the beginning of the section. Scales for measuring the brightness of stars 
and the pH of acids and bases also use common logarithms.

definition of the common logarithm
A common logarithm is a logarithm with base 10. We write log10(x) simply as log(x). The common logarithm of a 
positive number x satisfies the following definition.
For x > 0,

y = log(x) is equivalent to 10  y = x
We read log(x) as, “the logarithm with base 10 of x” or “log base 10 of x.”

The logarithm y is the exponent to which 10 must be raised to get x.
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How To…
Given a common logarithm of the form y = log(x), evaluate it mentally.

1. Rewrite the argument x as a power of 10: 10 y = x.
2. Use previous knowledge of powers of 10 to identify y by asking, “To what exponent must 10 be raised in order to 

get x?”

Example 5 Finding the Value of a Common Logarithm Mentally

Evaluate y = log(1,000) without using a calculator.

Solution First we rewrite the logarithm in exponential form: 10y = 1,000. Next, we ask, “To what exponent must 10 
be raised in order to get 1,000?” We know 103 = 1,000 therefore, log(1,000) = 3.

Try It #5

Evaluate y = log(1,000,000).

How To…
Given a common logarithm with the form y = log(x), evaluate it using a calculator.

1. Press [LOG].
2. Enter the value given for x, followed by [ ) ].
3. Press [ENTER].

Example 6 Finding the Value of a Common Logarithm Using a Calculator

Evaluate y = log(321) to four decimal places using a calculator.
Solution

•	 Press [LOG].
•	 Enter 321, followed by [ ) ].
•	 Press [ENTER].

Rounding to four decimal places, log(321) ≈ 2.5065.

Analysi s Note that 102 = 100 and that 103 = 1000. Since 321 is between 100 and 1000, we know that log(321) must be 
between log(100) and log(1000). This gives us the following:
 100 < 321 < 1000
 2 < 2.5065 < 3

Try It #6

Evaluate y = log(123) to four decimal places using a calculator.

Example 7 Rewriting and Solving a Real-World Exponential Model

The amount of energy released from one earthquake was 500 times greater than the amount of energy released from 
another. The equation 10x = 500 represents this situation, where x is the difference in magnitudes on the Richter Scale. 
To the nearest thousandth, what was the difference in magnitudes?

Solution We begin by rewriting the exponential equation in logarithmic form.

 10x = 500

 log(500) = x Use the definition of the common log.
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Next we evaluate the logarithm using a calculator:
•	 Press [LOG].
•	 Enter 500, followed by [ ) ].
•	 Press [ENTER].
•	 To the nearest thousandth, log(500) ≈ 2.699.

The difference in magnitudes was about 2.699.

Try It #7
The amount of energy released from one earthquake was 8,500 times greater than the amount of energy released from 
another. The equation 10x = 8500 represents this situation, where x is the difference in magnitudes on the Richter Scale.  
To the nearest thousandth, what was the difference in magnitudes?

Using natural logarithms
The most frequently used base for logarithms is e. Base e logarithms are important in calculus and some scientific 
applications; they are called natural logarithms. The base e logarithm, loge(x), has its own notation, ln(x).

Most values of ln(x) can be found only using a calculator. The major exception is that, because the logarithm of 1 is 
always 0 in any base, ln(1) = 0. For other natural logarithms, we can use the ln key that can be found on most scientific 
calculators. We can also find the natural logarithm of any power of e using the inverse property of logarithms.

definition of the natural logarithm
A natural logarithm is a logarithm with base e. We write loge(x) simply as ln(x). The natural logarithm of a 
positive number x satisfies the following definition. 

For x > 0,
y = ln(x) is equivalent to e  y = x

We read ln(x) as, “the logarithm with base e of x” or “the natural logarithm of x.”
The logarithm y is the exponent to which e must be raised to get x.
Since the functions y = e and y = ln(x) are inverse functions, ln(e x) = x for all x and e = x  for x > 0.

How To…
Given a natural logarithm with the form y = ln(x), evaluate it using a calculator.

1. Press [LN].
2. Enter the value given for x, followed by [ ) ].
3. Press [ENTER].

Example 8 Evaluating a Natural Logarithm Using a Calculator

Evaluate y = ln(500) to four decimal places using a calculator.
Solution

•	 Press [LN].
•	 Enter 500, followed by [ ) ].
•	 Press [ENTER].

Rounding to four decimal places, ln(500) ≈ 6.2146

Try It #8
Evaluate ln(−500).

Access this online resource for additional instruction and practice with logarithms.
•	 Introduction to logarithms (http://openstaxcollege.org/l/intrologarithms)

http://openstaxcollege.org/l/intrologarithms
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4.3 SeCTIOn exeRCISeS

VeRBAl

1. What is a base b logarithm? Discuss the meaning by 
interpreting each part of the equivalent equations  
b y = x and logb(x) = y for b > 0, b ≠ 1.

2. How is the logarithmic function f (x) = logb(x)  
related to the exponential function g(x) = b x ? What  
is the result of composing these two functions?

3. How can the logarithmic equation logb x = y be 
solved for x using the properties of exponents?

4. Discuss the meaning of the common logarithm. 
What is its relationship to a logarithm with base b, 
and how does the notation differ?

5. Discuss the meaning of the natural logarithm. What 
is its relationship to a logarithm with base b, and 
how does the notation differ?

AlGeBRAIC

For the following exercises, rewrite each equation in exponential form.

6. log4(q) = m 7. loga(b) = c 8. log16(y) = x 9. logx(64) = y

10. logy(x) = −11 11. log15(a) = b 12. logy(137) = x 13. log13(142) = a

14. log(v) = t 15. ln(w) = n

For the following exercises, rewrite each equation in logarithmic form.

16. 4x = y 17. c d = k 18. m−7 = n 19. 19x = y

20.  x −  10 __ 13    = y 21. n4 = 103 22.      7 _ 5     
m

  = n 23. y x =   39 _ 100  

24. 10a = b 25. e k = h

For the following exercises, solve for x by converting the logarithmic equation to exponential form.

26. log3(x) = 2 27. log2(x) = −3 28. log5(x) = 2 29. log3(x) = 3

30. log2(x) = 6 31. log9(x) =   1 _ 2  32. log18(x) = 2 33. log6(x) = −3

34. log(x) = 3 35. ln(x) = 2

For the following exercises, use the definition of common and natural logarithms to simplify.

36. log(1008) 37. 10 log(32) 38. 2log(0.0001) 39. e ln(1.06)

40. ln(e −5.03) 41. e ln(10.125) + 4

nUMeRIC

For the following exercises, evaluate the base b logarithmic expression without using a calculator.

42. log3     1 _ 27    43. log6( √
—
 6  ) 44. log2     1 _ 8     + 4 45. 6 log8(4)

For the following exercises, evaluate the common logarithmic expression without using a calculator.

46. log(10, 000) 47. log(0.001) 48. log(1) + 7 49. 2 log(100−3)
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For the following exercises, evaluate the natural logarithmic expression without using a calculator.

50. ln   e   
1 __ 3     51. ln(1) 52. ln(e−0.225) − 3 53. 25ln   e   

2 __ 5     

TeCHnOlOGY

For the following exercises, evaluate each expression using a calculator. Round to the nearest thousandth.

54. log(0.04) 55. ln(15) 56. ln    4 _ 5    57. log( √
—
 2  ) 58. ln( √

—
 2  )

exTenSIOnS

59. Is x = 0 in the domain of the function f (x) = log(x)?  
If so, what is the value of the function when x = 0? 
Verify the result.

60. Is f (x) = 0 in the range of the function f (x) = log(x)?  
If so, for what value of x? Verify the result.

61. Is there a number x such that ln x = 2? If so, what  
is that number? Verify the result.

62. Is the following true:   
log3(27)

 _ 
log4     1 _ 

64
    

     = −1? Verify the 
result.

63. Is the following true:   
ln(e1.725)

 _ 
ln(1)

   = 1.725? Verify the 
result.

ReAl-WORlD APPlICATIOnS

64. The exposure index EI for a 35 millimeter camera is a 
measurement of the amount of light that hits the film. 

It is determined by the equation EI = log2    
f 2

 _ t    , where 
f is the “f-stop” setting on the camera, and t is the 
exposure time in seconds. Suppose the f-stop setting 
is 8 and the desired exposure time is 2 seconds. What 
will the resulting exposure index be?

65. Refer to the previous exercise. Suppose the light 
meter on a camera indicates an EI of −2, and the 
desired exposure time is 16 seconds. What should the 
f-stop setting be?

66. The intensity levels I of two earthquakes measured on 
a seismograph can be compared by the formula 

log   
I1 _ 
I2

   = M1 − M2 

where M is the magnitude given by the Richter Scale. 
In August 2009, an earthquake of magnitude 6.1 hit 
Honshu, Japan. In March 2011, that same region 
experienced yet another, more devastating earthquake, 
this time with a magnitude of 9.0.[23] How many times 
greater was the intensity of the 2011 earthquake? 
Round to the nearest whole number.

23 http://earthquake.usgs.gov/earthquakes/world/historical.php. Accessed 3/4/2014.

http://earthquake.usgs.gov/earthquakes/world/historical.php
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Identify the domain of a logarithmic function.

•	  Graph logarithmic functions.

4.4 GRAPHS OF lOGARITHMIC FUnCTIOnS

In Graphs of Exponential Functions, we saw how creating a graphical representation of an exponential model gives 
us another layer of insight for predicting future events. How do logarithmic graphs give us insight into situations? 
Because every logarithmic function is the inverse function of an exponential function, we can think of every output 
on a logarithmic graph as the input for the corresponding inverse exponential equation. In other words, logarithms 
give the cause for an effect.

To illustrate, suppose we invest $2,500 in an account that offers an annual interest rate of 5%, compounded continuously.

We already know that the balance in our account for any year t can be found with the equation A = 2500e0.05t. 

But what if we wanted to know the year for any balance? We would need to create a corresponding new function by 
interchanging the input and the output; thus we would need to create a logarithmic model for this situation. By graphing 
the model, we can see the output (year) for any input (account balance). For instance, what if we wanted to know how 
many years it would take for our initial investment to double? Figure 1 shows this point on the logarithmic graph.
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Logarithmic Model Showing Years as a Function of the Balance in the Account

Account balance

�e balance reaches
$5,000 near year 14

Ye
ar

s

Figure 1 

In this section we will discuss the values for which a logarithmic function is defined, and then turn our attention to 
graphing the family of logarithmic functions.

Finding the Domain of a logarithmic Function
Before working with graphs, we will take a look at the domain (the set of input values) for which the logarithmic 
function is defined.

Recall that the exponential function is defined as y = b x for any real number x and constant b > 0, b ≠ 1, where

•	 The domain of y is (−∞, ∞).

•	 The range of y is (0, ∞).

In the last section we learned that the logarithmic function y = logb(x) is the inverse of the exponential function y = b x.  
So, as inverse functions:

•	 The domain of y = logb(x) is the range of y = b x : (0, ∞).

•	 The range of y = logb(x) is the domain of y = b x : (−∞, ∞).
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Transformations of the parent function y = logb(x) behave similarly to those of other functions. Just as with other 
parent functions, we can apply the four types of transformations—shifts, stretches, compressions, and reflections—to 
the parent function without loss of shape.

In Graphs of Exponential Functions we saw that certain transformations can change the range of y = b x. Similarly, 
applying transformations to the parent function y = logb(x) can change the domain. When finding the domain of a 
logarithmic function, therefore, it is important to remember that the domain consists only of positive real numbers. 
That is, the argument of the logarithmic function must be greater than zero.

For example, consider f (x) = log4(2x − 3). This function is defined for any values of x such that the argument, in this 
case 2x − 3, is greater than zero. To find the domain, we set up an inequality and solve for x :

 2x − 3 > 0 Show the argument greater than zero.

 2x > 3 Add 3.

 x > 1.5 Divide by 2.

In interval notation, the domain of f (x) = log4(2x − 3) is (1.5, ∞).

How To…
Given a logarithmic function, identify the domain.

1. Set up an inequality showing the argument greater than zero.
2. Solve for x.
3. Write the domain in interval notation.

Example 1 Identifying the Domain of a Logarithmic Shift

What is the domain of f (x) = log2(x + 3)?

Solution The logarithmic function is defined only when the input is positive, so this function is defined when x + 3 > 0.

Solving this inequality,
 x + 3 > 0 The input must be positive.

 x > −3 Subtract 3.

The domain of f (x) = log2(x + 3) is (−3, ∞).

Try It #1

What is the domain of f (x) = log5(x − 2) + 1?

Example 2 Identifying the Domain of a Logarithmic Shift and Reflection

What is the domain of f (x) = log(5 − 2x)?

Solution The logarithmic function is defined only when the input is positive, so this function is defined when  
5 − 2x > 0.

Solving this inequality,
 5 − 2x > 0 The input must be positive.

 −2x > −5 Subtract 5.

 x <   5 __ 2   Divide by −2 and switch the inequality.

The domain of f (x) = log(5 − 2x) is   –∞,   5 _ 2    .
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Try It #2

What is the domain of f (x) = log(x − 5) + 2?

Graphing logarithmic Functions
Now that we have a feel for the set of values for which a logarithmic function is defined, we move on to graphing 
logarithmic functions. The family of logarithmic functions includes the parent function y = logb(x) along with all its 
transformations: shifts, stretches, compressions, and reflections.

We begin with the parent function y = logb(x). Because every logarithmic function of this form is the inverse of an 
exponential function with the form y = b x, their graphs will be reflections of each other across the line y = x. To 
illustrate this, we can observe the relationship between the input and output values of y = 2x and its equivalent 
x = log2(y) in Table 1.

x −3 −2 −1 0 1 2 3

2x = y   1 _ 8    1 _ 4    1 _ 2  1 2 4 8

log2(y) = x −3 −2 −1 0 1 2 3

Table 1

Using the inputs and outputs from Table 1, we can build another table to observe the relationship between points on 
the graphs of the inverse functions f (x) = 2x and g(x) = log2(x). See Table 2.

f (x) = 2x   −3,   1 _ 8      −2,   1 _ 4      −1,   1 _ 2    (0, 1) (1, 2) (2, 4) (3, 8)

g(x) = log2(x)     1 _ 8  , −3      1 _ 4  , −2      1 _ 2  , −1  (1, 0) (2, 1) (4, 2) (8, 3)

Table 2

As we’d expect, the x- and y-coordinates are reversed for the inverse functions. Figure 2 shows the graph of f and g.

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4
5

321 4 5

y = x

g(x) = log2(x)
f (x) = 2x

Figure 2 notice that the graphs of f (x) = 2x and g(x) = log2(x) are reflections about the line y = x.

Observe the following from the graph:

•	 f (x) = 2x has a y-intercept at (0, 1) and g(x) = log2(x) has an x-intercept at (1, 0).

•	 The domain of f (x) = 2x, (−∞, ∞), is the same as the range of g(x) = log2(x).

•	 The range of f (x) = 2x, (0, ∞), is the same as the domain of g(x) = log2(x).
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characteristics of the graph of the parent function, f (x) = logb(x)
For any real number x and constant b > 0, b ≠ 1, we can see the following characteristics in the graph of 
f (x) = logb(x): 
•	 one-to-one function
•	 vertical asymptote: x = 0
•	 domain: (0, ∞)
•	 range: (−∞, ∞)
•	  x-intercept: (1, 0)  

and key point (b, 1)
•	 y-intercept: none 
•	 increasing if b > 1
•	 decreasing if 0 < b < 1
See Figure 3.

Figure 4 shows how changing the base b in f (x) = logb(x) can affect 
the graphs. Observe that the graphs compress vertically as the value 
of the base increases. (Note: recall that the function ln(x) has base 
e ≈ 2.718.)

x

y

–2–4–6–8–10–12 –1
–2
–3
–4
–5

1
2
3
4
5

642 8 10 12

log2(x)
ln(x)
log(x)

x = 0

Figure 4 The graphs of three logarithmic  
functions with different bases, all greater than 1.

f(x)

x
(b, 1)

(1, 0)
x = 0

f(x) = logb(x)
b > 1

f (x)

x

(b, 1)
(1, 0)

x = 0

f (x) = logb(x)
0 < b < 1

Figure 3  

How To…
Given a logarithmic function with the form f (x) = logb(x), graph the function.

1. Draw and label the vertical asymptote, x = 0.
2. Plot the x-intercept, (1, 0).
3. Plot the key point (b, 1).
4. Draw a smooth curve through the points.
5. State the domain, (0, ∞), the range, (−∞, ∞), and the vertical asymptote, x = 0.

Example 3 Graphing a Logarithmic Function with the Form f ( x) = logb( x).

Graph f (x) = log5(x). State the domain, range, and asymptote.

Solution Before graphing, identify the behavior and key points for the graph.

•	 Since b = 5 is greater than one, we know the function is increasing. The left tail of the graph will approach the 
vertical asymptote x = 0, and the right tail will increase slowly without bound.

•	 The x-intercept is (1, 0).

•	 The key point (5, 1) is on the graph.

•	 We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points (see 
Figure 5).
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x

f (x)

–2–4–6–8–10 –1
–2
–3
–4
–5

1
2
3
4
5

642 8 10

(1, 0)

(5, 1) f (x) = log5(x)

x = 0

Figure 5

The domain is (0, ∞), the range is (−∞, ∞), and the vertical asymptote is x = 0.

Try It #3

Graph f (x) = log   1 
_

 5   (x). State the domain, range, and asymptote. 

Graphing Transformations of logarithmic Functions
As we mentioned in the beginning of the section, transformations of logarithmic graphs behave similarly to those of 
other parent functions. We can shift, stretch, compress, and reflect the parent function y = logb(x) without loss of shape.

Graphing a Horizontal Shift of f (x ) = logb(x )
When a constant c is added to the input of the parent function f (x) = logb(x), the result is a horizontal shift c units in 
the opposite direction of the sign on c. To visualize horizontal shifts, we can observe the general graph of the parent 
function f (x) = logb(x) and for c > 0 alongside the shift left, g(x ) = logb(x + c), and the shift right, h(x) = logb(x − c). 
See Figure 6.

Shift left  
g (x) = logb(x + c)

Shift right  
h(x) = logb(x − c)

(1, 0)
(b, 1)

(1 − c, 0)

(b − c, 1) f (x) = logb(x)

x = 0

x

y

g(x) = logb(x + c)
x = –c

•	 The asymptote changes to x = −c.
•	 The domain changes to (−c, ∞).
•	 The range remains (−∞, ∞).

x = 0

y

(1, 0) (1 + c, 0)

(b + c, 1)
(b, 1)

h(x) = logb(x − c)

f (x) = logb(x)

x

x = c

•	 The asymptote changes to x = c.
•	 The domain changes to (c, ∞).
•	 The range remains (−∞, ∞).

Figure 6

horizontal shifts of the parent function y = logb(x)
For any constant c, the function f (x) = logb (x + c)
•	 shifts the parent function y = logb(x) left c units if c > 0.
•	 shifts the parent function y = logb(x) right c units if c < 0.
•	 has the vertical asymptote x = −c.
•	 has domain (−c, ∞).
•	 has range (−∞, ∞).
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How To…
Given a logarithmic function with the form f (x) = logb(x + c), graph the translation.

1. Identify the horizontal shift:

a. If c > 0, shift the graph of f (x) = logb(x) left c units.
b. If c < 0, shift the graph of f (x) = logb(x) right c units.

2. Draw the vertical asymptote x = −c.
3. Identify three key points from the parent function. Find new coordinates for the shifted functions by subtracting 

c from the x coordinate.
4. Label the three points.
5. The domain is (−c, ∞), the range is (−∞, ∞), and the vertical asymptote is x = −c.

Example 4 Graphing a Horizontal Shift of the Parent Function y = logb( x)

Sketch the horizontal shift f (x) = log3(x − 2) alongside its parent function. Include the key points and asymptotes on 
the graph. State the domain, range, and asymptote.

Solution Since the function is f (x) = log3(x − 2), we notice x + (−2) = x − 2.

Thus c = −2, so c < 0. This means we will shift the function f (x) = log3(x) right 2 units.

The vertical asymptote is x = −(−2) or x = 2.

Consider the three key points from the parent function,     1 _ 3  , −1  , (1, 0), and (3, 1).

The new coordinates are found by adding 2 to the x coordinates.

Label the points     7 _ 3  , −1  , (3, 0), and (5, 1).

The domain is (2, ∞), the range is (−∞, ∞), and the vertical asymptote is x = 2.

f (x) = log3(x − 2)
y = log3(x)

x = 0
x = 2

x

y

–1–1
–2
–3
–4
–5

1
2
3
4
5

321 4 5 6 7 8 9

(3, 1)

(3, 0)

(5, 1)(1, 0)

Figure 7

Try It #4

Sketch a graph of f (x) = log3(x + 4) alongside its parent function. Include the key points and asymptotes on the graph. 
State the domain, range, and asymptote.

Graphing a Vertical Shift of y = logb(x )
When a constant d is added to the parent function f (x) = logb(x), the result is a vertical shift d units in the direction of 
the sign on d. To visualize vertical shifts, we can observe the general graph of the parent function f (x) = logb(x) alongside 
the shift up, g (x) = logb(x) + d and the shift down, h(x) = logb(x) − d. See Figure 8.
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Shift up  
g (x) = logb(x) + d

Shift down  
h(x) = logb(x) − d

(1, 0)
(b, 1)

(b1 − d, 1)

(b−d, 0)

g(x) = logb(x) + d

f (x) = logb(x)

x = 0

y

x (1, 0)

(b, 1) (b1+d, 1)

(bd, 0)

h(x) = logb(x) − d

f (x) = logb(x)
x = 0

y

x

•	 The asymptote remains x = 0.

•	 The domain remains to (0, ∞).

•	 The range remains (−∞, ∞).

•	 The asymptote remains x = 0.

•	 The domain remains to (0, ∞).

•	 The range remains (−∞, ∞).

Figure 8

vertical shifts of the parent function y = logb(x)
For any constant d, the function f (x) = logb(x) + d

•	 shifts the parent function y = logb(x) up d units if d > 0.
•	 shifts the parent function y = logb(x) down d units if d < 0.
•	 has the vertical asymptote x = 0.
•	 has domain (0, ∞).
•	 has range (−∞, ∞).

How To…
Given a logarithmic function with the form f (x) = logb(x) + d, graph the translation.

1. Identify the vertical shift:

a. If d > 0, shift the graph of f (x) = logb(x) up d units.
b. If d < 0, shift the graph of f (x) = logb(x) down d units.

2. Draw the vertical asymptote x = 0.
3.  Identify three key points from the parent function. Find new coordinates for the shifted functions by adding d to 

the y coordinate.
4. Label the three points.
5. The domain is (0, ∞), the range is (−∞, ∞), and the vertical asymptote is x = 0.

Example 5 Graphing a Vertical Shift of the Parent Function y = logb(x)

Sketch a graph of f (x) = log3(x) − 2 alongside its parent function. Include the key points and asymptote on the graph. 
State the domain, range, and asymptote.

Solution Since the function is f (x) = log3(x) − 2, we will notice d = −2. Thus d < 0.

This means we will shift the function f (x) = log3(x) down 2 units.

The vertical asymptote is x = 0.
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Consider the three key points from the parent function,     1 _ 3  , −1  , (1, 0), and (3, 1).

The new coordinates are found by subtracting 2 from the y coordinates.

Label the points     1 _ 3  , −3  , (1, −2), and (3, −1).

The domain is (0, ∞), the range is (−∞, ∞), and the vertical asymptote is x = 0.

(1, −2)
f (x) = log3(x − 2)

y = log3(x)

x = 0

x

y

–1–1
–2
–3
–4
–5

1
2
3
4
5

321 4 5 6 7 8 9

(3, 1)

(3, −1)

(1, 0)

Figure 9

The domain is (0, ∞), the range is (−∞, ∞), and the vertical asymptote is x = 0.

Try It #5

Sketch a graph of f (x) = log2(x) + 2 alongside its parent function. Include the key points and asymptote on the graph. 
State the domain, range, and asymptote.

Graphing Stretches and Compressions of y = logb(x )
When the parent function f (x) = logb(x) is multiplied by a constant a > 0, the result is a vertical stretch or compression 
of the original graph. To visualize stretches and compressions, we set a > 1 and observe the general graph of the parent 
function f (x) = logb(x) alongside the vertical stretch, g (x) = alogb(x) and the vertical compression, h(x) =   1 _ a  logb(x).  
See Figure 10.

Vertical Stretch 

g (x) = alogb(x), a > 1

Vertical Compression 

h(x) =   1 _ a  logb(x), a > 1

(1, 0)
(b, 1)

g(x) = alogb(x)

f(x) = logb(x)

x = 0

x

y

(b     , 1)1/a

•	 The asymptote remains x = 0.
•	 The x-intercept remains (1, 0).
•	 The domain remains (0, ∞).
•	 The range remains (−∞, ∞).

(1, 0)

(b, 1)

f(x) = logb(x)

x = 0

x

y

(ba, 1)
h(x) = logb(x)1

a

•	 The asymptote remains x = 0.
•	 The x-intercept remains (1, 0).
•	 The domain remains (0, ∞).
•	 The range remains (−∞, ∞).

Figure 10
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vertical stretches and compressions of the parent function y = logb(x)
For any constant a > 1, the function 

f (x) = alogb(x)

•	 stretches the parent function y = logb(x) vertically by a factor of a if a > 1.
•	 compresses the parent function y = logb(x) vertically by a factor of a if 0 < a < 1.
•	 has the vertical asymptote x = 0.
•	 has the x-intercept (1, 0).
•	 has domain (0, ∞).
•	 has range (−∞, ∞).

How To…
Given a logarithmic function with the form f (x) = alogb(x), a > 0, graph the translation.

1. Identify the vertical stretch or compressions:

a. If  ∣ a ∣  > 1, the graph of f (x) = logb(x) is stretched by a factor of a units.
b. If  ∣ a ∣  < 1, the graph of f (x) = logb(x) is compressed by a factor of a units.

2. Draw the vertical asymptote x = 0.
3.  Identify three key points from the parent function. Find new coordinates for the shifted functions by multiplying 

the y coordinates by a.
4. Label the three points.
5. The domain is (0, ∞), the range is (−∞, ∞), and the vertical asymptote is x = 0.

Example 6  Graphing a Stretch or Compression of the Parent Function y = logb( x )

Sketch a graph of f (x) = 2log4(x) alongside its parent function. Include the key points and asymptote on the graph. 
State the domain, range, and asymptote.

Solution Since the function is f (x) = 2log4(x), we will notice a = 2.

This means we will stretch the function f (x) = log4(x) by a factor of 2.

The vertical asymptote is x = 0.

Consider the three key points from the parent function,     1 _ 4  , −1  , (1, 0), and (4, 1).

The new coordinates are found by multiplying the y coordinates by 2.

Label the points     1 _ 4  , −2  , (1, 0) , and (4, 2).

The domain is (0, ∞), the range is (−∞, ∞), and the vertical asymptote is x = 0. See Figure 11.

(1, 0)

(2, 1)
(4, 1)

(4, 2) f (x) = 2log4(x)
y = log4(x)

x = 0

x

y

–1–1
–2
–3
–4
–5

1
2
3
4
5

321 4 5 6 7 8 9

Figure 11 
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Try It #6
Sketch a graph of f (x) =   1 _ 2  log4(x) alongside its parent function. Include the key points and asymptote on the graph. State 
the domain, range, and asymptote.

Example 7 Combining a Shift and a Stretch

Sketch a graph of f (x) = 5log(x + 2). State the domain, range, and asymptote.

Solution Remember: what happens inside parentheses happens first. First, we move the graph left 2 units, then stretch 
the function vertically by a factor of 5, as in Figure 12. The vertical asymptote will be shifted to x = −2. The x-intercept 
will be (−1, 0). The domain will be (−2, ∞). Two points will help give the shape of the graph: (−1, 0) and (8, 5). We chose  
x = 8 as the x-coordinate of one point to graph because when x = 8, x + 2 = 10, the base of the common logarithm.

x

y

–2–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4
5

321 4 5

y = 5 log(x + 2)

y = log(x + 2)

y = log(x)

x = −2
Figure 12

The domain is (−2, ∞), the range is (−∞, ∞), and the vertical asymptote is x = −2.

Try It #7
Sketch a graph of the function f (x) = 3log(x − 2) + 1. State the domain, range, and asymptote.

Graphing Reflections of f (x ) = logb(x )

When the parent function f (x) = logb(x) is multiplied by −1, the result is a reflection about the x-axis. When the input 
is multiplied by −1, the result is a reflection about the y-axis. To visualize reflections, we restrict b > 1, and observe 
the general graph of the parent function f (x) = logb(x) alongside the reflection about the x-axis, g(x) = −logb(x) and 
the reflection about the y-axis, h(x) = logb(−x).

Reflection about the x-axis 
g (x) = logb(x), b > 1

Reflection about the y-axis 
h(x) = logb(−x), b > 1

(1, 0)

(b, 1)

f (x) = logb(x)

g(x) = −logb(x)

x = 0

x

y

(b 
−1, 1)

•	 The reflected function is decreasing as x 
moves from zero to infinity.

•	 The asymptote remains x = 0.
•	 The x-intercept remains (1, 0).
•	 The key point changes to (b − 1, 1).
•	 The domain remains (0, ∞).
•	 The range remains (−∞, ∞).

(1, 0)(−1, 0)
(b, 1)(−b, 1)

f (x) = logb(x)h(x) = logb(−x)

x = 0

x

y

•	 The reflected function is decreasing as x 
moves from infinity to zero.

•	 The asymptote remains x = 0.
•	 The x-intercept remains (−1, 0).
•	 The key point changes to (−b, 1).
•	 The domain changes to (−∞, 0).
•	 The range remains (−∞, ∞).

Figure 13
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reflections of the parent function y = logb(x)
The function f (x) = −logb(x)
•	 reflects the parent function y = logb(x) about the x-axis.
•	 has domain, (0, ∞), range, (−∞, ∞), and vertical asymptote, x = 0, which are unchanged from the parent 

function.
The function f (x) = logb(−x)
•	 reflects the parent function y = logb(x) about the y-axis.
•	 has domain (−∞, 0).
•	 has range, (−∞, ∞), and vertical asymptote, x = 0, which are unchanged from the parent function.

How To…
Given a logarithmic function with the parent function f (x) = logb(x), graph a translation.

If f (x) = −logb(x) If f (x) = logb(−x)

1. Draw the vertical asymptote, x = 0. 1. Draw the vertical asymptote, x = 0.
2. Plot the x-intercept, (1, 0). 2. Plot the x-intercept, (1, 0).
3.  Reflect the graph of the parent function f (x) = logb(x) 

about the x-axis.
3.  Reflect the graph of the parent function f (x) = logb(x) 

about the y-axis.
4.  Draw a smooth curve through the points. 4.  Draw a smooth curve through the points.
5.  State the domain, (0, ∞), the range, (−∞, ∞), and 

the vertical asymptote x = 0.
5.  State the domain, (−∞, 0), the range, (−∞, ∞), and 

the vertical asymptote x = 0.
Table 3 

Example 8 Graphing a Reflection of a Logarithmic Function

Sketch a graph of f (x) = log(−x) alongside its parent function. Include the key points and asymptote on the graph. 
State the domain, range, and asymptote.

Solution Before graphing f (x) = log(−x), identify the behavior and key points for the graph.
•	 Since b = 10 is greater than one, we know that the parent function is increasing. Since the input value is multiplied 

by −1, f is a reflection of the parent graph about the y-axis. Thus, f (x) = log(−x) will be decreasing as x moves 
from negative infinity to zero, and the right tail of the graph will approach the vertical asymptote x = 0.

•	 The x-intercept is (−1, 0).
•	 We draw and label the asymptote, plot and label the points, and draw a smooth curve through the points.

(–10, 0) (10, 0)

(–1, 0) (1, 0)

f (x) = log(−x) y = log(x)

x = 0

x

y

Figure 14

The domain is (−∞, 0), the range is (−∞, ∞), and the vertical asymptote is x = 0.

Try It #8

Graph f (x) = −log(−x). State the domain, range, and asymptote.
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How To…
Given a logarithmic equation, use a graphing calculator to approximate solutions.

1.   Press [Y=]. Enter the given logarithm equation or equations as Y1= and, if needed, Y2=.
2.  Press [GRAPH] to observe the graphs of the curves and use [WINDOW] to find an appropriate view of the graphs, 

including their point(s) of intersection. 
3. To find the value of x, we compute the point of intersection. Press [2ND] then [CALC]. Select “intersect” and press 

[ENTER] three times. The point of intersection gives the value of x, for the point(s) of intersection.

Example 9 Approximating the Solution of a Logarithmic Equation

Solve 4ln(x) + 1 = −2ln(x − 1) graphically. Round to the nearest thousandth.

Solution Press [Y=] and enter 4ln(x) + 1 next to Y1=. Then enter −2ln(x − 1) next to Y2=. For a window, use the 
values 0 to 5 for x and –10 to 10 for y. Press [GRAPH]. The graphs should intersect somewhere a little to right of x = 1.

For a better approximation, press [2ND] then [CALC]. Select [5: intersect] and press [ENTER] three times. The 
x-coordinate of the point of intersection is displayed as 1.3385297. (Your answer may be different if you use a different 
window or use a different value for Guess?) So, to the nearest thousandth, x ≈ 1.339.

Try It #9

Solve 5log(x + 2) = 4 − log(x) graphically. Round to the nearest thousandth.

Summarizing Translations of the Logarithmic Function

Now that we have worked with each type of translation for the logarithmic function, we can summarize each in Table 
4 to arrive at the general equation for translating exponential functions.

Translations of the Parent Function y = logb(x)
Translation Form

Shift
•	 Horizontally c units to the left
•	 Vertically d units up

y = logb (x + c) + d

Stretch and Compress
•	 Stretch if  ∣ a ∣  > 1
•	 Compression if  ∣ a ∣  < 1

y = alogb(x)

Reflect about the x-axis y = −logb(x)
Reflect about the y-axis y = logb(−x)
General equation for all translations y = alogb(x + c) + d

Table 4

translations of logarithmic functions
All translations of the parent logarithmic function, y = logb(x), have the form

f (x) = alogb(x + c) + d
where the parent function, y = logb(x), b > 1, is
•	 shifted vertically up d units.
•	 shifted horizontally to the left c units.
•	 stretched vertically by a factor of  ∣ a ∣  if  ∣ a ∣  > 0.
•	 compressed vertically by a factor of  ∣ a ∣  if 0 <  ∣ a ∣  < 1.
•	 reflected about the x-axis when a < 0.
For f (x) = log(−x), the graph of the parent function is reflected about the y-axis.
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Example 10 Finding the Vertical Asymptote of a Logarithm Graph

What is the vertical asymptote of f (x) = −2log3(x + 4) + 5?

Solution The vertical asymptote is at x = −4.

Analysi s The coefficient, the base, and the upward translation do not affect the asymptote. The shift of the curve 4 units 
to the left shifts the vertical asymptote to x = −4.

Try It #10

What is the vertical asymptote of f (x) = 3 + ln(x − 1)?

Example 11 Finding the Equation from a Graph

Find a possible equation for the common logarithmic function graphed in Figure 15.

x

f(x)

–1–2–3–4–5 –1
–2
–3

1
2
3
4
5

321 4 5 6 7

Figure 15

Solution This graph has a vertical asymptote at x = −2 and has been vertically reflected. We do not know yet the 
vertical shift or the vertical stretch. We know so far that the equation will have form:

f (x) = −alog(x + 2) + k

It appears the graph passes through the points (−1, 1) and (2, −1). Substituting (−1, 1),

 1 = −alog(−1 + 2) + k  Substitute (−1, 1).

 1 = −alog(1) + k Arithmetic.

 1 = k log(1) = 0.
Next, substituting in (2, –1),

 −1 = −alog(2 + 2) + 1 Plug in (2, −1).

 −2 = −alog(4) Arithmetic.

 a =   2 _____ log(4)   Solve for a.

This gives us the equation f (x) = −  2 _ 
log(4)

  log(x + 2) + 1.

Analysi s  can verify this answer by comparing the function values in Table 5 with the points on the graph in Figure 15.

x −1 0 1 2 3
f (x) 1 0 −0.58496 −1 −1.3219

x 4 5 6 7 8
f (x) −1.5850 −1.8074 −2 −2.1699 −2.3219

Table 5
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Try It #11

Give the equation of the natural logarithm graphed in Figure 16.

x

f(x)

–1–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4

321 4 5

Figure 16

Q & A…
Is it possible to tell the domain and range and describe the end behavior of a function just by looking at the graph?

Yes, if we know the function is a general logarithmic function. For example, look at the graph in Figure 16. The graph 
approaches x = −3 (or thereabouts) more and more closely, so x = −3 is, or is very close to, the vertical asymptote. 
It approaches from the right, so the domain is all points to the right, {x | x > −3}. The range, as with all general 
logarithmic functions, is all real numbers. And we can see the end behavior because the graph goes down as it goes 
left and up as it goes right. The end behavior is that as x → −3+, f (x) → −∞ and as x → ∞, f (x) → ∞.

 

Access these online resources for additional instruction and practice with graphing logarithms.

•	 Graph an exponential Function and logarithmic Function (http://openstaxcollege.org/l/graphexplog)

•	 Match Graphs with exponential and logarithmic Functions (http://openstaxcollege.org/l/matchexplog)

•	 Find the Domain of logarithmic Functions (http://openstaxcollege.org/l/domainlog)

http://openstaxcollege.org/l/graphexplog
http://openstaxcollege.org/l/matchexplog
http://openstaxcollege.org/l/domainlog
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4.4 SeCTIOn exeRCISeS

VeRBAl
1. The inverse of every logarithmic function is an 

exponential function and vice-versa. What does 
this tell us about the relationship between the 
coordinates of the points on the graphs of each?

2. What type(s) of translation(s), if any, affect the range 
of a logarithmic function?

3. What type(s) of translation(s), if any, affect the 
domain of a logarithmic function?

4. Consider the general logarithmic function  
f (x) = logb(x). Why can’t x be zero?

5. Does the graph of a general logarithmic function 
have a horizontal asymptote? Explain.

AlGeBRAIC
For the following exercises, state the domain and range of the function.

6. f (x) = log3(x + 4) 7. h(x) = ln     1 _ 2   − x  8. g(x) = log5(2x + 9) − 2

9. h(x) = ln(4x + 17) − 5 10. f (x) = log2(12 − 3x) − 3

For the following exercises, state the domain and the vertical asymptote of the function.
11. f (x) = logb(x − 5) 12. g(x) = ln(3 − x) 13. f (x) = log(3x + 1)

14. f (x) = 3log(−x) + 2 15. g(x) = −ln(3x + 9) − 7

For the following exercises, state the domain, vertical asymptote, and end behavior of the function.
16. f (x) = ln(2 − x) 17. f (x) = log   x −  3 _ 7     18. h(x) = −log(3x − 4) + 3

19. g(x) = ln(2x + 6) − 5 20. f (x) = log3(15 − 5x) + 6

For the following exercises, state the domain, range, and x- and y-intercepts, if they exist. If they do not exist, write 
DNE.

21. h(x) = log4(x − 1) + 1 22. f (x) = log(5x + 10) + 3 23. g(x) = ln(−x) − 2

24. f (x) = log2(x + 2) − 5 25. h(x) = 3ln(x) − 9

GRAPHICAl
For the following exercises, match each function in Figure 17 with the letter corresponding to its graph.

2

1

0 1

–1

–2

2

A

B

C
D
E

3
x

y

Figure 17 

26. d(x) = log(x)

27. f (x) = ln(x)

28. g(x) = log2(x)

29. h(x) = log5(x)

30. j(x) = log25(x)
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For the following exercises, match each function in Figure 18 with the letter corresponding to its graph.

x

y

A

B

C

–1–2–3–4–5 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

31 4 52

Figure 18  

31. f (x) =   log 
  1 _ 3  

  (x)

32. g(x) = log2(x)

33. h(x) =   log 
  3 _ 4  

  (x)

For the following exercises, sketch the graphs of each pair of functions on the same axis.

34. f (x) = log(x) and g(x) = 10x 35. f (x) = log(x) and g(x) =   log 
  1 _ 2  

  (x)  

36. f (x) = log4(x) and g(x) = ln(x) 37. f (x) = e x and g(x) = ln(x)

For the following exercises, match each function in Figure 19 with the letter corresponding to its graph.

x

y

AB

C
–2–3–4–5 –1

–2
–3
–4
–5

1
2
3
4
5

321 4 5–1

Figure 19

38. f (x) = log4(−x + 2) 39. g(x) = −log4(x + 2) 40. h(x) = log4(x + 2)

For the following exercises, sketch the graph of the indicated function.

41. f (x) = log2(x + 2) 42. f (x) = 2log(x) 43. f (x) = ln(−x)

44. g(x) = log(4x + 16) + 4 45. g(x) = log(6 − 3x) + 1 46. h(x) = −  1 _ 2   ln(x + 1) − 3

For the following exercises, write a logarithmic equation corresponding to the graph shown.

47. Use y = log2(x) as the parent function.

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4
5

321 4 5

48. Use f (x) = log3(x) as the parent function.

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4
5

321 4 5
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49. Use f (x) = log4(x) as the parent function.

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4
5

321 4 5

50. Use f (x) = log5(x) as the parent function.

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1
2
3
4
5

321 4 5

TeCHnOlOGY

For the following exercises, use a graphing calculator to find approximate solutions to each equation.

51. log(x − 1) + 2 = ln(x − 1) + 2 52. log(2x − 3) + 2 = −log(2x − 3) + 5 53. ln(x − 2) = −ln(x + 1)

54. 2ln(5x + 1) =  1 _ 2  ln(−5x) + 1 55.   1 _ 3  log(1 − x) = log(x + 1) +   1 _ 3  

exTenSIOnS
56. Let b be any positive real number such that b ≠ 1. 

What must logb1 be equal to? Verify the result.
57. Explore and discuss the graphs of f (x) =   log 

  1 _ 2  
  (x)  

and g(x) = −log2(x). Make a conjecture based on 
the result.

58. Prove the conjecture made in the previous exercise. 59. What is the domain of the function  

f (x) = ln     x + 2 _ x − 4    ? Discuss the result.

60. Use properties of exponents to find the x-intercepts 
of the function f (x) = log(x 2 + 4x + 4) algebraically. 
Show the steps for solving, and then verify the result 
by graphing the function.
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Use the product rule for logarithms.

•	  Use the quotient rule for logarithms.

•	  Use the power rule for logarithms.

•	  Expand logarithmic expressions.

•	  Condense logarithmic expressions.

•	  Use the change-of-base formula for logarithms.

4.5 lOGARITHMIC PROPeRTIeS

Figure 1 The pH of hydrochloric acid is tested with litmus paper. (credit: David Berardan)

In chemistry, pH is used as a measure of the acidity or alkalinity of a substance. The pH scale runs from 0 to 14. 
Substances with a pH less than 7 are considered acidic, and substances with a pH greater than 7 are said to be alkaline. 
Our bodies, for instance, must maintain a pH close to 7.35 in order for enzymes to work properly. To get a feel for what 
is acidic and what is alkaline, consider the following pH levels of some common substances:

•	 Battery acid: 0.8
•	 Stomach acid: 2.7
•	 Orange juice: 3.3
•	 Pure water: 7 (at 25° C)

•	 Human blood: 7.35
•	 Fresh coconut: 7.8
•	 Sodium hydroxide (lye): 14

To determine whether a solution is acidic or alkaline, we find its pH, which is a measure of the number of active 
positive hydrogen ions in the solution. The pH is defined by the following formula, where a is the concentration of 
hydrogen ion in the solution

 pH = −log([H+])

 = log     1 _____ ([H+]    

The equivalence of −log ([H+]) and log     1 _ 
[H+]

     is one of the logarithm properties we will examine in this section.

Using the Product Rule for logarithms
Recall that the logarithmic and exponential functions “undo” each other. This means that logarithms have similar 
properties to exponents. Some important properties of logarithms are given here. First, the following properties are 
easy to prove.

 logb(1) = 0

 logb(b) = 1

For example, log5 1 = 0 since 50 = 1. And log5 5 = 1 since 51 = 5.
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Next, we have the inverse property.
 logb(b  x) = x

 b log
b
(x) = x, x > 0

For example, to evaluate log(100), we can rewrite the logarithm as log10(102), and then apply the inverse property logb  
(b x) = x to get log10(102) = 2.

To evaluate e ln(7), we can rewrite the logarithm as e loge(7), and then apply the inverse property b log
b

 (x) = x to get e loge(7) = 7.

Finally, we have the one-to-one property.

 logbM = logbN if and only if M = N

We can use the one-to-one property to solve the equation log3(3x) = log3(2x + 5) for x. Since the bases are the same, 
we can apply the one-to-one property by setting the arguments equal and solving for x :

 3x = 2x + 5 Set the arguments equal.

 x = 5 Subtract 2x.

But what about the equation log3(3x) + log3(2x + 5) = 2? The one-to-one property does not help us in this instance. 
Before we can solve an equation like this, we need a method for combining terms on the left side of the equation.

Recall that we use the product rule of exponents to combine the product of exponents by adding: x a xb = x a + b. We have 
a similar property for logarithms, called the product rule for logarithms, which says that the logarithm of a product 
is equal to a sum of logarithms. Because logs are exponents, and we multiply like bases, we can add the exponents. We 
will use the inverse property to derive the product rule below.

Given any real number x and positive real numbers M, N, and b, where b ≠ 1, we will show

 logb(MN) = logb(M) + logb(N).

Let m = logb(M) and n = logb(N). In exponential form, these equations are b m = M and b n = N. It follows that

 logb(MN) = logb(b mb n) Substitute for M and N.

 = logb(b m + n) Apply the product rule for exponents.

 = m + n Apply the inverse property of logs.

 = logb(M) + logb(N) Substitute for m and n.

Note that repeated applications of the product rule for logarithms allow us to simplify the logarithm of the product of 
any number of factors. For example, consider logb(wxyz). Using the product rule for logarithms, we can rewrite this 
logarithm of a product as the sum of logarithms of its factors:

 logb(wxyz) = logb(w) + logb(x) + logb(y) + logb(z)

the product rule for logarithms
The product rule for logarithms can be used to simplify a logarithm of a product by rewriting it as a sum of 
individual logarithms.

logb(MN) = logb(M) + logb(N) for b > 0

How To…
Given the logarithm of a product, use the product rule of logarithms to write an equivalent sum of logarithms.

1. Factor the argument completely, expressing each whole number factor as a product of primes.
2. Write the equivalent expression by summing the logarithms of each factor.
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Example 1 Using the Product Rule for Logarithms

Expand log3(30x(3x + 4)).

Solution We begin by factoring the argument completely, expressing 30 as a product of primes.

 log3(30x(3x + 4)) = log3(2 · 3 · 5 · x · (3x +4))

Next we write the equivalent equation by summing the logarithms of each factor.

 log3(30x(3x + 4)) = log3(2) + log3(3) + log3(5) + log3(x) + log3(3x + 4)

Try It #1
Expand logb(8k).

Using the Quotient Rule for logarithms
For quotients, we have a similar rule for logarithms. Recall that we use the quotient rule of exponents to combine 
the quotient of exponents by subtracting:  x   

a __ b    = x a−b. The quotient rule for logarithms says that the logarithm of a 
quotient is equal to a difference of logarithms. Just as with the product rule, we can use the inverse property to derive 
the quotient rule.

Given any real number x and positive real numbers M, N, and b, where b ≠ 1, we will show

 logb     M __ N     = logb(M) − logb(N).

Let m = logb(M) and n = logb(N). In exponential form, these equations are bm = M and bn = N. It follows that

 logb     M __ N     = logb     b
m
 __ bn     Substitute for M and N.

 = logb(b m − n)  Apply the quotient rule for exponents.

 = m − n Apply the inverse property of logs.

 = logb(M) − logb(N) Substitute for m and n.

For example, to expand log     2x2 + 6x _ 3x + 9    , we must first express the quotient in lowest terms. Factoring and canceling 
we get,

 log     2x2 + 6x _______ 3x + 9    = log     2x(x + 3) ________ 3(x + 3)     Factor the numerator and denominator.

 = log     2x __ 3     Cancel the common factors.

Next we apply the quotient rule by subtracting the logarithm of the denominator from the logarithm of the numerator. 
Then we apply the product rule.

 log     2x __ 3     = log(2x) − log(3)

 = log(2) + log(x) − log(3)

the quotient rule for logarithms
The quotient rule for logarithms can be used to simplify a logarithm or a quotient by rewriting it as the difference 
of individual logarithms.

logb     M __ N     = logb(M) − logb(N)

How To…
Given the logarithm of a quotient, use the quotient rule of logarithms to write an equivalent difference of logarithms.
1. Express the argument in lowest terms by factoring the numerator and denominator and canceling common terms.
2. Write the equivalent expression by subtracting the logarithm of the denominator from the logarithm of the 

numerator.
3. Check to see that each term is fully expanded. If not, apply the product rule for logarithms to expand completely.
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Example 2 Using the Quotient Rule for Logarithms

Expand log2     
15x(x − 1)

 __  
(3x + 4)(2 − x)

    .

Solution First we note that the quotient is factored and in lowest terms, so we apply the quotient rule.

log2     
15x(x − 1)

 __  
(3x + 4)(2 − x)

     = log2(15x(x−1))− log2((3x + 4)(2 − x))

Notice that the resulting terms are logarithms of products. To expand completely, we apply the product rule, noting 
that the prime factors of the factor 15 are 3 and 5.

log2(15x(x − 1)) − log2((3x + 4)(2 − x)) = [log2(3) + log2(5) + log2(x) + log2(x − 1)] − [log2(3x + 4) + log2(2 − x)]

 =  log2(3) + log2(5) + log2(x) + log2(x − 1) − log2(3x + 4) − log2(2 − x)

Analysi s There are exceptions to consider in this and later examples. First, because denominators must never be zero, 
this expression is not defined for x = −  4 _ 3   and x = 2. Also, since the argument of a logarithm must be positive, we note 
as we observe the expanded logarithm, that x > 0, x > 1, x > −  4 _ 3  , and x < 2. Combining these conditions is beyond the 
scope of this section, and we will not consider them here or in subsequent exercises.

Try It #2

Expand log3     7x2 + 21x __  
7x(x − 1)(x − 2)

    .

Using the Power Rule for logarithms
We’ve explored the product rule and the quotient rule, but how can we take the logarithm of a power, such as x2? One 
method is as follows:

 logb(x2) = logb(x ⋅ x)

 = logb (x) + logb (x)

 = 2log b (x)

Notice that we used the product rule for logarithms to find a solution for the example above. By doing so, we have 
derived the power rule for logarithms, which says that the log of a power is equal to the exponent times the log of the 
base. Keep in mind that, although the input to a logarithm may not be written as a power, we may be able to change 
it to a power. For example,

100 = 102    √
—
 3   =  3   

1 __ 2        1 _ e   = e−1

the power rule for logarithms
The power rule for logarithms can be used to simplify the logarithm of a power by rewriting it as the product of 
the exponent times the logarithm of the base.

logb(Mn) = nlogb(M)

How To…
Given the logarithm of a power, use the power rule of logarithms to write an equivalent product of a factor and a 
logarithm.

1. Express the argument as a power, if needed.
2. Write the equivalent expression by multiplying the exponent times the logarithm of the base.
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Example 3 Expanding a Logarithm with Powers

Expand log2(x
5).

Solution The argument is already written as a power, so we identify the exponent, 5, and the base, x, and rewrite the 
equivalent expression by multiplying the exponent times the logarithm of the base.

 log2(x 5) = 5log2(x)

Try It #3

Expand ln(x2).

Example 4 Rewriting an Expression as a Power before Using the Power Rule

Expand log3(25) using the power rule for logs.

Solution Expressing the argument as a power, we get log3(25) = log3(5
2).

Next we identify the exponent, 2, and the base, 5, and rewrite the equivalent expression by multiplying the exponent 
times the logarithm of the base.
 log3(5 2) = 2log3(5)

Try It #4

Expand ln     1 _ 
x2

    .

Example 5 Using the Power Rule in Reverse

Rewrite 4ln(x) using the power rule for logs to a single logarithm with a leading coefficient of 1.

Solution Because the logarithm of a power is the product of the exponent times the logarithm of the base, it follows 
that the product of a number and a logarithm can be written as a power. For the expression 4ln(x), we identify 
the factor, 4, as the exponent and the argument, x, as the base, and rewrite the product as a logarithm of a power: 
4ln(x) = ln(x4).

Try It #5

Rewrite 2log3(4) using the power rule for logs to a single logarithm with a leading coefficient of 1.

expanding logarithmic expressions
Taken together, the product rule, quotient rule, and power rule are often called “laws of logs.” Sometimes we apply 
more than one rule in order to simplify an expression. For example:

 logb     6x _ y     = logb(6x) − logb(y)

 = logb(6) + logb(x) − logb(y)

We can use the power rule to expand logarithmic expressions involving negative and fractional exponents. Here is an 
alternate proof of the quotient rule for logarithms using the fact that a reciprocal is a negative power:

 logb     A __ C     = logb(AC −1)

 = logb(A) + logb(C −1)

 = logb(A) + (−1)logb(C)

 = logb(A) − logb(C)

We can also apply the product rule to express a sum or difference of logarithms as the logarithm of a product. With 
practice, we can look at a logarithmic expression and expand it mentally, writing the final answer. Remember, however, 
that we can only do this with products, quotients, powers, and roots—never with addition or subtraction inside the 
argument of the logarithm.
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Example 6 Expanding Logarithms Using Product, Quotient, and Power Rules

Rewrite ln     
x 4 y

 _ 7     as a sum or difference of logs.

Solution First, because we have a quotient of two expressions, we can use the quotient rule:

 ln     x 4y ___ 7     = ln(x 4y)− ln(7)

Then seeing the product in the first term, we use the product rule:

 ln(x 4y) − ln(7) = ln(x 4) + ln(y) − ln(7)

Finally, we use the power rule on the first term:

 ln(x4)+ ln(y) − ln(7) = 4ln(x) + ln(y) − ln(7)

Try It #6

Expand log     
x2 y3

 _ 
z4

    .

Example 7 Using the Power Rule for Logarithms to Simplify the Logarithm of a Radical Expression

Expand log( √
—
 x  ).

Solution log( √
—
 x  ) = log (x)   

1 __ 2    

 =   1 __ 2   log(x)

Try It #7

Expand ln(  3 √
—

 x2  ).

Q & A…
Can we expand ln(x2 + y2)?

No. There is no way to expand the logarithm of a sum or difference inside the argument of the logarithm.

Example 8 Expanding Complex Logarithmic Expressions

Expand log6     
64x3 (4x + 1)

 __ 
(2x − 1)

    .

Solution We can expand by applying the Product and Quotient Rules.

log6     
64x3(4x + 1)

 __ 
(2x − 1)

     =  log6(64) + log6(x3) + log6(4x + 1) − log6(2x − 1)  Apply the Quotient Rule.

 =  log6(26) + log6(x3) + log6(4x + 1) − log6(2x − 1) Simplify by writing 64 as 26.

 =  6log6(2) + 3log6(x) + log6(4x + 1) − log6(2x − 1) Apply the Power Rule.

Try It #8

Expand ln       √—  (x − 1) (2x + 1) 2     __ 
 x  2  − 9

    . 

Condensing logarithmic expressions
We can use the rules of logarithms we just learned to condense sums, differences, and products with the same base 
as a single logarithm. It is important to remember that the logarithms must have the same base to be combined. We 
will learn later how to change the base of any logarithm before condensing.



CHAPTER 4 exponential and  logarithmic Functions386

How To…
Given a sum, difference, or product of logarithms with the same base, write an equivalent expression as a single 
logarithm.

1. Apply the power property first. Identify terms that are products of factors and a logarithm, and rewrite each as the 
logarithm of a power.

2. Next apply the product property. Rewrite sums of logarithms as the logarithm of a product.
3. Apply the quotient property last. Rewrite differences of logarithms as the logarithm of a quotient.

Example 9 Using the Product and Quotient Rules to Combine Logarithms

Write log3(5) + log3(8) − log3(2) as a single logarithm.

Solution Using the product and quotient rules
log3(5) + log3(8) = log3(5 · 8) = log3(40)

This reduces our original expression to
log3(40) − log3(2)

Then, using the quotient rule
log3(40) − log3(2) = log3     40 __ 2     = log3(20)

Try It #9

Condense log(3) − log(4) + log(5) − log(6).

Example 10 Condensing Complex Logarithmic Expressions

Condense log2(x 2) +   1 __ 2  log2(x − 1) − 3log2((x + 3)2).

Solution We apply the power rule first:

 log2(x 2) +   1 __ 2  log2(x − 1) − 3log2((x + 3)2) = log2(x2) + log2( √
—

 x − 1  ) − log2((x + 3)6)
Next we apply the product rule to the sum:

 log2(x 2) + log2( √
—

 x − 1  ) − log2((x + 3)6) = log2(x2 √
—

 x − 1  ) − log2((x + 3)6)
Finally, we apply the quotient rule to the difference:

 log2(x 2 √
—

 x − 1  )− log2((x + 3)6) = log2    x2 √
—

 x − 1   ________ (x + 3)6    

Try It #10

Rewrite log(5) + 0.5log(x) − log(7x − 1) + 3log(x − 1) as a single logarithm.

Example 11 Rewriting as a Single Logarithm

Rewrite 2log(x) − 4log(x + 5) +   1 _ x  log(3x + 5) as a single logarithm.

Solution We apply the power rule first:

 2log(x) − 4log(x + 5) +   1 _ x  log(3x + 5) = log(x2) − log((x + 5)4) + log   (3x + 5) x −1
    

Next we apply the product rule to the sum:

 log(x2)− log((x + 5)4) + log   (3x + 5) x −1
     = log(x2)− log   (x + 5)4(3x + 5) x −1

    

Finally, we apply the quotient rule to the difference:

 log(x2) − log   (x + 5)4(3x + 5) x −1
     = log     x  2  __  

 (x + 5) 4  (3x + 5)  x  −1  
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Try It #11

Condense 4(3log(x) + log(x + 5) − log(2x + 3)).

Example 12 Applying of the Laws of Logs

Recall that, in chemistry, pH = −log[H+]. If the concentration of hydrogen ions in a liquid is doubled, what is the 
effect on pH?

Solution Suppose C is the original concentration of hydrogen ions, and P is the original pH of the liquid. Then  
P = −log(C). If the concentration is doubled, the new concentration is 2C. Then the pH of the new liquid is

 pH = −log(2C)

Using the product rule of logs

pH = −log(2C) = −(log(2) + log(C)) = −log(2) − log(C)

Since P = −log(C), the new pH is

 pH = P − log(2) ≈ P − 0.301

When the concentration of hydrogen ions is doubled, the pH decreases by about 0.301.

Try It #12

How does the pH change when the concentration of positive hydrogen ions is decreased by half?

Using the Change-of-Base Formula for logarithms
Most calculators can evaluate only common and natural logs. In order to evaluate logarithms with a base other than 
10 or e, we use the change-of-base formula to rewrite the logarithm as the quotient of logarithms of any other base; 
when using a calculator, we would change them to common or natural logs.

To derive the change-of-base formula, we use the one-to-one property and power rule for logarithms.

Given any positive real numbers M, b, and n, where n ≠ 1 and b ≠ 1, we show

 logb(M) =   
logn(M)

 _ 
logn(b)

   

Let y = logb(M). By taking the log base n of both sides of the equation, we arrive at an exponential form, namely b y = M.  
It follows that

 logn(b y) = logn(M) Apply the one-to-one property.

 ylogn(b) = logn(M) Apply the power rule for logarithms.

 y =   
logn(M)

 _ 
logn(b)

   Isolate y.

 logb(M) =   
logn(M)

 _ 
logn(b)

   Substitute for y.

For example, to evaluate log5(36) using a calculator, we must first rewrite the expression as a quotient of common or 
natural logs. We will use the common log.

 log5(36) =   
log(36)

 _ 
log(5)

   Apply the change of base formula using base 10.

 ≈ 2.2266 Use a calculator to evaluate to 4 decimal places.
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the change-of-base formula
The change-of-base formula can be used to evaluate a logarithm with any base.
For any positive real numbers M, b, and n, where n ≠ 1 and b ≠ 1,

logb(M) =   
logn(M)

 _ 
logn(b)

  .

It follows that the change-of-base formula can be used to rewrite a logarithm with any base as the quotient of 
common or natural logs.

logb(M) =   
ln(M)

 _ 
ln(b)

   and logb(M) =   
logn(M)

 _ 
logn(b)

  

How To…
Given a logarithm with the form logb(M), use the change-of-base formula to rewrite it as a quotient of logs with any 
positive base n, where n ≠ 1.
1. Determine the new base n, remembering that the common log, log(x), has base 10, and the natural log, ln(x), has 

base e.
2. Rewrite the log as a quotient using the change-of-base formula

a. The numerator of the quotient will be a logarithm with base n and argument M.
b. The denominator of the quotient will be a logarithm with base n and argument b.

Example 13  Changing Logarithmic Expressions to Expressions Involving Only Natural Logs

Change log5(3) to a quotient of natural logarithms.
Solution Because we will be expressing log5(3) as a quotient of natural logarithms, the new base, n = e.
We rewrite the log as a quotient using the change-of-base formula. The numerator of the quotient will be the natural 
log with argument 3. The denominator of the quotient will be the natural log with argument 5.

logb(M) =   
ln(M)

 _ 
ln(b)

      log5(3) =   
ln(3)

 _ 
ln(5)

  

Try It #13
Change log0.5(8) to a quotient of natural logarithms.

Q & A…
Can we change common logarithms to natural logarithms?

Yes. Remember that log(9) means log10(9). So, log(9) =   
ln(9)

 _ 
ln(10)

  .

Example 14 Using the Change-of-Base Formula with a Calculator

Evaluate log2(10) using the change-of-base formula with a calculator.

Solution According to the change-of-base formula, we can rewrite the log base 2 as a logarithm of any other base. 
Since our calculators can evaluate the natural log, we might choose to use the natural logarithm, which is the log base e.

log2(10) =   
ln(10)

 _ 
ln(2)

    Apply the change of base formula using base e.

  ≈ 3.3219 Use a calculator to evaluate to 4 decimal places.

Try It #14

Evaluate log5(100) using the change-of-base formula.

Access this online resource for additional instruction and practice with laws of logarithms.
•	 The Properties of logarithms (http://openstaxcollege.org/l/proplog)
•	 expand logarithmic expressions (http://openstaxcollege.org/l/expandlog)
•	 evaluate a natural logarithmic expression (http://openstaxcollege.org/l/evaluatelog)

http://openstaxcollege.org/l/proplog
http://openstaxcollege.org/l/expandlog
http://openstaxcollege.org/l/evaluatelog
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4.5 SeCTIOn exeRCISeS

VeRBAl
1. How does the power rule for logarithms help when 

solving logarithms with the form logb(  n √
—
 x  )?

2. What does the change-of-base formula do? Why is it 
useful when using a calculator?

AlGeBRAIC
For the following exercises, expand each logarithm as much as possible. Rewrite each expression as a sum, difference, 
or product of logs.

3. logb(7x · 2y) 4. ln(3ab · 5c) 5. logb     13 _ 17    

6. log4       
  x __ z  

 _ w    7. ln     1 _ 
4k

    8. log2(yx)

For the following exercises, condense to a single logarithm if possible.
9. ln(7) + ln(x) + ln(y) 10. log3(2) + log3(a) + log3(11) + log3(b) 11. logb(28) − logb(7)

12. ln(a) − ln(d) − ln(c) 13.  −logb    1 _ 7    14.   1 _ 3  ln(8)

For the following exercises, use the properties of logarithms to expand each logarithm as much as possible. Rewrite 
each expression as a sum, difference, or product of logs.

15. log     
x15 y13

 _ 
z19

    16. ln     a−2
 _ 

b−4 c5
    17. log( √

—
 x3 y−4  ) 18. ln   y √ 

_____

   
y
 _ 1 − y      19. log(x 2 y 3   3 √

—
 x2 y5  )

For the following exercises, condense each expression to a single logarithm using the properties of logarithms.
20. log(2x4) + log(3x5) 21. ln(6x9) − ln(3x2) 22. 2log(x) + 3log(x + 1)

23. log(x) −  1 _ 2  log(y) + 3log(z) 24. 4log7 (c) +   
log7(a)

 _ 3   +   
log7(b)

 _ 3  

For the following exercises, rewrite each expression as an equivalent ratio of logs using the indicated base.
25. log7(15) to base e 26. log14(55.875) to base 10

For the following exercises, suppose log5 (6) = a and log5 (11) = b. Use the change-of-base formula along with properties 
of logarithms to rewrite each expression in terms of a and b. Show the steps for solving.

27. log11(5) 28. log6(55) 29. log11    6 _ 11    

nUMeRIC
For the following exercises, use properties of logarithms to evaluate without using a calculator.

30. log3     1 _ 9     − 3log3 (3) 31. 6log8(2) +   
log8(64)

 _ 
3log8(4)

  32. 2log9(3) − 4log9(3) + log9     1 _ 729    

For the following exercises, use the change-of-base formula to evaluate each expression as a quotient of natural logs. 
Use a calculator to approximate each to five decimal places.

33. log3(22) 34. log8(65) 35. log6(5.38) 36. log4     15 _ 2    37.   log 
  1 _ 2  

  (4.7)

exTenSIOnS
38. Use the product rule for logarithms to find all x 

values such that log12(2x + 6) + log12(x + 2) = 2. 
Show the steps for solving.

39. Use the quotient rule for logarithms to find all x 
values such that log6(x + 2) − log6 (x − 3) = 1. Show 
the steps for solving.

40. Can the power property of logarithms be derived 
from the power property of exponents using the 
equation b x = m? If not, explain why. If so, show the 
derivation.

41. Prove that logb (n) =   1 _ 
logn(b)

   for any positive integers  
b > 1 and n > 1.

42. Does log81(2401) = log3(7)? Verify the claim 
algebraically.
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Use like bases to solve exponential equations.

•	  Use logarithms to solve exponential equations.

•	  Use the definition of a logarithm to solve logarithmic equations.

•	  Use the one-to-one property of logarithms to solve logarithmic equations.

•	  Solve applied problems involving exponential and logarithmic equations.

4.6 exPOnenTIAl AnD lOGARITHMIC eQUATIOnS

Figure 1 Wild rabbits in Australia. The rabbit population grew so quickly in Australia that the event became known as the “rabbit plague.” (credit: Richard Taylor, Flickr)

In 1859, an Australian landowner named Thomas Austin released 24 rabbits into the wild for hunting. Because 
Australia had few predators and ample food, the rabbit population exploded. In fewer than ten years, the rabbit 
population numbered in the millions.

Uncontrolled population growth, as in the wild rabbits in Australia, can be modeled with exponential functions. 
Equations resulting from those exponential functions can be solved to analyze and make predictions about exponential 
growth. In this section, we will learn techniques for solving exponential functions.

Using like Bases to Solve exponential equations
The first technique involves two functions with like bases. Recall that the one-to-one property of exponential functions 
tells us that, for any real numbers b, S, and T, where b > 0, b ≠ 1, bS = bT if and only if S = T.

In other words, when an exponential equation has the same base on each side, the exponents must be equal. This also 
applies when the exponents are algebraic expressions. Therefore, we can solve many exponential equations by using the 
rules of exponents to rewrite each side as a power with the same base. Then, we use the fact that exponential functions 
are one-to-one to set the exponents equal to one another, and solve for the unknown.
For example, consider the equation 34x − 7 =   3

2x
 _ 3  . To solve for x, we use the division property of exponents to rewrite 

the right side so that both sides have the common base, 3. Then we apply the one-to-one property of exponents by 
setting the exponents equal to one another and solving for x :

 34x − 7 =   3
2x
 ___ 3  

 34x − 7 =   3
2x
 ___ 31   Rewrite 3 as 31.

 34x − 7 = 32x − 1 Use the division property of exponents.
 4x − 7 = 2x − 1 Apply the one-to-one property of exponents.
 2x = 6  Subtract 2x and add 7 to both sides.
 x = 3  Divide by 3.
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using the one-to-one property of exponential functions to solve exponential equations
For any algebraic expressions S and T, and any positive real number b ≠ 1,

bS = bT if and only if S = T

How To…
Given an exponential equation with the form bS = bT, where S and T are algebraic expressions with an unknown, solve 
for the unknown.

1. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form bS = bT.
2. Use the one-to-one property to set the exponents equal.
3. Solve the resulting equation, S = T, for the unknown.

Example 1 Solving an Exponential Equation with a Common Base

Solve 2x − 1 = 22x − 4.
Solution 2x − 1 = 22x − 4 The common base is 2.
 x − 1 = 2x − 4 By the one-to-one property the exponents must be equal.

 x = 3 Solve for x.

Try It #1

Solve 52x = 53x + 2.

Rewriting Equations So All Powers Have the Same Base

Sometimes the common base for an exponential equation is not explicitly shown. In these cases, we simply rewrite 
the terms in the equation as powers with a common base, and solve using the one-to-one property.

For example, consider the equation 256 = 4x − 5. We can rewrite both sides of this equation as a power of 2. Then we 
apply the rules of exponents, along with the one-to-one property, to solve for x :

 256 = 4x − 5

 28 = (22)x − 5 Rewrite each side as a power with base 2.
 28 = 22x − 10 Use the one-to-one property of exponents.
 8 = 2x − 10 Apply the one-to-one property of exponents.
 18 = 2x Add 10 to both sides.
 x = 9 Divide by 2.

How To…
Given an exponential equation with unlike bases, use the one-to-one property to solve it.

1. Rewrite each side in the equation as a power with a common base.
2. Use the rules of exponents to simplify, if necessary, so that the resulting equation has the form bS = bT.
3. Use the one-to-one property to set the exponents equal.
4. Solve the resulting equation, S = T, for the unknown.

Example 2 Solving Equations by Rewriting Them to Have a Common Base

Solve 8x + 2 = 16x + 1.

Solution 8x + 2 = 16x + 1

 (23)x + 2 = (24)x + 1 Write 8 and 16 as powers of 2.
 23x + 6 = 24x + 4 To take a power of a power, multiply exponents .
 3x + 6 = 4x + 4 Use the one-to-one property to set the exponents equal.
 x = 2 Solve for x.
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Try It #2

Solve 52x = 253x + 2.

Example 3  Solving Equations by Rewriting Roots with Fractional Exponents to Have a Common Base

Solve 25x =  √
—
 2  .

Solution 25x =  2   
1 __ 2    Write the square root of 2 as a power of 2.

 5x =   1 __ 2   Use the one-to-one property.

 x =   1 __ 10   Solve for x.

Try It #3

Solve 5x =  √
—
 5  .

Q & A…
Do all exponential equations have a solution? If not, how can we tell if there is a solution during the problem-
solving process?

No. Recall that the range of an exponential function is always positive. While solving the equation, we may obtain an 
expression that is undefined.

Example 4 Solving an Equation with Positive and Negative Powers

Solve 3x + 1 = −2.

Solution This equation has no solution. There is no real value of x that will make the equation a true statement 
because any power of a positive number is positive.

Analysis Figure 2 shows that the two graphs do not cross so the left side is never equal to the right side. Thus the 
equation has no solution.

x

y

–1–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

2

�ey do
not cross.

y = −2

y = 3x + 1

1 4

4

5

5

2

Figure 2

Try It #4

Solve 2x = −100.

Solving exponential equations Using logarithms
Sometimes the terms of an exponential equation cannot be rewritten with a common base. In these cases, we solve by 
taking the logarithm of each side. Recall, since log(a) = log(b) is equivalent to a = b, we may apply logarithms with 
the same base on both sides of an exponential equation.
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How To…
Given an exponential equation in which a common base cannot be found, solve for the unknown.
1. Apply the logarithm of both sides of the equation.

  a. If one of the terms in the equation has base 10, use the common logarithm.
  b. If none of the terms in the equation has base 10, use the natural logarithm.
2. Use the rules of logarithms to solve for the unknown.

Example 5 Solving an Equation Containing Powers of Different Bases

Solve 5x + 2 = 4x.

Solution 5x + 2 = 4x  There is no easy way to get the powers to have the same base .
 ln(5x + 2) = ln(4x) Take ln of both sides.
 (x + 2)ln(5) = xln(4) Use laws of logs.
 xln(5) + 2ln(5) = xln(4) Use the distributive law.
 xln(5) − xln(4) = − 2ln(5) Get terms containing x on one side, terms without x on the other.
  x(ln(5) − ln(4)) = − 2ln(5)  On the left hand side, factor out an x.

 xln     5 __ 4     = ln     1 __ 25     Use the laws of logs.

 x =     
ln    1 __ 25     

 _ 
 ln    5 __ 4    

    Divide by the coefficient of x.

Try It #5

Solve 2x = 3x + 1.

Q & A…
Is there any way to solve 2x = 3x?
Yes. The solution is 0.

Equations Containing e

One common type of exponential equations are those with base e. This constant occurs again and again in nature, in 
mathematics, in science, in engineering, and in finance. When we have an equation with a base e on either side, we 
can use the natural logarithm to solve it.

How To…
Given an equation of the form y = Aekt, solve for t.

1. Divide both sides of the equation by A.
2. Apply the natural logarithm of both sides of the equation.
3. Divide both sides of the equation by k.

Example 6 Solve an Equation of the Form y = Ae k t

Solve 100 = 20e 2t.

Solution 100 = 20e 2t

 5 = e 2t Divide by the coefficient of the power .

 ln(5) = 2t Take ln of both sides. Use the fact that ln(x) and e x are inverse functions.

 t =   ln(5) ___ 2   Divide by the coefficient of t.
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Analysi s Using laws of logs, we can also write this answer in the form t = ln √
—
 5  . If we want a decimal approximation 

of the answer, we use a calculator.

Try It #6

Solve 3e 0.5t = 11.

Q & A…
Does every equation of the form y = Aekt have a solution?

No. There is a solution when k ≠ 0, and when y and A are either both 0 or neither 0, and they have the same sign. An 
example of an equation with this form that has no solution is 2 = −3et.

Example 7 Solving an Equation That Can Be Simplified to the Form y = Ae k t

Solve 4e2x + 5 = 12.

Solution 4e2x + 5 = 12

 4e2x = 7 Combine like terms.

 e2x =   7 __ 4   Divide by the coefficient of the power.

 2x = ln     7 __ 4     Take ln of both sides.

 x =   1 __ 2   ln     7 __ 4     Solve for x.

Try It #7

Solve 3 + e2t = 7e2t.

Extraneous Solutions

Sometimes the methods used to solve an equation introduce an extraneous solution, which is a solution that is correct 
algebraically but does not satisfy the conditions of the original equation. One such situation arises in solving when the 
logarithm is taken on both sides of the equation. In such cases, remember that the argument of the logarithm must be 
positive. If the number we are evaluating in a logarithm function is negative, there is no output.

Example 8 Solving Exponential Functions in Quadratic Form

Solve e2x − e x = 56.

Solution

 e 2x − e x = 56

 e 2x − e x − 56 = 0  Get one side of the equation equal to zero.

 (e x + 7)(e x − 8) = 0  Factor by the FOIL method.

 e x + 7 = 0 or e x − 8 = 0  If a product is zero, then one factor must be zero.

 e x = −7 or e x = 8  Isolate the exponentials.

 e x = 8  Reject the equation in which the power equals a negative number.

 x = ln(8)  Solve the equation in which the power equals a positive number.

Analysi s When we plan to use factoring to solve a problem, we always get zero on one side of the equation, because 
zero has the unique property that when a product is zero, one or both of the factors must be zero. We reject the equation 
e x = −7 because a positive number never equals a negative number. The solution ln(−7) is not a real number, and in the 
real number system this solution is rejected as an extraneous solution.
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Try It #8

Solve e2x = e x + 2.

Q & A…
Does every logarithmic equation have a solution?

No. Keep in mind that we can only apply the logarithm to a positive number. Always check for extraneous solutions.

Using the Definition of a logarithm to Solve logarithmic equations
We have already seen that every logarithmic equation logb(x) = y is equivalent to the exponential equation b y = x. We 
can use this fact, along with the rules of logarithms, to solve logarithmic equations where the argument is an algebraic 
expression.

For example, consider the equation log2(2) + log2(3x − 5) = 3. To solve this equation, we can use rules of logarithms 
to rewrite the left side in compact form and then apply the definition of logs to solve for x:

 log2(2) + log2(3x − 5) = 3
 log2(2(3x − 5)) = 3 Apply the product rule of logarithms.
 log2(6x − 10) = 3 Distribute.
 23 = 6x − 10 Apply the definition of a logarithm.
 8 = 6x − 10 Calculate 23.
 18 = 6x Add 10 to both sides.
 x = 3 Divide by 6.

using the definition of a logarithm to solve logarithmic equations
For any algebraic expression S and real numbers b and c, where b > 0, b ≠ 1,

logb(S) = c if and only if b c = S

Example 9 Using Algebra to Solve a Logarithmic Equation

Solve 2ln(x) + 3 = 7.

Solution 2ln(x) + 3 = 7

 2ln(x) = 4 Subtract 3.

 ln(x) = 2 Divide by 2.

 x = e2 Rewrite in exponential form.

Try It #9

Solve 6 + ln(x) = 10.

Example 10  Using Algebra Before and After Using the Definition of the Natural Logarithm

Solve 2ln(6x) = 7.

Solution 2ln(6x) = 7

 ln(6x) =   7 __ 2   Divide by 2.

 6x =  e   
7 __ 2    Use the definition of ln.

 x =  1 __ 6   e   
7 __ 2    Divide by 6.
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Try It #10

Solve 2ln(x + 1) = 10.

Example 11  Using a Graph to Understand the Solution to a Logarithmic Equation

Solve ln(x) = 3.

Solution ln(x) = 3
 x = e 3 Use the definition of the natural logarithm.

Figure 3 represents the graph of the equation. On the graph, the x-coordinate of the point at which the two graphs 
intersect is close to 20. In other words e3 ≈ 20. A calculator gives a better approximation: e3 ≈ 20.0855.

4 8 12 16 20 24 28

–2

–1

1

2

4

x

y

y = 3
y = 1n(x)

(e3, 3) ≈ (20.0855, 3)

Figure 3 The graphs of y  = ln(x ) and y  = 3 cross at the point (e 3, 3), which is approximately (20.0855, 3).

Try It #11

Use a graphing calculator to estimate the approximate solution to the logarithmic equation 2x = 1000 to 2 decimal 
places.

Using the One-to-One Property of logarithms to Solve logarithmic equations
As with exponential equations, we can use the one-to-one property to solve logarithmic equations. The one-to-one 
property of logarithmic functions tells us that, for any real numbers x > 0, S > 0, T > 0 and any positive real number 
b, where b ≠ 1,

logb(S) = logb(T) if and only if S = T.
For example,

If log2(x − 1) = log2(8), then x − 1 = 8.

So, if x − 1 = 8, then we can solve for x, and we get x = 9. To check, we can substitute x = 9 into the original equation: 
log2(9 − 1) = log2(8) = 3. In other words, when a logarithmic equation has the same base on each side, the arguments 
must be equal. This also applies when the arguments are algebraic expressions. Therefore, when given an equation 
with logs of the same base on each side, we can use rules of logarithms to rewrite each side as a single logarithm. Then 
we use the fact that logarithmic functions are one-to-one to set the arguments equal to one another and solve for the 
unknown.

For example, consider the equation log(3x − 2) − log(2) = log(x + 4). To solve this equation, we can use the rules of 
logarithms to rewrite the left side as a single logarithm, and then apply the one-to-one property to solve for x:

 log(3x − 2) − log(2) = log(x + 4)

 log     3x − 2 ______ 2     = log(x + 4)  Apply the quotient rule of logarithms.

   3x − 2 ______ 2   = x + 4 Apply the one to one property of a logarithm.

 3x − 2 = 2x + 8 Multiply both sides of the equation by 2.

 x = 10 Subtract 2x and add 2.
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To check the result, substitute x = 10 into log(3x − 2) − log(2) = log(x + 4).

 log(3(10) − 2) − log(2) = log((10) + 4)

 log(28) − log(2) = log(14)

 log     28 __ 2     = log(14) The solution checks.

using the one-to-one property of logarithms to solve logarithmic equations
For any algebraic expressions S and T and any positive real number b, where b ≠ 1, 

logb(S) = logb(T) if and only if S = T

Note, when solving an equation involving logarithms, always check to see if the answer is correct or if it is an 
extraneous solution.

How To…
Given an equation containing logarithms, solve it using the one-to-one property.

1. Use the rules of logarithms to combine like terms, if necessary, so that the resulting equation has the form 
logbS = logbT.

2. Use the one-to-one property to set the arguments equal.
3. Solve the resulting equation, S = T, for the unknown.

Example 12  Solving an Equation Using the One-to-One Property of Logarithms

Solve ln(x2) = ln(2x + 3).

Solution

 ln(x2) = ln(2x + 3)

 x2 = 2x + 3  Use the one-to-one property of the logarithm.

 x2 − 2x − 3 = 0  Get zero on one side before factoring.

 (x − 3)(x + 1) = 0 Factor using FOIL.

 x − 3 = 0 or x + 1 = 0  If a product is zero, one of the factors must be zero.

 x = 3 or x = −1 Solve for x.

Analysi s There are two solutions: 3 or −1. The solution −1 is negative, but it checks when substituted into the original 
equation because the argument of the logarithm functions is still positive.

Try It #12

Solve ln(x2) = ln(1).

Solving Applied Problems Using exponential and logarithmic equations
In previous sections, we learned the properties and rules for both exponential and logarithmic functions. We have seen 
that any exponential function can be written as a logarithmic function and vice versa. We have used exponents to solve 
logarithmic equations and logarithms to solve exponential equations. We are now ready to combine our skills to solve 
equations that model real-world situations, whether the unknown is in an exponent or in the argument of a logarithm.

One such application is in science, in calculating the time it takes for half of the unstable material in a sample of a 
radioactive substance to decay, called its half-life. Table 1 lists the half-life for several of the more common radioactive 
substances.
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Substance Use Half-life
gallium-67 nuclear medicine 80 hours
cobalt-60 manufacturing 5.3 years

technetium-99m nuclear medicine 6 hours
americium-241 construction 432 years

carbon-14 archeological dating 5,715 years
uranium-235 atomic power 703,800,000 years

Table 1

We can see how widely the half-lives for these substances vary. Knowing the half-life of a substance allows us to 
calculate the amount remaining after a specified time. We can use the formula for radioactive decay:

 A(t) = A0  e    
ln(0.5) _____ 

T
  t  

 A(t) = A0e   ln(0.5) 
  t __ 
T
  
 
 

 A(t) = A0 (e ln(0.5))   
 t _ 
T

   

 A(t) = A0     1 __ 2     
  t _ 
T

  
   

where
•	A0 is the amount initially present
•	 T is the half-life of the substance
•	 t is the time period over which the substance is studied
•	 y is the amount of the substance present after time t

Example 13  Using the Formula for Radioactive Decay to Find the Quantity of a Substance

How long will it take for ten percent of a 1,000-gram sample of uranium-235 to decay?

Solution y = 1000 e    
ln(0.5) __________ 703,800,000  t  

 900 = 1000 e    
ln(0.5) __________ 703,800,000  t    After 10% decays, 900 grams are left.

 0.9 =  e    
ln(0.5) __________ 703,800,000  t   Divide by 1000.

 ln(0.9) = ln    e    
ln(0.5) __________ 703,800,000  t     Take ln of both sides.

 ln(0.9) =   
ln(0.5)

 __ 703,800,000  t  ln(eM) = M

 t = 703,800,000 ×   
ln(0.9)

 _ 
ln(0.5)

  years Solve for t.

 t ≈ 106,979,777 years

Analysi s Ten percent of 1,000 grams is 100 grams. If 100 grams decay, the amount of uranium-235 remaining is 900 
grams.

Try It #13

How long will it take before twenty percent of our 1,000-gram sample of uranium-235 has decayed?

Access these online resources for additional instruction and practice with exponential and logarithmic equations.

•	 Solving logarithmic equations (http://openstaxcollege.org/l/solvelogeq)

•	 Solving exponential equations with logarithms (http://openstaxcollege.org/l/solveexplog)

http://openstaxcollege.org/l/solvelogeq
http://openstaxcollege.org/l/solveexplog
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4.6 SeCTIOn exeRCISeS

VeRBAl

1. How can an exponential equation be solved? 2. When does an extraneous solution occur? How can 
an extraneous solution be recognized?

3. When can the one-to-one property of logarithms be 
used to solve an equation? When can it not be used?

AlGeBRAIC
For the following exercises, use like bases to solve the exponential equation.

4. 4−3v − 2 = 4−v
5. 64 ⋅ 43x = 16 6. 32x + 1 ⋅ 3x = 243

7. 2−3n ⋅   1 _ 4   = 2n + 2 8. 625 ⋅ 53x + 3 = 125 9.   363b
 _ 

362b
   = 216 2 − b

10.     1 _ 
64

    
3n

 ⋅ 8 = 26

For the following exercises, use logarithms to solve.
11. 9x − 10 = 1 12. 2e 6x = 13 13. e r + 10 − 10 = −42

14. 2 ⋅ 109a = 29 15.  −8 ⋅ 10 p + 7 − 7 = −24 16. 7e 3n − 5 + 5 = −89

17. e −3k + 6 = 44 18.  −5e 9x − 8 − 8 = −62 19.  −6e 9x + 8 + 2 = −74
20. 2x + 1 = 52x − 1 21. e 2x − e x − 132 = 0 22. 7e8x + 8 − 5 = −95

23. 10e 8x + 3 + 2 = 8 24. 4e 3x + 3 − 7 = 53 25. 8e−5x − 2 − 4 = −90

26. 32x + 1 = 7x − 2 27. e 2x − e x − 6 = 0 28. 3e 3 − 3x + 6 = −31

For the following exercises, use the definition of a logarithm to rewrite the equation as an exponential equation.

29. log     1 _ 100     = −2 30. log324(18) =   1 _ 2  

For the following exercises, use the definition of a logarithm to solve the equation.

31. 5log7(n) = 10 32.  −8log9(x) = 16 33. 4 + log2(9k) = 2
34. 2log(8n + 4) + 6 = 10 35. 10 − 4ln(9 − 8x) = 6

For the following exercises, use the one-to-one property of logarithms to solve.
36. ln(10 − 3x) = ln(−4x) 37. log13(5n − 2) = log13(8 − 5n) 38. log(x + 3) − log(x) = log(74)

39. ln(−3x) = ln(x2 − 6x) 40. log4(6 − m) = log43(m) 41. ln(x − 2) − ln(x) = ln(54)

42. log9(2n2 − 14n)= log9(−45 + n2) 43. ln(x2 − 10) + ln(9) = ln(10)

For the following exercises, solve each equation for x.
44. log(x + 12) = log(x) + log(12) 45. ln(x) + ln(x − 3) = ln(7x) 46. log2(7x + 6) = 3
47. ln(7) + ln(2 − 4x2) = ln(14) 48. log8(x + 6) − log8(x) = log8(58) 49. ln(3) − ln(3 − 3x) = ln(4)
50. log3(3x) − log3(6) = log3(77)

GRAPHICAl
For the following exercises, solve the equation for x, if there is a solution. Then graph both sides of the equation, and 
observe the point of intersection (if it exists) to verify the solution.

51. log9(x) − 5 = −4 52. log3(x) + 3 = 2 53. ln(3x) = 2

54. ln(x − 5) = 1 55. log(4) + log(−5x) = 2 56.  −7 + log3 (4 − x) = −6
57. ln(4x − 10) − 6 = −5 58. log(4 − 2x) = log(−4x) 59. log11(−2x2 − 7x) = log11(x − 2)

60. ln(2x + 9) = ln(−5x) 61. log9(3 − x) = log9(4x − 8) 62. log(x2 + 13) = log(7x + 3)

63.   3 _ 
log2(10)

   − log(x − 9) = log(44) 64. ln(x) − ln(x + 3) = ln(6)
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For the following exercises, solve for the indicated value, and graph the situation showing the solution point.

65. An account with an initial deposit of $6,500 earns 
7.25% annual interest, compounded continuously.  
How much will the account be worth after 20 years?

66. The formula for measuring sound intensity in 
decibels D is defined by the equation D = 10 log     I __ I0

    ,  
where I is the intensity of the sound in watts per 
square meter and I0 = 10−12 is the lowest level of 
sound that the average person can hear. How many 
decibels are emitted from a jet plane with a sound 
intensity of 8.3 ⋅ 102 watts per square meter?

67. The population of a small town is modeled by the 
equation P = 1650e0.5t where t is measured in years.  
In approximately how many years will the town’s 
population reach 20,000?

TeCHnOlOGY

For the following exercises, solve each equation by rewriting the exponential expression using the indicated logarithm. 
Then use a calculator to approximate the variable to 3 decimal places.

68. 1000(1.03)t = 5000 using the common log. 69. e5x = 17 using the natural log
70. 3(1.04)3t = 8 using the common log 71. 34x − 5 = 38 using the common log
72. 50e−0.12t = 10 using the natural log

For the following exercises, use a calculator to solve the equation. Unless indicated otherwise, round all answers to 
the nearest ten-thousandth.

 
73. 7e3x − 5 + 7.9 = 47 74. ln(3) + ln(4.4x + 6.8) = 2 75. log(−0.7x − 9) = 1 + 5log(5)

76. Atmospheric pressure P in pounds per square inch is 
represented by the formula P = 14.7e−0.21x, where x is 
the number of miles above sea level. To the nearest 
foot, how high is the peak of a mountain with an 
atmospheric pressure of 8.369 pounds per square 
inch? (Hint: there are 5,280 feet in a mile)

77. The magnitude M of an earthquake is represented by 

the equation M =   2 _ 3   log     E __ E0

     where E is the amount 

of energy released by the earthquake in joules and  
E0 = 104.4 is the assigned minimal measure released by 
an earthquake. To the nearest hundredth, what would 
the magnitude be of an earthquake releasing  
1.4 · 1013 joules of energy?

exTenSIOnS

78. Use the definition of a logarithm along with the one-
to-one property of logarithms to prove that blogb x = x.

79. Recall the formula for continually compounding 
interest, y = Ae kt. Use the definition of a logarithm 
along with properties of logarithms to solve the 
formula for time t such that t is equal to a single 
logarithm.

80. Recall the compound interest formula A = a   1 +   r _ 
k

    kt.  
Use the definition of a logarithm along with 
properties of logarithms to solve the formula for time t.

81. Newton’s Law of Cooling states that the temperature 
T of an object at any time t can be described by the 
equation T = Ts + (T0 − Ts)e−kt, where Ts is the 
temperature of the surrounding environment, T0 
is the initial temperature of the object, and k is the 
cooling rate. Use the definition of a logarithm along 
with properties of logarithms to solve the formula for 
time t such that t is equal to a single logarithm.
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Model exponential growth and decay.

•	  Use Newton’s Law of Cooling.

•	  Use logistic-growth models.

•	  Choose an appropriate model for data.

•	  Express an exponential model in base e.

4.7 exPOnenTIAl AnD lOGARITHMIC MODelS

Figure 1 A nuclear research reactor inside the neely nuclear Research Center on the Georgia Institute of Technology campus. (credit: Georgia Tech Research Institute)

We have already explored some basic applications of exponential and logarithmic functions. In this section, we explore 
some important applications in more depth, including radioactive isotopes and Newton’s Law of Cooling.

Modeling exponential Growth and Decay
In real-world applications, we need to model the behavior of a function. In mathematical modeling, we choose a 
familiar general function with properties that suggest that it will model the real-world phenomenon we wish to analyze. 
In the case of rapid growth, we may choose the exponential growth function:

y = A0e
 kt

where A0 is equal to the value at time zero, e is Euler’s constant, and k is a positive constant that determines the rate 
(percentage) of growth. We may use the exponential growth function in applications involving doubling time, the time 
it takes for a quantity to double. Such phenomena as wildlife populations, financial investments, biological samples, 
and natural resources may exhibit growth based on a doubling time. In some applications, however, as we will see 
when we discuss the logistic equation, the logistic model sometimes fits the data better than the exponential model.

On the other hand, if a quantity is falling rapidly toward zero, without ever reaching zero, then we should probably 
choose the exponential decay model. Again, we have the form y = A0e

 kt where A0 is the starting value, and e is Euler’s 
constant. Now k is a negative constant that determines the rate of decay. We may use the exponential decay model 
when we are calculating half-life, or the time it takes for a substance to exponentially decay to half of its original 
quantity. We use half-life in applications involving radioactive isotopes. 
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In our choice of a function to serve as a mathematical model, we often use data points gathered by careful observation 
and measurement to construct points on a graph and hope we can recognize the shape of the graph. Exponential 
growth and decay graphs have a distinctive shape, as we can see in Figure 2 and Figure 3. It is important to remember 
that, although parts of each of the two graphs seem to lie on the x-axis, they are really a tiny distance above the x-axis.
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Figure 2 A graph showing exponential  
growth. The equation is y  = 2e 3x.
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Figure 3 A graph showing exponential  
decay. The equation is y  = 3e −2x.

Exponential growth and decay often involve very large or very small numbers. To describe these numbers, we often use 
orders of magnitude. The order of magnitude is the power of ten, when the number is expressed in scientific notation, 
with one digit to the left of the decimal. For example, the distance to the nearest star, Proxima Centauri, measured in 
kilometers, is 40,113,497,200,000 kilometers. Expressed in scientific notation, this is 4.01134972 × 1013. So, we could 
describe this number as having order of magnitude 1013.

characteristics of the exponential function, y = A0e kt

An exponential function with the form y = A0e
 kt has the following characteristics: 

•	 one-to-one function  
•	 horizontal asymptote: y = 0
•	 domain: ( –∞, ∞)
•	 range: (0, ∞)
•	 x-intercept: none
•	 y-intercept: (0, A0)
•	 increasing if k > 0 (see Figure 4)
•	 decreasing if k < 0 (see Figure 4)

t t

y y

y = 0 y = 0

y = A0ekt

k > 0
y = A0ekt

k < 0

–

–

(0, A0) (0, A0)

(             )1
k , A0e (               )1

k , A0e

(             )1
k

A0
e, (           )1

k
A0
e,

Figure 4 An exponential function models exponential growth  
when k > 0 and exponential decay when k < 0.

Example 1 Graphing Exponential Growth

A population of bacteria doubles every hour. If the culture started with 10 bacteria, graph the population as a function 
of time.

Solution When an amount grows at a fixed percent per unit time, the growth is exponential. To find A0 we use the 
fact that A0 is the amount at time zero, so A0 = 10. To find k, use the fact that after one hour (t = 1) the population 
doubles from 10 to 20. The formula is derived as follows
 20 = 10e k ⋅ 1

 2 = e k Divide by 10
 ln2 = k Take the natural logarithm
so k = ln(2). Thus the equation we want to graph is y = 10e(ln2)t = 10(eln2)t = 10 · 2t. The graph is shown in Figure 5.
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Figure 5 The graph of y = 10e (ln2)t.

Analysi s The population of bacteria after ten hours is 10,240. We could describe this amount is being of the order of 
magnitude 104. The population of bacteria after twenty hours is 10,485,760 which is of the order of magnitude 10 7, so we 
could say that the population has increased by three orders of magnitude in ten hours.

Half-Life

We now turn to exponential decay. One of the common terms associated with exponential decay, as stated above, is  
half-life, the length of time it takes an exponentially decaying quantity to decrease to half its original amount. Every 
radioactive isotope has a half-life, and the process describing the exponential decay of an isotope is called radioactive 
decay.

To find the half-life of a function describing exponential decay, solve the following equation:

  1 __ 2  A0 = A0e
 kt

We find that the half-life depends only on the constant k and not on the starting quantity A0.

The formula is derived as follows
   1 __ 2  A0 = A0e

 kt

   1 __ 2   = e kt Divide by A0.

 ln   1 __ 2   = kt Take the natural log.

 − ln(2) = kt Apply laws of logarithms.

 −    ln(2) ____ k   = t Divide by k.

Since t, the time, is positive, k must, as expected, be negative. This gives us the half-life formula

 t = −    ln(2) ____ k  

How To…
Given the half-life, find the decay rate.
1. Write A = A0 e

kt.

2. Replace A by   1 _ 2  A0 and replace t by the given half-life.

3. Solve to find k. Express k as an exact value (do not round).

Note: It is also possible to find the decay rate using k = −   
ln(2)

 _ t  .
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Example 2 Finding the Function that Describes Radioactive Decay

The half-life of carbon-14 is 5,730 years. Express the amount of carbon-14 remaining as a function of time, t.
Solution This formula is derived as follows.

 A = A0e
 kt The continuous growth formula.

 0.5A0 = A0e
 k ⋅ 5730 Substitute the half-life for t and 0.5A0 for f(t).

 0.5 = e5730k Divide by A0.
  ln(0.5) = 5730k Take the natural log of both sides.

 k =   ln(0.5) ______ 5730   Divide by the coefficient of k.

 A = A0 e      ln(0.5) ______ 5730    t   Substitute for k in the continuous growth formula.

The function that describes this continuous decay is f(t) = A0 e      ln(0.5) ______ 5730    t . We observe that the coefficient of t,  

  
ln(0.5)

 _ 5730   ≈ −1.2097 is negative, as expected in the case of exponential decay.

Try It #14

The half-life of plutonium-244 is 80,000,000 years. Find function gives the amount of carbon-14 remaining as a 
function of time, measured in years.

Radiocarbon Dating

The formula for radioactive decay is important in radiocarbon dating, which is used to calculate the approximate date 
a plant or animal died. Radiocarbon dating was discovered in 1949 by Willard Libb y, who won a Nobel Prize for his 
discovery. It compares the difference between the ratio of two isotopes of carbon in an organic artifact or fossil to the 
ratio of those two isotopes in the air. It is believed to be accurate to within about 1% error for plants or animals that 
died within the last 60,000 years.

Carbon-14 is a radioactive isotope of carbon that has a half-life of 5,730 years. It occurs in small quantities in the 
carbon dioxide in the air we breathe. Most of the carbon on earth is carbon-12, which has an atomic weight of 12 and 
is not radioactive. Scientists have determined the ratio of carbon-14 to carbon-12 in the air for the last 60,000 years, 
using tree rings and other organic samples of known dates—although the ratio has changed slightly over the centuries.

As long as a plant or animal is alive, the ratio of the two isotopes of carbon in its body is close to the ratio in the 
atmosphere. When it dies, the carbon-14 in its body decays and is not replaced. By comparing the ratio of carbon-14 
to carbon-12 in a decaying sample to the known ratio in the atmosphere, the date the plant or animal died can be 
approximated.

Since the half-life of carbon-14 is 5,730 years, the formula for the amount of carbon-14 remaining after t years is

 A ≈ A0 e      ln(0.5) ______ 5730    t 
where

•	A is the amount of carbon-14 remaining
•	A0 is the amount of carbon-14 when the plant or animal began decaying.

This formula is derived as follows:
 A = A0e

 kt The continuous growth formula.
 0.5A0 = A0e

 k ⋅ 5730 Substitute the half-life for t and 0.5A0 for f (t).
 0.5 = e5730k Divide by A0.
 ln(0.5) = 5730k Take the natural log of both sides.

 k =   ln(0.5) ______ 5730   Divide by the coefficient of k.

 A = A0 e       ln(0.5) ______ 5730    t  Substitute for r in the continuous growth formula.
To find the age of an object, we solve this equation for t:

 t =    
ln    A _ 

A0
    
 _ 

−0.000121  
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Out of necessity, we neglect here the many details that a scientist takes into consideration when doing carbon-14 
dating, and we only look at the basic formula. The ratio of carbon-14 to carbon-12 in the atmosphere is approximately 
0.0000000001%. Let r be the ratio of carbon-14 to carbon-12 in the organic artifact or fossil to be dated, determined 
by a method called liquid scintillation. From the equation A ≈ A0e

−0.000121t we know the ratio of the percentage of 
carbon-14 in the object we are dating to the percentage of carbon-14 in the atmosphere is r =   A __ A0

  ≈ e−0.000121t. We solve 
this equation for t, to get

 t =   
ln(r)

 _ 
−0.000121  

How To…
Given the percentage of carbon-14 in an object, determine its age.

1. Express the given percentage of carbon-14 as an equivalent decimal, k.

2. Substitute for k in the equation t =   ln(r) _________ 
−0.000121   and solve for the age, t.

Example 3 Finding the Age of a Bone 

A bone fragment is found that contains 20% of its original carbon-14. To the nearest year, how old is the bone?

Solution We substitute 20% = 0.20 for k in the equation and solve for t :

 t =   
ln(r)

 _ 
−0.000121   Use the general form of the equation.

 =   
ln(0.20)

 _ 
−0.000121   Substitute for r.

 ≈ 13301 Round to the nearest year.

The bone fragment is about 13,301 years old.

Analysi s The instruments that measure the percentage of carbon-14 are extremely sensitive and, as we mention above, 
a scientist will need to do much more work than we did in order to be satisfied. Even so, carbon dating is only accurate 
to about 1%, so this age should be given as 13,301 years ± 1% or 13,301 years ± 133 years.

Try It #15

Cesium-137 has a half-life of about 30 years. If we begin with 200 mg of cesium-137, will it take more or less than  
230 years until only 1 milligram remains?

Calculating Doubling Time

For decaying quantities, we determined how long it took for half of a substance to decay. For growing quantities, 
we might want to find out how long it takes for a quantity to double. As we mentioned above, the time it takes for a 
quantity to double is called the doubling time.

Given the basic exponential growth equation A = A0e kt, doubling time can be found by solving for when the original 
quantity has doubled, that is, by solving 2A0 = A0e kt.

The formula is derived as follows:

 2A0 = A0e kt

 2 = e kt Divide by A0.

 ln(2) = kt Take the natural logarithm.

 t =   
ln(2)

 _ 
k

   Divide by the coefficient of t.

Thus the doubling time is

 t =   
ln(2)

 _ 
k
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Example 4 Finding a Function That Describes Exponential Growth

According to Moore’s Law, the doubling time for the number of transistors that can be put on a computer chip is 
approximately two years. Give a function that describes this behavior.

Solution The formula is derived as follows:

 t =   ln(2) ___ k   The doubling time formula.

 2 =   ln(2) ___ k   Use a doubling time of two years.

 k =   ln(2) ___ 2   Multiply by k and divide by 2.

 A = A0 e   
ln(2) _____ 2  t   Substitute k into the continuous growth formula.

The function is A0 e   
ln(2) _____ 2  t .

Try It #16

Recent data suggests that, as of 2013, the rate of growth predicted by Moore’s Law no longer holds. Growth has slowed 
to a doubling time of approximately three years. Find the new function that takes that longer doubling time into 
account.

Using newton’s law of Cooling
Exponential decay can also be applied to temperature. When a hot object is left in surrounding air that is at a lower 
temperature, the object’s temperature will decrease exponentially, leveling off as it approaches the surrounding air 
temperature. On a graph of the temperature function, the leveling off will correspond to a horizontal asymptote at 
the temperature of the surrounding air. Unless the room temperature is zero, this will correspond to a vertical shift of 
the generic exponential decay function. This translation leads to Newton’s Law of Cooling, the scientific formula for 
temperature as a function of time as an object’s temperature is equalized with the ambient temperature 

 T(t) = Ae kt + Ts

This formula is derived as follows:

 T(t) = Ab ct + Ts

 T(t) = Ae ln(bct) + Ts Laws of logarithms.

 T(t) = Ae ctln(b) + Ts Laws of logarithms.

 T(t) = Ae kt + Ts Rename the constant cln(b), calling it k.

Newton’s law of cooling
The temperature of an object, T, in surrounding air with temperature Ts will behave according to the formula

T(t) = Ae kt + Ts

where
•	 t is time
•	 A is the difference between the initial temperature of the object and the surroundings
•	 k is a constant, the continuous rate of cooling of the object

How To…
Given a set of conditions, apply Newton’s Law of Cooling.

1. Set Ts equal to the y-coordinate of the horizontal asymptote (usually the ambient temperature).
2. Substitute the given values into the continuous growth formula T(t) = Ae kt + Ts to find the parameters A and k.
3. Substitute in the desired time to find the temperature or the desired temperature to find the time.
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Example 5 Using Newton’s Law of Cooling

A cheesecake is taken out of the oven with an ideal internal temperature of 165°F, and is placed into a 35°F 
refrigerator. After 10 minutes, the cheesecake has cooled to 150°F. If we must wait until the cheesecake has cooled 
to 70°F before we eat it, how long will we have to wait?

Solution Because the surrounding air temperature in the refrigerator is 35 degrees, the cheesecake’s temperature 
will decay exponentially toward 35, following the equation

T(t) = Ae kt + 35

We know the initial temperature was 165, so T(0) = 165.

 165 = Ae k0 + 35 Substitute (0, 165).

 A = 130 Solve for A.

We were given another data point, T(10) = 150, which we can use to solve for k.

 150 = 130e k10 + 35 Substitute (10, 150).

 115 = 130e k10 Subtract 35.

   115 ___ 130   = e 10k Divide by 130.

 ln    115 ___ 130     = 10k Take the natural log of both sides.

 k =     
ln    115 ___ 130    

 _ 
10

   ≈ −0.0123 Divide by the coefficient of k.

This gives us the equation for the cooling of the cheesecake: T(t) = 130e −0.0123t + 35.

Now we can solve for the time it will take for the temperature to cool to 70 degrees.

 70 = 130e−0.0123t + 35 Substitute in 70 for T(t).

 35 = 130e−0.0123t Subtract 35.

   35 ___ 130   = e−0.0123t Divide by 130.

 ln    35 ___ 130     = −0.0123t Take the natural log of both sides

 t =     
ln    35 ___ 130    

 _ 
−0.0123

   ≈ 106.68 Divide by the coefficient of t.

It will take about 107 minutes, or one hour and 47 minutes, for the cheesecake to cool to 70°F.

Try It #17

A pitcher of water at 40 degrees Fahrenheit is placed into a 70 degree room. One hour later, the temperature has risen 
to 45 degrees. How long will it take for the temperature to rise to 60 degrees?

Using logistic Growth Models
Exponential growth cannot continue forever. Exponential models, while they may be useful in the short term, tend to 
fall apart the longer they continue. Consider an aspiring writer who writes a single line on day one and plans to double 
the number of lines she writes each day for a month. By the end of the month, she must write over 17 billion lines, or 
one-half-billion pages. It is impractical, if not impossible, for anyone to write that much in such a short period of time. 
Eventually, an exponential model must begin to approach some limiting value, and then the growth is forced to slow. 
For this reason, it is often better to use a model with an upper bound instead of an exponential growth model, though 
the exponential growth model is still useful over a short term, before approaching the limiting value.
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The logistic growth model is approximately exponential at first, but it has a reduced rate of growth as the output 
approaches the model’s upper bound, called the carrying capacity. For constants a, b, and c, the logistic growth of a 
population over time x is represented by the model

f (x) =   c _______ 1 + ae−b x  
The graph in Figure 6 shows how the growth rate changes over time. The graph increases from left to right, but the 
growth rate only increases until it reaches its point of maximum growth rate, at which point the rate of increase 
decreases.

xInitial value of population
Point of maximum growth

Carrying capacity
f (x)

f (x) =

y = c

(           )0 c
1+a,

c
1 + ae–bx

(             )c
2

ln(a)
b ,

Figure 6

logistic growth
The logistic growth model is

f (x) =   c _ 
1 + ae−b x

  
where

•	   c _____ 1 + a   is the initial value

•	 c is the carrying capacity, or limiting value
•	 b is a constant determined by the rate of growth.

Example 6 Using the Logistic-Growth Model

An influenza epidemic spreads through a population rapidly, at a rate that depends on two factors: The more people 
who have the flu, the more rapidly it spreads, and also the more uninfected people there are, the more rapidly it spreads. 
These two factors make the logistic model a good one to study the spread of communicable diseases. And, clearly, there 
is a maximum value for the number of people infected: the entire population.

For example, at time t = 0 there is one person in a community of 1,000 people who has the flu. So, in that community, 
at most 1,000 people can have the flu. Researchers find that for this particular strain of the flu, the logistic growth 
constant is b = 0.6030. Estimate the number of people in this community who will have had this flu after ten days. 
Predict how many people in this community will have had this flu after a long period of time has passed.

Solution We substitute the given data into the logistic growth model

f (x) =   c _______ 1 + ae−b x  

Because at most 1,000 people, the entire population of the community, can get the flu, we know the limiting value is  
c = 1000. To find a, we use the formula that the number of cases at time t = 0 is   c _ 1 + a   = 1, from which it follows that a = 999. 

This model predicts that, after ten days, the number of people who have had the flu is f (x) =   1000 ____________  1 + 999e−0.6030x   ≈ 293.8. Because 

the actual number must be a whole number (a person has either had the flu or not) we round to 294. In the long term, the 
number of people who will contract the flu is the limiting value, c = 1000.

Analysi s Remember that, because we are dealing with a virus, we cannot predict with certainty the number of people 
infected. The model only approximates the number of people infected and will not give us exact or actual values. The graph in  
Figure 7 gives a good picture of how this model fits the data.
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Figure 7 The graph of f (x) =   1000 __  
1 + 999e −0.6030x

  

Try It #18

Using the model in Example 6, estimate the number of cases of flu on day 15.

Choosing an Appropriate Model for Data
Now that we have discussed various mathematical models, we need to learn how to choose the appropriate model 
for the raw data we have. Many factors influence the choice of a mathematical model, among which are experience, 
scientific laws, and patterns in the data itself. Not all data can be described by elementary functions. Sometimes, a 
function is chosen that approximates the data over a given interval. For instance, suppose data were gathered on the 
number of homes bought in the United States from the years 1960 to 2013. After plotting these data in a scatter plot, 
we notice that the shape of the data from the years 2000 to 2013 follow a logarithmic curve. We could restrict the 
interval from 2000 to 2010, apply regression analysis using a logarithmic model, and use it to predict the number of 
home buyers for the year 2015.

Three kinds of functions that are often useful in mathematical models are linear functions, exponential functions, and 
logarithmic functions. If the data lies on a straight line, or seems to lie approximately along a straight line, a linear 
model may be best. If the data is non-linear, we often consider an exponential or logarithmic model, though other 
models, such as quadratic models, may also be considered.

In choosing between an exponential model and a logarithmic model, we look at the way the data curves. This is called 
the concavity. If we draw a line between two data points, and all (or most) of the data between those two points lies 
above that line, we say the curve is concave down. We can think of it as a bowl that bends downward and therefore 
cannot hold water. If all (or most) of the data between those two points lies below the line, we say the curve is concave 
up. In this case, we can think of a bowl that bends upward and can therefore hold water. An exponential curve, whether 
rising or falling, whether representing growth or decay, is always concave up away from its horizontal asymptote. A 
logarithmic curve is always concave away from its vertical asymptote. In the case of positive data, which is the most 
common case, an exponential curve is always concave up, and a logarithmic curve always concave down.

A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a certain point, 
called a point of inflection.

After using the graph to help us choose a type of function to use as a model, we substitute points, and solve to find the 
parameters. We reduce round-off error by choosing points as far apart as possible.
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Example 7 Choosing a Mathematical Model

Does a linear, exponential, logarithmic, or logistic model best fit the values listed in Table 1? Find the model, and use 
a graph to check your choice.

x 1 2 3 4 5 6 7 8 9

y 0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

Table 1

Solution First, plot the data on a graph as in Figure 8. For the purpose of graphing, round the data to two significant 
digits.
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Figure 8

Clearly, the points do not lie on a straight line, so we reject a linear model. If we draw a line between any two of the 
points, most or all of the points between those two points lie above the line, so the graph is concave down, suggesting 
a logarithmic model. We can try y = aln(b x). Plugging in the first point, (1,0), gives 0 = alnb.

We reject the case that a = 0 (if it were, all outputs would be 0), so we know ln(b) = 0. Thus b = 1 and y = aln(x). Next 
we can use the point (9,4.394) to solve for a:
 y = aln(x)

 4.394 = aln(9)

 a =   4.394 _____ ln(9)  

Because a =   4.394 _ 
ln(9)

   ≈ 2, an appropriate model for the data is y = 2ln(x).

To check the accuracy of the model, we graph the function together with the given points as in Figure 9.
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x = 0

y = 2 ln(x) 

Figure 9  The graph of y = 2lnx.

We can conclude that the model is a good fit to the data.

Compare Figure 9 to the graph of y = ln(x2) shown in Figure 10.
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Figure 10  The graph of y = ln(x 2)

The graphs appear to be identical when x > 0. A quick check confirms this conclusion: y = ln(x 2) = 2ln(x) for x > 0.

However, if x < 0, the graph of y = ln(x 2) includes a “extra” branch, as shown in Figure 11. This occurs because, while  
y = 2ln(x) cannot have negative values in the domain (as such values would force the argument to be negative), the 
function y = ln(x 2) can have negative domain values.
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Figure 11

Try It #19

Does a linear, exponential, or logarithmic model best fit the data in Table 2? Find the model.

x 1 2 3 4 5 6 7 8 9

y 3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034

Table 2 

expressing an exponential Model in Base e
While powers and logarithms of any base can be used in modeling, the two most common bases are 10 and e. In science 
and mathematics, the base e is often preferred. We can use laws of exponents and laws of logarithms to change any 
base to base e.

How To…
Given a model with the form y = ab x, change it to the form y = A0e kx.

1. Rewrite y = ab x as y = aeln(b x).
2. Use the power rule of logarithms to rewrite y as y = ae xln(b) = aeln(b)x.
3. Note that a = A0 and k = ln(b) in the equation y = A0e kx.
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Example 8 Changing to base e

Change the function y = 2.5(3.1)x so that this same function is written in the form y = A0e
 kx.

Solution

The formula is derived as follows

 y = 2.5(3.1)x

 = 2.5e ln(3.1x ) Insert exponential and its inverse.

 = 2.5e xln3.1 Laws of logs.

 = 2.5e (ln3.1)x Commutative law of multiplication

Try It #20

Change the function y = 3(0.5)x to one having e as the base.

 

Access these online resources for additional instruction and practice with exponential and logarithmic models.

•	 logarithm Application – pH (http://openstaxcollege.org/l/logph)

•	 exponential Model – Age Using Half-life (http://openstaxcollege.org/l/expmodelhalf)

•	 newton’s law of Cooling (http://openstaxcollege.org/l/newtoncooling)

•	 exponential Growth Given Doubling Time (http://openstaxcollege.org/l/expgrowthdbl)

•	 exponential Growth – Find Initial Amount Given Doubling Time (http://openstaxcollege.org/l/initialdouble)

http://openstaxcollege.org/l/logph
http://openstaxcollege.org/l/expmodelhalf
http://openstaxcollege.org/l/newtoncooling
http://openstaxcollege.org/l/expgrowthdbl
http://openstaxcollege.org/l/initialdouble
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4.7 SeCTIOn exeRCISeS

VeRBAl
1. With what kind of exponential model would half-life 

be associated? What role does half-life play in these 
models?

2. What is carbon dating? Why does it work? Give an 
example in which carbon dating would be useful.

3. With what kind of exponential model would 
doubling time be associated? What role does 
doubling time play in these models?

4. Define Newton’s Law of Cooling. Then name at least 
three real-world situations where Newton’s Law of 
Cooling would be applied.

5. What is an order of magnitude? Why are orders of 
magnitude useful? Give an example to explain.

nUMeRIC

6. The temperature of an object in degrees Fahrenheit after t minutes is represented by the equation 
T(t) = 68e−0.0174t + 72. To the nearest degree, what is the temperature of the object after one and a half hours?

For the following exercises, use the logistic growth model f (x) =   150 _ 
1 + 8e−2x

  .

7. Find and interpret f (0). Round to the nearest tenth. 8. Find and interpret f (4). Round to the nearest tenth.
9. Find the carrying capacity. 10. Graph the model.

11. Determine whether the data from the table could 
best be represented as a function that is linear, 
exponential, or logarithmic. Then write a formula 
for a model that represents the data.

x –2 –1 0 1 2 3 4 5

f (x) 0.694 0.833 1 1.2 1.44 1.728 2.074 2.488

12. Rewrite f (x) = 1.68(0.65)x as an exponential 
equation with base e to five significant digits.

TeCHnOlOGY
For the following exercises, enter the data from each table into a graphing calculator and graph the resulting scatter 
plots. Determine whether the data from the table could represent a function that is linear, exponential, or logarithmic.

13. x 1 2 3 4 5 6 7 8 9 10

f (x) 2 4.079 5.296 6.159 6.828 7.375 7.838 8.238 8.592 8.908

14. x 1 2 3 4 5 6 7 8 9 10

f (x) 2.4 2.88 3.456 4.147 4.977 5.972 7.166 8.6 10.32 12.383
15. x 4 5 6 7 8 9 10 11 12 13

f (x) 9.429 9.972 10.415 10.79 11.115 11.401 11.657 11.889 12.101 12.295
16. x 1.25 2.25 3.56 4.2 5.65 6.75 7.25 8.6 9.25 10.5

f (x) 5.75 8.75 12.68 14.6 18.95 22.25 23.75 27.8 29.75 33.5

For the following exercises, use a graphing calculator and this scenario: the population of a fish farm in t years is 

modeled by the equation P(t) =   1000 _ 
1 + 9e−0.6t

   .

17. Graph the function. 18. What is the initial population of fish?
19. To the nearest tenth, what is the doubling time for 

the fish population?
20. To the nearest whole number, what will the fish 

population be after 2 years?
21. To the nearest tenth, how long will it take for the 

population to reach 900?
22. What is the carrying capacity for the fish population? 

Justify your answer using the graph of P.
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exTenSIOnS
23. A substance has a half-life of 2.045 minutes. If the 

initial amount of the substance was 132.8 grams, 
how many half-lives will have passed before the 
substance decays to 8.3 grams? What is the total 
time of decay?

24. The formula for an increasing population is given by 
P(t) = P0e rt where P0 is the initial population and  
r > 0. Derive a general formula for the time t it takes 
for the population to increase by a factor of M.

25. Recall the formula for calculating the magnitude of 
an earthquake, M =   2 _ 3  log     S __ S0

    . Show each step for 

solving this equation algebraically for the seismic 
moment S.

26. What is the y-intercept of the logistic growth model  
y =   c ________ 1 + ae−rx  ? Show the steps for calculation. What 
does this point tell us about the population?

27. Prove that b x = e xln(b) for positive b ≠ 1.

ReAl-WORlD APPlICATIOnS
For the following exercises, use this scenario: A doctor prescribes 125 milligrams of a therapeutic drug that decays 
by about 30% each hour.

28. To the nearest hour, what is the half-life of the drug? 29. Write an exponential model representing the 
amount of the drug remaining in the patient’s 
system after t hours. Then use the formula to find 
the amount of the drug that would remain in the 
patient’s system after 3 hours. Round to the nearest 
milligram.

30. Using the model found in the previous exercise, find 
f (10) and interpret the result. Round to the nearest 
hundredth.

For the following exercises, use this scenario: A tumor is injected with 0.5 grams of Iodine-125, which has a decay 
rate of 1.15% per day.

31. To the nearest day, how long will it take for half of 
the Iodine-125 to decay?

32. Write an exponential model representing the 
amount of Iodine-125 remaining in the tumor after 
t days. Then use the formula to find the amount of 
Iodine-125 that would remain in the tumor after 60 
days. Round to the nearest tenth of a gram.

33. A scientist begins with 250 grams of a radioactive 
substance. After 250 minutes, the sample has decayed 
to 32 grams. Rounding to five significant digits, write 
an exponential equation representing this situation. 
To the nearest minute, what is the half-life of this 
substance?

34. The half-life of Radium-226 is 1590 years. What is 
the annual decay rate? Express the decimal result 
to four significant digits and the percentage to two 
significant digits.

35. The half-life of Erbium-165 is 10.4 hours. What is 
the hourly decay rate? Express the decimal result 
to four significant digits and the percentage to two 
significant digits.

36. A wooden artifact from an archeological dig 
contains 60 percent of the carbon-14 that is present 
in living trees. To the nearest year, about how many 
years old is the artifact? (The half-life of carbon-14 is 
5730 years.)

37. A research student is working with a culture of 
bacteria that doubles in size every twenty minutes. 
The initial population count was 1350 bacteria. 
Rounding to five significant digits, write an 
exponential equation representing this situation. To 
the nearest whole number, what is the population 
size after 3 hours?
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For the following exercises, use this scenario: A biologist recorded a count of 360 bacteria present in a culture after 5 
minutes and 1,000 bacteria present after 20 minutes.

38. To the nearest whole number, what was the initial 
population in the culture?

39. Rounding to six significant digits, write an 
exponential equation representing this situation. 
To the nearest minute, how long did it take the 
population to double?

For the following exercises, use this scenario: A pot of boiling soup with an internal temperature of 100° Fahrenheit 
was taken off the stove to cool in a 69° F room. After fifteen minutes, the internal temperature of the soup was 95° F.

40. Use Newton’s Law of Cooling to write a formula that 
models this situation.

41. To the nearest minute, how long will it take the soup 
to cool to 80° F?

42. To the nearest degree, what will the temperature be 
after 2 and a half hours?

For the following exercises, use this scenario: A turkey is taken out of the oven with an internal temperature of 165° 
Fahrenheit and is allowed to cool in a 75° F room. After half an hour, the internal temperature of the turkey is 145° F.

43. Write a formula that models this situation. 44. To the nearest degree, what will the temperature be 
after 50 minutes?

45. To the nearest minute, how long will it take the 
turkey to cool to 110° F?

For the following exercises, find the value of the number shown on each logarithmic scale. Round all answers to the 
nearest thousandth.

46. 

0–1–2–3–4–5 1 2 3 4

log (x)

5

47. 

0–1–2–3–4–5 1 2 3 4

log (x)

5

48. Plot each set of approximate values of intensity of 
sounds on a logarithmic scale: Whisper: 10−10  W ___ m2  , 

Vacuum: 10−4  W ___ m2  , Jet: 102  W ___ m2  

49. Recall the formula for calculating the magnitude 
of an earthquake, M =   2 __ 3  log     S __ S0

    . One earthquake 

has magnitude 3.9 on the MMS scale. If a second 
earthquake has 750 times as much energy as the first, 
find the magnitude of the second quake. Round to 
the nearest hundredth.

For the following exercises, use this scenario: The equation N(t) =   500 _ 
1 + 49e−0.7t

   models the number of people in a town 
who have heard a rumor after t days.

50. How many people started the rumor? 51. To the nearest whole number, how many people will 
have heard the rumor after 3 days?

52. As t increases without bound, what value does N(t) 
approach? Interpret your answer.

For the following exercise, choose the correct answer choice.

53. A doctor and injects a patient with 13 milligrams of radioactive dye that decays exponentially. After 12 minutes, 
there are 4.75 milligrams of dye remaining in the patient’s system. Which is an appropriate model for this 
situation?

 a. f (t) = 13(0.0805)t   b. f (t) = 13e0.9195t   c. f (t) = 13e(−0.0839t)   d. f (t) =   4.75 __________  1 + 13e−0.83925t  
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Build an exponential model from data.

•	  Build a logarithmic model from data. 

•	  Build a logistic model from data.

4.8 FITTInG exPOnenTIAl MODelS TO DATA

In previous sections of this chapter, we were either given a function explicitly to graph or evaluate, or we were given 
a set of points that were guaranteed to lie on the curve. Then we used algebra to find the equation that fit the points 
exactly. In this section, we use a modeling technique called regression analysis to find a curve that models data collected 
from real-world observations. With regression analysis, we don’t expect all the points to lie perfectly on the curve. The 
idea is to find a model that best fits the data. Then we use the model to make predictions about future events.

Do not be confused by the word model. In mathematics, we often use the terms function, equation, and model 
interchangeably, even though they each have their own formal definition. The term model is typically used to indicate 
that the equation or function approximates a real-world situation.

We will concentrate on three types of regression models in this section: exponential, logarithmic, and logistic. Having 
already worked with each of these functions gives us an advantage. Knowing their formal definitions, the behavior of 
their graphs, and some of their real-world applications gives us the opportunity to deepen our understanding. As each 
regression model is presented, key features and definitions of its associated function are included for review. Take a 
moment to rethink each of these functions, reflect on the work we’ve done so far, and then explore the ways regression 
is used to model real-world phenomena.

Building an exponential Model from Data
As we’ve learned, there are a multitude of situations that can be modeled by exponential functions, such as investment 
growth, radioactive decay, atmospheric pressure changes, and temperatures of a cooling object. What do these 
phenomena have in common? For one thing, all the models either increase or decrease as time moves forward. But 
that’s not the whole story. It’s the way data increase or decrease that helps us determine whether it is best modeled by 
an exponential equation. Knowing the behavior of exponential functions in general allows us to recognize when to 
use exponential regression, so let’s review exponential growth and decay.

Recall that exponential functions have the form y = ab x or y = A0e kx. When performing regression analysis, we use 
the form most commonly used on graphing utilities, y = ab x. Take a moment to reflect on the characteristics we’ve 
already learned about the exponential function y = ab x (assume a > 0):

•	 b must be greater than zero and not equal to one.

•	 The initial value of the model is y = a.

•	 If b > 1, the function models exponential growth. As x increases, the outputs of the model increase slowly at 
first, but then increase more and more rapidly, without bound.

•	 If 0 < b < 1, the function models exponential decay. As x increases, the outputs for the model decrease rapidly 
at first and then level off to become asymptotic to the x-axis. In other words, the outputs never become equal 
to or less than zero.

As part of the results, your calculator will display a number known as the correlation coefficient, labeled by the variable 
r, or r 2. (You may have to change the calculator’s settings for these to be shown.) The values are an indication of the 

“goodness of fit” of the regression equation to the data. We more commonly use the value of r 2 instead of r, but the 
closer either value is to 1, the better the regression equation approximates the data.
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exponential regression
Exponential regression is used to model situations in which growth begins slowly and then accelerates rapidly 
without bound, or where decay begins rapidly and then slows down to get closer and closer to zero. We use the 
command “ExpReg” on a graphing utility to fit an exponential function to a set of data points. This returns an 
equation of the form, y = ab x

Note that:

•	 b must be non-negative.

•	 when b > 1, we have an exponential growth model.

•	 when 0 < b < 1, we have an exponential decay model.

How To…
Given a set of data, perform exponential regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.

a. Clear any existing data from the lists.
b. List the input values in the L1 column.
c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.

a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow an exponential pattern.

3. Find the equation that models the data.

a. Select “ExpReg” from the STAT then CALC menu.
b. Use the values returned for a and b to record the model, y = ab  x.

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

Example 1 Using Exponential Regression to Fit a Model to Data

In 2007, a university study was published investigating the crash risk of alcohol impaired driving. Data from 2,871 
crashes were used to measure the association of a person’s blood alcohol level (BAC) with the risk of being in an 
accident. 

Table 1 shows results from the study[24]. The relative risk is a measure of how many times more likely a person is to 
crash. So, for example, a person with a BAC of 0.09 is 3.54 times as likely to crash as a person who has not been 
drinking alcohol.

BAC 0 0.01 0.03 0.05 0.07 0.09

Relative Risk of Crashing 1 1.03 1.06 1.38 2.09 3.54

BAC 0.11 0.13 0.15 0.17 0.19 0.21

Relative Risk of Crashing 6.41 12.6 22.1 39.05 65.32 99.78

Table 1

a.  Let x represent the BAC level, and let y represent the corresponding relative risk. Use exponential regression to fit a model 
to these data.

b.  After 6 drinks, a person weighing 160 pounds will have a BAC of about 0.16. How many times more likely is a person with 
this weight to crash if they drive after having a 6-pack of beer? Round to the nearest hundredth.

24 Source: Indiana University Center for Studies of Law in Action, 2007



CHAPTER 4 exponential and  logarithmic Functions418

Solution

a.  Using the STAT then EDIT menu on a graphing utility, list the BAC values in L1 and the relative risk values in L2. 
Then use the STATPLOT feature to verify that the scatterplot follows the exponential pattern shown in Figure 1:

10

20

30

40

50

60

70

80

90

100

110

.02 .04 .06 .08 .10 .12 .14 .16 .18 .20 .22
x

y

Figure 1

Use the “ExpReg” command from the STAT then CALC menu to obtain the exponential model,

y = 0.58304829(2.20720213E10)x

Converting from scientific notation, we have:

y = 0.58304829(22,072,021,300)x

Notice that r 2 ≈ 0.97 which indicates the model is a good fit to the data. To see this, graph the model in the same 
window as the scatterplot to verify it is a good fit as shown in Figure 2:
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b.  Use the model to estimate the risk associated with a BAC of 0.16. Substitute 0.16 for x in the model and solve for y.
 y = 0.58304829(22,072,021,300)x  Use the regression model found in part (a).

 = 0.58304829(22,072,021,300)0.16 Substitute 0.16 for x.

  ≈ 26.35 Round to the nearest hundredth.

If a 160-pound person drives after having 6 drinks, he or she is about 26.35 times more likely to crash than if driving 
while sober.
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Try It #1

Table 2 shows a recent graduate’s credit card balance each month after graduation.

Month 1 2 3 4 5 6 7 8

Debt ($) 620.00 761.88 899.80 1039.93 1270.63 1589.04 1851.31 2154.92

Table 2 
a.  Use exponential regression to fit a model to these data.
b.  If spending continues at this rate, what will the graduate’s credit card debt be one year after graduating?

Q & A…
Is it reasonable to assume that an exponential regression model will represent a situation indefinitely?

No. Remember that models are formed by real-world data gathered for regression. It is usually reasonable to make 
estimates within the interval of original observation (interpolation). However, when a model is used to make 
predictions, it is important to use reasoning skills to determine whether the model makes sense for inputs far beyond 
the original observation interval (extrapolation).

Building a logarithmic Model from Data
Just as with exponential functions, there are many real-world applications for logarithmic functions: intensity of sound, 
pH levels of solutions, yields of chemical reactions, production of goods, and growth of infants. As with exponential 
models, data modeled by logarithmic functions are either always increasing or always decreasing as time moves 
forward. Again, it is the way they increase or decrease that helps us determine whether a logarithmic model is best.

Recall that logarithmic functions increase or decrease rapidly at first, but then steadily slow as time moves on. By 
reflecting on the characteristics we’ve already learned about this function, we can better analyze real world situations 
that reflect this type of growth or decay. When performing logarithmic regression analysis, we use the form of the 
logarithmic function most commonly used on graphing utilities, y = a + bln(x). For this function

•	All input values, x, must be greater than zero.

•	 The point (1, a) is on the graph of the model.

•	 If b > 0, the model is increasing. Growth increases rapidly at first and then steadily slows over time.

•	 If b < 0, the model is decreasing. Decay occurs rapidly at first and then steadily slows over time.

logarithmic regression
Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then slows 
over time. We use the command “LnReg” on a graphing utility to fit a logarithmic function to a set of data points. 
This returns an equation of the form,

y = a + bln(x)
Note that:
•	 all input values, x, must be non-negative.
•	 when b > 0, the model is increasing.
•	 when b < 0, the model is decreasing.

How To…
Given a set of data, perform logarithmic regression using a graphing utility.

1. Use the STAT then EDIT menu to enter given data.
a. Clear any existing data from the lists.
b. List the input values in the L1 column.
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c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow a logarithmic pattern.

3. Find the equation that models the data.
a. Select “LnReg” from the STAT then CALC menu.
b. Use the values returned for a and b to record the model, y = a + bln(x).

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

Example 2 Using Logarithmic Regression to Fit a Model to Data

Due to advances in medicine and higher standards of living, life expectancy has been increasing in most developed 
countries since the beginning of the 20th century.

Table 3 shows the average life expectancies, in years, of Americans from 1900–2010[25].

Year 1900 1910 1920 1930 1940 1950

Life Expectancy (Years) 47.3 50.0 54.1 59.7 62.9 68.2

Year 1960 1970 1980 1990 2000 2010

Life Expectancy (Years) 69.7 70.8 73.7 75.4 76.8 78.7

Table 3

a.  Let x represent time in decades starting with x = 1 for the year 1900, x = 2 for the year 1910, and so on. Let y 
represent the corresponding life expectancy. Use logarithmic regression to fit a model to these data.

b. Use the model to predict the average American life expectancy for the year 2030.

Solution 

a.  Using the STAT then EDIT menu on a graphing utility, list the years using values 1–12 in L1 and the 
corresponding life expectancy in L2. Then use the STATPLOT feature to verify that the scatterplot follows a 
logarithmic pattern as shown in Figure 3:
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Use the “LnReg” command from the STAT then CALC menu to obtain the logarithmic model, 

y = 42.52722583 + 13.85752327ln(x)

Next, graph the model in the same window as the scatterplot to verify it is a good fit as shown in Figure 4:

25 Source: Center for Disease Control and Prevention, 2013
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b.  To predict the life expectancy of an American in the year 2030, substitute x = 14 for the in the model and solve 
for y:

 y = 42.52722583 + 13.85752327ln(x)  Use the regression model found in part ( a).

 = 42.52722583 + 13.85752327ln(14) Substitute 14 for x.

 ≈ 79.1 Round to the nearest tenth

If life expectancy continues to increase at this pace, the average life expectancy of an American will be 79.1 by 
the year 2030.

Try It #2

Sales of a video game released in the year 2000 took off at first, but then steadily slowed as time moved on. Table 4 
shows the number of games sold, in thousands, from the years 2000–2010. 

Year Number Sold (Thousands)

2000 142

2001 149

2002 154

2003 155

2004 159

2005 161

2006 163

2007 164

2008 164

2009 166

2010 167

Table 4 

 a. Let x represent time in years starting with x = 1 for the year 2000. Let y represent the number of games sold in 
thousands. Use logarithmic regression to fit a model to these data.

b.  If games continue to sell at this rate, how many games will sell in 2015? Round to the nearest thousand.



CHAPTER 4 exponential and  logarithmic Functions422

Building a logistic Model from Data
Like exponential and logarithmic growth, logistic growth increases over time. One of the most notable differences 
with logistic growth models is that, at a certain point, growth steadily slows and the function approaches an upper 
bound, or limiting value. Because of this, logistic regression is best for modeling phenomena where there are limits in 
expansion, such as availability of living space or nutrients.

It is worth pointing out that logistic functions actually model resource-limited exponential growth. There are many 
examples of this type of growth in real-world situations, including population growth and spread of disease, rumors, 
and even stains in fabric. When performing logistic regression analysis, we use the form most commonly used on 
graphing utilities:

y =   c _______ 1 + ae−b x  

Recall that:

•	   c _____ 1 + a   is the initial value of the model.

•	 when b > 0, the model increases rapidly at first until it reaches its point of maximum growth rate,     
ln(a)

 _ 
b

  ,   c _ 2    . At 
that point, growth steadily slows and the function becomes asymptotic to the upper bound y = c.

•	 c is the limiting value, sometimes called the carrying capacity, of the model.

logistic regression
Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows 
to an upper limit. We use the command “Logistic” on a graphing utility to fit a logistic function to a set of data 
points. This returns an equation of the form 

y =   c _______ 1 + ae−b x  
Note that

•	 The initial value of the model is   c _ 1 + a  .

•	 Output values for the model grow closer and closer to y = c as time increases.

How To…
Given a set of data, perform logistic regression using a graphing utility. 

1. Use the STAT then EDIT menu to enter given data.
a. Clear any existing data from the lists.
b. List the input values in the L1 column.
c. List the output values in the L2 column.

2. Graph and observe a scatter plot of the data using the STATPLOT feature.
a. Use ZOOM [9] to adjust axes to fit the data.
b. Verify the data follow a logistic pattern.

3. Find the equation that models the data.
a. Select “Logistic” from the STAT then CALC menu.
b. Use the values returned for a, b, and c to record the model, y =   c _ 

1 + ae−b x
  .

4. Graph the model in the same window as the scatterplot to verify it is a good fit for the data.

Example 3 Using Logistic Regression to Fit a Model to Data

Mobile telephone service has increased rapidly in America since the mid 1990s. Today, almost all residents have cellular 
service. Table 5 shows the percentage of Americans with cellular service between the years 1995 and 2012[26].

26 Source: The World Bankn, 2013
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Year Americans with Cellular Service (%) Year Americans with Cellular Service (%)

1995  12.69 2004 62.852

1996  16.35 2005 68.63

1997  20.29 2006 76.64

1998  25.08 2007 82.47

1999  30.81 2008 85.68

2000  38.75 2009 89.14

2001  45.00 2010 91.86

2002  49.16 2011 95.28

2003  55.15 2012 98.17
Table 5

a.  Let x represent time in years starting with x = 0 for the year 1995. Let y represent the corresponding percentage 
of residents with cellular service. Use logistic regression to fit a model to these data.

b.  Use the model to calculate the percentage of Americans with cell service in the year 2013. Round to the nearest 
tenth of a percent. 

c.  Discuss the value returned for the upper limit c. What does this tell you about the model? What would the 
limiting value be if the model were exact?

Solution

a.  Using the STAT then EDIT menu on a graphing utility, list the years using values 0–15 in L1 and the 
corresponding percentage in L2. Then use the STATPLOT feature to verify that the scatterplot follows a logistic 
pattern as shown in Figure 5:
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Figure 5 

Use the “Logistic” command from the STAT then CALC menu to obtain the logistic model,

y =   105.7379526  ___________________   1 + 6.88328979e−0.2595440013x  

Next, graph the model in the same window as shown in Figure 6 the scatterplot to verify it is a good fit:
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b.  To approximate the percentage of Americans with cellular service in the year 2013, substitute x = 18 for the in 
the model and solve for y:

 y =   105.7379526  ____________________   1 + 6.88328979e−0.2595440013x    Use the regression model found in part ( a).

 =   105.7379526  _____________________   1 + 6.88328979e−0.2595440013(18)   Substitute 18 for x.

 ≈ 99.3% Round to the nearest tenth

According to the model, about 99.3% of Americans had cellular service in 2013.

c.  The model gives a limiting value of about 105. This means that the maximum possible percentage of Americans with 
cellular service would be 105%, which is impossible. (How could over 100% of a population have cellular service?)  
If the model were exact, the limiting value would be c = 100 and the model’s outputs would get very close to, but 
never actually reach 100%. After all, there will always be someone out there without cellular service!

Try It #3

Table 6 shows the population, in thousands, of harbor seals in the Wadden Sea over the years 1997 to 2012. 

Year Seal Population 
(Thousands) Year Seal Population 

(Thousands)

1997  3.493 2005  19.590

1998  5.282 2006  21.955

1999  6.357 2007  22.862

2000  9.201 2008  23.869

2001  11.224 2009  24.243

2002  12.964 2010  24.344

2003  16.226 2011  24.919

2004  18.137 2012  25.108

Table 6 
 a.  Let x represent time in years starting with x = 0 for the year 1997. Let y represent the number of seals in thousands.  

Use logistic regression to fit a model to these data.
b.  Use the model to predict the seal population for the year 2020.
c.  To the nearest whole number, what is the limiting value of this model?

Access this online resource for additional instruction and practice with exponential function models.
•	 exponential Regression on a Calculator (http://openstaxcollege.org/l/pregresscalc)

http://openstaxcollege.org/l/pregresscalc
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4.8 SeCTIOn exeRCISeS

VeRBAl

1. What situations are best modeled by a logistic 
equation? Give an example, and state a case for why 
the example is a good fit.

2. What is a carrying capacity? What kind of 
model has a carrying capacity built into its 
formula? Why does this make sense?

3. What is regression analysis? Describe the process 
of performing regression analysis on a graphing 
utility.

4. What might a scatterplot of data points look 
like if it were best described by a logarithmic 
model?

5. What does the y-intercept on the graph of a logistic 
equation correspond to for a population modeled 
by that equation?

GRAPHICAl

For the following exercises, match the given function of best fit with the appropriate scatterplot in Figure 7 through 
Figure 11. Answer using the letter beneath the matching graph. 
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6. y = 10.209e−0.294x 7. y = 5.598 − 1.912ln(x) 8. y = 2.104(1.479)x

9. y = 4.607 + 2.733ln(x) 10. y =   14.005 __________  1 + 2.79e−0.812x   
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nUMeRIC

11. To the nearest whole number, what is the initial value 
of a population modeled by the logistic equation  
P(t) =   175 ____________  1 + 6.995e−0.68t  ? What is the carrying capacity?

12. Rewrite the exponential model A(t) = 1550(1.085)x  
as an equivalent model with base e. Express the 
exponent to four significant digits.

13. A logarithmic model is given by the equation  
h(p) = 67.682 − 5.792ln(p). To the nearest 
hundredth, for what value of p does h(p) = 62?

14. A logistic model is given by the equation  
P(t) =   90 ________ 1 + 5e−0.42t  . To the nearest hundredth, for 

what value of t does P(t) = 45?

15. What is the y-intercept on the graph of the logistic 
model given in the previous exercise?

TeCHnOlOGY
For the following exercises, use this scenario: The population P of a koi pond over x months is modeled by the 
function P(x) =   68 __ 

1 + 16e−0.28x
  .

16. Graph the population model to show the population 
over a span of 3 years.

17. What was the initial population of koi?

18. How many koi will the pond have after one and a 
half years?

19. How many months will it take before there are 20 
koi in the pond?

20. Use the intersect feature to approximate the number 
of months it will take before the population of the 
pond reaches half its carrying capacity.

For the following exercises, use this scenario: The population P of an endangered species habitat for wolves  
is modeled by the function P(x) =   558 __  

1 + 54.8e−0.462x
   , where x is given in years.

21. Graph the population model to show the population 
over a span of 10 years.

22. What was the initial population of wolves 
transported to the habitat?

23. How many wolves will the habitat have after 3 years? 24. How many years will it take before there are 100 
wolves in the habitat?

25. Use the intersect feature to approximate the number 
of years it will take before the population of the 
habitat reaches half its carrying capacity.

For the following exercises, refer to Table 7.

x 1 2 3 4 5 6
f (x) 1125 1495 2310 3294 4650 6361

Table 7

26. Use a graphing calculator to create a scatter diagram 
of the data.

27. Use the regression feature to find an exponential 
function that best fits the data in the table.

28. Write the exponential function as an exponential 
equation with base e.

29. Graph the exponential equation on the scatter 
diagram.

30. Use the intersect feature to find the value of x for 
which f (x) = 4000.
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For the following exercises, refer to Table 8.

x 1 2 3 4 5 6
f (x) 555 383 307 210 158 122

Table 8

31. Use a graphing calculator to create a scatter diagram 
of the data.

32. Use the regression feature to find an exponential 
function that best fits the data in the table.

33. Write the exponential function as an exponential 
equation with base e.

34. Graph the exponential equation on the scatter 
diagram.

35. Use the intersect feature to find the value of x for 
which f (x) = 250.

For the following exercises, refer to Table 9.

x 1 2 3 4 5 6
f (x) 5.1 6.3  7.3 7.7 8.1 8.6

Table 9

36. Use a graphing calculator to create a scatter diagram 
of the data.

37. Use the LOGarithm option of the REGression 
feature to find a logarithmic function of the form  
y = a + bln(x) that best fits the data in the table.

38. Use the logarithmic function to find the value of the 
function when x = 10.

39. Graph the logarithmic equation on the scatter 
diagram.

40. Use the intersect feature to find the value of x for 
which f (x) = 7.

For the following exercises, refer to Table 10.

x 1 2 3 4 5 6 7 8
f (x) 7.5 6 5.2 4.3 3.9 3.4 3.1 2.9

Table 10

 41. Use a graphing calculator to create a scatter diagram 
of the data.

 42. Use the LOGarithm option of the REGression 
feature to find a logarithmic function of the form  
y = a + bln(x) that best fits the data in the table.

 43. Use the logarithmic function to find the value of the 
function when x = 10.

 44. Graph the logarithmic equation on the scatter 
diagram.

 45. Use the intersect feature to find the value of x for which 
f (x) = 8.

For the following exercises, refer to Table 11.

x 1 2 3 4 5 6 7 8 9 10
f (x) 8.7 12.3 15.4 18.5 20.7 22.5 23.3 24 24.6 24.8

Table 11

 46. Use a graphing calculator to create a scatter diagram 
of the data.

 47. Use the LOGISTIC regression option to find a 
logistic growth model of the form y =   c _ 

1 + ae−b x
   that 

best fits the data in the table.
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 48. Graph the logistic equation on the scatter diagram.  49. To the nearest whole number, what is the predicted 
carrying capacity of the model?

 50. Use the intersect feature to find the value of x for 
which the model reaches half its carrying capacity.

For the following exercises, refer to Table 12.

x 0 2 4 5 7 8 10 11 15 17
f (x) 12 28.6 52.8 70.3 99.9 112.5 125.8 127.9 135.1 135.9

Table 12

 51. Use a graphing calculator to create a scatter diagram 
of the data.

 52. Use the LOGISTIC regression option to find a 
logistic growth model of the form y =   c ________ 1 + ae−b x   that 
best fits the data in the table.

 53. Graph the logistic equation on the scatter diagram.  54. To the nearest whole number, what is the predicted 
carrying capacity of the model?

 55. Use the intersect feature to find the value of x for 
which the model reaches half its carrying capacity.

exTenSIOnS

 56. Recall that the general form of a logistic equation 
for a population is given by P(t) =   c _ 

1 + ae−bt
   , 

such that the initial population at time t = 0 is 
P(0) = P0. Show algebraically that  

  
c − P(t)

 _ 
P(t)

   =   
c − P0 _ 

P0

  e−bt.

 57. Use a graphing utility to find an exponential 
regression formula f (x) and a logarithmic regression 
formula g(x) for the points (1.5, 1.5) and (8.5, 8.5). 
Round all numbers to 6 decimal places. Graph the 
points and both formulas along with the line y = x 
on the same axis. Make a conjecture about the 
relationship of the regression formulas.

 58. Verify the conjecture made in the previous exercise. 
Round all numbers to six decimal places when 
necessary.

 59. Find the inverse function f −1 (x) for the logistic 
function f (x) =   c _ 

1 + ae−b x
  . Show all steps.

 60. Use the result from the previous exercise to graph 
the logistic model P(t) =   20 ________ 1 + 4e−0.5t   along with its 

inverse on the same axis. What are the intercepts 
and asymptotes of each function?
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CHAPTeR 4 ReVIeW

Key Terms
annual percentage rate (APR) the yearly interest rate earned by an investment account, also called nominal rate

carrying capacity in a logistic model, the limiting value of the output

change-of-base formula a formula for converting a logarithm with any base to a quotient of logarithms with any other base.

common logarithm the exponent to which 10 must be raised to get x; log10(x) is written simply as log(x).

compound interest interest earned on the total balance, not just the principal

doubling time the time it takes for a quantity to double

exponential growth a model that grows by a rate proportional to the amount present

extraneous solution a solution introduced while solving an equation that does not satisfy the conditions of the original equation

half-life the length of time it takes for a substance to exponentially decay to half of its original quantity

logarithm the exponent to which b must be raised to get x; written y = logb(x)

logistic growth model a function of the form f (x) =   c ________ 1+ ae−b x   where   c _ 1 + a   is the initial value, c is the carrying capacity, or 

limiting value, and b is a constant determined by the rate of growth

natural logarithm the exponent to which the number e must be raised to get x; loge(x) is written as ln(x).

Newton’s Law of Cooling the scientific formula for temperature as a function of time as an object’s temperature is equalized 
with the ambient temperature

nominal rate the yearly interest rate earned by an investment account, also called annual percentage rate

order of magnitude the power of ten, when a number is expressed in scientific notation, with one non-zero digit to the left of 
the decimal

power rule for logarithms a rule of logarithms that states that the log of a power is equal to the product of the exponent and 
the log of its base

product rule for logarithms a rule of logarithms that states that the log of a product is equal to a sum of logarithms

quotient rule for logarithms a rule of logarithms that states that the log of a quotient is equal to a difference of logarithms

Key equations
definition of the exponential function f (x) = b  x, where b > 0, b ≠ 1

definition of exponential growth f (x) = ab  x, where a > 0, b > 0, b ≠ 1

compound interest formula A(t) = P   1 +   r _ n    
nt

, where 
 A(t) is the account value at time t 
 t is the number of years 
 P is the initial investment, often called the principal 
 r is the annual percentage rate (APR), or nominal rate 
 n is the number of compounding periods in one year

continuous growth formula  A(t) = ae rt, where 
 t is the number of unit time periods of growth 
  a is the starting amount (in the continuous compounding formula a is 

replaced with P, the principal) 
e is the mathematical constant, e ≈ 2.718282

General Form for the Translation of the f (x) = ab  x + c + d 
Parent Function f (x) = b x

Definition of the logarithmic function For x > 0, b > 0, b ≠ 1, y = logb(x) if and only if b y = x.

Definition of the common logarithm For x > 0, y = log(x) if and only if 10y = x.
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Definition of the natural logarithm For x > 0, y = ln(x) if and only if ey = x.

General Form for the Translation of the f (x) = alogb(x + c) + d 
Parent Logarithmic Function f (x) = logb(x)

The Product Rule for Logarithms logb(MN) = logb(M) + logb(N)

The Quotient Rule for Logarithms logb    M __ N     = logbM − logbN

The Power Rule for Logarithms logb(M
n) = nlogbM

The Change-of-Base Formula logbM =   
lognM

 _ 
lognb

    n > 0, n ≠ 1, b ≠ 1

One-to-one property for exponential functions
  For any algebraic expressions S and T and any positive real number 

b, where bS = bT if and only if S = T.

Definition of a logarithm  For any algebraic expression S and positive real numbers b and c, where 
b ≠ 1, 

 logb(S) = c if and only if bc = S.

One-to-one property for logarithmic functions
  For any algebraic expressions S and T and any positive real number 

b, where b ≠ 1, 

 logbS = logbT if and only if S = T.

Half-life formula  If A = A0e kt, k < 0, the half-life is t = −  ln(2) _ 
k

  .   t =      
ln    A _ 

A0
    
 _ 

−0.000121    

Carbon-14 dating  A0
 is the amount of carbon-14 when the plant or animal died,  

A is the amount of carbon-14 remaining today, t is the age of the 
fossil in years

Doubling time formula If A = A0e
 kt, k > 0, the doubling time is t =   ln(2) ___ k  

Newton’s Law of Cooling  T(t) = Ae kt + Ts, where Ts is the ambient temperature, A = T(0) − Ts, 
and k is the continuous rate of cooling.

Key Concepts

4.1 Exponential Functions
•	An exponential function is defined as a function with a positive constant other than 1 raised to a variable exponent. 

See Example 1.
•	A function is evaluated by solving at a specific value. See Example 2 and Example 3.
•	An exponential model can be found when the growth rate and initial value are known. See Example 4.
•	An exponential model can be found when the two data points from the model are known. See Example 5.
•	An exponential model can be found using two data points from the graph of the model. See Example 6.
•	An exponential model can be found using two data points from the graph and a calculator. See Example 7.
•	 The value of an account at any time t can be calculated using the compound interest formula when the principal, 

annual interest rate, and compounding periods are known. See Example 8.
•	 The initial investment of an account can be found using the compound interest formula when the value of the 

account, annual interest rate, compounding periods, and life span of the account are known. See Example 9.
•	 The number e is a mathematical constant often used as the base of real world exponential growth and decay 

models. Its decimal approximation is e ≈ 2.718282.
•	 Scientific and graphing calculators have the key [e x] or [e xp(x)] for calculating powers of e. See Example 10.
•	 Continuous growth or decay models are exponential models that use e as the base. Continuous growth and decay 

models can be found when the initial value and growth or decay rate are known. See Example 11 and Example 12.
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4.2 Graphs of Exponential Functions
•	 The graph of the function f (x) = b  x has a y-intercept at (0, 1), domain (−∞, ∞), range (0, ∞), and horizontal 

asymptote y = 0. See Example 1.
•	 If b > 1, the function is increasing. The left tail of the graph will approach the asymptote y = 0, and the right tail 

will increase without bound.
•	 If 0 < b < 1, the function is decreasing. The left tail of the graph will increase without bound, and the right tail 

will approach the asymptote y = 0.
•	 The equation f (x) = b  x + d represents a vertical shift of the parent function f (x) = b x.
•	 The equation f (x) = b  x + c represents a horizontal shift of the parent function f (x) = b x. See Example 2.
•	Approximate solutions of the equation f (x) = b  x + c + d can be found using a graphing calculator. See Example 3.
•	 The equation f (x) = ab  x, where a > 0, represents a vertical stretch if  ∣ a ∣  > 1 or compression if 0 <  ∣ a ∣  < 1 of the 

parent function f (x) =  b  x. See Example 4.
•	 When the parent function f (x) =  b  x is multiplied by −1, the result, f (x) = −b x, is a reflection about the x-axis. 

When the input is multiplied by −1, the result, f (x) = b−x, is a reflection about the y-axis. See Example 5.
•	All translations of the exponential function can be summarized by the general equation f (x) = ab  x + c + d. See 

Table 3.
•	 Using the general equation f (x) = ab x + c + d, we can write the equation of a function given its description. See 

Example 6.

4.3 Logarithmic Functions
•	 The inverse of an exponential function is a logarithmic function, and the inverse of a logarithmic function is an 

exponential function.
•	 Logarithmic equations can be written in an equivalent exponential form, using the definition of a logarithm.  

See Example 1.
•	 Exponential equations can be written in their equivalent logarithmic form using the definition of a logarithm  

See Example 2.
•	 Logarithmic functions with base b can be evaluated mentally using previous knowledge of powers of b. See 

Example 3 and Example 4.
•	 Common logarithms can be evaluated mentally using previous knowledge of powers of 10. See Example 5.
•	 When common logarithms cannot be evaluated mentally, a calculator can be used. See Example 6.
•	 Real-world exponential problems with base 10 can be rewritten as a common logarithm and then evaluated using 

a calculator. See Example 7.
•	 Natural logarithms can be evaluated using a calculator Example 8.

4.4 Graphs of Logarithmic Functions
•	 To find the domain of a logarithmic function, set up an inequality showing the argument greater than zero, and 

solve for x. See Example 1 and Example 2
•	 The graph of the parent function f (x) = logb(x) has an x-intercept at (1, 0), domain (0, ∞), range (−∞, ∞), 

vertical asymptote x = 0, and
•	 if b > 1, the function is increasing.
•	 if 0 < b < 1, the function is decreasing.
See Example 3.

•	 The equation f (x) = logb(x + c) shifts the parent function y = logb(x) horizontally
•	 left c units if c > 0.
•	 right c units if c < 0.
See Example 4.

•	 The equation f (x) = logb(x) + d shifts the parent function y = logb(x) vertically
•	 up d units if d > 0.
•	 down d units if d < 0.
See Example 5.
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•	 For any constant a > 0, the equation f (x) = alogb(x)
•	 stretches the parent function y = logb(x) vertically by a factor of a if  ∣ a ∣  > 1.
•	 compresses the parent function y = logb(x) vertically by a factor of a if  ∣ a ∣  < 1.
See Example 6 and Example 7.

•	 When the parent function y = logb(x) is multiplied by −1, the result is a reflection about the x-axis. When the 
input is multiplied by −1, the result is a reflection about the y-axis.
•	 The equation f (x) = −logb(x) represents a reflection of the parent function about the x-axis.

•	 The equation f (x) = logb(−x) represents a reflection of the parent function about the y-axis.
See Example 8.
•	A graphing calculator may be used to approximate solutions to some logarithmic equations See Example 9.

•	All translations of the logarithmic function can be summarized by the general equation f (x) = alogb(x + c) + d.  
See Table 4.

•	 Given an equation with the general form f (x) = alogb(x + c) + d, we can identify the vertical asymptote  
x = −c for the transformation. See Example 10.

•	 Using the general equation f (x) = alogb(x + c) + d, we can write the equation of a logarithmic function given 
its graph. See Example 11.

4.5 Logarithmic Properties
•	 We can use the product rule of logarithms to rewrite the log of a product as a sum of logarithms. See  

Example 1.
•	 We can use the quotient rule of logarithms to rewrite the log of a quotient as a difference of logarithms. See 

Example 2.
•	 We can use the power rule for logarithms to rewrite the log of a power as the product of the exponent and the 

log of its base. See Example 3, Example 4, and Example 5.
•	 We can use the product rule, the quotient rule, and the power rule together to combine or expand a logarithm 

with a complex input. See Example 6, Example 7, and Example 8.
•	 The rules of logarithms can also be used to condense sums, differences, and products with the same base as a 

single logarithm. See Example 9, Example 10, Example 11, and Example 12.
•	 We can convert a logarithm with any base to a quotient of logarithms with any other base using the change-of-

base formula. See Example 13.
•	 The change-of-base formula is often used to rewrite a logarithm with a base other than 10 and e as the quotient 

of natural or common logs. That way a calculator can be used to evaluate. See Example 14.

4.6 Exponential and Logarithmic Equations
•	 We can solve many exponential equations by using the rules of exponents to rewrite each side as a power with 

the same base. Then we use the fact that exponential functions are one-to-one to set the exponents equal to one 
another and solve for the unknown.

•	 When we are given an exponential equation where the bases are explicitly shown as being equal, set the exponents 
equal to one another and solve for the unknown. See Example 1.

•	 When we are given an exponential equation where the bases are not explicitly shown as being equal, rewrite each 
side of the equation as powers of the same base, then set the exponents equal to one another and solve for the 
unknown. See Example 2, Example 3, and Example 4.

•	 When an exponential equation cannot be rewritten with a common base, solve by taking the logarithm of each 
side. See Example 5.

•	 We can solve exponential equations with base e, by applying the natural logarithm of both sides because exponential 
and logarithmic functions are inverses of each other. See Example 6 and Example 7.

•	After solving an exponential equation, check each solution in the original equation to find and eliminate any 
extraneous solutions. See Example 8.
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•	 When given an equation of the form logb(S) = c, where S is an algebraic expression, we can use the definition of 
a logarithm to rewrite the equation as the equivalent exponential equation bc = S, and solve for the unknown. 
See Example 9 and Example 10.

•	 We can also use graphing to solve equations with the form logb(S) = c. We graph both equations y = logb(S) 
and y = c on the same coordinate plane and identify the solution as the x-value of the intersecting point.  
See Example 11.

•	 When given an equation of the form logbS = logbT, where S and T are algebraic expressions, we can use the one-
to-one property of logarithms to solve the equation S = T for the unknown. See Example 12.

•	 Combining the skills learned in this and previous sections, we can solve equations that model real world situations, 
whether the unknown is in an exponent or in the argument of a logarithm. See Example 13.

4.7 Exponential and Logarithmic Models
•	 The basic exponential function is f (x) = ab  x. If b > 1, we have exponential growth; if 0 < b < 1, we have 

exponential decay.
•	 We can also write this formula in terms of continuous growth as A = A0e kx, where A0 is the starting value. If 

A0 is positive, then we have exponential growth when k > 0 and exponential decay when k < 0. See Example 1.
•	 In general, we solve problems involving exponential growth or decay in two steps. First, we set up a model and 

use the model to find the parameters. Then we use the formula with these parameters to predict growth and 
decay. See Example 2.

•	 We can find the age, t, of an organic artifact by measuring the amount, k, of carbon-14 remaining in the artifact 

and using the formula t =   
ln(k)

 _ 
−0.000121   to solve for t. See Example 3.

•	 Given a substance’s doubling time or half-life we can find a function that represents its exponential growth or 
decay. See Example 4.

•	 We can use Newton’s Law of Cooling to find how long it will take for a cooling object to reach a desired temperature, 
or to find what temperature an object will be after a given time. See Example 5.

•	 We can use logistic growth functions to model real-world situations where the rate of growth changes over time, 
such as population growth, spread of disease, and spread of rumors. See Example 6.

•	 We can use real-world data gathered over time to observe trends. Knowledge of linear, exponential, logarithmic, 
and logistic graphs help us to develop models that best fit our data. See Example 7.

•	Any exponential function with the form y = ab x can be rewritten as an equivalent exponential function with the 
form y = A0e kx where k = lnb. See Example 8.

4.8 Fitting Exponential Models to Data
•	 Exponential regression is used to model situations where growth begins slowly and then accelerates rapidly without 

bound, or where decay begins rapidly and then slows down to get closer and closer to zero.
•	 We use the command “ExpReg” on a graphing utility to fit function of the form y = ab x to a set of data points. 

See Example 1.
•	 Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then 

slows over time.
•	 We use the command “LnReg” on a graphing utility to fit a function of the form y = a + bln(x) to a set of data 

points. See Example 2.
•	 Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows 

as the function approaches an upper limit.
•	 We use the command “Logistic” on a graphing utility to fit a function of the form y =   c _________  1 + ae−b x   to a set of data 

points. See Example 3.
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CHAPTeR 4 ReVIeW exeRCISeS

exPOnenTIAl FUnCTIOnS

1. Determine whether the function y = 156(0.825)t 
represents exponential growth, exponential decay, or 
neither. Explain

2. The population of a herd of deer is represented by 
the function A(t) = 205(1.13)t, where t is given in 
years. To the nearest whole number, what will the 
herd population be after 6 years?

3. Find an exponential equation that passes through the points (2, 2.25) and (5, 60.75).
4. Determine whether Table 1 could represent a function that is linear, exponential, or neither. If it appears to be 

exponential, find a function that passes through the points.

x 1 2 3 4
f (x) 3 0.9 0.27 0.081

Table 1 

5. A retirement account is opened with an initial 
deposit of $8,500 and earns 8.12% interest 
compounded monthly. What will the account be 
worth in 20 years?

6. Hsu-Mei wants to save $5,000 for a down payment 
on a car. To the nearest dollar, how much will she 
need to invest in an account now with 7.5% APR, 
compounded daily, in order to reach her goal in 3 
years?

7. Does the equation y = 2.294e−0.654t represent 
continuous growth, continuous decay, or neither? 
Explain.

8. Suppose an investment account is opened with an 
initial deposit of $10,500 earning 6.25% interest, 
compounded continuously. How much will the 
account be worth after 25 years?

GRAPHS OF exPOnenTIAl FUnCTIOnS
9. Graph the function f (x) = 3.5(2)x. State the domain 

and range and give the y-intercept.
10. Graph the function f (x) = 4    1 __ 8    x and its reflection 

about the y-axis on the same axes, and give the 
y-intercept.

11. The graph of f (x) = 6.5x is reflected about the y-axis and stretched vertically by a factor of 7. What is the 
equation of the new function, g (x) ? State its y-intercept, domain, and range.

12. The graph here shows transformations of the graph of f (x) = 2x. 
What is the equation for the transformation?

2

x

y

–1–1–2

–2

–3

–3

–4–5–6

1

3

3

210 4

4
5
6
7
8
9

5 6

Figure 1  

lOGARITHMIC FUnCTIOnS
13. Rewrite log17(4913) = x as an equivalent exponential 

equation.
14. Rewrite ln(s) = t as an equivalent exponential 

equation.
15. Rewrite  a −  2 __ 5    = b as an equivalent logarithmic 

equation.
16. Rewrite e−3.5 = h as an equivalent logarithmic 

equation.

17. Solve for xlog64(x) =     1 _ 3     to exponential form. 18. Evaluate log5    1 _ 125     without using a calculator.

19. Evaluate log(0.000001) without using a calculator. 20. Evaluate log(4.005) using a calculator. Round to the 
nearest thousandth.
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21. Evaluate ln(e−0.8648) without using a calculator. 22. Evaluate ln    3 √
—

 18     using a calculator. Round to the 
nearest thousandth.

GRAPHS OF lOGARITHMIC FUnCTIOnS
23. Graph the function g(x) = log(7x + 21) − 4. 24. Graph the function h(x) = 2ln(9 − 3x) + 1.
25. State the domain, vertical asymptote, and end 

behavior of the function g (x) = ln(4x + 20) − 17.

lOGARITHMIC PROPeRTIeS

26. Rewrite ln(7r · 11st) in expanded form. 27. Rewrite log8(x) + log8(5) + log8(y) + log8(13) in 
compact form.

28. Rewrite logm    67 ___ 83     in expanded form. 29. Rewrite ln(z) – ln(x) – ln(y) in compact form.

30.  Rewrite ln     1 __ x5     as a product. 31.  Rewrite −logy    1 __ 12     as a single logarithm.

32. Use properties of logarithms to expand log    r
 2s11

 _ 
t14

    . 33. Use properties of logarithms to expand  

ln  2b √ 
______

   b + 1 _____ b − 1      .

34. Condense the expression 5ln(b) + ln(c) +   
ln(4 − a)

 _ 2   
to a single logarithm.

35. Condense the expression 3log7v + 6log7w −   
log 7 u _ 3   

to a single logarithm.

36. Rewrite log3(12.75) to base e. 37. Rewrite 512x − 17 = 125 as a logarithm. Then apply 
the change of base formula to solve for x using the 
common log. Round to the nearest thousandth.

exPOnenTIAl AnD lOGARITHMIC eQUATIOnS
38. Solve 2163x · 216x = 363x + 2 by rewriting each side 

with a common base.
39. Solve   125 __ 

    1 _ 
625

    
−x − 3    = 53  by rewriting each side with a 

common base.

40. Use logarithms to find the exact solution for  
7 · 17−9x − 7 = 49. If there is no solution, write no 
solution.

41. Use logarithms to find the exact solution for  
3e6n − 2 + 1 = −60. If there is no solution, write no 
solution.

42. Find the exact solution for 5e3x − 4 = 6 . If there is 
no solution, write no solution.

43. Find the exact solution for 2e5x − 2 − 9 = −56.  
If there is no solution, write no solution.

44. Find the exact solution for 52x − 3 = 7x + 1. If there is 
no solution, write no solution.

45. Find the exact solution for e 2x − e x − 110 = 0. If 
there is no solution, write no solution.

46. Use the definition of a logarithm to solve.  
−5log7(10n) = 5.

47. Use the definition of a logarithm to find the exact 
solution for 9 + 6ln(a + 3) = 33.

48. Use the one-to-one property of logarithms to find 
an exact solution for log8(7) + log8(−4x) = log8(5). 
If there is no solution, write no solution.

49. Use the one-to-one property of logarithms to find 
an exact solution for ln(5) + ln(5x2 − 5) = ln(56). If 
there is no solution, write no solution.

50. The formula for measuring sound intensity in 
decibels D is defined by the equation D = 10log 

   I _ 
I0

    , where I is the intensity of the sound in watts 

per square meter and I0 = 10−12 is the lowest level of 
sound that the average person can hear. How many 
decibels are emitted from a large orchestra with a 
sound intensity of 6.3 · 10−3 watts per square meter?

51. The population of a city is modeled by the equation 
P(t) = 256, 114e0.25t where t is measured in years. If 
the city continues to grow at this rate, how many 
years will it take for the population to reach one 
million?

52. Find the inverse function f −1 for the exponential 
function f (x) = 2 · e x + 1 − 5.

53. Find the inverse function f −1 for the logarithmic 
function f (x) = 0.25 · log2(x3 + 1).
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exPOnenTIAl AnD lOGARITHMIC MODelS
For the following exercises, use this scenario: A doctor prescribes 300 milligrams of a therapeutic drug that decays 
by about 17% each hour.

54. To the nearest minute, what is the half-life of the drug?
55. Write an exponential model representing the amount of the drug remaining in the patient’s system after t hours. 

Then use the formula to find the amount of the drug that would remain in the patient’s system after 24 hours. 
Round to the nearest hundredth of a gram.

For the following exercises, use this scenario: A soup with an internal temperature of 350° Fahrenheit was taken off 
the stove to cool in a 71°F room. After fifteen minutes, the internal temperature of the soup was 175°F.

56. Use Newton’s Law of Cooling to write a formula that 
models this situation.

57. How many minutes will it take the soup to cool  
to 85°F?

For the following exercises, use this scenario: The equation N(t) =   1200 __  
1 + 199e−0.625t

   models the number of people in a 
school who have heard a rumor after t days.

58. How many people started the rumor?
59. To the nearest tenth, how many days will it be before the rumor spreads to half the carrying capacity?
60. What is the carrying capacity?

For the following exercises, enter the data from each table into a graphing calculator and graph the resulting scatter 
plots. Determine whether the data from the table would likely represent a function that is linear, exponential, or 
logarithmic.

61. x 1 2 3 4 5 6 7 8 9 10
f (x) 3.05 4.42 6.4 9.28 13.46 19.52 28.3 41.04 59.5 86.28

62. x 0.5 1 3 5 7 10 12 13 15 17 20
f (x) 18.05 17 15.33 14.55 14.04 13.5 13.22 13.1 12.88 12.69 12.45

63. Find a formula for an exponential equation that goes through the points (−2, 100) and (0, 4). Then express the 
formula as an equivalent equation with base e.

FITTInG exPOnenTIAl MODelS TO DATA

64. What is the carrying capacity for a population modeled by the logistic equation P(t) =   250, 000 ___________ 1 + 499e−0.45t  ? What is the 
initial population for the model?

65. The population of a culture of bacteria is modeled by the logistic equation P(t) =   14, 250 __ 
1 + 29e−0.62t

  , where t is in 

days. To the nearest tenth, how many days will it take the culture to reach 75% of its carrying capacity?

For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. Observe 
the shape of the scatter diagram to determine whether the data is best described by an exponential, logarithmic, or 
logistic model. Then use the appropriate regression feature to find an equation that models the data. When necessary, 
round values to five decimal places.

66. x 1 2 3 4 5 6 7 8 9 10
f (x) 409.4 260.7 170.4 110.6 74 44.7 32.4 19.5 12.7 8.1

67. x 0.15 0.25 0.5 0.75 1 1.5 2 2.25 2.75 3 3.5
f (x) 36.21 28.88 24.39 18.28 16.5 12.99 9.91 8.57 7.23 5.99 4.81

68. x 0 2 4 5 7 8 10 11 15 17
f (x) 9 22.6 44.2 62.1 96.9 113.4 133.4 137.6 148.4 149.3
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CHAPTeR 4 PRACTICe TeST

1. The population of a pod of bottlenose dolphins is 
modeled by the function A(t) = 8(1.17)t, where t is 
given in years. To the nearest whole number, what 
will the pod population be after 3 years?

2. Find an exponential equation that passes through 
the points (0, 4) and (2, 9).

3. Drew wants to save $2,500 to go to the next 
World Cup. To the nearest dollar, how much will 
he need to invest in an account now with 6.25% 
APR, compounding daily, in order to reach his goal 
in 4 years?

4. An investment account was opened with an 
initial deposit of $9,600 and earns 7.4% interest, 
compounded continuously. How much will the 
account be worth after 15 years?

5. Graph the function f (x) = 5(0.5)−x and its reflection 
across the y-axis on the same axes, and give the 
y-intercept.

6. The graph below shows transformations of the 
graph of f (x) =     1 __ 2    x. What is the equation for the 
transformation?
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7. Rewrite log8.5(614.125) = a as an equivalent 
exponential equation.

8. Rewrite  e   
1 __ 2    = m as an equivalent logarithmic 

equation.
9. Solve for x by converting the logarithmic equation  

log   1 
_

 7  (x) = 2 to exponential form.
10. Evaluate log(10,000,000) without using a calculator.

11. Evaluate ln(0.716) using a calculator. Round to the 
nearest thousandth.

12. Graph the function g (x) = log(12 − 6x) + 3.

13. State the domain, vertical asymptote, and end 
behavior of the function f (x) = log5(39 − 13x) + 7.

14. Rewrite log(17a · 2b) as a sum.

15. Rewrite logt(96) − logt(8) in compact form. 16. Rewrite log8   a   
1 __ b      as a product.

17. Use properties of logarithm to expand ln 
(y 3z 2 ·   3 √

—
 x − 4  ).

18. Condense the expression  

4ln(c) + ln(d) +   
ln(a)

 _ 3   +   
ln(b + 3)

 _ 3   to a single 
logarithm.

19. Rewrite 163x − 5 = 1000 as a logarithm. Then apply 
the change of base formula to solve for x using the 
natural log. Round to the nearest thousandth.

20. Solve      1 _ 81     
x
  ·   1 _ 243   =      1 _ 9     

−3x − 1
  by rewriting each 

side with a common base.

21. Use logarithms to find the exact solution for 
−9e10a − 8 −5 = −41. If there is no solution, write  
no solution.

22. Find the exact solution for 10e 4x + 2 + 5 = 56. If there 
is no solution, write no solution.

23. Find the exact solution for −5e−4x − 1 − 4 = 64. If 
there is no solution, write no solution.

24. Find the exact solution for 2x − 3 = 62x − 1. If there is 
no solution, write no solution.

25. Find the exact solution for e2x − e x − 72 = 0. If there 
is no solution, write no solution.

26. Use the definition of a logarithm to find the exact 
solution for 4log(2n) − 7 = −11.
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27. Use the one-to-one property of logarithms to find an 
exact solution for log(4x2 − 10) + log(3) = log(51) 
If there is no solution, write no solution.

28. The formula for measuring sound intensity  
in decibels D is defined by the equation 

D = 10log     I __ I0

     

where I is the intensity of the sound in watts per 
square meter and I0 = 10−12 is the lowest level of 
sound that the average person can hear. How many 
decibels are emitted from a rock concert with a 
sound intensity of 4.7 · 10−1 watts per square meter?

29. A radiation safety officer is working with 112 
grams of a radioactive substance. After 17 days, the 
sample has decayed to 80 grams. Rounding to five 
significant digits, write an exponential equation 
representing this situation. To the nearest day, what 
is the half-life of this substance?

30. Write the formula found in the previous exercise 
as an equivalent equation with base e. Express the 
exponent to five significant digits.

31. A bottle of soda with a temperature of  
71° Fahrenheit was taken off a shelf and placed in 
a refrigerator with an internal temperature of 35° F. 
After ten minutes, the internal temperature of the 
soda was 63° F. Use Newton’s Law of Cooling to 
write a formula that models this situation. To the 
nearest degree, what will the temperature of the 
soda be after one hour?

32. The population of a wildlife habitat is modeled 
by the equation P(t) =   360 __ 

1 + 6.2e−0.35t
  , where t is 

given in years. How many animals were originally 
transported to the habitat? How many years will it 
take before the habitat reaches half its capacity?

33. Enter the data from Table 2 into a graphing calculator and graph the resulting scatter plot. Determine whether 
the data from the table would likely represent a function that is linear, exponential, or logarithmic.

x 1 2 3 4 5 6 7 8 9 10
f (x) 3 8.55 11.79 14.09 15.88 17.33 18.57 19.64 20.58 21.42

Table 2

34. The population of a lake of fish is modeled by the logistic equation P(t) =   16, 120 __ 
1 + 25e−0.75t

  , where t is time in  

years. To the nearest hundredth, how many years will it take the lake to reach 80% of its carrying capacity?

For the following exercises, use a graphing utility to create a scatter diagram of the data given in the table. 
Observe the shape of the scatter diagram to determine whether the data is best described by an exponential, 
logarithmic, or logistic model. Then use the appropriate regression feature to find an equation that models the 
data. When necessary, round values to five decimal places.

35. x 1 2 3 4 5 6 7 8 9 10
f (x) 20 21.6 29.2 36.4 46.6 55.7 72.6 87.1 107.2 138.1

36. x 3 4 5 6 7 8 9 10 11 12 13
f (x) 13.98 17.84 20.01 22.7 24.1 26.15 27.37 28.38 29.97 31.07 31.43

37. x 0 0.5 1 1.5 2 3 4 5 6 7 8
f (x) 2.2 2.9 3.9 4.8 6.4 9.3 12.3 15 16.2 17.3 17.9
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Trigonometric Functions

Figure 1 The tide rises and falls at regular, predictable intervals. (credit: Andrea Schaffer, Flickr)

CHAPTeR OUTlIne

5.1 Angles
5.2 Unit Circle: Sine and Cosine Functions
5.3 The Other Trigonometric Functions
5.4 Right Triangle Trigonometry

Introduction
Life is dense with phenomena that repeat in regular intervals. Each day, for example, the tides rise and fall in response 
to the gravitational pull of the moon. Similarly, the progression from day to night occurs as a result of Earth’s rotation, 
and the pattern of the seasons repeats in response to Earth’s revolution around the sun. Outside of nature, many stocks 
that mirror a company’s profits are influenced by changes in the economic business cycle.

In mathematics, a function that repeats its values in regular intervals is known as a periodic function. The graphs of 
such functions show a general shape reflective of a pattern that keeps repeating. This means the graph of the function 
has the same output at exactly the same place in every cycle. And this translates to all the cycles of the function having 
exactly the same length. So, if we know all the details of one full cycle of a true periodic function, then we know the 
state of the function’s outputs at all times, future and past. In this chapter, we will investigate various examples of 
periodic functions.



CHAPTER 5 trigonometric Functions440

5.1 AnGleS

A golfer swings to hit a ball over a sand trap and onto the green. An airline pilot maneuvers a plane toward a narrow 
runway. A dress designer creates the latest fashion. What do they all have in common? They all work with angles, and 
so do all of us at one time or another. Sometimes we need to measure angles exactly with instruments. Other times we 
estimate them or judge them by eye. Either way, the proper angle can make the difference between success and failure 
in many undertakings. In this section, we will examine properties of angles.

Drawing Angles in Standard Position
Properly defining an angle first requires that we define a ray. A ray consists of one point on a line and all points 
extending in one direction from that point. The first point is called the endpoint of the ray. We can refer to a specific 
ray by stating its endpoint and any other point on it. The ray in Figure 1 can be named as ray EF, or in symbol form EF.

Ray EF

E

F

endpoint

Figure 1

An angle is the union of two rays having a common endpoint. The endpoint is called the vertex of the angle, and the 
two rays are the sides of the angle. The angle in Figure 2 is formed from ED and EF. Angles can be named using a 
point on each ray and the vertex, such as angle DEF, or in symbol form ∠DEF.

Vertex

Angle DEF

E

D

F

Figure 2

Greek letters are often used as variables for the measure of an angle. Table 1 is a list of Greek letters commonly used 
to represent angles, and a sample angle is shown in Figure 3.

θ φ or ϕ α β γ
theta phi alpha beta gamma

Table 1

θ
Figure 3 Angle theta, shown as ∠θ

→

→ →

leARnInG OBjeCTIVeS

In this section, you will:

•	  Draw angles in standard position.

•	  Convert between degrees and radians.

•	  Find coterminal angles.

•	  Find the length of a circular arc.

•	  Use linear and angular speed to describe motion on a circular path.
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Angle creation is a dynamic process. We start with two rays lying on top of one another. We leave one fixed in place, 
and rotate the other. The fixed ray is the initial side, and the rotated ray is the terminal side. In order to identify the 
different sides, we indicate the rotation with a small arc and arrow close to the vertex as in Figure 4.

Vertex
Initial side

Terminal side

Figure 4

As we discussed at the beginning of the section, there are many applications for angles, but in order to use them 
correctly, we must be able to measure them. The measure of an angle is the amount of rotation from the initial side to 
the terminal side. Probably the most familiar unit of angle measurement is the degree. One degree is   1 _ 

360
   of a circular 

rotation, so a complete circular rotation contains 360 degrees. An angle measured in degrees should always include 
the unit “degrees” after the number, or include the degree symbol °. For example, 90 degrees = 90°.

To formalize our work, we will begin by drawing angles on an x-y coordinate plane. Angles can occur in any position 
on the coordinate plane, but for the purpose of comparison, the convention is to illustrate them in the same position 
whenever possible. An angle is in standard position if its vertex is located at the origin, and its initial side extends 
along the positive x-axis. See Figure 5.

Initial side
x

y
Standard Position

Terminal
side

Figure 5

If the angle is measured in a counterclockwise direction from the initial side to the terminal side, the angle is said to 
be a positive angle. If the angle is measured in a clockwise direction, the angle is said to be a negative angle. 
Drawing an angle in standard position always starts the same way—draw the initial side along the positive x-axis. 
To place the terminal side of the angle, we must calculate the fraction of a full rotation the angle represents. We do 
that by dividing the angle measure in degrees by 360°. For example, to draw a 90° angle, we calculate that   90° _ 

360°
   =   1 _ 4  . 

So, the terminal side will be one-fourth of the way around the circle, moving counterclockwise from the positive 

x-axis. To draw a 360° angle, we calculate that   360° _ 
360°

   = 1. So the terminal side will be 1 complete rotation around the 
circle, moving counterclockwise from the positive x-axis. In this case, the initial side and the terminal side overlap. 
See Figure 6.

Initial side

Initial side

x x

y y

Terminal
side

Terminal
side 90°

360°

Drawing a 90° angle Drawing a 360° angle

Figure 6
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Since we define an angle in standard position by its initial side, we have a special type of angle whose terminal side 
lies on an axis, a quadrantal angle. This type of angle can have a measure of 0°, 90°, 180°, 270° or 360°. See Figure 7.

90°0°
III

III IV

III

III IV

180° 270°
III

III IV

III

III IV

Figure 7 Quadrantal angles have a terminal side that lies along an axis. examples are shown.

quadrantal angles
Quadrantal angles are angles in standard position whose terminal side lies on an axis, including 0°, 90°, 180°, 270°, or 
360°.

How To…
Given an angle measure in degrees, draw the angle in standard position.

1. Express the angle measure as a fraction of 360°.
2. Reduce the fraction to simplest form.
3. Draw an angle that contains that same fraction of the circle, beginning on the positive x-axis and moving 

counterclockwise for positive angles and clockwise for negative angles.

Example 1 Drawing an Angle in Standard Position Measured in Degrees

a. Sketch an angle of 30° in standard position.
b. Sketch an angle of −135° in standard position.

Solution

 a. Divide the angle measure by 360°.

   30° ____ 360°   =   1 __ 12  

 To rewrite the fraction in a more familiar fraction, we can recognize that

   1 __ 12   =   1 __ 3      1 __ 4    

  One-twelfth equals one-third of a quarter, so by dividing a quarter rotation into thirds, we can sketch a line at 
30° as in Figure 8.

x

y

30°
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Figure 8

 b. Divide the angle measure by 360°.

   −135° _____ 360°   = −  3 __ 8  

  In this case, we can recognize that

 −  3 __ 8   = −  3 __ 2      1 __ 4    

   Negative three-eighths is one and one-half times a quarter, so we place a line by moving clockwise one full quarter 
and one-half of another quarter, as in Figure 9.

x

y

–135°

Figure 9

Try It #1

Show an angle of 240° on a circle in standard position.

Converting Between Degrees and Radians
Dividing a circle into 360 parts is an arbitrary choice, although it creates the familiar degree measurement. We may 
choose other ways to divide a circle. To find another unit, think of the process of drawing a circle. Imagine that you 
stop before the circle is completed. The portion that you drew is referred to as an arc. An arc may be a portion of a 
full circle, a full circle, or more than a full circle, represented by more than one full rotation. The length of the arc 
around an entire circle is called the circumference of that circle.

The circumference of a circle is C = 2πr. If we divide both sides of this equation by r, we create the ratio of the 
circumference to the radius, which is always 2π regardless of the length of the radius. So the circumference of any 
circle is 2π ≈ 6.28 times the length of the radius. That means that if we took a string as long as the radius and used it 
to measure consecutive lengths around the circumference, there would be room for six full string-lengths and a little 
more than a quarter of a seventh, as shown in Figure 10.

3
2

1

6
5

4

Fractional
piece

Figure 10
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This brings us to our new angle measure. One radian is the measure of a central angle of a circle that intercepts 
an arc equal in length to the radius of that circle. A central angle is an angle formed at the center of a circle by 
two radii. Because the total circumference equals 2π times the radius, a full circular rotation is 2π radians. So

 2π radians = 360°

 π radians =   360° ____ 2   = 180°

 1 radian =   180° ____ π   ≈ 57.3°

See Figure 11. Note that when an angle is described without a specific unit, it refers to radian measure. For example, 
an angle measure of 3 indicates 3 radians. In fact, radian measure is dimensionless, since it is the quotient of a length 
(circumference) divided by a length (radius) and the length units cancel out.

rr
t

Figure 11  The angle t sweeps out a measure of one radian. note that the length of the intercepted arc is the same as the length of the radius of the circle.

Relating Arc Lengths to Radius

An arc length s is the length of the curve along the arc. Just as the full circumference of a circle always has a constant ratio 
to the radius, the arc length produced by any given angle also has a constant relation to the radius, regardless of the length 
of the radius.

This ratio, called the radian measure, is the same regardless of the radius of the circle—it depends only on the angle. 
This property allows us to define a measure of any angle as the ratio of the arc length s to the radius r. See Figure 12.

 s = rθ

 θ =   s _ r   

If s = r, then θ =   r _ r   = 1 radian.

(a) (b)

2r

rsr

1 radian
(s = r)

(c)
1 + π  radians 2 + π radians

3 + π 
radians

1 radian2 radians

3 radians

0, 2π
A full revolution

4

Figure 12 (a) In an angle of 1 radian, the arc length s equals the radius r.  
(b) An angle of 2 radians has an arc length s = 2r. (c) A full revolution is 2π or about 6.28 radians.

To elaborate on this idea, consider two circles, one with radius 2 and the other with radius 3. Recall the circumference of 
a circle is C = 2πr, where r is the radius. The smaller circle then has circumference 2π(2) = 4π and the larger has 
circumference 2π(3) = 6π. Now we draw a 45°angle on the two circles, as in Figure 13.
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45°
45° = − radiansπ

4

r = 3
r = 2

Figure 13 A 45° angle contains one-eighth of the circumference of a circle, regardless of the radius.

Notice what happens if we find the ratio of the arc length divided by the radius of the circle.

 Smaller circle:   
  1 __ 2  π

 _ 
2 

   =   1 __ 4  π

 Larger circle:   
  3 __ 4  π

 _ 
3

   =   1 __ 4  π

Since both ratios are   1 _ 4  π, the angle measures of both circles are the same, even though the arc length and radius differ.

radians
One radian is the measure of the central angle of a circle such that the length of the arc between the initial side and  
the terminal side is equal to the radius of the circle. A full revolution (360°) equals 2π radians. A half revolution 
(180°) is equivalent to π radians.
The radian measure of an angle is the ratio of the length of the arc subtended by the angle to the radius of the 
circle. In other words, if s is the length of an arc of a circle, and r is the radius of the circle, then the central angle 
containing that arc measures   s _ r   radians. In a circle of radius 1, the radian measure corresponds to the length of 
the arc.

Q & A…
A measure of 1 radian looks to be about 60°. Is that correct?
Yes. It is approximately 57.3°. Because 2π radians equals 360°, 1 radian equals   360° _ 2π   ≈ 57.3°.

Using Radians

Because radian measure is the ratio of two lengths, it is a unitless measure. For example, in Figure 12, suppose the 
radius was 2 inches and the distance along the arc was also 2 inches. When we calculate the radian measure of the 
angle, the “inches” cancel, and we have a result without units. Therefore, it is not necessary to write the label “radians” 
after a radian measure, and if we see an angle that is not labeled with “degrees” or the degree symbol, we can assume 
that it is a radian measure.

Considering the most basic case, the unit circle (a circle with radius 1), we know that 1 rotation equals 360 degrees, 
360°. We can also track one rotation around a circle by finding the circumference, C = 2πr, and for the unit circle 
C = 2π. These two different ways to rotate around a circle give us a way to convert from degrees to radians.

 1 rotation = 360° = 2π radians

   1 __ 2  rotation = 180° = π  radians

   1 __ 4  rotation = 90° =    π __ 2    radians
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Identifying Special Angles Measured in Radians

In addition to knowing the measurements in degrees and radians of a quarter revolution, a half revolution, and a full 
revolution, there are other frequently encountered angles in one revolution of a circle with which we should be familiar. 
It is common to encounter multiples of 30, 45, 60, and 90 degrees. These values are shown in Figure 14. Memorizing 
these angles will be very useful as we study the properties associated with angles.

0°180°

210°

225°
240°

270°
300°

330°

30°

45°
60°

90°
120°

135°

150°

315°

Figure 14 Commonly encountered angles measured in degrees
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Figure 15 Commonly encountered angles measured in radians 

Now, we can list the corresponding radian values for the common measures of a circle corresponding to those listed 
in Figure 14, which are shown in Figure 15. Be sure you can verify each of these measures.

Example 2 Finding a Radian Measure

Find the radian measure of one-third of a full rotation.

Solution For any circle, the arc length along such a rotation would be one-third of the circumference. We know that

 1 rotation = 2πr
So,
 s =   1 __ 3  (2πr)

 =   2πr ___ 3  

The radian measure would be the arc length divided by the radius.

 radian measure =   
  2πr _ 3  

 _ r  

 =   2πr ___ 3r  

 =   2π ___ 3  

Try It #2

Find the radian measure of three-fourths of a full rotation.

Converting Between Radians and Degrees

Because degrees and radians both measure angles, we need to be able to convert between them. We can easily do so 
using a proportion.
   θ _ 180   =    θ R _ π  

This proportion shows that the measure of angle θ in degrees divided by 180 equals the measure of angle θ in radians 
divided by π. Or, phrased another way, degrees is to 180 as radians is to π.

   
Degrees

 _ 180   =   Radians _ π  
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converting between radians and degrees
To convert between degrees and radians, use the proportion

  θ ___ 180   =   θ R _ π   

Example 3 Converting Radians to Degrees

Convert each radian measure to degrees.
a.   π __ 6      b. 3

Solution Because we are given radians and we want degrees, we should set up a proportion and solve it.
 a. We use the proportion, substituting the given information.

   θ _ 180   =   θ R _ π    

   θ _ 180   =   
  π __ 6  

 _ π  

 θ =   180 _ 
6

  

 θ = 30°

 b. We use the proportion, substituting the given information.

   θ _ 180   =   θ R _ π    

   θ _ 180   =   3 _ π

   θ =   
3(180)

 _ π  

 θ ≈ 172°

Try It #3

Convert −  3π _ 4   radians to degrees.

Example 4 Converting Degrees to Radians

Convert 15 degrees to radians.

Solution In this example, we start with degrees and want radians, so we again set up a proportion and solve it, but 
we substitute the given information into a different part of the proportion.

   θ _ 180   =    θ R _ π    

   15 _ 180   =    θ R _ π    

   15π _ 180   = θR

   π _ 12   = θR

Analysi s Another way to think about this problem is by remembering that 30° =   π _ 
6

  . Because 15° =   1 _ 2  (30°), we can find that  

  1 _ 2      π _ 
6

     is   π _ 12  . 



CHAPTER 5 trigonometric Functions448

Try It #4

Convert 126° to radians.

Finding Coterminal Angles
Converting between degrees and radians can make working with angles easier in some applications. For other 
applications, we may need another type of conversion. Negative angles and angles greater than a full revolution are 
more awkward to work with than those in the range of 0° to 360°, or 0 to 2π. It would be convenient to replace those 
out-of-range angles with a corresponding angle within the range of a single revolution.

It is possible for more than one angle to have the same terminal side. Look at Figure 16. The angle of 140° is a positive 
angle, measured counterclockwise. The angle of −220° is a negative angle, measured clockwise. But both angles have 
the same terminal side. If two angles in standard position have the same terminal side, they are coterminal angles. 
Every angle greater than 360° or less than 0° is coterminal with an angle between 0° and 360°, and it is often more 
convenient to find the coterminal angle within the range of 0° to 360° than to work with an angle that is outside that 
range.

140°

–220°

x

y

Figure 16  An angle of 140° and an angle of –220° are coterminal angles.

Any angle has infinitely many coterminal angles because each time we add 360° to that angle—or subtract 360° from it—
the resulting value has a terminal side in the same location. For example, 100° and 460° are coterminal for this reason,  
as is −260°. Recognizing that any angle has infinitely many coterminal angles explains the repetitive shape in the 
graphs of trigonometric functions.

An angle’s reference angle is the measure of the smallest, positive, acute angle t formed by the terminal side of the 
angle t and the horizontal axis. Thus positive reference angles have terminal sides that lie in the first quadrant and can 
be used as models for angles in other quadrants. See Figure 17 for examples of reference angles for angles in different 
quadrants.

Quadrant I Quadrant II

x

y

t tt'

t' = t t' = π − t = 180° − t t' = t − π = t − 180°

I

IV

II

III

x

y

I

IV

II

III

Quadrant III Quadrant IV

t t

t' = 2π − t = 360° − t

t' t'
x

y

I

IV

II

III

x

y

I

IV

II

III

Figure 17

coterminal and reference angles
Coterminal angles are two angles in standard position that have the same terminal side.
An angle’s reference angle is the size of the smallest acute angle, t′, formed by the terminal side of the angle t and 
the horizontal axis.



SECTION 5.1 angles 449

How To…
Given an angle greater than 360°, find a coterminal angle between 0° and 360°.

1. Subtract 360° from the given angle.
2. If the result is still greater than 360°, subtract 360° again till the result is between 0° and 360°. 
3. The resulting angle is coterminal with the original angle.

Example 5  Finding an Angle Coterminal with an Angle of Measure Greater Than 360°

Find the least positive angle θ that is coterminal with an angle measuring 800°, where 0° ≤ θ < 360°.

Solution An angle with measure 800° is coterminal with an angle with 
measure 800 − 360 = 440°, but 440° is still greater than 360°, so we subtract 
360° again to find another coterminal angle: 440 − 360 = 80°. 

The angle θ = 80° is coterminal with 800°. To put it another way, 800° equals 
80° plus two full rotations, as shown in Figure 18.

80°

800°

x

y

Figure 18 

Try It #5

Find an angle α that is coterminal with an angle measuring 870°, where 0° ≤ α < 360°.

How To…
Given an angle with measure less than 0°, find a coterminal angle having a measure between 0° and 360°.

1. Add 360° to the given angle.
2. If the result is still less than 0°, add 360° again until the result is between 0° and 360°.
3. The resulting angle is coterminal with the original angle.

Example 6  Finding an Angle Coterminal with an Angle Measuring Less Than 0°

Show the angle with measure −45° on a circle and find a positive coterminal angle α such that 0° ≤ α < 360°.

Solution Since 45° is half of 90°, we can start at the positive horizontal axis 
and measure clockwise half of a 90° angle.

Because we can find coterminal angles by adding or subtracting a full rotation 
of 360°, we can find a positive coterminal angle here by adding 360°:

−45° + 360° = 315°

We can then show the angle on a circle, as in Figure 19. 315° –45°

x

y

Figure 19 

Try It #6

Find an angle β that is coterminal with an angle measuring −300° such that 0° ≤ β < 360°.



CHAPTER 5 trigonometric Functions450

Finding Coterminal Angles Measured in Radians

We can find coterminal angles measured in radians in much the same way as we have found them using degrees. In 
both cases, we find coterminal angles by adding or subtracting one or more full rotations.

How To…
Given an angle greater than 2π, find a coterminal angle between 0 and 2π.

1. Subtract 2π from the given angle.
2. If the result is still greater than 2π, subtract 2π again until the result is between 0 and 2π.
3. The resulting angle is coterminal with the original angle.

Example 7 Finding Coterminal Angles Using Radians

Find an angle β that is coterminal with   19π _ 4  , where 0 ≤ β < 2π.

Solution When working in degrees, we found coterminal angles by adding or subtracting 360 degrees, a full rotation. 
Likewise, in radians, we can find coterminal angles by adding or subtracting full rotations of 2π radians:

   19π ___ 4   − 2π =   19π ___ 4   −   8π ___ 4  

 =   11π ___ 4  

The angle   11π _ 4   is coterminal, but not less than 2π, so we subtract another rotation:

   11π ___ 4   − 2π =   11π ___ 4   −   8π ___ 4  

 =   3π ___ 4  

The angle   3π _ 4   is coterminal with   19π _ 4  , as shown in Figure 20.

x
4

19π

4
3π

y

Figure 20

Try It #7

Find an angle of measure θ that is coterminal with an angle of measure −   17π _ 
6

   where 0 ≤ θ < 2π.

Determining the length of an Arc
Recall that the radian measure θ of an angle was defined as the ratio of the arc length s of a circular arc to the radius 
r of the circle, θ =   s _ r  . From this relationship, we can find arc length along a circle, given an angle.
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arc length on a circle
In a circle of radius r, the length of an arc s subtended by an angle with 
measure θ in radians, shown in Figure 21, is

s = rθ
r

s

θ

Figure 21 

How To…
Given a circle of radius r, calculate the length s of the arc subtended by a given angle of measure θ.
1. If necessary, convert θ to radians.
2. Multiply the radius r by the radian measure of θ : s = r θ.

Example 8 Finding the Length of an Arc

Assume the orbit of Mercury around the sun is a perfect circle. Mercury is approximately 36 million miles from the 
sun.
a. In one Earth day, Mercury completes 0.0114 of its total revolution. How many miles does it travel in one day?
b. Use your answer from part (a) to determine the radian measure for Mercury’s movement in one Earth day.
Solution

 a. Let’s begin by finding the circumference of Mercury’s orbit.
 C = 2πr
 = 2π(36 million miles)
 ≈ 226 million miles

Since Mercury completes 0.0114 of its total revolution in one Earth day, we can now find the distance traveled:
 (0.0114)226 million miles = 2.58 million miles

 b. Now, we convert to radians:
 radian =   

arclength
 _ 

radius
  

 =   2.58 million miles  __  
36 million miles

  

 = 0.0717

Try It #8
Find the arc length along a circle of radius 10 units subtended by an angle of 215°.

Finding the Area of a Sector of a Circle

In addition to arc length, we can also use angles to find the area of a sector of a circle. A sector is a region of a circle 
bounded by two radii and the intercepted arc, like a slice of pizza or pie. Recall that the area of a circle with radius r 
can be found using the formula A = πr 2. If the two radii form an angle of θ, measured in radians, then   θ _ 2π   is the ratio 
of the angle measure to the measure of a full rotation and is also, therefore, the ratio of the area of the sector to the 
area of the circle. Thus, the area of a sector is the fraction   θ _ 2π   multiplied by the entire area. (Always remember that this 
formula only applies if θ is in radians.)
 Area of sector =     θ __ 2π    πr2

 =   θπr 2 ____ 2π  

 =   1 __ 2  θr 2
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area of a sector
The area of a sector of a circle with radius r subtended by an angle θ, 
measured in radians, is

A =   1 __ 2  θ r 2
See Figure 22.

r

θ

A = θ r 
21

2

Figure 22  The area of the sector equals half the square of the 
radius times the central angle measured in radians.

How To…
Given a circle of radius r, find the area of a sector defined by a given angle θ.
1. If necessary, convert θ to radians.
2. Multiply half the radian measure of θ by the square of the radius r : A =   1 _ 2  θ r2.

Example 9 Finding the Area of a Sector

An automatic lawn sprinkler sprays a distance of 20 feet while rotating 30 
degrees, as shown in Figure 23. What is the area of the sector of grass the 
sprinkler waters?

Solution First, we need to convert the angle measure into radians. 
Because 30 degrees is one of our special angles, we already know the 
equivalent radian measure, but we can also convert:

 30 degrees = 30 ·   π ___ 180  

 =   π __ 6   radians

The area of the sector is then
 Area =   1 __ 2      π __ 6    (20)2

 ≈ 104.72
So the area is about 104.72 ft2.

Try It #9

In central pivot irrigation, a large irrigation pipe on wheels rotates around a center point. A farmer has a central pivot 
system with a radius of 400 meters. If water restrictions only allow her to water 150 thousand square meters a day, 
what angle should she set the system to cover? Write the answer in radian measure to two decimal places.

Use linear and Angular Speed to Describe Motion on a Circular Path
In addition to finding the area of a sector, we can use angles to describe the speed of a moving object. An object 
traveling in a circular path has two types of speed. Linear speed is speed along a straight path and can be determined 
by the distance it moves along (its displacement) in a given time interval. For instance, if a wheel with radius 5 inches 
rotates once a second, a point on the edge of the wheel moves a distance equal to the circumference, or 10π inches, 
every second. So the linear speed of the point is 10π in./s. The equation for linear speed is as follows where v is linear 
speed, s is displacement, and t is time.
 v =   s _ t  

20 �

30°

Figure 23 The sprinkler sprays 20 ft within an arc of 30°.
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Angular speed results from circular motion and can be determined by the angle through which a point rotates in a 
given time interval. In other words, angular speed is angular rotation per unit time. So, for instance, if a gear makes 

a full rotation every 4 seconds, we can calculate its angular speed as   
360 degrees

 __ 
4 seconds

   = 90 degrees per second. Angular 

speed can be given in radians per second, rotations per minute, or degrees per hour for example. The equation for 
angular speed is as follows, where ω (read as omega) is angular speed, θ is the angle traversed, and t is time.

 ω =   θ __ t  

Combining the definition of angular speed with the arc length equation, s = rθ, we can find a relationship between 
angular and linear speeds. The angular speed equation can be solved for θ, giving θ = ωt. Substituting this into the 
arc length equation gives:
 s = rθ
 = rωt

Substituting this into the linear speed equation gives:

 v =   s _ t  

 =   rωt ___ t  

 = rω

angular and linear speed
As a point moves along a circle of radius r, its angular speed, ω, is the angular rotation θ per unit time, t.

ω =   θ __ t  

The linear speed, v, of the point can be found as the distance traveled, arc length s, per unit time, t.

v =   s _ t  

When the angular speed is measured in radians per unit time, linear speed and angular speed are related by the 
equation

v = rω

This equation states that the angular speed in radians, ω, representing the amount of rotation occurring in a unit of 
time, can be multiplied by the radius r to calculate the total arc length traveled in a unit of time, which is the definition 
of linear speed.

How To…
Given the amount of angle rotation and the time elapsed, calculate the angular speed.

1. If necessary, convert the angle measure to radians.
2. Divide the angle in radians by the number of time units elapsed: ω =   θ _ t  .
3. The resulting speed will be in radians per time unit.

Example 10 Finding Angular Speed

A water wheel, shown in Figure 24, completes 1 rotation every 5 seconds. Find 
the angular speed in radians per second.

Solution The wheel completes 1 rotation, or passes through an angle of 2π 
radians in 5 seconds, so the angular speed would be ω =   2π _ 5   ≈ 1.257 radians 
per second. Figure 24 
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Try It #10

An old vinyl record is played on a turntable rotating clockwise at a rate of 45 rotations per minute. Find the angular 
speed in radians per second.

How To…
Given the radius of a circle, an angle of rotation, and a length of elapsed time, determine the linear speed.
1. Convert the total rotation to radians if necessary.
2. Divide the total rotation in radians by the elapsed time to find the angular speed: apply ω =   θ _ t.  
3. Multiply the angular speed by the length of the radius to find the linear speed, expressed in terms of the length unit 

used for the radius and the time unit used for the elapsed time: apply v = rω.

Example 11   Finding a Linear Speed

A bicycle has wheels 28 inches in diameter. A tachometer determines the wheels are rotating at 180 RPM (revolutions 
per minute). Find the speed the bicycle is traveling down the road.

Solution Here, we have an angular speed and need to find the corresponding linear speed, since the linear speed of 
the outside of the tires is the speed at which the bicycle travels down the road.

We begin by converting from rotations per minute to radians per minute. It can be helpful to utilize the units to make 
this conversion:
 180   rotations _______ minute   ·   2π radians ________ rotation   = 360π   radians ______ minute  

Using the formula from above along with the radius of the wheels, we can find the linear speed:

 v = (14 inches)  360π   radians ______ minute    

 = 5040π   inches ______ minute  

Remember that radians are a unitless measure, so it is not necessary to include them.

Finally, we may wish to convert this linear speed into a more familiar measurement, like miles per hour.

5040π   inches ______ minute   ·   1 feet _______ 12 inches   ·   1 mile _______ 5280 feet   ·   
60 minutes _________ 1 hour   ≈ 14.99 miles per hour (mph)

Try It #11

A satellite is rotating around Earth at 0.25 radians per hour at an altitude of 242 km above Earth. If the radius of 
Earth is 6378 kilometers, find the linear speed of the satellite in kilometers per hour.

Access these online resources for additional instruction and practice with angles, arc length, and areas of sectors.

•	 Angles in Standard Position (http://openstaxcollege.org/l/standardpos)

•	 Angle of Rotation (http://openstaxcollege.org/l/angleofrotation)

•	 Coterminal Angles (http://openstaxcollege.org/l/coterminal)

•	 Determining Coterminal Angles (http://openstaxcollege.org/l/detcoterm)

•	 Positive and negative Coterminal Angles (http://openstaxcollege.org/l/posnegcoterm)

•	 Radian Measure (http://openstaxcollege.org/l/radianmeas)

•	 Coterminal Angles in Radians (http://openstaxcollege.org/l/cotermrad)

•	 Arc length and Area of a Sector (http://openstaxcollege.org/l/arclength)

http://openstaxcollege.org/l/standardpos
http://openstaxcollege.org/l/angleofrotation
http://openstaxcollege.org/l/coterminal
http://openstaxcollege.org/l/detcoterm
http://openstaxcollege.org/l/posnegcoterm
http://openstaxcollege.org/l/radianmeas
http://openstaxcollege.org/l/cotermrad
http://openstaxcollege.org/l/arclength
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5.1 SeCTIOn exeRCISeS

VeRBAl
1. Draw an angle in standard position. Label the vertex, 

initial side, and terminal side.
2. Explain why there are an infinite number of angles 

that are coterminal to a certain angle.
3. State what a positive or negative angle signifies, and 

explain how to draw each.
4. How does radian measure of an angle compare to the 

degree measure? Include an explanation of 1 radian in 
your paragraph.

5. Explain the differences between linear speed and 
angular speed when describing motion along a  
circular path.

For the following exercises, draw an angle in standard position with the given measure.
6. 30° 7. 300° 8.  −80° 9. 135° 10.  −150° 11.   2π ___ 3  

12.   7π ___ 4  13.   5π ___ 6  14.   π __ 2  15.  −  π __ 10  16. 415° 17.  −120°

18.  −315° 19.   22π ___ 3  20.  −  π __ 6  21.  −  4π ___ 3  

For the following exercises, refer to Figure 25. Round to 
two decimal places.

140°

r = 3 in

Figure 25 

For the following exercises, refer to Figure 26. Round to 
two decimal places.

r = 4.5 cm

2π
5

Figure 26 

22. Find the arc length.  24. Find the arc length.
 23. Find the area of the sector. 25. Find the area of the sector.

AlGeBRAIC
For the following exercises, convert angles in radians to degrees.

26.   3π ___ 4   radians 27.   π __ 9   radians 28.  −  
5π ___ 4   radians 29.   π __ 3   radians

30.  −  7π ___ 3   radians 31.  −  5π ___ 12   radians 32.   11π ___ 6   radians

For the following exercises, convert angles in degrees to radians.
33. 90° 34. 100° 35.  −540° 36.  −120°
37. 180° 38.  −315° 39. 150°

For the following exercises, use to given information to find the length of a circular arc. Round to two decimal places.

40. Find the length of the arc of a circle of radius 
12 inches subtended by a central angle of   π _ 4   radians.

41. Find the length of the arc of a circle of radius 
5.02 miles subtended by the central angle of   π _ 3  .

42. Find the length of the arc of a circle of diameter 
14 meters subtended by the central angle of   5π _ 

6
  .

43. Find the length of the arc of a circle of radius 
10 centimeters subtended by the central angle of 50°.

44. Find the length of the arc of a circle of radius 
5 inches subtended by the central angle of 220°.

45. Find the length of the arc of a circle of diameter 
12 meters subtended by the central angle is 63°.

23.  

24.  
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For the following exercises, use the given information to find the area of the sector. Round to four decimal places.
46. A sector of a circle has a central angle of 45° and a 

radius 6 cm.
47. A sector of a circle has a central angle of 30° and a 

radius of 20 cm.
48. A sector of a circle with diameter 10 feet and an 

angle of   π _ 2   radians.
49. A sector of a circle with radius of 0.7 inches and an 

angle of π radians.

For the following exercises, find the angle between 0° and 360° that is coterminal to the given angle.
50.  −40° 51.  −110° 52. 700° 53. 1400°

For the following exercises, find the angle between 0 and 2π in radians that is coterminal to the given angle.

54.  −  π __ 9  55.   10π ___ 3  56.   13π ___ 6  57.   44π ___ 9  

ReAl-WORlD APPlICATIOnS
58. A truck with 32-inch diameter wheels is traveling at  

60 mi/h. Find the angular speed of the wheels in  
rad/min. How many revolutions per minute do the 
wheels make?

59. A bicycle with 24-inch diameter wheels is traveling at 
15 mi/h. Find the angular speed of the wheels in rad/
min. How many revolutions per minute do the wheels 
make?

60. A wheel of radius 8 inches is rotating 15°/s. What is 
the linear speed v, the angular speed in RPM, and the 
angular speed in rad/s?

61. A wheel of radius 14 inches is rotating 0.5 rad/s. What 
is the linear speed v, the angular speed in RPM, and the 
angular speed in deg/s?

62. A CD has diameter of 120 millimeters. When playing 
audio, the angular speed varies to keep the linear 
speed constant where the disc is being read. When 
reading along the outer edge of the disc, the angular 
speed is about 200 RPM (revolutions per minute). 
Find the linear speed.

63. When being burned in a writable CD-R drive, the 
angular speed of a CD varies to keep the linear speed 
constant where the disc is being written. When writing 
along the outer edge of the disc, the angular speed of 
one drive is about 4,800 RPM (revolutions per minute). 
Find the linear speed if the CD has diameter of 120 
millimeters.

64. A person is standing on the equator of Earth (radius 
3960 miles). What are his linear and angular speeds?

65. Find the distance along an arc on the surface of Earth 
that subtends a central angle of 5 minutes  
  1 minute =   1 _ 

60
   degree  . The radius of Earth is 3,960 mi.

66. Find the distance along an arc on the surface of 
Earth that subtends a central angle of 7 minutes  

 1 minute =   1 _ 
60

   degree  . The radius of Earth is 
3,960 miles.

67. Consider a clock with an hour hand and minute hand. 
What is the measure of the angle the minute hand 
traces in 20 minutes?

exTenSIOnS
68. Two cities have the same longitude. The latitude of city 

A is 9.00 degrees north and the latitude of city B is 30.00 
degree north. Assume the radius of the earth is 3960 
miles. Find the distance between the two cities.

69. A city is located at 40 degrees north latitude. Assume 
the radius of the earth is 3960 miles and the earth 
rotates once every 24 hours. Find the linear speed of a 
person who resides in this city.

70. A city is located at 75 degrees north latitude. Assume 
the radius of the earth is 3960 miles and the earth 
rotates once every 24 hours. Find the linear speed of a 
person who resides in this city.

71. Find the linear speed of the moon if the average 
distance between the earth and moon is 239,000 miles, 
assuming the orbit of the moon is circular and requires 
about 28 days. Express answer in miles per hour.

72. A bicycle has wheels 28 inches in diameter. A 
tachometer determines that the wheels are rotating at 
180 RPM (revolutions per minute). Find the speed the 
bicycle is travelling down the road.

73. A car travels 3 miles. Its tires make 2640 revolutions. 
What is the radius of a tire in inches?

74. A wheel on a tractor has a 24-inch diameter. How 
many revolutions does the wheel make if the tractor 
travels 4 miles?
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Find function values for the sine and cosine of 30° or     π _ 
6

    , 45° or     π _ 
4
     and 60° or     π _ 

3
    .

•	  Identify the domain and range of sine and cosine functions.

•	  Use reference angles to evaluate trigonometric functions.

5.2 UnIT CIRCle: SIne AnD COSIne FUnCTIOnS

Figure 1 The Singapore Flyer is the world’s tallest Ferris wheel. (credit: “Vibin jK”/Flickr)

Looking for a thrill? Then consider a ride on the Singapore Flyer, the world’s tallest Ferris wheel. Located in Singapore, 
the Ferris wheel soars to a height of 541 feet—a little more than a tenth of a mile! Described as an observation wheel, 
riders enjoy spectacular views as they travel from the ground to the peak and down again in a repeating pattern. In 
this section, we will examine this type of revolving motion around a circle. To do so, we need to define the type of 
circle first, and then place that circle on a coordinate system. Then we can discuss circular motion in terms of the 
coordinate pairs.

Finding Function Values for the Sine and Cosine
To define our trigonometric functions, we begin by drawing a unit circle, a circle centered at the origin with radius 1, 
as shown in Figure 2. The angle (in radians) that t intercepts forms an arc of length s. Using the formula s = rt, and 
knowing that r = 1, we see that for a unit circle, s = t. 

Recall that the x- and y-axes divide the coordinate plane into four quarters called quadrants. We label these quadrants 
to mimic the direction a positive angle would sweep. The four quadrants are labeled I, II, III, and IV.

For any angle t, we can label the intersection of the terminal side and the unit circle as by its coordinates, (x, y). The 
coordinates x and y will be the outputs of the trigonometric functions f (t) = cos t and f (t) = sin t, respectively. This 
means x = cos t and y = sin t.

cos t

sin t
t x

y

s1

I

(x, y)

II

IVIII
Figure 2 Unit circle where the central angle is t radians
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unit circle
A unit circle has a center at (0, 0) and radius 1. In a unit circle, the length of the intercepted arc is equal to the radian 
measure of the central angle t.
Let (x, y) be the endpoint on the unit circle of an arc of arc length s. The (x, y) coordinates of this point can be 
described as functions of the angle.

Defining Sine and Cosine Functions

Now that we have our unit circle labeled, we can learn how the (x, y) coordinates relate to the arc length and angle. 
The sine function relates a real number t to the y-coordinate of the point where the corresponding angle intercepts 
the unit circle. More precisely, the sine of an angle t equals the y-value of the endpoint on the unit circle of an arc of 
length t. In Figure 2, the sine is equal to y. Like all functions, the sine function has an input and an output. Its input 
is the measure of the angle; its output is the y-coordinate of the corresponding point on the unit circle.

The cosine function of an angle t equals the x-value of the endpoint on the unit circle of an arc of length t. In Figure 
3, the cosine is equal to x.

t

x

y

t

cos t

sin t1

(x, y) = (cos t, sin t)

Figure 3

Because it is understood that sine and cosine are functions, we do not always need to write them with parentheses: 
sin t is the same as sin(t) and cos t is the same as cos(t). Likewise, cos2 t is a commonly used shorthand notation for 
(cos(t))2. Be aware that many calculators and computers do not recognize the shorthand notation. When in doubt, use 
the extra parentheses when entering calculations into a calculator or computer.

sine and cosine functions
If t is a real number and a point (x, y) on the unit circle corresponds to an angle of t, then

cos t = x
sin t = y

How To…
Given a point P (x, y) on the unit circle corresponding to an angle of t, find the sine and cosine.

1. The sine of t is equal to the y-coordinate of point P: sin t = y.
2. The cosine of t is equal to the x-coordinate of point P: cos t = x.

Example 1 Finding Function Values for Sine and Cosine

Point P is a point on the unit circle corresponding to an angle of t, as shown in Figure 4. Find cos(t) and sin(t).
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cos t

sin t
t

1 = (cos t, sin t)

x

y

Figure 4

Solution We know that cos t is the x-coordinate of the corresponding point on the unit circle and sin t is the 
y-coordinate of the corresponding point on the unit circle. So:

 x = cos t =   1 __ 2  

 y = sin t =    √
—
 3   ___ 2  

Try It #1

A certain angle t corresponds to a point on the unit circle at   −   √
—
 2   _ 2  ,    √

—
 2   _ 2     as shown in Figure 5. Find cos t and sin t.

1

x

y

t

Figure 5

Finding Sines and Cosines of Angles on an Axis

For quadrantral angles, the corresponding point on the unit circle falls on the x- or y-axis. In that case, we can easily 
calculate cosine and sine from the values of x and y.

Example 2 Calculating Sines and Cosines along an Axis

Find cos(90°) and sin(90°). 

Solution Moving 90° counterclockwise around the unit circle from 
the positive x-axis brings us to the top of the circle, where the (x, y) 
coordinates are (0, 1), as shown in Figure 6.

Using our definitions of cosine and sine,

x = cos t = cos(90°) = 0

y = sin t = sin(90°) = 1

The cosine of 90° is 0; the sine of 90° is 1.

x

y
(0, 1)

t

Figure 6 
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Try It #2

Find cosine and sine of the angle π.

The Pythagorean Identity

Now that we can define sine and cosine, we will learn how they relate to each other and the unit circle. Recall that 
the equation for the unit circle is x2 + y2 = 1. Because x = cos t and y = sin t, we can substitute for x and y to get  
cos2 t + sin2 t = 1. This equation, cos2 t + sin2 t = 1, is known as the Pythagorean Identity. See Figure 7.

t

1

1 = x2 + y 
2 = cos2 t + sin2 t

x

y

Figure 7

We can use the Pythagorean Identity to find the cosine of an angle if we know the sine, or vice versa. However, because 
the equation yields two solutions, we need additional knowledge of the angle to choose the solution with the correct 
sign. If we know the quadrant where the angle is, we can easily choose the correct solution.

Pythagorean Identity
The Pythagorean Identity states that, for any real number t,

cos2 t + sin2 t = 1

How To…
Given the sine of some angle t and its quadrant location, find the cosine of t.

1. Substitute the known value of sin(t) into the Pythagorean Identity.
2. Solve for cos(t).
3. Choose the solution with the appropriate sign for the x-values in the quadrant where t is located.

Example 3 Finding a Cosine from a Sine or a Sine from a Cosine

If sin(t) =   3 _ 7   and t is in the second quadrant, find cos(t).

Solution If we drop a vertical line from the point on the unit circle corresponding 
to t, we create a right triangle, from which we can see that the Pythagorean Identity 
is simply one case of the Pythagorean Theorem. See Figure 8.

Substituting the known value for sine into the Pythagorean Identity,

 cos2(t) + sin2(t) = 1

 cos2(t) +   9 __ 49   = 1

 cos2(t) =   40 __ 49  

 cos(t) = ±  √ 
___

   40 __ 49     = ±   √
—

 40   ____ 7   = ±   2 √
—

 10   _ 7   

x,

x
x

y

3
71

Figure 8 

Because the angle is in the second quadrant, we know the x-value is a negative real number, so the cosine is also 

negative. So cos(t) = −  2 √
—

 10   _ 7  
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Try It #3

If cos(t) =    24 ___ 25   and t is in the fourth quadrant, find sin(t).

Finding Sines and Cosines of Special Angles
We have already learned some properties of the special angles, such as the conversion from radians to degrees. We can 
also calculate sines and cosines of the special angles using the Pythagorean Identity and our knowledge of triangles.

Finding Sines and Cosines of 45° Angles

First, we will look at angles of 45° or   π _ 4  , as shown in Figure 9. A 45° – 45° – 90° triangle is an isosceles triangle, so the 
x- and y-coordinates of the corresponding point on the circle are the same. Because the x- and y-values are the same, 
the sine and cosine values will also be equal.

x

y

(x, y) = (x, x)

1

45°

Figure 9

At t =   π __ 4  , which is 45 degrees, the radius of the unit circle bisects the first quadrantal angle. This means the radius lies 
along the line y = x. A unit circle has a radius equal to 1. So, the right triangle formed below the line y = x has sides x and y  
(y = x), and a radius = 1. See Figure 10.

(0, 1)

(−1, 0)

(0, −1)

(1, 0)

1

4
π

x

y

x

y = x

Figure 10

From the Pythagorean Theorem we get

 x2 + y2 = 1
Substituting y = x, we get
 x2 + x2 = 1
Combining like terms we get
 2x2 = 1
And solving for x, we get

 x2 =   1 __ 2   

 x = ±   1 _ 
 √

—
 2  
  

In quadrant I, x =   1 _ 
 √

—
 2  
  .
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At t =   π _ 4   or 45 degrees,

 (x, y) = (x, x) =      1 _ 
 √

—
 2  
  ,   1 _ 

 √
—
 2  
    

 x =    1 _ 
 √

—
 2  
  ,  y =    1 _ 

 √
—
 2  
  

 cos t =    1 _ 
 √

—
 2  
  ,  sin t =    1 _ 

 √
—
 2  
  

If we then rationalize the denominators, we get

 cos t =    1 _ 
 √

—
 2  
   ·    √

—
 2   _ 

 √
—
 2  
  

 =    √
—
 2   ____ 2  

 sin t =    1 _ 
 √

—
 2  
   ·    √

—
 2   _ 

 √
—
 2  
  

 =    √
—
 2   ____ 2  

Therefore, the (x, y) coordinates of a point on a circle of radius 1 at an angle of 45° are      √
—
 2   _  2  ,    √

—
 2   _ 2    .

Finding Sines and Cosines of 30° and 60° Angles

Next, we will find the cosine and sine at an angle of 30°, or   π _ 
6

  . First, we will draw a triangle inside a circle with one 
side at an angle of 30°, and another at an angle of −30°, as shown in Figure 11. If the resulting two right triangles are 
combined into one large triangle, notice that all three angles of this larger triangle will be 60°, as shown in Figure 12.

30°

(x, y)

r

Figure 11 

30°

30°

60°

60°

r

r

y

y

Figure 12

Because all the angles are equal, the sides are also equal. The vertical line has length 2y, and since the sides are all 

equal, we can also conclude that r = 2y or y =   1 _ 2  r. Since sin t = y,

 sin    π __ 6     =   1 __ 2  r

And since r = 1 in our unit circle,

 sin    π __ 6     =   1 __ 2  (1)

 =   1 __ 2  
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Using the Pythagorean Identity, we can find the cosine value.

 cos2   π __ 6   + sin2    π __ 6     = 1

 cos2    π __ 6     +     1 __ 2    
2

  = 1

 cos2    π __ 6     =   3 __ 4    Use the square root property.

 cos     π __ 6     =   ± √
—
 3   _ 

± √
—
 4  
   =    √

—
 3   _ 2     Since y is positive, choose the positive root.

The (x, y) coordinates for the point on a circle of radius 1 at an angle of 30° are      √
—
 3   _ 2  ,   1 _ 2    . At t =   π _ 3   (60°), the radius of 

the unit circle, 1, serves as the hypotenuse of a 30-60-90 degree right triangle, BAD, as shown in Figure 13. Angle A 
has measure 60°. At point B, we draw an angle ABC with measure of 60°. We know the angles in a triangle sum to 180°, 
so the measure of angle C is also 60°. Now we have an equilateral triangle. Because each side of the equilateral triangle 
ABC is the same length, and we know one side is the radius of the unit circle, all sides must be of length 1.

B

A
D C

xx
x

y

y

1 1

(0, 1)

30°,

(0, −1)

(1, 0)(−1, 0)

3

6
π

60°, π

3
π

Figure 13

The measure of angle ABD is 30°. So, if double, angle ABC is 60°. BD is the perpendicular bisector of AC, so it cuts 
AC in half. This means that AD is   1 _ 2   the radius, or   1 _ 2  . Notice that AD is the x-coordinate of point B, which is at the 
intersection of the 60° angle and the unit circle. This gives us a triangle BAD with hypotenuse of 1 and side x of 
length   1 _ 2  .

From the Pythagorean Theorem, we get
 x 2 + y 2 = 1

Substituting x =   1 _ 2  , we get

     1 __ 2    
2
 + y 2 = 1

Solving for y, we get

   1 __ 4   + y 2 = 1

 y 2 = 1 −   1 __ 4  

 y 2 =   3 __ 4  

 y = ±   √
—
 3   ____ 

2
  

Since t =   π _ 3   has the terminal side in quadrant I where the y-coordinate is positive, we choose y =    √
—
 3   _ 2  , the positive 

value. 
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At t =   π _ 3   (60°), the (x, y) coordinates for the point on a circle of radius 1 at an angle of 60° are     1 _ 2  ,    √
—
 3   _ 2     , so we can 

find the sine and cosine.
 (x, y) =     1 __ 2  ,    √

—
 3   _ 2    

 x =   1 __ 2  , y =    √
—
 3   _ 2   

 cos t =   1 __ 2  , sin t =    √
—
 3   _ 2   

We have now found the cosine and sine values for all of the most commonly encountered angles in the first quadrant 
of the unit circle. Table 1 summarizes these values.

Angle 0   π __ 6  , or 30°   π __ 4  , or 45°   π __ 3  , or 60°   π __ 2  , or 90°

Cosine 1    √
—
 3   _ 2      √

—
 2   _ 2     1 __ 2  0

Sine 0   1 __ 2     √
—
 2   _ 2      √

—
 3   _ 2   1

Table 1

Figure 14 shows the common angles in the first quadrant of the unit circle.

(1, 0)
0° = 360°

(0, 1)

1
2

90°, 2
π

60°, 45°,

30°,

1
2

Figure 14

Using a Calculator to Find Sine and Cosine

To find the cosine and sine of angles other than the special angles, we turn to a computer or calculator. Be aware: Most 
calculators can be set into “degree” or “radian” mode, which tells the calculator the units for the input value. When 
we evaluate cos(30) on our calculator, it will evaluate it as the cosine of 30 degrees if the calculator is in degree mode, 
or the cosine of 30 radians if the calculator is in radian mode.

How To…
Given an angle in radians, use a graphing calculator to find the cosine.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Press the COS key.
3. Enter the radian value of the angle and press the close-parentheses key “)”.
4. Press ENTER.
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Example 4 Using a Graphing Calculator to Find Sine and Cosine

Evaluate cos     5π _ 3     using a graphing calculator or computer.

Solution Enter the following keystrokes:
COS(5 × π ÷ 3) ENTER

cos     5π ___ 3     = 0.5

Analysi s We can find the cosine or sine of an angle in degrees directly on a calculator with degree mode. For calculators 
or software that use only radian mode, we can find the sign of 20°, for example, by including the conversion factor to 
radians as part of the input:

SIN(20 × π ÷ 180) ENTER

Try It #4

Evaluate sin     π _ 3    .

Identifying the Domain and Range of Sine and Cosine Functions
Now that we can find the sine and cosine of an angle, we need to discuss their domains and ranges. What are the 
domains of the sine and cosine functions? That is, what are the smallest and largest numbers that can be inputs of the 
functions? Because angles smaller than 0 and angles larger than 2π can still be graphed on the unit circle and have real 
values of x, y, and r, there is no lower or upper limit to the angles that can be inputs to the sine and cosine functions. 
The input to the sine and cosine functions is the rotation from the positive x-axis, and that may be any real number.

What are the ranges of the sine and cosine functions? What are the least and greatest possible values for their output? 
We can see the answers by examining the unit circle, as shown in Figure 15. The bounds of the x-coordinate are [−1, 1].

The bounds of the y-coordinate are also [−1, 1]. Therefore, the range of both the sine and cosine functions is [−1, 1].

(–1, 0) (1, 0)

(0, 1)

(0, –1)

x

y

Figure 15

Finding Reference Angles
We have discussed finding the sine and cosine for angles in the first quadrant, but what if our angle is in another 
quadrant? For any given angle in the first quadrant, there is an angle in the second quadrant with the same sine value. 
Because the sine value is the y-coordinate on the unit circle, the other angle with the same sine will share the same 
y-value, but have the opposite x-value. Therefore, its cosine value will be the opposite of the first angle’s cosine value.

Likewise, there will be an angle in the fourth quadrant with the same cosine as the original angle. The angle with the 
same cosine will share the same x-value but will have the opposite y-value. Therefore, its sine value will be the opposite 
of the original angle’s sine value.

As shown in Figure 16, angle α has the same sine value as angle t; the cosine values are opposites. Angle β has the 
same cosine value as angle t; the sine values are opposites.

 sin(t) = sin(α)   and cos(t) = −cos(α)

 sin(t) = −sin(β) and cos(t) = cos(β)
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(x, y)
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IVIII
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(x, y)

III

IVIII

α
β

Figure 16

Recall that an angle’s reference angle is the acute angle, t, formed by the terminal side of the angle t and the horizontal 
axis. A reference angle is always an angle between 0 and 90°, or 0 and   π _ 2   radians. As we can see from Figure 17, for 
any angle in quadrants II, III, or IV, there is a reference angle in quadrant I.

Quadrant I Quadrant II

x

y

t, t' tt'

t' = t t' = π − t = 180° − t

I

IV

II

III

x

y

I

IV

II

III

Quadrant III Quadrant IV

t t

t' = 2π − t = 360° − tt' = t − π = t − 180°

t' t'

x

y

I

IV

II

III

x

y

I

IV

II

III

Figure 17

How To…
Given an angle between 0 and 2π, find its reference angle.

1. An angle in the first quadrant is its own reference angle.
2. For an angle in the second or third quadrant, the reference angle is ∣π − t∣ or ∣180° − t∣.
3. For an angle in the fourth quadrant, the reference angle is 2π − t or 360° − t.
4. If an angle is less than 0 or greater than 2π, add or subtract 2π as many times as needed to find an equivalent angle 

between 0 and 2π.
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Example 5 Finding a Reference Angle

Find the reference angle of 225° as shown in Figure 18.

x

y

IV

III

III

225°

Figure 18

Solution Because 225° is in the third quadrant, the reference angle is 
∣(180° − 225°)∣ = ∣−45°∣ = 45°

Try It #5

Find the reference angle of   5π _ 3  .

Using Reference Angles
Now let’s take a moment to reconsider the Ferris wheel introduced at the beginning of this section. Suppose a rider 
snaps a photograph while stopped twenty feet above ground level. The rider then rotates three-quarters of the way 
around the circle. What is the rider’s new elevation? To answer questions such as this one, we need to evaluate the 
sine or cosine functions at angles that are greater than 90 degrees or at a negative angle. Reference angles make it 
possible to evaluate trigonometric functions for angles outside the first quadrant. They can also be used to find (x, y) 
coordinates for those angles. We will use the reference angle of the angle of rotation combined with the quadrant in 
which the terminal side of the angle lies.

Using Reference Angles to Evaluate Trigonometric Functions

We can find the cosine and sine of any angle in any quadrant if we know the cosine or sine of its reference angle. The 
absolute values of the cosine and sine of an angle are the same as those of the reference angle. The sign depends on the 
quadrant of the original angle. The cosine will be positive or negative depending on the sign of the x-values in that 
quadrant. The sine will be positive or negative depending on the sign of the y-values in that quadrant.

using reference angles to find cosine and sine
Angles have cosines and sines with the same absolute value as cosines and sines of their reference angles. The sign 
(positive or negative) can be determined from the quadrant of the angle.

How To…
Given an angle in standard position, find the reference angle, and the cosine and sine of the original angle.

1. Measure the angle between the terminal side of the given angle and the horizontal axis. That is the reference angle.
2. Determine the values of the cosine and sine of the reference angle.
3. Give the cosine the same sign as the x-values in the quadrant of the original angle.
4. Give the sine the same sign as the y-values in the quadrant of the original angle.
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Example 6 Using Reference Angles to Find Sine and Cosine

a. Using a reference angle, find the exact value of cos(150°) and sin(150°).

b. Using the reference angle, find cos   5π _ 4   and sin   5π _ 4  .

Solution

a.  150° is located in the second quadrant. The angle it makes with the x-axis is 180° − 150° = 30°, so the reference 
angle is 30°.

  This tells us that 150° has the same sine and cosine values as 30°, except for the sign. We know that

 cos(30°) =    √
—
 3   ___ 2   and sin(30°) =   1 __ 2  .

  Since 150° is in the second quadrant, the x-coordinate of the point on the circle is negative, so the cosine value 
is negative. The y-coordinate is positive, so the sine value is positive.

 cos(150°) = −   √
—
 3   ___ 2   and sin(150°) =   1 __ 2  

 b.   5π _ 4   is in the third quadrant. Its reference angle is   5π _ 4   − π =   π _ 4  . The cosine and sine of   π __ 4   are both    √
—
 2   _ 2  . In the third 

quadrant, both x and y are negative, so:

cos   5π ___ 4   = −    √
—
 2   ____ 2   and sin   5π ___ 4   = −   √

—
 2   ___ 2  

Try It #6

a.  Use the reference angle of 315° to find cos(315°) and sin(315°).

b.  Use the reference angle of −  π _ 
6

   to find cos   −  π _ 
6

     and sin   −  π _ 
6

    .

Using Reference Angles to Find Coordinates

Now that we have learned how to find the cosine and sine values for special angles in the first quadrant, we can use 
symmetry and reference angles to fill in cosine and sine values for the rest of the special angles on the unit circle. 
They are shown in Figure 19. Take time to learn the (x, y) coordinates of all of the major angles in the first quadrant.

90°, π
2

(–1, 0)

(0, 1)

(0, –1)270°, 3π
2

180°, π 
360°, 2π  (1, 0) 
0°, 0  (1, 0) 

60°, π
3

30°, π
6

45°, π
4

315°, 7π
4

135°, 3π
4

225°, 5π
4

330°, 11π
6

120°, 2π
3

240°,   4π
3

300°, 5π
3

210°, 7π
6

150°, 5π
6

Figure 19 Special angles and coordinates of corresponding points on the unit circle

In addition to learning the values for special angles, we can use reference angles to find (x, y) coordinates of any point 
on the unit circle, using what we know of reference angles along with the identities

x = cos t      y = sin t



SECTION 5.2 unit circle: sine and cosine Functions 469

First we find the reference angle corresponding to the given angle. Then we take the sine and cosine values of the 
reference angle, and give them the signs corresponding to the y- and x-values of the quadrant.

How To…
Given the angle of a point on a circle and the radius of the circle, find the (x, y) coordinates of the point.

1. Find the reference angle by measuring the smallest angle to the x-axis.
2. Find the cosine and sine of the reference angle.
3. Determine the appropriate signs for x and y in the given quadrant.

Example 7 Using the Unit Circle to Find Coordinates

Find the coordinates of the point on the unit circle at an angle of   7π _ 
6

  .

Solution We know that the angle   7π _ 
6

   is in the third quadrant.

First, let’s find the reference angle by measuring the angle to the x-axis. To find the reference angle of an angle whose 
terminal side is in quadrant III, we find the difference of the angle and π.

   7π ___ 6   − π =   π __ 6  

Next, we will find the cosine and sine of the reference angle:

 cos     π __ 6     =    √
—
 3   ____ 2   and sin     π __ 6     =  1 __ 2  

We must determine the appropriate signs for x and y in the given quadrant. Because our original angle is in the third 
quadrant, where both x and y are negative, both cosine and sine are negative.

 cos     7π ___ 6     = −   √
—
 3   ____ 2  

 sin     7π ___ 6     = −  1 __ 2  

Now we can calculate the (x, y) coordinates using the identities x = cos θ and y = sin θ.

The coordinates of the point are   −   √
—
 3   _ 2  , −  1 _ 2     on the unit circle.

Try It #7

Find the coordinates of the point on the unit circle at an angle of   5π _ 3  .

Access these online resources for additional instruction and practice with sine and cosine functions.

•	 Trigonometric Functions Using the Unit Circle (http://openstaxcollege.org/l/trigunitcir)

•	 Sine and Cosine from the Unit Circle (http://openstaxcollege.org/l/sincosuc)

•	 Sine and Cosine from the Unit Circle and Multiples of Pi Divided by Six (http://openstaxcollege.org/l/sincosmult)

•	 Sine and Cosine from the Unit Circle and Multiples of Pi Divided by Four (http://openstaxcollege.org/l/sincosmult4)

•	 Trigonometric Functions Using Reference Angles (http://openstaxcollege.org/l/trigrefang)

http://openstaxcollege.org/l/trigunitcir
http://openstaxcollege.org/l/sincosuc
http://openstaxcollege.org/l/sincosmult
http://openstaxcollege.org/l/sincosmult4
http://openstaxcollege.org/l/trigrefang
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5.2 SeCTIOn exeRCISeS

VeRBAl
1. Describe the unit circle. 2. What do the x- and y-coordinates of the points on 

the unit circle represent?
3. Discuss the difference between a coterminal angle 

and a reference angle.
4. Explain how the cosine of an angle in the second 

quadrant differs from the cosine of its reference 
angle in the unit circle.

5. Explain how the sine of an angle in the second 
quadrant differs from the sine of its reference angle 
in the unit circle.

AlGeBRAIC
For the following exercises, use the given sign of the sine and cosine functions to find the quadrant in which the 
terminal point determined by t lies.

6. sin(t) < 0 and cos(t) < 0 7. sin(t) > 0 and cos(t) > 0
8. sin(t) > 0 and cos(t) < 0 9. sin(t) < 0 and cos(t) > 0

For the following exercises, find the exact value of each trigonometric function.
10. sin   π __ 2  11. sin   π __ 3  12. cos   π __ 2  13. cos   π __ 3  

14. sin   π __ 4  15. cos   π __ 4  16. sin   π __ 6  17. sin π

18. sin   3π ___ 2  19. cos π 20. cos 0 21. cos   π __ 6  

22. sin 0

nUMeRIC
For the following exercises, state the reference angle for the given angle.

23. 240° 24.  −170° 25. 100° 26.  −315°

27. 135° 28.   5π ___ 4  29.   2π ___ 3  30.   5π ___ 6  

31.    −11π _ 
3

  32.    −7π _ 4  33.    −π ___ 8  

For the following exercises, find the reference angle, the quadrant of the terminal side, and the sine and cosine of 
each angle. If the angle is not one of the angles on the unit circle, use a calculator and round to three decimal places.

34. 225° 35. 300° 36. 320° 37. 135°

38. 210° 39. 120° 40. 250° 41. 150°

42.   5π ___ 4  43.   7π ___ 6  44.   5π ___ 3  45.   3π ___ 4  

46.   4π ___ 3  47.   2π ___ 3  48.   5π ___ 6  49.   7π ___ 4  

For the following exercises, find the requested value.

50. If cos(t) =   1 _ 7   and t is in the 4th quadrant, find sin(t). 51. If cos(t) =   2 _ 9   and t is in the 1st quadrant, find sin(t).

52. If sin(t) =   3 _ 8   and t is in the 2nd quadrant, find cos(t). 53. If sin(t) = −  1 _ 4   and t is in the 3rd quadrant, find cos(t).

54. Find the coordinates of the point on a circle with 
radius 15 corresponding to an angle of 220°.

55. Find the coordinates of the point on a circle with 
radius 20 corresponding to an angle of 120°.
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56. Find the coordinates of the point on a circle with 
radius 8 corresponding to an angle of   7π _ 4  .

57. Find the coordinates of the point on a circle with 
radius 16 corresponding to an angle of   5π _ 9.  

58. State the domain of the sine and cosine functions. 59. State the range of the sine and cosine functions.

GRAPHICAl
For the following exercises, use the given point on the unit circle to find the value of the sine and cosine of t.

60.  

t

61. 62. 

t

63. 64.  65.  

t

66.   

t

67.  

t

68.  

t (1, 0)

69. 70.  

t

(0.111, 0.994)

0.994

0.111

71.  

t

(0.803, –0.596)–0.596

0.803

72. 

t

73.  

t

74. 

t

t t

t
(   1, 0)–

t
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75. 

t

76.  

t

(0, –1)

77. 

t

(– 0.649, 0.761)

– 0.649

0.761

78. 79. 

t

(0, 1)

TeCHnOlOGY

For the following exercises, use a graphing calculator to evaluate.

80. sin   5π ___ 9  81. cos   5π ___ 9  82. sin   π __ 10  83. cos   π __ 10  

84. sin   3π ___ 4  85. cos   3π ___ 4  86. sin 98° 87. cos 98°

88. cos 310° 89. sin 310°

exTenSIOnS

90. sin     11π ___ 3     cos     −5π ____ 6    91. sin     3π ___ 4     cos     5π ___ 3    92. sin   −  4π ___ 3     cos     π __ 2    93. sin     −9π ____ 4     cos     −π ___ 6    

94. sin     π __ 6     cos     −π ___ 3    95. sin     7π ___ 4     cos     −2π ____ 3    96. cos     5π ___ 6     cos     2π ___ 3    97. cos     −π ___ 3     cos     π __ 4    

98. sin     −5π ____ 4     sin     11π ___ 6    99. sin(π)sin     π __ 6    

ReAl-WORlD APPlICATIOnS

For the following exercises, use this scenario: A child enters a carousel that takes one minute to revolve once around. 
The child enters at the point (0, 1), that is, on the due north position. Assume the carousel revolves counter clockwise.

100. What are the coordinates of the child after 
45 seconds?

101. What are the coordinates of the child after 
90 seconds?

102. What is the coordinates of the child after 
125 seconds?

103. When will the child have coordinates (0.707, 
–0.707) if the ride lasts 6 minutes? (There are 
multiple answers.)

104. When will the child have coordinates  
(−0.866, −0.5) if the ride last 6 minutes?

t

(–0.948, –0.317)

–0.948

–0.317



SECTION 5.3 the other trigonometric Functions 473

leARnInG OBjeCTIVeS

In this section, you will:

•	  Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent of   π _ 
3
  ,   π _ 

4
  , and   π _ 

6
  .

•	  Use reference angles to evaluate the trigonometric functions secant, cosecant, tangent, and cotangent.

•	  Use properties of even and odd trigonometric functions.

•	  Recognize and use fundamental identities.

•	  Evaluate trigonometric functions with a calculator.

5.3 THe OTHeR TRIGOnOMeTRIC FUnCTIOnS

A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the 
ground whose tangent is   1 _ 12   or less, regardless of its length. A tangent represents a ratio, so this means that for every 
1 inch of rise, the ramp must have 12 inches of run. Trigonometric functions allow us to specify the shapes and 
proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an 
angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they 
make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.

Finding exact Values of the Trigonometric Functions Secant, Cosecant, Tangent, and Cotangent
To define the remaining functions, we will once again draw a unit circle with a point (x, y) corresponding to an angle 
of t, as shown in Figure 1. As with the sine and cosine, we can use the (x, y) coordinates to find the other functions.

y

1

x
t

(x, y)

Figure 1 

The first function we will define is the tangent. The tangent of an angle is the ratio of the y-value to the x-value of the 
corresponding point on the unit circle. In Figure 1, the tangent of angle t is equal to   

y
 _ x  , x ≠ 0. Because the y-value 

is equal to the sine of t, and the x-value is equal to the cosine of t, the tangent of angle t can also be defined as   sin t _ cos t  ,  
cos t ≠ 0. The tangent function is abbreviated as tan. The remaining three functions can all be expressed as reciprocals 
of functions we have already defined.

•	The secant function is the reciprocal of the cosine function. In Figure 1, the secant of angle t is equal to 
   1 _ cos t   =   1 _ x  , x ≠ 0. The secant function is abbreviated as sec.

•	The cotangent function is the reciprocal of the tangent function. In Figure 1, the cotangent of angle t is equal to  
  cos t _ 
sin t

   =   x _ y   , y ≠ 0. The cotangent function is abbreviated as cot.

•	The cosecant function is the reciprocal of the sine function. In Figure 1, the cosecant of angle t is equal to 
   1 _ 
sin t

   =   1 _ y  , y ≠ 0. The cosecant function is abbre viated as csc.

tangent, secant, cosecant, and cotangent functions 
If t is a real number and (x, y) is a point where the terminal side of an angle of t radians intercepts the unit circle, then

tan t =   
y
 _ x  , x ≠ 0   sec t =   1 __ x  , x ≠ 0

csc t =   1 __ y  , y ≠ 0   cot t =   x __ y  , y ≠ 0
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Example 1 Finding Trigonometric Functions from a Point on the Unit Circle

The point   −   √
—
 3   _ 2  ,   1 _ 2     is on the unit circle, as shown in Figure 2. Find sin t, cos t, tan t, sec t, csc t, and cot t.

1

1

–1

t

Figure 2

Solution Because we know the (x, y) coordinates of the point on the unit circle indicated by angle t, we can use those 
coordinates to find the six functions:

 sin t = y =   1 _ 2   

 cos t = x = −    √
—
 3   _ 2  

 tan t =   
y
 _ x   =   

  1 _ 2  
 _ 

−    √
—
 3   _ 2  
   =   1 _ 2    −   2 _ 

 √
—
 3  
      = −   1 _ 

 √
—
 3  
    = −   √

—
 3   _ 3   

 sec t =   1 _ x   =   1 _ 

−    √
—
 3   _ 2   
   = −   2 _ 

 √
—
 3  
   = −  2 √

—
 3   _ 3  

 csc t =   1 _ y   =   1 _ 

  1 _ 2  
   = 2

 cot t =   x _ y   =   
−    √

—
 3   _ 2  
 _ 

  1 _ 2  
   = −   √

—
 3   _ 2      2 _ 1     = − √

—
 3  

Try It #1

The point      √
—
 2   _ 2  , −    √

—
 2   _ 2     is on the unit circle, as shown in Figure 3. Find sin t, cos t, tan t, sec t, csc t, and cot t.

1

1

–1

–1

t

Figure 3
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Example 2 Finding the Trigonometric Functions of an Angle

Find sin t, cos t, tan t, sec t, csc t, and cot t when t =   π _ 
6

  .

Solution We have previously used the properties of equilateral triangles to demonstrate that sin   π __ 6   =   1 __ 2   and  

cos   π _ 
6

   =    √
—
 3   _ 2  .

We can use these values and the definitions of tangent, secant, cosecant, and cotangent as functions of sine and cosine 
to find the remaining function values.

 tan   π _ 
6

   =   
sin   π __ 6  

 _ 
cos   π __ 6  

  

 =   
  1 __ 2  

 _ 

   √
—
 3   _ 2  
   =   1 _ 

 √
—
 3  
   =    √

—
 3   _ 3   

 sec   π __ 6   =   1 _ 
cos   π _ 

6
  
  

 =   1 _ 

   √
—
 3   _ 2  
   =   2 _ 

 √
—
 3  
   =   2 √

—
 3   _ 3  

 csc   π _ 
6

   =   1 _ 
sin   π __ 6  

   =   1 _ 

  1 _ 2  
   = 2

 cot   π _ 
6

   =   
cos   π _ 

6
  
 _ 

sin   π _ 
6

  
  

 =   
   √

—
 3   _ 2  
 _ 

  1 _ 2  
   =  √

—
 3   

Try It #2

Find sin t, cos t, tan t, sec t, csc t, and cot t when t =   π _ 3  .

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function 
values for those angles as well by setting x equal to the cosine and y equal to the sine and then using the definitions of 
tangent, secant, cosecant, and cotangent. The results are shown in Table 1.

Angle 0   π __ 6  , or 30°   π __ 4  , or 45°   π __ 3  , or 60°   π __ 2  , or 90°

Cosine 1    √
—
 3   ___ 2      √

—
 2   ___ 2     1 __ 2  0

Sine 0   1 __ 2     √
—
 2   ___ 2      √

—
 3   ___ 2   1

Tangent 0    √
—
 3   ___ 3   1  √

—
 3   Undefined

Secant 1   2 √
—
 3   ____ 3   √

—
 2   2 Undefined

Cosecant Undefined 2  √
—
 2     2 √

—
 3   ____ 3  1

Cotangent Undefined   √
—
 3   1    √

—
 3   ___ 3   0

Table 1
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Using Reference Angles to evaluate Tangent, Secant, Cosecant, and Cotangent
We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already 
done with the sine and cosine functions. The procedure is the same: Find the reference angle formed by the terminal 
side of the given angle with the horizontal axis. The trigonometric function values for the original angle will be the 
same as those for the reference angle, except for the positive or negative sign, which is determined by x- and y-values 
in the original quadrant. Figure 4 shows which functions are positive in which quadrant.

To help us remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic 
phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting 
with quadrant I and rotating counterclockwise. In quadrant I, which is “A,” all of the six trigonometric functions are 
positive. In quadrant II, “Smart,” only sine and its reciprocal function, cosecant, are positive. In quadrant III, “Trig,” 
only tangent and its reciprocal function, cotangent, are positive. Finally, in quadrant IV, “Class,” only cosine and its 
reciprocal function, secant, are positive.

y
II   sin t

csc t
I   sin t

cos t
tan t
sec t
csc t
cot t

IV   cos t
sec t

III   tan t
cot t

x

Figure 4

How To…
Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference angle.
2. Evaluate the function at the reference angle.
3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine 

whether the output is positive or negative.

Example 3 Using Reference Angles to Find Trigonometric Functions

Use reference angles to find all six trigonometric functions of −  5π _ 
6

  .

Solution The angle between this angle’s terminal side and the x-axis is   π _ 
6

  , so that is the reference angle. Since  

−  5π _ 
6

   is in the third quadrant, where both x and y are negative, cosine, sine, secant, and cosecant will be negative, while 

tangent and cotangent will be positive.

 cos   −  5π ___ 6     = −   √
—
 3   ____ 2  , sin   −  5π ___ 6     = −  1 __ 2  ,  tan   −  5π ___ 6     =    √

—
 3   ____ 3  

 sec   −  5π ___ 6     = −  2 √
—
 3   ____ 3  ,  csc   −  5π ___ 6     = − 2,   cot   −  5π ___ 6     =  √

—
 3  

Try It #3
Use reference angles to find all six trigonometric functions of −  7π _ 4  .



SECTION 5.3 the other trigonometric Functions 477

Using even and Odd Trigonometric Functions
To be able to use our six trigonometric functions freely with both positive and negative angle inputs, we should examine how 
each function treats a negative input. As it turns out, there is an important difference among the functions in this regard. 
Consider the function f (x) = x  2, shown in Figure 5. The graph of the function is symmetrical about the y-axis. All along the 
curve, any two points with opposite x-values have the same function value. This matches the result of calculation: (4)2 = (−4)2, 
(−5)2 = (5)2, and so on. So f (x) = x  2 is an even function, a function such that two inputs that are opposites have the same 
output. That means f (−x) = f (x).

x

y

–1–2–3–4–5–6 –5
–10

5
10
15
20
25
30

321 4
(–2, 4) (2, 4)

5 6

Figure 5 The function f (x) = x2 is an even function.

Now consider the function f (x) = x3, shown in Figure 6. The graph is not symmetrical about the y-axis. All along the 
graph, any two points with opposite x-values also have opposite y-values. So f (x) = x3 is an odd function, one such 
that two inputs that are opposites have outputs that are also opposites. That means f (−x) = −f (x).

x

y

–1–2–3–4–5 –2
–4
–6
–8

–10

2
4
6
8

10

321 4
(–1, –1)

(1, 1)

5

Figure 6 The function f (x) = x3 is an odd function.

We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a negative 
angle, as in Figure 7. The sine of the positive angle is y. The sine of the negative angle is −y. The sine function, then, is 
an odd function. We can test each of the six trigonometric functions in this fashion. The results are shown in Table 2.

y

x
t

–t

(x, y)

(x, –y)

Figure 7
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 sin t = y

 sin(−t) = −y

 sin t ≠ sin(−t)

 cos t = x

 cos(−t) = x

 cos t = cos(−t)

 tan(t) =   
y
 _ x  

 tan(−t) = −  
y
 _ x  

 tan t ≠ tan(−t)

 sec t =   1 _ x  

 sec(−t) =   1 _ x  

 sec t = sec(−t)

 csc t =   1 _ y  

 csc(−t) =   1 _ −y  

 csc t ≠ csc(−t)

 cot t =   x _ y  

 cot(−t) =   x _ −y  

 cot t ≠ cot(−t)

Table 2

even and odd trigonometric functions

An even function is one in which f (−x) = f (x). An odd function is one in which f (−x) = −f (x).
Cosine and secant are even:

 cos(−t) = cos t

 sec(−t) = sec t

Sine, tangent, cosecant, and cotangent are odd:

 sin(−t) = −sin t

 tan(−t) = −tan t

 csc(−t) = −csc t

 cot(−t) = −cot t

Example 4 Using Even and Odd Properties of Trigonometric Functions

If the secant of angle t is 2, what is the secant of −t ?

Solution Secant is an even function. The secant of an angle is the same as the secant of its opposite. So if the secant 
of angle t is 2, the secant of −t is also 2.

Try It #4

If the cotangent of angle t is  √
—
 3  , what is the cotangent of −t ?

Recognizing and Using Fundamental Identities
We have explored a number of properties of trigonometric functions. Now, we can take the relationships a step further, 
and derive some fundamental identities. Identities are statements that are true for all values of the input on which 
they are defined. Usually, identities can be derived from definitions and relationships we already know. For example, 
the Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and the definitions of sine 
and cosine.

fundamental identities

We can derive some useful identities from the six trigonometric functions. The other four trigonometric functions can 
be related back to the sine and cosine functions using these basic relationships:

  tan t =   sin t _ cos t      sec t =   1 _ cos t  

 csc t =   1 _ sin t      cot t =   1 _ tan t   =   cos t _ sin t  
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Example 5 Using Identities to Evaluate Trigonometric Functions

a. Given sin (45°) =    √
—
 2   _ 2,  , cos (45°) =    √

—
 2   _ 2  , evaluate tan(45°).

b. Given sin     5π _ 
6

     =   1 _ 2  , cos     5π _ 
6

     = −   √
—
 3   _ 2  , evaluate sec     5π _ 

6
    .

Solution Because we know the sine and cosine values for these angles, we can use identities to evaluate the other 
functions.

a. tan(45°) =   sin(45°) _______ cos(45°)  

 =   
   √

—
 2   _ 2  
 _ 

   √
—
 2   _ 2  
  

 = 1

b. sec     5π _ 
6

     =   1 _ 
  cos  5π ___ 6    

  

 =   1 _ 
−   √

—
 3   _ 2  
  

 =   −2 _ 
 √

—
 3  
  

 = −  2 √
—
 3   _ 3  

Try It #5

Evaluate csc     7π _ 
6

    .

Example 6 Using Identities to Simplify Trigonometric Expressions

Simplify   sec t _ tan t  .

Solution We can simplify this by rewriting both functions in terms of sine and cosine.

   sec t _ tan t   =   
  1 _ cos t   _ 

  sin t _ cos t  
    To divide the functions, we multiply by the reciprocal.

 =   1 cos t _ 
cos t sin t

   Divide out the cosines.

 =   1 _ 
sin t

   Simplify and use the identity.

 = csc t

By showing that   sec t _ tan t   can be simplified to csc t, we have, in fact, established a new identity.

  sec t _ tan t   = csc t

Try It #6

Simplify (tan t)(cos t).
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Alternate Forms of the Pythagorean Identity

We can use these fundamental identities to derive alternative forms of the Pythagorean Identity, cos2 t + sin2 t = 1.  
One form is obtained by dividing both sides by cos2 t :

   cos2 t _____ cos2 t   +   sin2 t ____ cos2 t   =   1 ____ cos2 t  

 1 + tan2 t = sec2 t

The other form is obtained by dividing both sides by sin2 t :

   cos2 t _____ sin2 t   +   sin2 t ____ sin2 t   =   1 ____ sin2 t  

  cot2 t + 1 = csc2 t

alternate forms of the pythagorean identity 
1 + tan2 t = sec2 t

cot2 t + 1 = csc2 t

Example 7 Using Identities to Relate Trigonometric Functions

If cos(t) =   12 _ 13   and t is in quadrant IV, as shown in Figure 8, find the values of the other five trigonometric functions.
y

y

xt

12
13

Figure 8

Solution We can find the sine using the Pythagorean Identity, cos2 t + sin2 t = 1, and the remaining functions by 
relating them to sine and cosine.

     12 __ 13    
2
 + sin2 t = 1

 sin2 t = 1 −     12 __ 13    
2

 sin2 t = 1 −   144 ___ 169  

 sin2 t =   25 ___ 169  

 sin t = ± √ 
____

   25 ___ 169    

 sin t = ±   √
—

 25   _ 
 √
—

 169  
  

 sin t = ±  5 __ 13  
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The sign of the sine depends on the y-values in the quadrant where the angle is located. Since the angle is in quadrant 
IV, where the y-values are negative, its sine is negative, −   5 _ 13  .

The remaining functions can be calculated using identities relating them to sine and cosine.

 tan t =   sin t ____ cos t   =   
−  5 __ 13  

 _ 

  12 _ 13  
   = −  5 __ 12  

 sec t =   1 ____ cos t   =   1 _ 

  12 _ 13   
  =   13 __ 12  

 csc t =   1 ____ sin t   =   1 _ 

−   5 _ 13  
   = −  13 __ 5  

 cot t =   1 ____ tan t   =   1 _ 

−   5 _ 12  
   = −  12 __ 5  

Try It #7

If sec(t) = −  17 _ 8   and 0 < t < π, find the values of the other five functions.

As we discussed in the chapter opening, a function that repeats its values in regular intervals is known as a periodic 
function. The trigonometric functions are periodic. For the four trigonometric functions, sine, cosine, cosecant and 
secant, a revolution of one circle, or 2π, will result in the same outputs for these functions. And for tangent and 
cotangent, only a half a revolution will result in the same outputs.

Other functions can also be periodic. For example, the lengths of months repeat every four years. If x represents the 
length time, measured in years, and f (x) represents the number of days in February, then f (x + 4) = f (x). This pattern 
repeats over and over through time. In other words, every four years, February is guaranteed to have the same number 
of days as it did 4 years earlier. The positive number 4 is the smallest positive number that satisfies this condition and 
is called the period. A period is the shortest interval over which a function completes one full cycle—in this example, 
the period is 4 and represents the time it takes for us to be certain February has the same number of days.

period of a function 
The period P of a repeating function f is the number representing the interval such that f (x + P) = f (x) for any value of x.
The period of the cosine, sine, secant, and cosecant functions is 2π.
The period of the tangent and cotangent functions is π.

Example 8 Finding the Values of Trigonometric Functions

Find the values of the six trigonometric functions of angle t based on Figure 9.
y

x
t

–1

–1

1

1

Figure 9
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Solution sin t = y = −   √
—
 3   _ 2  

 cos t = x = −  1 _ 2  

 tan t =   sin t _ cos t   =   
−   √

—
 3   _ 2  
 _ 

−  1 _ 2   
   =  √

—
 3  

 sec t =   1 _ cos t   =   1 _ 

−  1 _ 2   
   = − 2

 csc t =   1 _ 
sin t

   =   1 _ 

−   √
—
 3   _ 2   
  = −  2 √

—
 3   _ 3  

 cot t =   1 _ tan t   =   1 _ 
 √

—
 3  
   =    √

—
 3   _ 3  

Try It #8

Find the values of the six trigonometric functions of angle t based on Figure 10.
y

x

t

–1 1

1

(0, –1)

Figure 10

 
Example 9 Finding the Value of Trigonometric Functions

If sin(t) = −   √
—
 3   _ 2   and cos(t) =   1 _ 2  , find sec(t), csc(t), tan(t), cot(t).

Solution  sec t =   1 _ cos t   =   1 _ 

  1 _ 2  
   = 2

 csc t =   1 _ 
sin t

   =   1 _ 
−   √

—
 3   _ 2   
   = −  2 √

—
 3   _ 3  

 tan t =   sin t _ cos t   =   
−   √

—
 3   _ 2  
 _ 

  1 _ 2  
   = − √

—
 3  

 cot t =   1 _ tan t   =   1 _ 
− √

—
 3  
   = −   √

—
 3   _ 3  

Try It #9

If sin(t) =    √
—
 2   _ 2   and cos(t) =    √

—
 2   _ 2  , find sec(t), csc(t), tan(t), and cot(t).
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evaluating Trigonometric Functions with a Calculator
We have learned how to evaluate the six trigonometric functions for the common first-quadrant angles and to use 
them as reference angles for angles in other quadrants. To evaluate trigonometric functions of other angles, we use a 
scientific or graphing calculator or computer software. If the calculator has a degree mode and a radian mode, confirm 
the correct mode is chosen before making a calculation.

Evaluating a tangent function with a scientific calculator as opposed to a graphing calculator or computer algebra 
system is like evaluating a sine or cosine: Enter the value and press the TAN key. For the reciprocal functions, there may 
not be any dedicated keys that say CSC, SEC, or COT. In that case, the function must be evaluated as the reciprocal 
of a sine, cosine, or tangent. 
If we need to work with degrees and our calculator or software does not have a degree mode, we can enter the degrees 
multiplied by the conversion factor   π _ 180   to convert the degrees to radians. To find the secant of 30°, we could press

(for a scientific calculator):   1 _ 
30 ×   π _ 180  

   COS  or  (for a graphing calculator):   1 __ 

cos     30π _ 180    
  

How To…
Given an angle measure in radians, use a scientific calculator to find the cosecant.

1. If the calculator has degree mode and radian mode, set it to radian mode.
2. Enter: 1 /
3. Enter the value of the angle inside parentheses.
4. Press the SIN key.
5. Press the = key.

How To…
Given an angle measure in radians, use a graphing utility/calculator to find the cosecant.

1. If the graphing utility has degree mode and radian mode, set it to radian mode.
2. Enter: 1 /
3. Press the SIN key.
4. Enter the value of the angle inside parentheses.
5. Press the ENTER key.

Example 10 Evaluating the Secant Using Technology

Evaluate the cosecant of   5π _ 7  .

Solution
For a scientific calculator, enter information as follows:

1 / ( 5 × π / 7 ) SIN =

csc     5π _ 7     ≈ 1.279

Try It #10

Evaluate the cotangent of −  π _ 8  .

Access these online resources for additional instruction and practice with other trigonometric functions.

•	 Determining Trig Function Values (http://openstaxcollege.org/l/trigfuncval)

•	 More examples of Determining Trig Functions (http://openstaxcollege.org/l/moretrigfun)

•	 Pythagorean Identities (http://openstaxcollege.org/l/pythagiden)

•	 Trig Functions on a Calculator (http://openstaxcollege.org/l/trigcalc)

http://openstaxcollege.org/l/trigfuncval
http://openstaxcollege.org/l/moretrigfun
http://openstaxcollege.org/l/pythagiden
http://openstaxcollege.org/l/trigcalc
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5.3 SeCTIOn exeRCISeS

VeRBAl

1. On an interval of [0, 2π), can the sine and cosine 
values of a radian measure ever be equal? If so, 
where?

2. What would you estimate the cosine of π degrees to 
be? Explain your reasoning.

3. For any angle in quadrant II, if you knew the sine of 
the angle, how could you determine the cosine of the 
angle?

4. Describe the secant function.

5. Tangent and cotangent have a period of π. What 
does this tell us about the output of these functions?

AlGeBRAIC
For the following exercises, find the exact value of each expression.

6. tan   π __ 6  7. sec   π __ 6  8. csc   π __ 6  9. cot   π __ 6  

10. tan   π __ 4  11. sec   π __ 4  12. csc   π __ 4  13. cot   π __ 4  

14. tan   π __ 3  15. sec   π __ 3  16. csc   π __ 3  17. cot   π __ 3  

For the following exercises, use reference angles to evaluate the expression.

18. tan   5π ___ 6  19. sec   7π ___ 6  20. csc   11π ____ 6  21. cot   13π ____ 6  

22. tan   7π ___ 4  23. sec   3π ___ 4  24. csc   5π ___ 4  25. cot   11π ____ 4  

26. tan   8π ___ 3  27. sec   4π ___ 3  28. csc   2π ___ 3  29. cot   5π ___ 3  

30. tan 225° 31. sec 300° 32. csc 150° 33. cot 240°

34. tan 330° 35. sec 120° 36. csc 210° 37. cot 315°

38. If sin t =   3 _ 4  , and t is in quadrant II, find cos t, sec t, 
csc t, tan t, cot t. 

39. If cos t = −  1 _ 3  , and t is in quadrant III, find sin t, sec t,  
csc t, tan t, cot t.

40. If tan t =   12 _ 5  , and 0 ≤ t <   π _ 2  , find sin t, cos t, sec t, 
csc t, and cot t.

41. If sin t =    √
—
 3   _ 2   and cos t =   1 _ 2  , find sec t, csc t, tan t, 

and cot t.

42. If sin 40° ≈ 0.643 and cos 40° ≈ 0.766, find  sec 40°, 
csc 40°, tan 40°, and cot 40°.

43. If sin t =    √
—
 2   _ 2  , what is the sin(−t)?

44. If cos t =   1 _ 2  , what is the cos(−t)? 45. If sec t = 3.1, what is the sec(−t)?

46. If csc t = 0.34, what is the csc(−t)? 47. If tan t = −1.4, what is the tan(−t)?

48. If cot t = 9.23, what is the cot(−t)?
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GRAPHICAl
For the following exercises, use the angle in the unit circle to find the value of the each of the six trigonometric 
functions.

49. y

xt

50. y

xt

51. 

t

y

x

TeCHnOlOGY

For the following exercises, use a graphing calculator to evaluate.

52. csc   5π ___ 9  53. cot   4π ___ 7  54. sec   π __ 10  55. tan   5π ___ 8  

56. sec   3π ___ 4  57. csc   π __ 4  58. tan 98° 59. cot 33°

60. cot 140° 61. sec 310°

exTenSIOnS
For the following exercises, use identities to evaluate the expression.

62. If tan(t) ≈ 2.7, and sin(t) ≈ 0.94, find cos(t). 63. If tan(t) ≈ 1.3, and cos(t) ≈ 0.61, find sin(t).

64. If csc(t) ≈ 3.2, and cos(t) ≈ 0.95, find tan(t). 65. If cot(t) ≈ 0.58, and cos(t) ≈ 0.5, find csc(t).
66. Determine whether the function f (x) = 2sin x cos x  

is even, odd, or neither.
67. Determine whether the function  

f (x) = 3sin2 x cos x + sec x is even, odd, or neither.

68. Determine whether the function  
f (x) = sin x − 2cos2 x is even, odd, or neither.

69. Determine whether the function f (x) = csc2 x + sec x  
is even, odd, or neither.

For the following exercises, use identities to simplify the expression.
70. csc t tan t 71.   sec t ____ csc t  

ReAl-WORlD APPlICATIOnS

72. The amount of sunlight in a certain city can be 
modeled by the function h = 15 cos     1 _ 

600
  d  ,  

where h represents the hours of sunlight, and d is the 
day of the year. Use the equation to find how many 
hours of sunlight there are on February 10, the 42nd 
day of the year. State the period of the function.

73. The amount of sunlight in a certain city can be 
modeled by the function h = 16cos     1 _ 500  d  ,  

where h represents the hours of sunlight, and d is the 
day of the year. Use the equation to find how many 
hours of sunlight there are on September 24, the 
267th day of the year. State the period of the function.

74. The equation P = 20sin(2πt) + 100 models the 
blood pressure, P, where t represents time in 
seconds. a. Find the blood pressure after 15 seconds. 
b. What are the maximum and minimum blood 
pressures?

75. The height of a piston, h, in inches, can be modeled 
by the equation y = 2cos x + 6, where x represents 
the crank angle. Find the height of the piston when 
the crank angle is 55°.

76. The height of a piston, h, in inches, can be modeled 
by the equation y = 2cos x + 5, where x represents 
the crank angle. Find the height of the piston when 
the crank angle is 55°.
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leARnInG OBjeCTIVeS

In this section, you will:

•	  Use right triangles to evaluate trigonometric functions.

•	  Find function values for 30°    π _ 
6
    , 45°    π _ 

4
    , and 60°    π _ 

3
    .

•	  Use cofunctions of complementary angles.

•	  Use the definitions of trigonometric functions of any angle.

•	  Use right triangle trigonometry to solve applied problems.

5.4 RIGHT TRIAnGle TRIGOnOMeTRY

We have previously defined the sine and cosine of an angle in terms of the coordinates of a point on the unit circle 
intersected by the terminal side of the angle:

cos t = x

sin t = y

In this section, we will see another way to define trigonometric functions using properties of right triangles.

Using Right Triangles to evaluate Trigonometric Functions
In earlier sections, we used a unit circle to define the trigonometric functions. In this section, we will extend those 
definitions so that we can apply them to right triangles. The value of the sine or cosine function of t is its value at t 
radians. First, we need to create our right triangle. Figure 1 shows a point on a unit circle of radius 1. If we drop a 
vertical line segment from the point (x, y) to the x-axis, we have a right triangle whose vertical side has length y and 
whose horizontal side has length x. We can use this right triangle to redefine sine, cosine, and the other trigonometric 
functions as ratios of the sides of a right triangle.

1

(x, y)

y

t
x

Figure 1

We know

cos t =   x __ 1  = x

Likewise, we know

sin t =   y _ 1   = y

These ratios still apply to the sides of a right triangle when no unit circle is involved and when the triangle is not in standard 
position and is not being graphed using (x, y) coordinates. To be able to use these ratios freely, we will give the sides more 
general names: Instead of x, we will call the side between the given angle and the right angle the adjacent side to angle t.  
(Adjacent means “next to.”) Instead of y, we will call the side most distant from the given angle the opposite side from 
angle t. And instead of 1, we will call the side of a right triangle opposite the right angle the hypotenuse. These sides 
are labeled in Figure 2.
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Hypotenuse
Opposite

Adjacent
t

Figure 2 The sides of a right triangle in relation to angle t.

Understanding Right Triangle Relationships

Given a right triangle with an acute angle of t,

 sin(t) =   
opposite

 __ 
hypotenuse

  

 cos(t) =   
adjacent

 __ 
hypotenuse

  

 tan(t) =   
opposite

 _ 
adjacent

  

A common mnemonic for remembering these relationships is SohCahToa, formed from the first letters of “Sine is 
opposite over hypotenuse, Cosine is adjacent over hypotenuse, Tangent is opposite over adjacent.”

How To…
Given the side lengths of a right triangle and one of the acute angles, find the sine, cosine, and tangent of that angle.

1. Find the sine as the ratio of the opposite side to the hypotenuse.
2. Find the cosine as the ratio of the adjacent side to the hypotenuse.
3. Find the tangent as the ratio of the opposite side to the adjacent side.

Example 1 Evaluating a Trigonometric Function of a Right Triangle

Given the triangle shown in Figure 3, find the value of cos α.

15
α

8
17

Figure 3

Solution The side adjacent to the angle is 15, and the hypotenuse of the triangle is 17, so:

 cos(α) =   
adjacent

 _ 
hypotenuse

  

 =   15 __ 17  

Try It #1

Given the triangle shown in Figure 4, find the value of sin t.

24

25
7

t

Figure 4
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Relating Angles and Their Functions

When working with right triangles, the same rules apply regardless of the orientation of the triangle. In fact, we can 
evaluate the six trigonometric functions of either of the two acute angles in the triangle in Figure 5. The side opposite 
one acute angle is the side adjacent to the other acute angle, and vice versa.

Hypotenuse

Adjacent to β
Opposite α

Adjacent to α
Opposite β

α

β

Figure 5  The side adjacent to one angle is opposite the other

We will be asked to find all six trigonometric functions for a given angle in a triangle. Our strategy is to find the sine, 
cosine, and tangent of the angles first. Then, we can find the other trigonometric functions easily because we know 
that the reciprocal of sine is cosecant, the reciprocal of cosine is secant, and the reciprocal of tangent is cotangent.

How To…
Given the side lengths of a right triangle, evaluate the six trigonometric functions of one of the acute angles.

1. If needed, draw the right triangle and label the angle provided.
2. Identify the angle, the adjacent side, the side opposite the angle, and the hypotenuse of the right triangle.
3. Find the required function:

•	 sine as the ratio of the opposite side to the hypotenuse
•	 cosine as the ratio of the adjacent side to the hypotenuse
•	 tangent as the ratio of the opposite side to the adjacent side
•	 secant as the ratio of the hypotenuse to the adjacent side
•	 cosecant as the ratio of the hypotenuse to the opposite side
•	 cotangent	as	the	ratio	of	the	adjacent	side	to	the	opposite	side

Example 2  Evaluating Trigonometric Functions of Angles Not in Standard Position

Using the triangle shown in Figure 6, evaluate sin α, cos α, tan α, sec α, csc α, and cot α.

5

3

4

α

Figure 6

Solution

 sin α =   
opposite α

 __ 
hypotenuse

   =   4 __ 5  

 cos α =   
adjacent to α

 __ 
hypotenuse

   =   3 __ 5  

 tan α =   
opposite α

 __ 
adjacent to α

   =   4 __ 3  

 sec α =   
hypotenuse

 __ 
adjacent to α

   =   5 __ 3  

 csc α =   
hypotenuse

 __ 
opposite α

   =   5 __ 4  

 cot α =   
adjacent to α

 __ 
opposite α

   =   3 __ 4  
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Try It #2

Using the triangle shown in Figure 7, evaluate sin t, cos t, tan t, sec t, csc t, and cot t.

56
t

3365

Figure 7

Finding Trigonometric Functions of Special Angles Using Side Lengths

We have already discussed the trigonometric functions as they relate to the special angles on the unit circle. Now, 
we can use those relationships to evaluate triangles that contain those special angles. We do this because when we 
evaluate the special angles in trigonometric functions, they have relatively friendly values, values that contain either 
no or just one square root in the ratio. Therefore, these are the angles often used in math and science problems. We 
will use multiples of 30°, 60°, and 45°, however, remember that when dealing with right triangles, we are limited to 
angles between 0° and 90°.
Suppose we have a 30°, 60°, 90° triangle, which can also be described as a   π _ 

6
  ,   π _ 3  ,   π _ 2   triangle. The sides have lengths in the 

relation s,  √
—
 3  s, 2s. The sides of a 45°, 45°, 90° triangle, which can also be described as a   π _ 4  ,   π _ 4  ,   π _ 2   triangle, have lengths in  

the relation s, s,  √
—
 2  s. These relations are shown in Figure 8.

s

s
4

2s

s

6 s
2s

4

Figure 8 Side lengths of special triangles

We can then use the ratios of the side lengths to evaluate trigonometric functions of special angles.

How To…
Given trigonometric functions of a special angle, evaluate using side lengths.

1. Use the side lengths shown in Figure 8 for the special angle you wish to evaluate.
2. Use the ratio of side lengths appropriate to the function you wish to evaluate.

Example 3  Evaluating Trigonometric Functions of Special Angles Using Side Lengths

Find the exact value of the trigonometric functions of   π _ 3  , using side lengths.

Solution
sin    π __ 3     =   

opp
 _ 

hyp
   =    √

—
 3  s ____ 2s   =    √

—
 3   ___ 2  

cos    π __ 3     =   
adj

 _ 
hyp

   =   s __ 2s   =   1 __ 2  

tan    π __ 3     =   
opp

 _ 
adj

   =    √
—
 3  s ____ s   =  √

—
 3  
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sec    π __ 3     =   
hyp

 _ 
adj

   =   2s __ s   = 2

csc    π __ 3     =   
hyp

 _ opp   =   2s _ 
 √

—
 3  s
   =   2 _ 

 √
—
 3   
  =   2 √

—
 3   ____ 3  

cot    π __ 3     =   
adj

 _ opp   =   s _ 
 √

—
 3  s
   =   1 _ 

 √
—
 3   
  =    √

—
 3   _ 3  

Try It #3

Find the exact value of the trigonometric functions of   π _ 4  , using side lengths.

Using Equal Cofunction of Complements

If we look more closely at the relationship between the sine and cosine of the special angles relative to the unit circle, 

we will notice a pattern. In a right triangle with angles of   π _ 
6

   and   π _ 3  , we see that the sine of   π _ 3   namely    √
—
 3   _ 2  , is also the 

cosine of   π _ 
6

  , while the sine of   π _ 
6

  , namely   1 _ 2  , is also the cosine of   π _ 3  .

sin   π __ 3   = cos   π __ 6   =    √
—
 3  s _ 2s   =    √

—
 3   _ 2  

sin   π __ 6   = cos   π __ 3   =   s __ 2s   =   1 __ 2  
See Figure 9.

2s

s

6 s

Figure 9 The sine of   π _ 
3
   equals the cosine of   π _ 

6
   and vice versa

This result should not be surprising because, as we see from Figure 9, the side opposite the angle of   π _ 3   is also the side 

adjacent to   π _ 
6

  , so sin    π _ 3     and cos    π _ 
6

     are exactly the same ratio of the same two sides,  √
—
 3  s and 2s. Similarly, cos    π _ 3     

and sin    π _ 
6

     are also the same ratio using the same two sides, s and 2s.

The interrelationship between the sines and cosines of   π _ 
6

   and   π _ 3   also holds for the two acute angles in any right 
triangle, since in every case, the ratio of the same two sides would constitute the sine of one angle and the cosine of 
the other. Since the three angles of a triangle add to π, and the right angle is   π _ 2  , the remaining two angles must also 
add up to   π _ 2  . That means that a right triangle can be formed with any two angles that add to   π _ 2  —in other words, any 
two complementary angles. So we may state a cofunction identity: If any two angles are complementary, the sine of one 
is the cosine of the other, and vice versa. This identity is illustrated in Figure 10.

sin α = cos β

α

β

sin β = cos α
Figure 10 Cofunction identity of sine and cosine of complementary angles
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Using this identity, we can state without calculating, for instance, that the sine of   π _ 12   equals the cosine of   5π _ 12  , 
and that the sine of   5π _ 12   equals the cosine of   π _ 12  . We can also state that if, for a certain angle t, cos t =   5 _ 13  , then  

sin    π _ 2   − t   =   5 _ 13   as well. 

cofunction identities 

The cofunction identities in radians are listed in Table 1. 

cos t = sin     π __ 2   − t  sin t = cos     π __ 2   − t  

tan t = cot     π __ 2   − t  cot t = tan     π __ 2   − t  

sec t = csc     π __ 2   − t  csc t = sec     π __ 2   − t  

Table 1 

How To…
Given the sine and cosine of an angle, find the sine or cosine of its complement.

1. To find the sine of the complementary angle, find the cosine of the original angle.
2. To find the cosine of the complementary angle, find the sine of the original angle.

Example 4 Using Cofunction Identities

If sin t =   5 _ 12  , find cos     π _ 2   − t  .

Solution According to the cofunction identities for sine and cosine,

 sin t = cos     π __ 2   − t  .

So

 cos     π __ 2   − t   =   5 __ 12  .

Try It #4

If csc     π _ 
6

     = 2, find sec     π _ 3    .

Using Trigonometric Functions

In previous examples, we evaluated the sine and cosine in triangles where we knew all three sides. But the real power of 
right-triangle trigonometry emerges when we look at triangles in which we know an angle but do not know all the sides.

How To…
Given a right triangle, the length of one side, and the measure of one acute angle, find the remaining sides.

1. For each side, select the trigonometric function that has the unknown side as either the numerator or the denominator. 
The known side will in turn be the denominator or the numerator.

2. Write an equation setting the function value of the known angle equal to the ratio of the corresponding sides.
3. Using the value of the trigonometric function and the known side length, solve for the missing side length.
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Example 5 Finding Missing Side Lengths Using Trigonometric Ratios

Find the unknown sides of the triangle in Figure 11.

7

30°

a

c

Figure 11

Solution We know the angle and the opposite side, so we can use the tangent to find the adjacent side.

tan(30°) =   7 __ a  

We rearrange to solve for a.

a =   7 ______ tan(30°)  

≈ 12.1

We can use the sine to find the hypotenuse.

sin(30°) =   7 __ c  

Again, we rearrange to solve for c.

c =   7 ______ sin(30°)  

≈ 14

Try It #5

A right triangle has one angle of   π _ 3   and a hypotenuse of 20. Find the unknown sides and angle of the triangle.

Using Right Triangle Trigonometry to Solve Applied Problems

Right-triangle trigonometry has many practical applications. For example, the ability to compute the lengths of sides 
of a triangle makes it possible to find the height of a tall object without climbing to the top or having to extend a tape 
measure along its height. We do so by measuring a distance from the base of the object to a point on the ground some 
distance away, where we can look up to the top of the tall object at an angle. The angle of elevation of an object above 
an observer relative to the observer is the angle between the horizontal and the line from the object to the observer's 
eye. The right triangle this position creates has sides that represent the unknown height, the measured distance from 
the base, and the angled line of sight from the ground to the top of the object. Knowing the measured distance to 
the base of the object and the angle of the line of sight, we can use trigonometric functions to calculate the unknown 
height. Similarly, we can form a triangle from the top of a tall object by looking downward. The angle of depression 
of an object below an observer relative to the observer is the angle between the horizontal and the line from the object 
to the observer's eye. See Figure 12.
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Angle of depression

Angle of elevation

Figure 12

How To…
Given a tall object, measure its height indirectly.

1. Make a sketch of the problem situation to keep track of known and unknown information.
2. Lay out a measured distance from the base of the object to a point where the top of the object is clearly visible.
3.  At the other end of the measured distance, look up to the top of the object. Measure the angle the line of sight makes 

with the horizontal.
4.  Write an equation relating the unknown height, the measured distance, and the tangent of the angle of the line of  

sight.
5. Solve the equation for the unknown height.

Example 6 Measuring a Distance Indirectly

To find the height of a tree, a person walks to a point 30 feet from the base of the tree. She measures an angle of 57° 
between a line of sight to the top of the tree and the ground, as shown in Figure 13. Find the height of the tree.

30 feet

57°

Figure 13

Solution We know that the angle of elevation is 57° and the adjacent side is 30 ft long. The opposite side is the unknown 
height.

The trigonometric function relating the side opposite to an angle and the side adjacent to the angle is the tangent. So 
we will state our information in terms of the tangent of 57°, letting h be the unknown height.

 tan θ =   
opposite

 _ 
adjacent

  

 tan(57°) =   h __ 30   Solve for h.

 h = 30tan(57°) Multiply.

 h ≈ 46.2 Use a calculator.

The tree is approximately 46 feet tall.
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Try It #6

How long a ladder is needed to reach a windowsill 50 feet above the ground if the ladder rests against the building 
making an angle of   5π _ 12   with the ground? Round to the nearest foot.

Access these online resources for additional instruction and practice with right triangle trigonometry.
•	 Finding Trig Functions on Calculator (http://openstaxcollege.org/l/findtrigcal)

•	 Finding Trig Functions Using a Right Triangle (http://openstaxcollege.org/l/trigrttri)

•	 Relate Trig Functions to Sides of a Right Triangle (http://openstaxcollege.org/l/reltrigtri)

•	 Determine Six Trig Functions from a Triangle (http://openstaxcollege.org/l/sixtrigfunc)

•	 Determine length of Right Triangle Side (http://openstaxcollege.org/l/rttriside)

http://openstaxcollege.org/l/findtrigcal
http://openstaxcollege.org/l/trigrttri
http://openstaxcollege.org/l/reltrigtri
http://openstaxcollege.org/l/sixtrigfunc
http://openstaxcollege.org/l/rttriside
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5.4 SeCTIOn exeRCISeS

VeRBAl

1. For the given right triangle, label the adjacent side, 
opposite side, and hypotenuse for the indicated 
angle.

2. When a right triangle with a hypotenuse of 1 is 
placed in the unit circle, which sides of the triangle 
correspond to the x- and y-coordinates?

3. The tangent of an angle compares which sides of the 
right triangle?

4. What is the relationship between the two acute 
angles in a right triangle?

5. Explain the cofunction identity.

AlGeBRAIC

For the following exercises, use cofunctions of complementary angles.

6. cos(34°) = sin(_____°) 7. cos    π __ 3     = sin(______) 8. csc(21°) = sec(_____°) 9. tan    π __ 4     = cot(_____)

For the following exercises, find the lengths of the missing sides if side a is opposite angle A, side b is opposite angle 
B, and side c is the hypotenuse.

10. cos B =   4 __ 5  , a = 10 11. sin B =   1 __ 2  , a = 20 12. tan A =   5 __ 12  , b = 6 13. tan A = 100, b = 100

14. sin B =   1 _ 
 √

—
 3  
  , a = 2 15. a = 5, ∡ A = 60° 16. c = 12, ∡ A = 45°

GRAPHICAl

For the following exercises, use Figure 14 to evaluate each trigonometric function of angle A.

10

4

A

Figure 14 

17. sin A 18. cos A

19. tan A 20. csc A

21. sec A 22. cot A

For the following exercises, use Figure 15 to evaluate each trigonometric function of angle A.

10

8
A

Figure 15 

23. sin A 24. cos A

25. tan A 26. csc A

27. sec A 28. cot A
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For the following exercises, solve for the unknown sides of the given triangle.

29. 

30°

7

b

B

c

30. 

60°

10

c

a

A

31. 

45°

A

TeCHnOlOGY

For the following exercises, use a calculator to find the length of each side to four decimal places.

32. 33. 

35°

7

b

c

B
34. 

35. 

10°

12B
a

b

36. 
b

c
A 81°

16.5

37. b = 15, ∡ B = 15° 38. c = 200, ∡ B = 5° 39. c = 50, ∡ B = 21°

40. a = 30, ∡ A = 27° 41. b = 3.5, ∡ A = 78°

exTenSIOnS

42. Find x.

63° 39°

82

x

43. Find x.

36° 50°

85

x

62°

10

c

a

A 65°
10

a
b

B



SECTION 5.4 section exercises 497

44. Find x.

56° 35°
x

115

45. Find x.

26°70°

119

x

46. A radio tower is located 400 feet from a building. 
From a window in the building, a person determines 
that the angle of elevation to the top of the tower is 
36°, and that the angle of depression to the bottom 
of the tower is 23°. How tall is the tower?

47. A radio tower is located 325 feet from a building. 
From a window in the building, a person determines 
that the angle of elevation to the top of the tower is 
43°, and that the angle of depression to the bottom of 
the tower is 31°. How tall is the tower?

48. A 200-foot tall monument is located in the distance. 
From a window in a building, a person determines 
that the angle of elevation to the top of the mon-
ument is 15°, and that the angle of depression to the 
bottom of the tower is 2°. How far is the person from 
the monument?

49. A 400-foot tall monument is located in the distance. 
From a window in a building, a person determines 
that the angle of elevation to the top of the 
monument is 18°, and that the angle of depression 
to the bottom of the monument is 3°. How far is the 
person from the monument?

50. There is an antenna on the top of a building. From 
a location 300 feet from the base of the building, 
the angle of elevation to the top of the building 
is measured to be 40°. From the same location, 
the angle of elevation to the top of the antenna is 
measured to be 43°. Find the height of the antenna.

51. There is lightning rod on the top of a building.  
From a location 500 feet from the base of the buil -
ding, the angle of elevation to the top of the building 
is measured to be 36°. From the same location, the 
angle of elevation to the top of the lightning rod is 
measured to be 38°. Find the height of the  
lightning rod.

ReAl-WORlD APPlICATIOnS

52. A 33-ft ladder leans against a building so that the 
angle between the ground and the ladder is 80°.  
How high does the ladder reach up the side of  
the building?

53. A 23-ft ladder leans against a building so that  
the angle between the ground and the ladder is  
80°. How high does the ladder reach up the side  
of the building?

54. The angle of elevation to the top of a building in  
New York is found to be 9 degrees from the ground 
at a distance of 1 mile from the base of the building. 
Using this information, find the height of the 
building.

55. The angle of elevation to the top of a building in 
Seattle is found to be 2 degrees from the ground at 
a distance of 2 miles from the base of the building. 
Using this information, find the height of the 
building.

56. Assuming that a 370-foot tall giant redwood grows 
vertically, if I walk a certain distance from the tree 
and measure the angle of elevation to the top of the 
tree to be 60°, how far from the base of the tree am I?
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CHAPTeR 5 ReVIeW

Key Terms
adjacent side in a right triangle, the side between a given angle and the right angle

angle the union of two rays having a common endpoint

angle of depression the angle between the horizontal and the line from the object to the observer’s eye, assuming the object 
is positioned lower than the observer 

angle of elevation the angle between the horizontal and the line from the object to the observer’s eye, assuming the object 
is positioned higher than the observer 

angular speed the angle through which a rotating object travels in a unit of time

arc length the length of the curve formed by an arc

area of a sector area of a portion of a circle bordered by two radii and the intercepted arc; the fraction   θ _ 2π   multiplied by the 
area of the entire circle

cosecant the reciprocal of the sine function: on the unit circle, csc t =   1 _ y  , y ≠ 0

cosine function the x-value of the point on a unit circle corresponding to a given angle

cotangent the reciprocal of the tangent function: on the unit circle, cot t =   x _ y  , y ≠ 0

coterminal angles description of positive and negative angles in standard position sharing the same terminal side 

degree a unit of measure describing the size of an angle as one-360th of a full revolution of a circle

hypotenuse the side of a right triangle opposite the right angle

identities statements that are true for all values of the input on which they are defined

initial side the side of an angle from which rotation begins

linear speed the distance along a straight path a rotating object travels in a unit of time; determined by the arc length

measure of an angle the amount of rotation from the initial side to the terminal side

negative angle description of an angle measured clockwise from the positive x-axis

opposite side in a right triangle, the side most distant from a given angle

period the smallest interval P of a repeating function f such that f (x + P) = f (x)

positive angle description of an angle measured counterclockwise from the positive x-axis

Pythagorean Identity a corollary of the Pythagorean Theorem stating that the square of the cosine of a given angle plus the 
square of the sine of that angle equals 1

quadrantal angle an angle whose terminal side lies on an axis

radian the measure of a central angle of a circle that intercepts an arc equal in length to the radius of that circle

radian measure the ratio of the arc length formed by an angle divided by the radius of the circle

ray one point on a line and all points extending in one direction from that point; one side of an angle

reference angle the measure of the acute angle formed by the terminal side of the angle and the horizontal axis

secant the reciprocal of the cosine function: on the unit circle, sec t =   1 _ x  , x ≠ 0

sine function the y-value of the point on a unit circle corresponding to a given angle

standard position the position of an angle having the vertex at the origin and the initial side along the positive x-axis

tangent the quotient of the sine and cosine: on the unit circle, tan t =   
y
 _ x  , x ≠ 0

terminal side the side of an angle at which rotation ends

unit circle a circle with a center at (0, 0) and radius 1.

vertex the common endpoint of two rays that form an angle
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Key equations
arc length s = rθ

area of a sector A =   1 __ 2  θr2

angular speed ω =   θ __ t  

linear speed  v =   s _ t  

linear speed related to angular speed v = rω

cosine cos t = x

sine sin t = y

Pythagorean Identity cos2 t + sin2 t = 1

tangent function tan t =   sin t _ cos t  

secant function sec t =   1 _ cos t  

cosecant function csc t =   1 _ 
sin t

  

cotangent function cot t =   1 _ tan t   =   cos t _ 
sin t

  

cofunction identities cos t = sin     π __ 2   − t  

 sin t = cos     π __ 2   − t  

 tan t = cot     π __ 2   − t  

 cot t = tan     π __ 2   − t  

 sec t = csc     π __ 2   − t  

 csc t = sec     π __ 2   − t  

Key Concepts

5.1 Angles
•	An angle is formed from the union of two rays, by keeping the initial side fixed and rotating the terminal side. 

The amount of rotation determines the measure of the angle.
•	An angle is in standard position if its vertex is at the origin and its initial side lies along the positive x-axis. A 

positive angle is measured counterclockwise from the initial side and a negative angle is measured clockwise.
•	To draw an angle in standard position, draw the initial side along the positive x-axis and then place the terminal 

side according to the fraction of a full rotation the angle represents. See Example 1.
•	 In addition to degrees, the measure of an angle can be described in radians. See Example 2.
•	To convert between degrees and radians, use the proportion   θ _ 180   =    θ

R
 _ π  . See Example 3 and Example 4.

•	Two angles that have the same terminal side are called coterminal angles.
•	We can find coterminal angles by adding or subtracting 360° or 2π. See Example 5 and Example 6.
•	Coterminal angles can be found using radians just as they are for degrees. See Example 7.
•	The length of a circular arc is a fraction of the circumference of the entire circle. See Example 8.
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•	The area of sector is a fraction of the area of the entire circle. See Example 9.
•	An object moving in a circular path has both linear and angular speed.
•	The angular speed of an object traveling in a circular path is the measure of the angle through which it turns in 

a unit of time. See Example 10.
•	The linear speed of an object traveling along a circular path is the distance it travels in a unit of time. See Example 

11.

5.2 Unit Circle: Sine and Cosine Functions
•	Finding the function values for the sine and cosine begins with drawing a unit circle, which is centered at the 

origin and has a radius of 1 unit.
•	Using the unit circle, the sine of an angle t equals the y-value of the endpoint on the unit circle of an arc of length 

t whereas the cosine of an angle t equals the x-value of the endpoint. See Example 1.
•	The sine and cosine values are most directly determined when the corresponding point on the unit circle falls 

on an axis. See Example 2.
•	When the sine or cosine is known, we can use the Pythagorean Identity to find the other. The Pythagorean Identity 

is also useful for determining the sines and cosines of special angles. See Example 3.
•	Calculators and graphing software are helpful for finding sines and cosines if the proper procedure for entering 

information is known. See Example 4.
•	The domain of the sine and cosine functions is all real numbers.
•	The range of both the sine and cosine functions is [−1, 1].
•	The sine and cosine of an angle have the same absolute value as the sine and cosine of its reference angle.
•	The signs of the sine and cosine are determined from the x- and y-values in the quadrant of the original angle.
•	An angle’s reference angle is the size angle, t, formed by the terminal side of the angle t and the horizontal axis. 

See Example 5.
•	Reference angles can be used to find the sine and cosine of the original angle. See Example 6.
•	Reference angles can also be used to find the coordinates of a point on a circle. See Example 7.

5.3 The Other Trigonometric Functions
•	The tangent of an angle is the ratio of the y-value to the x-value of the corresponding point on the unit circle.
•	The secant, cotangent, and cosecant are all reciprocals of other functions. The secant is the reciprocal of the 

cosine function, the cotangent is the reciprocal of the tangent function, and the cosecant is the reciprocal of  
the sine function.

•	The six trigonometric functions can be found from a point on the unit circle. See Example 1.
•	Trigonometric functions can also be found from an angle. See Example 2.
•	Trigonometric functions of angles outside the first quadrant can be determined using reference angles. See 

Example 3.
•	A function is said to be even if f (−x) = f (x) and odd if f (−x) = −f (x).
•	Cosine and secant are even; sine, tangent, cosecant, and cotangent are odd.
•	Even and odd properties can be used to evaluate trigonometric functions. See Example 4.
•	The Pythagorean Identity makes it possible to find a cosine from a sine or a sine from a cosine.
•	 Identities can be used to evaluate trigonometric functions. See Example 5 and Example 6.
•	Fundamental identities such as the Pythagorean Identity can be manipulated algebraically to produce new 

identities. See Example 7.
•	The trigonometric functions repeat at regular intervals.
•	The period P of a repeating function f is the smallest interval such that f (x + P) = f (x) for any value of x.
•	The values of trigonometric functions of special angles can be found by mathematical analysis.
•	To evaluate trigonometric functions of other angles, we can use a calculator or computer software. See Example 8.



CHAPTER 5 review 501

5.4 Right Triangle Trigonometry
•	We can define trigonometric functions as ratios of the side lengths of a right triangle. See Example 1.
•	The same side lengths can be used to evaluate the trigonometric functions of either acute angle in a right triangle. 

See Example 2.
•	We can evaluate the trigonometric functions of special angles, knowing the side lengths of the triangles in which 

they occur. See Example 3.
•	Any two complementary angles could be the two acute angles of a right triangle.
•	 If two angles are complementary, the cofunction identities state that the sine of one equals the cosine of the other 

and vice versa. See Example 4.
•	We can use trigonometric functions of an angle to find unknown side lengths.
•	 Select the trigonometric function representing the ratio of the unknown side to the known side. See Example 5.
•	Right-triangle trigonometry permits the measurement of inaccessible heights and distances.
•	The unknown height or distance can be found by creating a right triangle in which the unknown height or distance 

is one of the sides, and another side and angle are known. See Example 6.
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CHAPTeR 5 ReVIeW exeRCISeS

AnGleS

For the following exercises, convert the angle measures to degrees.

1.    π _ 4  2.  −  5π ___ 
3

  

For the following exercises, convert the angle measures to radians.

3.  −210° 4. 180°
5. Find the length of an arc in a circle of radius  

7 meters subtended by the central angle of 85°.
6. Find the area of the sector of a circle with diameter  

32 feet and an angle of   3π _ 5   radians.

For the following exercises, find the angle between 0° and 360° that is coterminal with the given angle.

7. 420° 8.  −80°

For the following exercises, find the angle between 0 and 2π in radians that is coterminal with the given angle.

9.  −  20π ____ 11  10.   14π ____ 5  

For the following exercises, draw the angle provided in standard position on the Cartesian plane.

11.  −210° 12. 75°

13.   5π ___ 4  14.  −  π _ 
3

  

15. Find the linear speed of a point on the equator of 
the earth if the earth has a radius of 3,960 miles and 
the earth rotates on its axis every 24 hours. Express 
answer in miles per hour.

16. A car wheel with a diameter of 18 inches spins at the 
rate of 10 revolutions per second. What is the car’s 
speed in miles per hour?

UnIT CIRCle: SIne AnD COSIne FUnCTIOnS

17. Find the exact value of sin   π _ 3  . 18. Find the exact value of cos   π _ 4  . 19. Find the exact value of cos π.

20. State the reference angle for 300°. 21. State the reference angle for   3π _ 4  . 22. Compute cosine of 330°.

23. Compute sine of   5π _ 4  . 24. State the domain of the sine and 
cosine functions.

25. State the range of the sine and 
cosine functions.

THe OTHeR TRIGOnOMeTRIC FUnCTIOnS

For the following exercises, find the exact value of the given expression.

26. cos   π _ 
6

  27. tan   π _ 4  28. csc   π _ 
3

  29. sec   π _ 4  

For the following exercises, use reference angles to evaluate the given expression.

30. sec   11π _ 
3

  31. sec 315°

32. If sec(t) = −2.5 , what is the sec(−t)? 33. If tan(t) = −0.6, what is the tan(−t)?
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34. If tan(t) =   1 _ 3  , find tan(t − π). 35. If cos(t) =    √
—
 2   _ 2  , find sin(t + 2π).

36. Which trigonometric functions are even? 37. Which trigonometric functions are odd?

RIGHT TRIAnGle TRIGOnOMeTRY

For the following exercises, use side lengths to evaluate.

38. cos   π _ 4  39. cot   π _ 
3

  40. tan   π _ 
6

  

41. cos     π _ 
2

     = sin(_____°) 42. csc(18°) = sec(_____°)

For the following exercises, use the given information to find the lengths of the other two sides of the right triangle.

43. cos B =   3 __ 5  , a = 6 44. tan A =   5 __ 9  , b = 6

For the following exercises, use Figure 1 to evaluate each trigonometric function.

B

A

11

6

Figure 1

45. sin A 46. tan B

For the following exercises, solve for the unknown sides of the given triangle.

47. 

b

a
45º

4√2

48. 

b

a
30º

5

49. A 15-ft ladder leans against a building so that the 
angle between the ground and the ladder is 70°. 
How high does the ladder reach up the side of the 
building?

50. The angle of elevation to the top of a building in 
Baltimore is found to be 4 degrees from the ground 
at a distance of 1 mile from the base of the building. 
Using this information, find the height of the 
building.
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CHAPTeR 5 PRACTICe TeST

1. Convert   5π _ 
6

   radians to degrees. 2. Convert −620° to radians.

3. Find the length of a circular arc with a radius  
12 centimeters subtended by the central angle of 30°.

4. Find the area of the sector with radius of 8 feet and 
an angle of   5π _ 4   radians.

5. Find the angle between 0° and 360° that is 
coterminal with 375°.

6. Find the angle between 0 and 2π in radians that is 
coterminal with −  4π _ 7  .

7. Draw the angle 315° in standard position on the 
Cartesian plane.

8. Draw the angle −  π _ 
6

   in standard position on the 
Cartesian plane.

9. A carnival has a Ferris wheel with a diameter of 
80 feet. The time for the Ferris wheel to make one 
revolution is 75 seconds. What is the linear speed in 
feet per second of a point on the Ferris wheel? What 
is the angular speed in radians per second?

10. Find the exact value of sin   π _ 
6

  .

11. Compute sine of 240°. 12. State the domain of the sine and cosine functions.

13. State the range of the sine and cosine functions. 14. Find the exact value of cot   π _ 4  .

15. Find the exact value of tan   π _ 3  . 16. Use reference angles to evaluate csc   7π _ 4  .

17. Use reference angles to evaluate tan 210°. 18. If csc t = 0.68, what is the csc(−t)?

19. If cos t =    √
—
 3   _ 2  , find cos(t − 2π). 20. Which trigonometric functions are even?

21. Find the missing angle: cos     π _ 
6

     = sin(_____) 22. Find the missing sides of the triangle ABC :  
sin B =   3 _ 4  , c = 12

23. Find the missing sides of the triangle.

BC

A

60º

9

24. The angle of elevation to the top of a building in 
Chicago is found to be 9 degrees from the ground 
at a distance of 2,000 feet from the base of the 
building. Using this information, find the height of 
the building.
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Periodic Functions

Figure 1 (credit: "Maxxer_", Flickr)

Introduction
Each day, the sun rises in an easterly direction, approaches some maximum height relative to the celestial equator, and 
sets in a westerly direction. The celestial equator is an imaginary line that divides the visible universe into two halves in 
much the same way Earth’s equator is an imaginary line that divides the planet into two halves. The exact path the sun 
appears to follow depends on the exact location on Earth, but each location observes a predictable pattern over time. 

The pattern of the sun’s motion throughout the course of a year is a periodic function. Creating a visual representation 
of a periodic function in the form of a graph can help us analyze the properties of the function. In this chapter, we 
will investigate graphs of sine, cosine, and other trigonometric functions.

CHAPTeR OUTlIne

6.1 Graphs of the Sine and Cosine Functions
6.2 Graphs of the Other Trigonometric Functions
6.3 Inverse Trigonometric Functions
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Graph variations of y = sin(x ) and y = cos(x ).

•	 Use phase shifts of sine and cosine curves.

6.1 GRAPHS OF THe SIne AnD COSIne FUnCTIOnS

Figure 1 light can be separated into colors because of its wavelike properties. (credit: "wonderferret"/ Flickr)

White light, such as the light from the sun, is not actually white at all. Instead, it is a composition of all the colors of 
the rainbow in the form of waves. The individual colors can be seen only when white light passes through an optical 
prism that separates the waves according to their wavelengths to form a rainbow.

Light waves can be represented graphically by the sine function. In the chapter on Trigonometric Functions, we 
examined trigonometric functions such as the sine function. In this section, we will interpret and create graphs of 
sine and cosine functions.

Graphing Sine and Cosine Functions
Recall that the sine and cosine functions relate real number values to the x- and y-coordinates of a point on the unit circle. 
So what do they look like on a graph on a coordinate plane? Let’s start with the sine function. We can create a table of values 
and use them to sketch a graph. Table 1 lists some of the values for the sine function on a unit circle.

x 0   π _ 
6

    π _ 4    π _ 
3

    π _ 
2

    2π _ 
3

    3π _ 4    5π _ 
6

  π

sin(x) 0   1 _ 
2

     √
—
 2   _ 

2
     √

—
 3   _ 

2
  1    √

—
 3   _ 

2
     √

—
 2   _ 

2
    1 _ 

2
  0

Table 1

Plotting the points from the table and continuing along the x-axis gives the shape of the sine function. See Figure 2.

–2

–1

1

2

x

y

3π
4

5π
4

7π
4

π 2ππ
2

π
4

3π
2

y = sin (x) 

Figure 2 The sine function
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Notice how the sine values are positive between 0 and π, which correspond to the values of the sine function in 
quadrants I and II on the unit circle, and the sine values are negative between π and 2π, which correspond to the values 
of the sine function in quadrants III and IV on the unit circle. See Figure 3.

1

0

y
y = sin (x)

x

–1

π
6

π
4

π
3

π
2

Figure 3 Plotting values of the sine function

Now let’s take a similar look at the cosine function. Again, we can create a table of values and use them to sketch a 
graph. Table 2 lists some of the values for the cosine function on a unit circle.

x 0   π _ 
6

    π _ 4    π _ 
3

    π _ 
2

    2π _ 
3

    3π _ 4    5π _ 
6

  π

cos(x) 1    √
—
 3   _ 

2
      √

—
 2   _ 

2
     1 _ 

2
  0 −   1 _ 

2
  −     √

—
 2   _ 

2
  −     √

—
 3   _ 

2
  −1

Table 2

As with the sine function, we can plots points to create a graph of the cosine function as in Figure 4. 

x

y

2π
3

3π
4

5π
6

5π
4

3π
2

7π
4

π 2ππ
6

π
4

π
3

π
2

1

0

–1

y = cos (x)

Figure 4 The cosine function

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all real numbers. 
By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes clear that the range of 
both functions must be the interval [−1, 1].

In both graphs, the shape of the graph repeats after 2π, which means the functions are periodic with a period of 2π. 
A periodic function is a function for which a specific horizontal shift, P, results in a function equal to the original 
function: f (x + P) = f (x) for all values of x in the domain of f . When this occurs, we call the smallest such horizontal 
shift with P > 0 the period of the function. Figure 5 shows several periods of the sine and cosine functions.

–3π 3π2ππ–2π –π

–1

1

x

y
y = cos (x) 

1 period

–3π

3π2ππ–2π –π

–1

1

x

y
y = sin (x) 

1 period

Figure 5
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Looking again at the sine and cosine functions on a domain centered at the y-axis helps reveal symmetries. As we can 
see in Figure 6, the sine function is symmetric about the origin. Recall from The Other Trigonometric Functions 
that we determined from the unit circle that the sine function is an odd function because sin(−x) = −sin x. Now we 
can clearly see this property from the graph.
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Figure 6 Odd symmetry of the sine function

Figure 7 shows that the cosine function is symmetric about the y-axis. Again, we determined that the cosine function 
is an even function. Now we can see from the graph that cos(−x) = cos x.
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y = cos (x) 

Figure 7 even symmetry of the cosine function

characteristics of sine and cosine functions 
The sine and cosine functions have several distinct characteristics:

•	 They are periodic functions with a period of 2π.

•	 The domain of each function is (−∞, ∞) and the range is [−1, 1].

•	 The graph of y = sin x is symmetric about the origin, because it is an odd function.

•	 The graph of y = cos x is symmetric about the y- axis, because it is an even function.

Investigating Sinusoidal Functions

As we can see, sine and cosine functions have a regular period and range. If we watch ocean waves or ripples on a 
pond, we will see that they resemble the sine or cosine functions. However, they are not necessarily identical. Some 
are taller or longer than others. A function that has the same general shape as a sine or cosine function is known as a 
sinusoidal function. The general forms of sinusoidal functions are 

y = Asin(Bx − C) + D

and

y = Acos(Bx − C) + D
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Determining the Period of Sinusoidal Functions

Looking at the forms of sinusoidal functions, we can see that they are transformations of the sine and cosine functions. 
We can use what we know about transformations to determine the period. 

In the general formula, B is related to the period by P =    2π _ 
 ∣ B ∣ 

   . If   ∣ B ∣   > 1, then the period is less than 2π and the function 

undergoes a horizontal compression, whereas if   ∣ B ∣   < 1, then the period is greater than 2π and the function undergoes 
a horizontal stretch. For example, f (x) = sin(x), B = 1, so the period is 2π, which we knew. If f (x) = sin(2x), then B = 2, 
so the period is π and the graph is compressed. If f (x) = sin     x _ 

2
    , then B =   1 _ 

2
  , so the period is 4π and the graph is 

stretched. Notice in Figure 8 how the period is indirectly related to   ∣ B ∣  .
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f (x) = sin (2x) 

f (x) = sin (x) 

f (x) = sin(  )x
2

π 2ππ
2

3π
2

Figure 8

period of sinusoidal functions 
If we let C = 0 and D = 0 in the general form equations of the sine and cosine functions, we obtain the forms

y = Asin(Bx)   y = Acos(Bx)
The period is    2π _ 

 ∣ B ∣ 
   .

Example 1 Identifying the Period of a Sine or Cosine Function

Determine the period of the function f (x) = sin     π _ 
6

  x  .

Solution Let’s begin by comparing the equation to the general form y = Asin(Bx).

In the given equation, B =   π _ 
6

  , so the period will be

 P =   2π _ 
 ∣ B ∣ 

  

 =   2π _ 
  π _ 
6

  
  

 = 2π ⋅   6 _ π  

 = 12

Try It #1

Determine the period of the function g(x) =    cos  x __ 3     .

Determining Amplitude

Returning to the general formula for a sinusoidal function, we have analyzed how the variable B relates to the period. Now 
let’s turn to the variable A so we can analyze how it is related to the amplitude, or greatest distance from rest. A represents 
the vertical stretch factor, and its absolute value   ∣ A ∣   is the amplitude. The local maxima will be a distance   ∣ A ∣   above the 
vertical midline of the graph, which is the line x = D ; because D = 0 in this case, the midline is the x-axis. The local 
minima will be the same distance below the midline. If   ∣ A ∣   > 1, the function is stretched. For example, the amplitude of  
f (x) = 4sin x is twice the amplitude of f (x) = 2sin x. If   ∣ A ∣   < 1, the function is compressed. Figure 9 compares several 
sine functions with different amplitudes.
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y f (x) = 4 sin(x)
f  (x) = 3 sin(x)
f  (x) = 2 sin(x)
f  (x) = 1 sin(x)
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Figure 9

amplitude of sinusoidal functions 
If we let C = 0 and D = 0 in the general form equations of the sine and cosine functions, we obtain the forms

y = Asin(Bx) and y = Acos(Bx)

The amplitude is A, and the vertical height from the midline is   ∣ A ∣  . In addition, notice in the example that 

  ∣ A ∣   = amplitude =    1 __ 2    ∣ maximum − minimum ∣  

Example 2 Identifying the Amplitude of a Sine or Cosine Function

What is the amplitude of the sinusoidal function f (x) = −4sin(x)? Is the function stretched or compressed vertically?

Solution Let’s begin by comparing the function to the simplified form y = Asin(Bx).

In the given function, A = −4, so the amplitude is   ∣ A ∣   =   ∣ −4 ∣   = 4. The function is stretched.

Analysi s The negative value of A results in a reflection across the x-axis of the sine function, as shown in Figure 10.
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Try It #2

What is the amplitude of the sinusoidal function f (x) =   1 __ 2   sin(x)? Is the function stretched or compressed vertically ?

Analyzing Graphs of Variations of y = sin x and y = cos x
Now that we understand how A and B relate to the general form equation for the sine and cosine functions, we will 
explore the variables C and D. Recall the general form:

y = Asin(Bx − C) + D and y = Acos(Bx − C) + D

or

y = Asin   B   x −   C __ B       + D and y = Acos   B   x −   C __ B       + D
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The value   C __ B   for a sinusoidal function is called the phase shift, or the horizontal displacement of the basic sine or 
cosine function. If C > 0, the graph shifts to the right. If C < 0, the graph shifts to the left. The greater the value of   ∣ C ∣  , 
the more the graph is shifted. Figure 11 shows that the graph of f (x) = sin(x − π) shifts to the right by π units, which 
is more than we see in the graph of f (x) = sin   x −   π __ 4    , which shifts to the right by   π __ 4   units.
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π 2ππ
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3π
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3π5π
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f  (x) = sin(x)

f  (x) = sin(x − π)

f  (x) = sin 4x − π

Figure 11

While C relates to the horizontal shift, D indicates the vertical shift from the midline in the general formula for a 
sinusoidal function. See Figure 12. The function y = cos(x) + D has its midline at y = D.

x

y

π 2π 3π

y = A sin(x) + D 

y = D 
Midline

Figure 12

Any value of D other than zero shifts the graph up or down. Figure 13 compares f (x) = sin x with f (x) = sin x + 2, 
which is shifted 2 units up on a graph.
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variations of sine and cosine functions 

Given an equation in the form f (x) = Asin(Bx − C) + D or f (x) = Acos(Bx − C) + D,   C __ B   is the phase shift and 
D is the vertical shift.

Example 3 Identifying the Phase Shift of a Function

Determine the direction and magnitude of the phase shift for f (x) = sin   x +   π __ 6     − 2.

Solution Let’s begin by comparing the equation to the general form y = Asin(Bx − C) + D.
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In the given equation, notice that B = 1 and C = −  π __ 6  . So the phase shift is

   C __ B   = −   
  π __ 6  

 _ 
1

    

 = −  π __ 6  
or   π __ 6   units to the left.

Analysi s We must pay attention to the sign in the equation for the general form of a sinusoidal function. The equation 
shows a minus sign before C. Therefore f (x) = sin   x +   π __ 6     − 2 can be rewritten as f (x) = sin   x −   −  π __ 6       − 2.

If the value of C is negative, the shift is to the left.

Try It #3

Determine the direction and magnitude of the phase shift for f (x) = 3cos  x −   π _ 
2

    .

Example 4 Identifying the Vertical Shift of a Function

Determine the direction and magnitude of the vertical shift for f (x) = cos(x) − 3.

Solution Let’s begin by comparing the equation to the general form y = Acos(Bx − C) + D.

In the given equation, D = −3 so the shift is 3 units downward.

Try It #4

Determine the direction and magnitude of the vertical shift for f (x) = 3sin(x) + 2.

How To…
Given a sinusoidal function in the form f (x) = Asin(Bx − C) + D, identify the midline, amplitude, period, and  
phase shift.

1. Determine the amplitude as   ∣ A ∣  .
2. Determine the period as P =    2π _ 

 ∣ B ∣ 
   .

3. Determine the phase shift as   C __ B  .

4. Determine the midline as y = D.

Example 5  Identifying the Variations of a Sinusoidal Function from an Equation

Determine the midline, amplitude, period, and phase shift of the function y = 3sin(2x) + 1.

Solution Let’s begin by comparing the equation to the general form y = Asin(Bx − C) + D.

A = 3, so the amplitude is   ∣ A ∣   = 3.

Next, B = 2, so the period is P =    2π _ 
 ∣ B ∣ 

    =   2π __ 2   = π.

There is no added constant inside the parentheses, so C = 0 and the phase shift is   C __ B   =   0 __ 2   = 0.

Finally, D = 1, so the midline is y = 1.

Analysi s Inspecting the graph, we can determine that the period is π, the midline is y = 1, and the amplitude is 3. See 
Figure 14.
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y = 3 sin (2x) + 1 

Figure 14 

Try It #5

Determine the midline, amplitude, period, and phase shift of the function y =   1 __ 2  cos     x __ 3   –   π __ 3    .

Example 6 Identifying the Equation for a Sinusoidal Function from a Graph

Determine the formula for the cosine function in Figure 15.

0.5

1

–2π –π 2ππ 3π 4π
x

y

Figure 15

Solution To determine the equation, we need to identify each value in the general form of a sinusoidal function.
y = Asin(Bx − C) + D    y = Acos(Bx − C) + D

The graph could represent either a sine or a cosine function that is shifted and/or reflected. When x = 0, the graph has 
an extreme point, (0, 0). Since the cosine function has an extreme point for x = 0, let us write our equation in terms 
of a cosine function.

Let’s start with the midline. We can see that the graph rises and falls an equal distance above and below y = 0.5. This 
value, which is the midline, is D in the equation, so D = 0.5.

The greatest distance above and below the midline is the amplitude. The maxima are 0.5 units above the midline and 
the minima are 0.5 units below the midline. So   ∣ A ∣   = 0.5. Another way we could have determined the amplitude is 
by recognizing that the difference between the height of local maxima and minima is 1, so   ∣ A ∣   =   1 __ 2   = 0.5. Also, the 
graph is reflected about the x-axis so that A = −0.5.

The graph is not horizontally stretched or compressed, so B = 1; and the graph is not shifted horizontally, so C = 0.

Putting this all together,
g(x) = −0.5cos(x) + 0.5

Try It #6

Determine the formula for the sine function in Figure 16. 
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Example 7 Identifying the Equation for a Sinusoidal Function from a Graph

Determine the equation for the sinusoidal function in Figure 17.

–5 –3 –1 1 3 5 7

–5

–4

–3

–2

–1

1

x

y

Figure 17

Solution With the highest value at 1 and the lowest value at −5, the midline will be halfway between at −2. So 
D = −2.

The distance from the midline to the highest or lowest value gives an amplitude of   ∣ A ∣   = 3.

The period of the graph is 6, which can be measured from the peak at x = 1 to the next peak at x = 7, or from the 
distance between the lowest points. Therefore,  P =    2π _ 

 ∣ B ∣ 
    = 6. Using the positive value for B, we find that

B =   2π __ P   =   2π __ 6   =   π __ 3  

So far, our equation is either y = 3sin     π __ 3  x − C   − 2 or y = 3cos     π __ 3  x − C   − 2. For the shape and shift, we have more 

than one option. We could write this as any one of the following:

•	 a cosine shifted to the right

•	 a negative cosine shifted to the left

•	 a sine shifted to the left

•	 a negative sine shifted to the right

While any of these would be correct, the cosine shifts are easier to work with than the sine shifts in this case because 
they involve integer values. So our function becomes

y = 3cos     π __ 3  x −   π __ 3     − 2 or y = −3cos     π __ 3  x +   2π __ 3     −2

Again, these functions are equivalent, so both yield the same graph.

Try It #7

Write a formula for the function graphed in Figure 18.  
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Graphing Variations of y = sin x and y = cos x
Throughout this section, we have learned about types of variations of sine and cosine functions and used that 
information to write equations from graphs. Now we can use the same information to create graphs from equations.

Instead of focusing on the general form equations

y = Asin(Bx − C) + D and y = Acos(Bx − C) + D,

we will let C = 0 and D = 0 and work with a simplified form of the equations in the following examples.

How To…
Given the function y = Asin(Bx), sketch its graph.
1. Identify the amplitude,   ∣ A ∣  .
2. Identify the period, P =   2π ___  ∣ B ∣   .
3. Start at the origin, with the function increasing to the right if A is positive or decreasing if A is negative.

4. At x =   π ____ 2 ∣ B ∣    there is a local maximum for A > 0 or a minimum for A < 0, with y = A.

5. The curve returns to the x-axis at x =   π ___  ∣ B ∣   .
6. There is a local minimum for A > 0 (maximum for A < 0 ) at x =   3π ____ 2 ∣ B ∣    with y = −A.
7. The curve returns again to the x-axis at x =   π ____ 2 ∣ B ∣   .

Example 8 Graphing a Function and Identifying the Amplitude and Period

Sketch a graph of f (x) = −2sin    πx __ 2    .

Solution Let’s begin by comparing the equation to the form y = Asin(Bx).

Step 1. We can see from the equation that A = −2, so the amplitude is 2.
  ∣ A ∣   = 2

Step 2. The equation shows that B =   π __ 2  , so the period is

 P =   2π _ 
  π __ 2  

  

 = 2π ⋅   2 __ π  

 = 4

Step 3. Because A is negative, the graph descends as we move to the right of the origin.

Step 4–7. The x-intercepts are at the beginning of one period, x = 0, the horizontal midpoints are at x = 2 and at the 
end of one period at x = 4.

The quarter points include the minimum at x = 1 and the maximum at x = 3. A local minimum will occur 2 units 
below the midline, at x = 1, and a local maximum will occur at 2 units above the midline, at x = 3. Figure 19 shows 
the graph of the function.
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Try It #8

Sketch a graph of g(x) = −0.8cos(2x). Determine the midline, amplitude, period, and phase shift.

How To…
Given a sinusoidal function with a phase shift and a vertical shift, sketch its graph.

1. Express the function in the general form y = Asin(Bx − C) + D or y = Acos(Bx − C) + D.

2. Identify the amplitude,   ∣ A ∣  .

3. Identify the period, P =   2π ___  ∣ B ∣   .

4. Identify the phase shift,   C __ B  .

5. Draw the graph of f (x) = Asin(Bx) shifted to the right or left by   C __ B   and up or down by D.

Example 9 Graphing a Transformed Sinusoid

Sketch a graph of f (x) = 3sin     π __ 4  x −   π __ 4    .

Solution

Step 1. The function is already written in general form: f (x) = 3sin     π __ 4  x −   π __ 4    . This graph will have the shape of a sine 
function, starting at the midline and increasing to the right.

Step 2.   ∣ A ∣   =   ∣ 3 ∣   = 3. The amplitude is 3.

Step 3. Since   ∣ B ∣   =     π __ 4     =   π __ 4  , we determine the period as follows.

P =   2π ___  ∣ B ∣    =   2π _ 
    π __ 4  

     = 2π ⋅   4 _ π   = 8

The period is 8.

Step 4. Since C =   π __ 4  , the phase shift is

  C __ B   =      
  π _ 4    

 _ 
    π _ 4  

      = 1.

The phase shift is 1 unit.

Step 5. Figure 20 shows the graph of the function.
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Figure 20 A horizontally compressed, vertically stretched, and horizontally shifted sinusoid
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Try It #9

Draw a graph of g(x) = −2cos     π __ 3  x +   π __ 6    . Determine the midline, amplitude, period, and phase shift.

Example 10 Identifying the Properties of a Sinusoidal Function

Given y = −2cos     π __ 2  x + π   + 3, determine the amplitude, period, phase shift, and horizontal shift. Then graph the 
function.

Solution Begin by comparing the equation to the general form and use the steps outlined in Example 9.

y = Acos(Bx − C) + D

Step 1. The function is already written in general form.

Step 2. Since A = −2, the amplitude is   ∣ A ∣   = 2.

Step 3.   ∣ B ∣   =   π __ 2  , so the period is P =   2π ___  ∣ B ∣    =   2π _ 
    π __ 2  

     = 2π ⋅   2 __ π   = 4. The period is 4.

Step 4. C = −π, so we calculate the phase shift as   C __ B   =   −π _ 
    π __ 2  

     = −π ⋅   2 __ π   = −2. The phase shift is −2.

Step 5. D = 3, so the midline is y = 3, and the vertical shift is up 3.

Since A is negative, the graph of the cosine function has been reflected about the x-axis. Figure 21 shows one cycle of 
the graph of the function.
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Using Transformations of Sine and Cosine Functions
We can use the transformations of sine and cosine functions in numerous applications. As mentioned at the beginning 
of the chapter, circular motion can be modeled using either the sine or cosine function.

Example 11 Finding the Vertical Component of Circular Motion

A point rotates around a circle of radius 3 centered at the origin. Sketch a graph of the y-coordinate of the point as a 
function of the angle of rotation.

Solution Recall that, for a point on a circle of radius r, the y-coordinate of the point is y = r sin(x), so in this case, we 
get the equation y(x) = 3 sin(x). The constant 3 causes a vertical stretch of the y-values of the function by a factor of 3, 
which we can see in the graph in Figure 22.
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Analysis Notice that the period of the function is still 2π ; as we travel around the circle, we return to the point (3, 0) for 
x = 2π, 4π, 6π, ... Because the outputs of the graph will now oscillate between –3 and 3, the amplitude of the sine wave is 3.

Try It #10

What is the amplitude of the function f (x) = 7cos(x)? Sketch a graph of this function.

Example 12 Finding the Vertical Component of Circular Motion

A circle with radius 3 ft is mounted with its center 4 ft off the ground. The point closest to the ground is labeled P, as 
shown in Figure 23. Sketch a graph of the height above the ground of the point P as the circle is rotated; then find a 
function that gives the height in terms of the angle of rotation.

P

3 �

4 �

Figure 23

Solution Sketching the height, we note that it will start 1 ft above the ground, then increase up to 7 ft above the 
ground, and continue to oscillate 3 ft above and below the center value of 4 ft, as shown in Figure 24.
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y = −3 cos x + 4

Figure 24

Although we could use a transformation of either the sine or cosine function, we start by looking for characteristics 
that would make one function easier to use than the other. Let’s use a cosine function because it starts at the highest 
or lowest value, while a sine function starts at the middle value. A standard cosine starts at the highest value, and this 
graph starts at the lowest value, so we need to incorporate a vertical reflection.

Second, we see that the graph oscillates 3 above and below the center, while a basic cosine has an amplitude of 1, so 
this graph has been vertically stretched by 3, as in the last example.

Finally, to move the center of the circle up to a height of 4, the graph has been vertically shifted up by 4. Putting these 
transformations together, we find that

y = −3cos(x) + 4
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Try It #11

A weight is attached to a spring that is then hung from a board, as shown in Figure 25. As the spring oscillates 
up and down, the position y of the weight relative to the board ranges from −1 in. (at time x = 0) to −7 in. (at 
time x = π) below the board. Assume the position of y is given as a sinusoidal function of x. Sketch a graph of the 
function, and then find a cosine function that gives the position y in terms of x.

y

Figure 25

Example 13 Determining a Rider’s Height on a Ferris Wheel

The London Eye is a huge Ferris wheel with a diameter of 135 meters (443 feet). It completes one rotation every 30 
minutes. Riders board from a platform 2 meters above the ground. Express a rider’s height above ground as a function 
of time in minutes.

Solution With a diameter of 135 m, the wheel has a radius of 67.5 m. The height will oscillate with amplitude 67.5 m 
above and below the center.

Passengers board 2 m above ground level, so the center of the wheel must be located 67.5 + 2 = 69.5 m above ground 
level. The midline of the oscillation will be at 69.5 m.

The wheel takes 30 minutes to complete 1 revolution, so the height will oscillate with a period of 30 minutes.

Lastly, because the rider boards at the lowest point, the height will start at the smallest value and increase, following 
the shape of a vertically reflected cosine curve.

•	Amplitude: 67.5, so A = 67.5

•	 Midline: 69.5, so D = 69.5

•	 Period: 30, so B =   2π ___ 30   =   π __ 15  

•	 Shape: −cos(t)

An equation for the rider’s height would be

y = − 67.5cos    π __ 15  t   + 69.5

where t is in minutes and y is measured in meters.

Access these online resources for additional instruction and practice with graphs of sine and cosine functions.
•	 Amplitude and Period of Sine and Cosine (http://openstaxcollege.org/l/ampperiod)

•	 Translations of Sine and Cosine (http://openstaxcollege.org/l/translasincos)

•	 Graphing Sine and Cosine Transformations (http://openstaxcollege.org/l/transformsincos)

•	 Graphing the Sine Function (http://openstaxcollege.org/l/graphsinefunc)

http://openstaxcollege.org/l/ampperiod
http://openstaxcollege.org/l/translasincos
http://openstaxcollege.org/l/transformsincos
http://openstaxcollege.org/l/graphsinefunc
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6.1 SeCTIOn exeRCISeS

VeRBAl

1. Why are the sine and cosine functions called 
periodic functions?

2. How does the graph of y = sin x compare with 
the graph of y = cos x? Explain how you could 
horizontally translate the graph of y = sin x to 
obtain y = cos x.

3. For the equation Acos(Bx + C) + D, what constants 
affect the range of the function and how do they 
affect the range?

4. How does the range of a translated sine function 
relate to the equation y = Asin(Bx + C) + D?

5. How can the unit circle be used to construct the 
graph of f(t) = sin t?

GRAPHICAl

For the following exercises, graph two full periods of each function and state the amplitude, period, and midline. State 
the maximum and minimum y-values and their corresponding x-values on one period for x > 0. Round answers to 
two decimal places if necessary.

6. f (x) = 2sin x 7. f (x) =   2 __ 3  cos x 8. f (x) = −3sin x

9. f (x) = 4sin x 10. f (x) = 2cos x 11. f (x) = cos(2x)

12. f (x) = 2sin    1 __ 2  x  13. f (x) = 4cos(πx) 14. f (x) = 3cos     6 __ 5  x  

15. y = 3sin(8(x + 4)) + 5 16. y = 2sin(3x − 21) + 4 17. y = 5sin(5x + 20) − 2

For the following exercises, graph one full period of each function, starting at x = 0. For each function, state the 
amplitude, period, and midline. State the maximum and minimum y-values and their corresponding x-values on one 
period for x > 0. State the phase shift and vertical translation, if applicable. Round answers to two decimal places if 
necessary.

18. f(t) = 2sin   t −   5π ___ 6    19. f(t) = −cos   t +   π __ 3     + 1 20. f (t) = 4cos   2  t +   π __ 4       − 3

21. f(t) = −sin     1 __ 2  t +   5π ___ 3    22. f (x) = 4sin     π _ 
2

  (x − 3)   + 7

23. Determine the amplitude, midline, period, and an 
equation involving the sine function for the graph 
shown in Figure 26.
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Figure 26 

24. Determine the amplitude, period, midline, and an 
equation involving cosine for the graph shown in 
Figure 27.

x

f(x)

–2
–1

–3
–4
–5

1
2
3
4
5

π–π π
2

3π
2

3π
2

π
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Figure 27 
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25. Determine the amplitude, period, midline, and an 
equation involving cosine for the graph shown in 
Figure 28.
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Figure 28 

26. Determine the amplitude, period, midline, and 
an equation involving sine for the graph shown in 
Figure 29.

2

x

f(x)

–4–1–8
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Figure 29 

27. Determine the amplitude, period, midline, and an 
equation involving cosine for the graph shown in 
Figure 30.

–4

−

x

f(x)

–2

2

4

−2 + π2 π
2

π
2

Figure 30 

28. Determine the amplitude, period, midline, and 
an equation involving sine for the graph shown in 
Figure 31.
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Figure 31 

29. Determine the amplitude, period, midline, and an 
equation involving cosine for the graph shown in 
Figure 32.
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Figure 32 

30. Determine the amplitude, period, midline, and 
an equation involving sine for the graph shown in 
Figure 33.
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Figure 33 
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AlGeBRAIC

For the following exercises, let f (x) = sin x.

31. On [0, 2π), solve f (x) = 0. 32. On [0, 2π), solve f (x) =   1 __ 2  .

33. Evaluate f     π __ 2    . 34. On [0, 2π), f (x) =    √
—
 2   ____ 2  . Find all values of x.

35. On [0, 2π), the maximum value(s) of the function 
occur(s) at what x-value(s)?

36. On [0, 2π), the minimum value(s) of the function 
occur(s) at what x-value(s)?

37. Show that f(−x) = −f (x). This means that  
f (x) = sin x is an odd function and possesses 
symmetry with respect to ________________.

For the following exercises, let f (x) = cos x.

38. On [0, 2π), solve the equation f (x) = cos x = 0. 39. On [0, 2π), solve f (x) =   1 __ 2  .

40. On [0, 2π), find the x-intercepts of f (x) = cos x. 41. On [0, 2π), find the x-values at which the function 
has a maximum or minimum value.

42. On [0, 2π), solve the equation f (x) =    √
—
 3   ____ 2  .

TeCHnOlOGY

43. Graph h(x) = x + sin x on [0, 2π]. Explain why the 
graph appears as it does.

44. Graph h(x) = x + sin x on [−100, 100]. Did the 
graph appear as predicted in the previous exercise?

45. Graph f (x) = x sin x on [0, 2π] and verbalize how 
the graph varies from the graph of f (x) = sin x.

46. Graph f (x) = x sin x on the window [−10, 10] and 
explain what the graph shows.

47. Graph f (x) =   sin x ____ x   on the window [−5π, 5π] and 
explain what the graph shows.

ReAl-WORlD APPlICATIOnS

48. A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meter above the ground. The six 
o’clock position on the Ferris wheel is level with the loading platform. The wheel completes 1 full revolution 
in 10 minutes. The function h(t) gives a person’s height in meters above the ground t minutes after the wheel 
begins to turn.
a. Find the amplitude, midline, and period of h(t).
b. Find a formula for the height function h(t).
c. How high off the ground is a person after 5 minutes?
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leARnInG OBjeCTIVeS

In this section, you will:

• Analyze the graph of y = tan x.

•  Graph variations of y = tan x.

•  Analyze the graphs of y = sec x and y = csc x.

•  Graph variations of y = sec x and y = csc x.

•  Analyze the graph of y = cot x.

•  Graph variations of y = cot x.

6.2 GRAPHS OF THe OTHeR TRIGOnOMeTRIC FUnCTIOnS

We know the tangent function can be used to find distances, such as the height of a building, mountain, or flagpole. 
But what if we want to measure repeated occurrences of distance? Imagine, for example, a police car parked next to 
a warehouse. The rotating light from the police car would travel across the wall of the warehouse in regular intervals. 
If the input is time, the output would be the distance the beam of light travels. The beam of light would repeat the 
distance at regular intervals. The tangent function can be used to approximate this distance. Asymptotes would be 
needed to illustrate the repeated cycles when the beam runs parallel to the wall because, seemingly, the beam of light 
could appear to extend forever. The graph of the tangent function would clearly illustrate the repeated intervals. In 
this section, we will explore the graphs of the tangent and other trigonometric functions.

Analyzing the Graph of y = tan x
We will begin with the graph of the tangent function, plotting points as we did for the sine and cosine functions. 
Recall that

tan x =   sin x ____
cos x  

The period of the tangent function is π because the graph repeats itself on intervals of kπ where k is a constant. If we 
graph the tangent function on −  π __ 

2
   to   π __ 

2
  , we can see the behavior of the graph on one complete cycle. If we look at any 

larger interval, we will see that the characteristics of the graph repeat.

We can determine whether tangent is an odd or even function by using the definition of tangent.

tan(−x) =   sin(−x) ______ cos(−x)   Definition of tangent.

=   −sin x______
cos x  Sine is an odd function, cosine is even.

= −  sin x ____
cos x    The quotient of an odd and an even  

function is odd.

= −tan x Definition of tangent.

Therefore, tangent is an odd function. We can further analyze the graphical behavior of the tangent function by looking 
at values for some of the special angles, as listed in Table 1.

x −  π _
2

  −  π _
3

  −  π _
4  −  π _

6
  0   π _ 

6
    π _ 4    π _ 

3
    π _ 

2
  

tan(x) undefined − √
—
 3  −1 −    √

—
 3   ____

3  0   √
—
 3   ____

3  1  √
—
 3  undefined

Table 1

These points will help us draw our graph, but we need to determine how the graph behaves where it is undefined. 
If we look more closely at values when   π _ 

3
   < x <   π _ 

2
  , we can use a table to look for a trend. Because   π _ 

3
   ≈ 1.05 and

  π _ 
2

   ≈ 1.57, we will evaluate x at radian measures 1.05 < x < 1.57 as shown in Table 2.
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x 1.3 1.5 1.55 1.56
tan x 3.6 14.1 48.1 92.6

Table 2

As x approaches   π _ 
2

  , the outputs of the function get larger and larger. Because y = tan x is an odd function, we see the 
corresponding table of negative values in Table 3.

x −1.3 −1.5 −1.55 −1.56
tan x −3.6 −14.1 −48.1 −92.6

Table 3

We can see that, as x approaches −  π _ 
2

  , the outputs get smaller and smaller. Remember that there are some values of x 

for which cos x = 0. For example, cos     π _ 
2

     = 0 and cos     3π _ 
2

     = 0. At these values, the tangent function is undefined, 

so the graph of y = tan x has discontinuities at x =   π _ 
2

   and   3π _ 
2

  . At these values, the graph of the tangent has vertical 

asymptotes. Figure 1 represents the graph of y = tan x. The tangent is positive from 0 to   π _ 
2

   and from π to   3π _ 
2

  , 
corresponding to quadrants I and III of the unit circle.

–5

–3

–1

1

3

5

π–π
x

y

x = − π
2

π
2x = x = − 3π

2
3π
2x =

y = tan(x)

Figure 1 Graph of the tangent function

Graphing Variations of y = tan x
As with the sine and cosine functions, the tangent function can be described by a general equation.

y = Atan(Bx)

We can identify horizontal and vertical stretches and compressions using values of A and B. The horizontal stretch 
can typically be determined from the period of the graph. With tangent graphs, it is often necessary to determine a 
vertical stretch using a point on the graph.

Because there are no maximum or minimum values of a tangent function, the term amplitude cannot be interpreted 
as it is for the sine and cosine functions. Instead, we will use the phrase stretching/compressing factor when referring 
to the constant A.

features of the graph of y = Atan(Bx)
•	 The stretching factor is   ∣ A ∣  .
•	 The period is P =   π ___  ∣ B ∣   .

•	 The domain is all real numbers x, where x ≠   π ____ 2 ∣ B ∣    +   π _ 
 ∣ B ∣ 

  k such that k is an integer.
•	 The range is (−∞, ∞).
•	 The asymptotes occur at x =   π _ 

2 ∣ B ∣ 
   +   π _ 

 ∣ B ∣ 
  k, where k is an integer.

•	 y = Atan(Bx) is an odd function.
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Graphing One Period of a Stretched or Compressed Tangent Function

We can use what we know about the properties of the tangent function to quickly sketch a graph of any stretched and/
or compressed tangent function of the form f (x) = Atan(Bx). We focus on a single period of the function including 
the origin, because the periodic property enables us to extend the graph to the rest of the function’s domain if we 

wish. Our limited domain is then the interval   −  P __ 2  ,   P __ 2     and the graph has vertical asymptotes at ±  P __ 2   where P =   π _ 
B

  . 

On   −  π __ 2  ,   π __ 2    , the graph will come up from the left asymptote at x = −  π _ 
2

  , cross through the origin, and continue to 

increase as it approaches the right asymptote at x =   π _ 
2

  . To make the function approach the asymptotes at the correct 

rate, we also need to set the vertical scale by actually evaluating the function for at least one point that the graph will 
pass through. For example, we can use

f       P __ 4     = Atan   B  P __ 4     = Atan   B  π __ 4B     = A

because tan     π __ 4     = 1.

How To…
Given the function f (x) = Atan(Bx), graph one period.

1. Identify the stretching factor,   ∣ A ∣  .
2. Identify B and determine the period, P =   π _ 

 ∣ B ∣ 
  .

3. Draw vertical asymptotes at x = −  P _ 
2

   and x =   P _ 
2

  .

4. For A > 0, the graph approaches the left asymptote at negative output values and the right asymptote at positive 
output values (reverse for A < 0).

5. Plot reference points at     P __ 4  , A  , (0, 0), and   −  P __ 4  , −A  , and draw the graph through these points.

Example 1 Sketching a Compressed Tangent

Sketch a graph of one period of the function y = 0.5tan     π __ 2  x  .

Solution First, we identify A and B.

 y = 0.5 tan     π __ 2  x  
 ↑    

 y = Atan(Bx)

Because A = 0.5 and B =   π __ 2  , we can find the stretching/compressing factor and period. The period is    π _ 
    π _ 

2
  
      = 2, so the 

asymptotes are at x = ±1. At a quarter period from the origin, we have 

 f (0.5) = 0.5tan     0.5π ____ 2    

 = 0.5tan     π __ 4    

 = 0.5

This means the curve must pass through the points (0.5, 0.5), (0, 0), and (−0.5, −0.5). The only inflection point is at 
the origin. Figure 2 shows the graph of one period of the function.
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–4

–2

2

4

x = −1 x = 1

x

y

(0.5, 0.5)

(–0.5, –0.5)

y = 0.5 tan 2
πx

Figure 2

Try It #1

Sketch a graph of f (x) = 3tan     π __ 6  x  . 

Graphing One Period of a Shifted Tangent Function 

Now that we can graph a tangent function that is stretched or compressed, we will add a vertical and/or horizontal (or 
phase) shift. In this case, we add C and D to the general form of the tangent function.

f (x) = Atan(Bx − C) + D

The graph of a transformed tangent function is different from the basic tangent function tan x in several ways:

features of the graph of y = Atan(Bx − C) + D

•	 The stretching factor is   ∣ A ∣  .
•	 The period is   π ___  ∣ B ∣   .

•	 The domain is x ≠   C __ B   +   π ___ 2 ∣ B ∣   k, where k is an odd integer.

•	 The range is (−∞, ∞).

•	 The vertical asymptotes occur at x =   C __ B   +   π ____ 2 ∣ B ∣   k, where k is an odd integer.

•	 There is no amplitude.

•	 y = Atan(Bx) is an odd function because it is the quotient of odd and even functions (sine and cosine 
respectively).

How To…
Given the function y = Atan(Bx − C) + D, sketch the graph of one period.

1. Express the function given in the form y = Atan(Bx − C) + D.
2. Identify the stretching/compressing factor,   ∣ A ∣  .
3. Identify B and determine the period, P =   π ___  ∣ B ∣   .

4. Identify C and determine the phase shift,   C __ B  .

5. Draw the graph of y = Atan(Bx) shifted to the right by   C __ B   and up by D.

6. Sketch the vertical asymptotes, which occur at x =   C __ B   +   π ____ 2 ∣ B ∣   k, where k is an odd integer.

7. Plot any three reference points and draw the graph through these points.
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Example 2 Graphing One Period of a Shifted Tangent Function

Graph one period of the function y = −2tan(πx + π) − 1.

Solution

Step 1. The function is already written in the form y = Atan(Bx − C) + D.

Step 2. A = −2, so the stretching factor is   ∣ A ∣   = 2.

Step 3. B = π, so the period is P =   π ___  ∣ B ∣    =   π __ π   = 1.

Step 4. C = −π, so the phase shift is   C __ B   =   −π ___ π   = −1.

Step 5-7. The asymptotes are at x = −  3 __ 2   and x = −  1 __ 2   and the three recommended reference points are (−1.25, 1),  
(−1, −1), and (−0.75, −3). The graph is shown in Figure 3.

–1 0.5

–5

–3

–1

1

3

x = −1.5 x = −0.5

x

y

(−1, −1)

(−0.75, −3)

(−1.25, 1)

y = −2 tan (πx + π) − 1

Figure 3

Analysi s Note that this is a decreasing function because A < 0.

Try It #2

How would the graph in Example 2 look different if we made A = 2 instead of −2?

How To…
Given the graph of a tangent function, identify horizontal and vertical stretches.

1. Find the period P from the spacing between successive vertical asymptotes or x-intercepts.

2. Write f (x) = Atan    π __ P  x  .

3. Determine a convenient point (x, f (x)) on the given graph and use it to determine A.

Example 3 Identifying the Graph of a Stretched Tangent

Find a formula for the function graphed in Figure 4.

–10

x = −12 x = −4 x = 4 x = 12

–6 –2 2 6 10

–6

–4

–2

2

4

6

x

y

Figure 4  A stretched tangent function
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Solution The graph has the shape of a tangent function.

Step 1. One cycle extends from –4 to 4, so the period is P = 8. Since P =   π ___  ∣ B ∣   , we have B =   π __ P   =   π __ 8  .

Step 2. The equation must have the form f (x) = Atan     π __ 8  x  .

Step 3. To find the vertical stretch A, we can use the point (2, 2).

2 = Atan    π __ 8   · 2   = Atan     π __ 4    

Because tan     π __ 4     = 1, A = 2.

This function would have a formula f (x) = 2tan     π __ 8  x  .

Try It #3

Find a formula for the function in Figure 5.

π–π π
2

π
2–

–6

–4

–2

2

4

6
x = − 3π

4 x = − π
4

π
4x = 3π

4x =

x

y

Figure 5  

Analyzing the Graphs of y = sec x and y = csc x
The secant was defined by the reciprocal identity sec x =   1 ____ cos x  . Notice that the function is undefined when the cosine 

is 0, leading to vertical asymptotes at   π __ 2  ,   3π __ 2  , etc. Because the cosine is never more than 1 in absolute value, the secant, 
being the reciprocal, will never be less than 1 in absolute value.

We can graph y = sec x by observing the graph of the cosine function because these two functions are reciprocals of one 
another. See Figure 6. The graph of the cosine is shown as a blue wave so we can see the relationship. Where the graph 
of the cosine function decreases, the graph of the secant function increases. Where the graph of the cosine function 
increases, the graph of the secant function decreases. When the cosine function is zero, the secant is undefined.

The secant graph has vertical asymptotes at each value of x where the cosine graph crosses the x-axis; we show these in 
the graph below with dashed vertical lines, but will not show all the asymptotes explicitly on all later graphs involving 
the secant and cosecant.

Note that, because cosine is an even function, secant is also an even function. That is, sec(−x) = sec x.

x

y

y = cos (x)

y = sec (x)

–4

–8

4

8

2π–2π

x = − 3π
2

3π
2x =

Figure 6  Graph of the secant function, f (x) = sec x =   1 ____ 
cos x

  

As we did for the tangent function, we will again refer to the constant   ∣ A ∣   as the stretching factor, not the amplitude.
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features of the graph of y = Asec(Bx) 
•	 The stretching factor is   ∣ A ∣  .
•	 The period is   2π ___  ∣ B ∣   .
•	 The domain is x ≠   π ____ 2 ∣ B ∣   k, where k is an odd integer.

•	 The range is (−∞, −   ∣ A ∣  ] ∪ [  ∣ A ∣  , ∞).

•	 The vertical asymptotes occur at x =   π ____ 2 ∣ B ∣   k, where k is an odd integer.

•	 There is no amplitude.

•	 y = Asec(Bx) is an even function because cosine is an even function.

Similar to the secant, the cosecant is defined by the reciprocal identity csc x =   1 ____ sin x  . Notice that the function is 
undefined when the sine is 0, leading to a vertical asymptote in the graph at 0, π, etc. Since the sine is never more than 
1 in absolute value, the cosecant, being the reciprocal, will never be less than 1 in absolute value.

We can graph y = csc x by observing the graph of the sine function because these two functions are reciprocals of one 
another. See Figure 7. The graph of sine is shown as a blue wave so we can see the relationship. Where the graph of the 
sine function decreases, the graph of the cosecant function increases. Where the graph of the sine function increases, 
the graph of the cosecant function decreases.

The cosecant graph has vertical asymptotes at each value of x where the sine graph crosses the x-axis; we show these 
in the graph below with dashed vertical lines.

Note that, since sine is an odd function, the cosecant function is also an odd function. That is, csc(−x) = −cscx. 

The graph of cosecant, which is shown in Figure 7, is similar to the graph of secant.

x

y

y = csc (x)
y = sin (x)

–6

–10

6

2

10
x = −2π x = 2πx = −π x = π

Figure 7 The graph of the cosecant function, f (x) = cscx =   1 ____ 
sinx

  

features of the graph of y = Acsc(Bx) 
•	 The stretching factor is   ∣ A ∣  .
•	 The period is   2π ___  ∣ B ∣   .

•	 The domain is x ≠   π ___  ∣ B ∣   k, where k is an integer.

•	 The range is (−∞, −  ∣ A ∣  ] ∪ [  ∣ A ∣  , ∞).
•	 The asymptotes occur at x =   π ___  ∣ B ∣   k, where k is an integer.

•	 y = Acsc(Bx) is an odd function because sine is an odd function.

Graphing Variations of y = sec x and y = csc x
For shifted, compressed, and/or stretched versions of the secant and cosecant functions, we can follow similar methods 
to those we used for tangent and cotangent. That is, we locate the vertical asymptotes and also evaluate the functions for 
a few points (specifically the local extrema). If we want to graph only a single period, we can choose the interval for the 
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period in more than one way. The procedure for secant is very similar, because the cofunction identity means that the 
secant graph is the same as the cosecant graph shifted half a period to the left. Vertical and phase shifts may be applied 
to the cosecant function in the same way as for the secant and other functions. The equations become the following.

y = Asec(Bx − C) + D   y = Acsc(Bx − C) + D

features of the graph of y = Asec(Bx − C) + D
•	 The stretching factor is   ∣ A ∣  .
•	 The period is   2π ___  ∣ B ∣   .

•	 The domain is x ≠   C __ B   +   π ____ 2 ∣ B ∣   k, where k is an odd integer.

•	 The range is (−∞, −  ∣ A ∣   + D] ∪ [  ∣ A ∣   + D, ∞).
•	 The vertical asymptotes occur at x =   C __ B   +   π ____ 2 ∣ B ∣   k, where k is an odd integer.
•	 There is no amplitude.
•	 y = Asec(Bx) is an even function because cosine is an even function.

features of the graph of y = Acsc(Bx − C) + D
•	 The stretching factor is   ∣ A ∣  .
•	 The period is   2π ___  ∣ B ∣   .

•	 The domain is x ≠   C __ B   +   π ____  ∣ B ∣   k, where k is an integer.

•	 The range is (−∞, −  ∣ A ∣   + D] ∪ [  ∣ A ∣   + D, ∞).

•	 The vertical asymptotes occur at x =   C __ B   +   π ___  ∣ B ∣   k, where k is an integer.

•	 There is no amplitude.

•	 y = Acsc(Bx) is an odd function because sine is an odd function.

How To…
Given a function of the form y = Asec(Bx), graph one period.

1. Express the function given in the form y = Asec(Bx).
2. Identify the stretching/compressing factor,   ∣ A ∣  .
3. Identify B and determine the period, P =   2π ___  ∣ B ∣   .4. Sketch the graph of y = Acos(Bx).
5. Use the reciprocal relationship between y = cos x and y = sec x to draw the graph of y = Asec(Bx).
6. Sketch the asymptotes.
7. Plot any two reference points and draw the graph through these points.

Example 4 Graphing a Variation of the Secant Function

Graph one period of f (x) = 2.5sec(0.4x).

Solution

Step 1. The given function is already written in the general form, y = Asec(Bx).

Step 2. A = 2.5 so the stretching factor is 2.5.

Step 3. B = 0.4 so P =   2π ___ 0.4   = 5π. The period is 5π units.

Step 4. Sketch the graph of the function g(x) = 2.5cos(0.4x).

Step 5. Use the reciprocal relationship of the cosine and secant functions to draw the cosecant function.
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Steps 6–7. Sketch two asymptotes at x = 1.25π and x = 3.75π. We can use two reference points, the local minimum at 
(0, 2.5) and the local maximum at (2.5π, −2.5). Figure 8 shows the graph.

–6

–4

–2

2

4

6

π–π 3π2π 4π
x

y
f (x) = 2.5 sec (0.4x)

Figure 8

Try It #4

Graph one period of f (x) = −2.5sec(0.4x).

Q & A…
Do the vertical shift and stretch/compression affect the secant’s range?
Yes. The range of f (x) = Asec(Bx − C) + D is (−∞, −  ∣ A ∣   + D] ∪ [  ∣ A ∣   + D, ∞).

How To…
Given a function of the form f (x) = Asec(Bx − C) + D, graph one period.

1. Express the function given in the form y = A sec(Bx − C) + D.
2. Identify the stretching/compressing factor,   ∣ A ∣  .
3. Identify B and determine the period,   2π ___  ∣ B ∣   .

4. Identify C and determine the phase shift,   C __ B  .

5. Draw the graph of y = A sec(Bx) but shift it to the right by   C __ B   and up by D.

6. Sketch the vertical asymptotes, which occur at x =   C __ B   +   π ____ 2 ∣ B ∣   k, where k is an odd integer.

Example 5 Graphing a Variation of the Secant Function

Graph one period of y = 4sec     π __ 3  x −   π __ 2     + 1.

Solution
Step 1. Express the function given in the form y = 4sec     π __ 3  x −   π __ 2     + 1.
Step 2. The stretching/compressing factor is   ∣ A ∣   = 4.
Step 3. The period is
   2π ___  ∣ B ∣    =    2π _ 

  π _ 
3
  
    

 =   2π ___ 1   ·   3 __ π  

 = 6
Step 4. The phase shift is

   C __ B   =    
  π __ 2  

 _ 
  π __ 3  

   

 =   π __ 2   ·   3 __ π  

 = 1.5
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Step 5. Draw the graph of y = Asec(Bx), but shift it to the right by   C __ B   = 1.5 and up by D = 6.

Step 6. Sketch the vertical asymptotes, which occur at x = 0, x = 3, and x = 6. There is a local minimum at (1.5, 5) and 
a local maximum at (4.5, −3). Figure 9 shows the graph.
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Figure 9

Try It #5

Graph one period of f (x) =  −6sec(4x + 2) − 8.

Q & A…
The domain of csc x was given to be all x such that x ≠ kπ for any integer k. Would the domain of y = Acsc(Bx − C) + D 
be x ≠   C + kπ ______ B  ?

Yes. The excluded points of the domain follow the vertical asymptotes. Their locations show the horizontal shift and 
compression or expansion implied by the transformation to the original function’s input.

How To…
Given a function of the form y = Acsc(Bx), graph one period.

1. Express the function given in the form y = Acsc(Bx).
2. Identify the stretching/compressing factor,   ∣ A ∣  . 
3. Identify B and determine the period, P =   2π ___  ∣ B ∣   .4. Draw the graph of y = Asin(Bx).
5. Use the reciprocal relationship between y = sin x and y = csc x to draw the graph of y = Acsc(Bx).
6. Sketch the asymptotes.
7. Plot any two reference points and draw the graph through these points.

Example 6 Graphing a Variation of the Cosecant Function

Graph one period of f (x) = −3csc(4x).

Solution

Step 1. The given function is already written in the general form, y = Acsc(Bx).

Step 2.   ∣ A ∣   =   ∣ −3 ∣   = 3, so the stretching factor is 3.

Step 3. B = 4, so P =   2π __ 4   =   π __ 2  . The period is   π __ 2   units.

Step 4. Sketch the graph of the function g(x) = −3sin(4x).

Step 5. Use the reciprocal relationship of the sine and cosecant functions to draw the cosecant function.

Steps 6–7. Sketch three asymptotes at x = 0, x =   π __ 4  , and x =   π __ 2  . We can use two reference points, the local maximum 

at     π __ 8  , −3   and the local minimum at     3π __ 8  , 3  . Figure 10 shows the graph.
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Try It #6

Graph one period of f (x) = 0.5csc(2x).

How To…
Given a function of the form f (x) = Acsc(Bx − C) + D, graph one period.

1. Express the function given in the form y = Acsc(Bx − C) + D.
2. Identify the stretching/compressing factor,   ∣ A ∣  . 
3. Identify B and determine the period,   2π ___  ∣ B ∣   .

4. Identify C and determine the phase shift,   C __ B  .
5. Draw the graph of y = Acsc(Bx) but shift it to the right by   C __ B   and up by D.

6. Sketch the vertical asymptotes, which occur at x =   C __ B   +   π ___  ∣ B ∣   k, where k is an integer.

Example 7  Graphing a Vertically Stretched, Horizontally Compressed, and Vertically Shifted Cosecant

Sketch a graph of y = 2csc     π _ 
2

  x   + 1. What are the domain and range of this function?

Solution

Step 1. Express the function given in the form y = 2csc     π __ 2  x   + 1.

Step 2. Identify the stretching/compressing factor,   ∣ A ∣   = 2.

Step 3. The period is   2π ___  ∣ B ∣    =    2π _ 
  π __ 2  

    =   2π _ 
1

   ·   2 _ π   = 4.

Step 4. The phase shift is    0 _ 
  π __ 2  

    = 0.

Step 5. Draw the graph of y = Acsc(Bx) but shift it up D = 1.
Step 6. Sketch the vertical asymptotes, which occur at x = 0, x = 2, x = 4.
The graph for this function is shown in Figure 11.
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Figure 11  A transformed cosecant function
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Analysis The vertical asymptotes shown on the graph mark off one period of the function, and the local extrema in this 
interval are shown by dots. Notice how the graph of the transformed cosecant relates to the graph of f (x) = 2sin     π __ 2  x   + 1, 
shown as the blue wave.

Try It #7

Given the graph of f (x) = 2cos     π __ 2  x   + 1 shown in Figure 12, sketch the graph of g(x) = 2sec     π __ 2  x   + 1 on the same axes.

x

f (x)
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f (x) = 2 cos + 12
π x 

Figure 12

Analyzing the Graph of y = cot x
The last trigonometric function we need to explore is cotangent. The cotangent is defined by the reciprocal identity cot 

x =   1 ____ tan x  . Notice that the function is undefined when the tangent function is 0, leading to a vertical asymptote in the 

graph at 0, π, etc. Since the output of the tangent function is all real numbers, the output of the cotangent function is 
also all real numbers.

We can graph y = cot x by observing the graph of the tangent function because these two functions are reciprocals of 
one another. See Figure 13. Where the graph of the tangent function decreases, the graph of the cotangent function 
increases. Where the graph of the tangent function increases, the graph of the cotangent function decreases.

The cotangent graph has vertical asymptotes at each value of x where tan x = 0; we show these in the graph below with 
dashed lines. Since the cotangent is the reciprocal of the tangent, cot x has vertical asymptotes at all values of x where 
tan x = 0, and cot x = 0 at all values of x where tan x has its vertical asymptotes.
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–20
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π
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x = −2π x = 2πx = −π x = π

f (x) = cot x

Figure 13 The cotangent function

features of the graph of y = Acot(Bx)

•	 The stretching factor is   ∣ A ∣  .
•	 The period is P =   π ___  ∣ B ∣   .

•	 The domain is x ≠   π ___  ∣ B ∣   k, where k is an integer.

•	 The range is (−∞, ∞).
•	 The asymptotes occur at x =   π ___  ∣ B ∣   k, where k is an integer.

•	 y = Acot(Bx) is an odd function.
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Graphing Variations of y = cot x
We can transform the graph of the cotangent in much the same way as we did for the tangent. The equation becomes 
the following.

y = Acot(Bx − C) + D

features of the graph of y = Acot(Bx − C) + D

•	 The stretching factor is   ∣ A ∣  .
•	 The period is   π ___  ∣ B ∣   .

•	 The domain is x ≠   C __ B   +   π ___  ∣ B ∣   k, where k is an integer.

•	 The range is (−∞, ∞).
•	 The vertical asymptotes occur at x =   C __ B   +   π ___  ∣ B ∣   k, where k is an integer.
•	 There is no amplitude.
•	 y = Acot(Bx) is an odd function because it is the quotient of even and odd functions (cosine and sine, respectively)

How To…
Given a modified cotangent function of the form f (x) = Acot(Bx), graph one period.

1. Express the function in the form f (x) = Acot(Bx).
2. Identify the stretching factor,   ∣ A ∣  .
3. Identify the period, P =   π ___  ∣ B ∣   .
4. Draw the graph of y = Atan(Bx).
5. Plot any two reference points.
6. Use the reciprocal relationship between tangent and cotangent to draw the graph of y = Acot(Bx).
7. Sketch the asymptotes.

Example 8 Graphing Variations of the Cotangent Function

Determine the stretching factor, period, and phase shift of y = 3cot(4x), and then sketch a graph.

Solution

Step 1. Expressing the function in the form f (x) = Acot(Bx) gives f (x) = 3cot(4x).

Step 2. The stretching factor is   ∣ A ∣   = 3.

Step 3. The period is P =   π __ 4  .

Step 4. Sketch the graph of y = 3tan(4x).

Step 5. Plot two reference points. Two such points are     π __ 16  , 3   and     3π __ 16  , −3  .

Step 6. Use the reciprocal relationship to draw y = 3cot(4x).

Step 7. Sketch the asymptotes, x = 0, x =   π __ 4  .

The blue graph in Figure 14 shows y = 3tan(4x) and the red graph shows y = 3cot(4x).
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How To…
Given a modified cotangent function of the form f (x) = Acot(Bx − C) + D, graph one period.

1. Express the function in the form f (x) = Acot(Bx − C) + D.
2. Identify the stretching factor,   ∣ A ∣  .
3. Identify the period, P =   π ___  ∣ B ∣   .

4. Identify the phase shift,   C __ B  .

5. Draw the graph of y = Atan(Bx) shifted to the right by   C __ B   and up by D.

6. Sketch the asymptotes x =   C __ B   +   π ___  ∣ B ∣   k, where k is an integer.

7. Plot any three reference points and draw the graph through these points.

Example 9 Graphing a Modified Cotangent

Sketch a graph of one period of the function f (x) = 4cot    π __ 8  x −   π __ 2     − 2.

Solution

Step 1. The function is already written in the general form f (x) = Acot(Bx − C) + D.

Step 2. A = 4, so the stretching factor is 4.

Step 3. B =   π __ 8  , so the period is P =   π ___  ∣ B ∣    =    π _ 
    π __ 8  

    = 8.

Step 4. C =   π __ 2  , so the phase shift is   C __ B  =     
  π __ 2   

  _ 
 
 
  π __ 8  

     = 4.

Step 5. We draw f (x) = 4tan    π __ 8  x −   π __ 2     − 2.

Step 6-7.  Three points we can use to guide the graph are (6, 2), (8, −2), and (10, −6). We use the reciprocal relationship of 
tangent and cotangent to draw f (x) = 4cot     π __ 8  x −   π __ 2     − 2.

Step 8. The vertical asymptotes are x = 4 and x = 12.

The graph is shown in Figure 15.
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Figure 15  One period of a modified cotangent function

Using the Graphs of Trigonometric Functions to Solve Real-World Problems
Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an 
example, let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating 
light on a police car and wondered about the movement of the light beam itself across the wall? The periodic behavior 
of the distance the light shines as a function of time is obvious, but how do we determine the distance? We can use 
the tangent function.
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Example 10 Using Trigonometric Functions to Solve Real-World Scenarios

Suppose the function y = 5tan    π __ 4  t   marks the distance in the movement of a light beam from the top of a police car 
across a wall where t is the time in seconds and y is the distance in feet from a point on the wall directly across from 
the police car.

a. Find and interpret the stretching factor and period.

b. Graph on the interval [0, 5].

c. Evaluate f (1) and discuss the function’s value at that input.

Solution

a.  We know from the general form of y = Atan(Bt) that   ∣ A ∣   is the stretching factor and   π __ B   is the period.

y = 5 tan     π __ 4  t  
 ↑   ↑
 A   B

Figure 16

We see that the stretching factor is 5. This means that the beam of light will have moved 5 ft after half the period.

The period is    π _ 
  π __ 4  

    =   π __ 1   ·   4 __ π   = 4. This means that every 4 seconds, the beam of light sweeps the wall. The distance 

from the spot across from the police car grows larger as the police car approaches.

b.  To graph the function, we draw an asymptote at t = 2 and use the stretching factor and period. See Figure 17
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y = 5 tan 4
π t

Figure 17

c.  Period: f (1) = 5tan    π __ 4  (1)   = 5(1) = 5; after 1 second, the beam of light has moved 5 ft from the spot across 
from the police car.

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.
•	 Graphing the Tangent Function (http://openstaxcollege.org/l/graphtangent)

•	 Graphing Cosecant and Secant Functions (http://openstaxcollege.org/l/graphcscsec)

•	 Graphing the Cotangent Function (http://openstaxcollege.org/l/graphcot)

http://openstaxcollege.org/l/graphtangent
http://openstaxcollege.org/l/graphcscsec
http://openstaxcollege.org/l/graphcot
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6.2 SeCTIOn exeRCISeS

VeRBAl
1. Explain how the graph of the sine function can be 

used to graph y = csc x.
2. How can the graph of y = cos x be used to construct 

the graph of y = sec x?

3. Explain why the period of tan x is equal to π. 4. Why are there no intercepts on the graph of  
y = csc x?

5. How does the period of y = csc x compare with the 
period of y = sin x?

AlGeBRAIC
For the following exercises, match each trigonometric function with one of the graphs in Figure 18.
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x = π

Figure 18

6. f (x) = tan x 7. f (x) = sec x

8. f (x) = csc x 9. f (x) = cot x

For the following exercises, find the period and horizontal shift of each of the functions.
10. f (x) = 2tan(4x − 32) 11. h(x) = 2sec    π __ 4  (x + 1)  

12. m(x) = 6csc    π __ 3  x + π  13. If tan x = −1.5, find tan(−x).

14. If sec x = 2, find sec(−x). 15. If csc x = −5, find csc(−x).

16. If xsin x = 2, find (−x)sin(−x).

For the following exercises, rewrite each expression such that the argument x is positive.
17. cot(−x)cos(−x) + sin(−x) 18. cos(−x) + tan(−x)sin(−x)

GRAPHICAl
For the following exercises, sketch two periods of the graph for each of the following functions. Identify the stretching 
factor, period, and asymptotes.

19. f (x) = 2tan(4x − 32) 20. h(x) = 2sec    π __ 4  (x + 1)  21. m(x) = 6csc    π __ 3  x + π  

22. j(x) = tan    π __ 2  x  23. p(x) = tan  x −   π __ 2    24. f (x) = 4tan(x)

25. f (x) = tan  x +   π __ 4    26. f (x) = π tan(πx − π) − π 27. f (x) = 2csc(x)

28. f (x) = −  1 __ 4  csc(x) 29. f (x) = 4sec(3x) 30. f (x) = −3cot(2x)

31. f (x) = 7sec(5x) 32. f (x) =   9 __ 10  csc(πx) 33. f (x) = 2csc   x +   π __ 4     − 1

34. f (x) = −sec  x −   π __ 3     − 2 35. f (x) =   7 __ 5  csc  x −   π __ 4    36. f (x) = 5  cot  x +   π __ 2     − 3  
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For the following exercises, find and graph two periods of the periodic function with the given stretching factor,   ∣ A ∣  ,  
period, and phase shift.

37. A tangent curve, A = 1, period of   π _ 
3

  ; and phase shift 
(h, k) =     π __ 4  , 2  

38. A tangent curve, A = −2, period of   π _ 4  , and phase 
shift (h, k) =   −  π __ 4  , −2  

For the following exercises, find an equation for the graph of each function.

39. f (x)
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TeCHnOlOGY

For the following exercises, use a graphing calculator to graph two periods of the given function. Note: most graphing 
calculators do not have a cosecant button; therefore, you will need to input csc x as   1 ____ sin x  .

46. f (x) = |csc(x)| 47. f (x) = |cot(x)|

48. f (x) = 2csc(x) 49. f (x) =   csc(x) _____ sec(x)  

50. Graph f (x) = 1 + sec2 (x) − tan2 (x). What is the function shown in the graph?

51. f (x) = sec(0.001x) 52. f (x) = cot(100πx) 53. f (x) = sin2 x + cos2 x
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ReAl-WORlD APPlICATIOnS

54. The function f (x) = 20tan      π __ 10  x    marks the distance 
in the movement of a light beam from a police car 
across a wall for time x, in seconds, and distance 
f (x), in feet.

a. Graph on the interval [0, 5].

b. Find and interpret the stretching factor, period, 
and asymptote.

c. Evaluate f (1) and f (2.5) and discuss the function’s 
values at those inputs.

55. Standing on the shore of a lake, a fisherman sights 
a boat far in the distance to his left. Let x, measured 
in radians, be the angle formed by the line of sight 
to the ship and a line due north from his position. 
Assume due north is 0 and x is measured negative 
to the left and positive to the right. (See Figure 19.) 
The boat travels from due west to due east and, 
ignoring the curvature of the Earth, the distance 
d(x), in kilometers, from the fisherman to the boat is 
given by the function d(x) = 1.5sec(x).

a. What is a reasonable domain for d(x)?

b. Graph d(x) on this domain.

c. Find and discuss the meaning of any vertical 
asymptotes on the graph of d(x).

d. Calculate and interpret d   −  π __ 3    . Round to the 
second decimal place.

e. Calculate and interpret d     π __ 6    . Round to the 
second decimal place.

f. What is the minimum distance between the 
fisherman and the boat? When does this occur?

Figure 19 

56. A laser rangefinder is locked on a comet 
approaching Earth. The distance g(x), in kilometers, 
of the comet after x days, for x in the interval 0 to 
30 days, is given by g(x) = 250,000csc     π __ 30  x  .

a. Graph g(x) on the interval [0, 35].

b. Evaluate g(5) and interpret the information.

c. What is the minimum distance between the comet 
and Earth? When does this occur? To which 
constant in the equation does this correspond?

d. Find and discuss the meaning of any vertical 
asymptotes.

57. A video camera is focused on a rocket on a 
launching pad 2 miles from the camera. The angle 
of elevation from the ground to the rocket after x 
seconds is   π ___ 120  x.

a. Write a function expressing the altitude h(x), in 
miles, of the rocket above the ground after x 
seconds. Ignore the curvature of the Earth.

b. Graph h(x) on the interval (0, 60).

c. Evaluate and interpret the values h(0) and h(30).

d. What happens to the values of h(x) as x 
approaches 60 seconds? Interpret the meaning of 
this in terms of the problem.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Understand and use the inverse sine, cosine, and tangent functions.

•	 Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.

•	 Use a calculator to evaluate inverse trigonometric functions.

•	 Find exact values of composite functions with inverse trigonometric functions.

6.3 InVeRSe TRIGOnOMeTRIC FUnCTIOnS

For any right triangle, given one other angle and the length of one side, we can figure out what the other angles and 
sides are. But what if we are given only two sides of a right triangle? We need a procedure that leads us from a ratio of 
sides to an angle. This is where the notion of an inverse to a trigonometric function comes into play. In this section, 
we will explore the inverse trigonometric functions.

Understanding and Using the Inverse Sine, Cosine, and Tangent Functions
In order to use inverse trigonometric functions, we need to understand that an inverse trigonometric function “undoes” 
what the original trigonometric function “does,” as is the case with any other function and its inverse. In other words, 
the domain of the inverse function is the range of the original function, and vice versa, as summarized in Figure 1.

 Trig Functions Inverse Trig Functions
 Domain: Measure of an angle Domain: Ratio
 Range: Ratio Range: Measure of an angle

Figure 1 

For example, if f (x) = sin x, then we would write f  −1(x) = sin−1 x. Be aware that sin−1  x does not mean   1 ___ sinx  . The 
following examples illustrate the inverse trigonometric functions:

•	 Since sin     π __ 6     =   1 __ 2  , then   π __ 6   = sin−1     1 __ 2    .

•	 Since cos(π) = −1, then π = cos−1(−1).

•	 Since tan     π __ 4     = 1, then   π __ 4   = tan−1(1).

In previous sections, we evaluated the trigonometric functions at various angles, but at times we need to know what 
angle would yield a specific sine, cosine, or tangent value. For this, we need inverse functions. Recall that, for a one-
to-one function, if f(a) = b, then an inverse function would satisfy f −1(b) = a.

Bear in mind that the sine, cosine, and tangent functions are not one-to-one functions. The graph of each function 
would fail the horizontal line test. In fact, no periodic function can be one-to-one because each output in its range 
corresponds to at least one input in every period, and there are an infinite number of periods. As with other functions 
that are not one-to-one, we will need to restrict the domain of each function to yield a new function that is one-to-
one. We choose a domain for each function that includes the number 0. Figure 2 shows the graph of the sine function 
limited to   −  π __ 2  ,   π __ 2      and the graph of the cosine function limited to [0, π].
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Figure 3 shows the graph of the tangent function limited to   −  π __ 2  ,   π __ 2    .
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Figure 3 Tangent function on a restricted domain of   −  π __ 
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These conventional choices for the restricted domain are somewhat arbitrary, but they have important, helpful 
characteristics. Each domain includes the origin and some positive values, and most importantly, each results in a 
one-to-one function that is invertible. The conventional choice for the restricted domain of the tangent function also 
has the useful property that it extends from one vertical asymptote to the next instead of being divided into two parts 
by an asymptote.

On these restricted domains, we can define the inverse trigonometric functions.

•	 The inverse sine function y = sin−1 x means x = sin y. The inverse sine function is sometimes called the arcsine 
function, and notated arcsinx.

y = sin−1 x has domain [−1, 1] and range   −  π __ 2  ,   π __ 2     

•	 The inverse cosine function y = cos−1 x means x = cos y. The inverse cosine function is sometimes called the 
arccosine function, and notated arccos x.

 y = cos−1 x has domain [−1, 1] and range [0, π]

•	 The inverse tangent function y = tan−1 x means x = tan y. The inverse tangent function is sometimes called the 
arctangent function, and notated arctan x.

 y = tan−1 x has domain (−∞, ∞) and range   −  π __ 2  ,   π __ 2    

The graphs of the inverse functions are shown in Figure 4, Figure 5, and Figure 6. Notice that the output of each 
of these inverse functions is a number, an angle in radian measure. We see that sin−1 x has domain [−1, 1] and 
range   −  π __ 2  ,   π __ 2     , cos−1 x has domain [−1, 1] and range [0, π], and tan−1 x has domain of all real numbers and range  

  −  π __ 2  ,   π __ 2    . To find the domain and range of inverse trigonometric functions, switch the domain and range of the 
original functions. Each graph of the inverse trigonometric function is a reflection of the graph of the original function 
about the line y = x.

– π
2 – π

4

– π
4

– π
2

π
2

π
4

π
4

π
2

y = sin (x)

y = x
y = sin–1 (x)

x

y

Figure 4 The sine function and inverse sine (or arcsine) function
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y = cos (x)

y = xy = cos–1 (x)

π

π

π
2

π
2

– π
2

– π
2

x

y

Figure 5 The cosine function and inverse cosine (or arccosine) function

y = tan (x)
y = x

y = tan–1 (x)

– π
2 – π

4

– π
4

– π
2

π
2

π
4

π
4

π
2

x

y

Figure 6 The tangent function and inverse tangent (or arctangent) function

relations for inverse sine, cosine, and tangent functions
For angles in the interval    −  π __ 2  ,   π __ 2      , if sin y = x, then sin−1 x = y.

For angles in the interval [0, π], if cos y = x, then cos−1 x = y.

For angles in the interval   −  π __ 2  ,   π __ 2    , if tan y = x, then tan−1 x = y.

Example 1 Writing a Relation for an Inverse Function

Given sin     5π __ 12     ≈ 0.96593, write a relation involving the inverse sine.

Solution Use the relation for the inverse sine. If sin y = x, then sin−1 x = y.
In this problem, x = 0.96593, and y =   5π __ 12  .

sin−1 (0.96593) ≈   5π ___ 12  

Try It #1

Given cos(0.5) ≈ 0.8776, write a relation involving the inverse cosine.

Finding the exact Value of expressions Involving the Inverse Sine, Cosine, and Tangent Functions
Now that we can identify inverse functions, we will learn to evaluate them. For most values in their domains, we 
must evaluate the inverse trigonometric functions by using a calculator, interpolating from a table, or using some 
other numerical technique. Just as we did with the original trigonometric functions, we can give exact values for the 
inverse functions when we are using the special angles, specifically   π __ 6   (30°),   π __ 4   (45°), and   π __ 3   (60°), and their reflections 
into other quadrants.

How To…
Given a “special” input value, evaluate an inverse trigonometric function.

1. Find angle x for which the original trigonometric function has an output equal to the given input for the inverse 
trigonometric function.

2. If x is not in the defined range of the inverse, find another angle y that is in the defined range and has the same sine, 
cosine, or tangent as x, depending on which corresponds to the given inverse function.

Example 2  Evaluating Inverse Trigonometric Functions for Special Input Values

Evaluate each of the following.

 a. sin−1    1 __ 2       b. sin−1  −    √
—
 2   ____ 2       c. cos−1  −   √

—
 3   ____ 2       d. tan−1(1)
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Solution

 a. Evaluating sin−1    1 _ 
2

     is the same as determining the angle that would have a sine value of   1 _ 
2

  . In other words, 

what angle x would satisfy sin(x) =   1 _ 
2

  ? There are multiple values that would satisfy this relationship, such 

as   π _ 
6

   and   5π _ 
6

  , but we know we need the angle in the interval   −   π _ 
2

  ,   π _ 
2

     , so the answer will be sin−1    1 _ 
2

     =   π _ 
6

  . 
Remember that the inverse is a function, so for each input, we will get exactly one output.

 b. To evaluate sin−1  −    √
—
 2   _ 

2
    , we know that   5π _ 4   and   7π _ 4   both have a sine value of −    √

—
 2   _ 

2
  , but neither is in the 

interval   −  π _ 
2

  ,   π _ 
2

     . For that, we need the negative angle coterminal with   7π ___ 4  : sin−1  −    √
—
 2   ____ 2     = −  π _ 

4
  .

 c. To evaluate cos−1  −    √
—
 3   _ 

2
    , we are looking for an angle in the interval [0, π] with a cosine value of −    √

—
 3   _ 

2
  . The 

angle that satisfies this is cos−1  −    √
—
 3   _ 

2
     =   5π _ 

6
  .

 d. Evaluating tan−1(1), we are looking for an angle in the interval   −  π _ 
2

  ,   π _ 
2

     with a tangent value of 1. The correct 

angle is tan−1(1) =   π _ 4  .

Try It #2

Evaluate each of the following.
a. sin−1(−1)   b. tan−1 (−1)   c. cos−1 (−1)   d. cos−1     1 _ 

2
    

Using a Calculator to evaluate Inverse Trigonometric Functions
To evaluate inverse trigonometric functions that do not involve the special angles discussed previously, we will need 
to use a calculator or other type of technology. Most scientific calculators and calculator-emulating applications have 
specific keys or buttons for the inverse sine, cosine, and tangent functions. These may be labeled, for example, SIN-1, 
ARCSIN, or ASIN.

In the previous chapter, we worked with trigonometry on a right triangle to solve for the sides of a triangle given 
one side and an additional angle. Using the inverse trigonometric functions, we can solve for the angles of a right 
triangle given two sides, and we can use a calculator to find the values to several decimal places.

In these examples and exercises, the answers will be interpreted as angles and we will use θ as the independent 
variable. The value displayed on the calculator may be in degrees or radians, so be sure to set the mode appropriate 
to the application.

Example 3 Evaluating the Inverse Sine on a Calculator

Evaluate sin−1(0.97) using a calculator.

Solution Because the output of the inverse function is an angle, the calculator will give us a degree value if in degree 
mode and a radian value if in radian mode. Calculators also use the same domain restrictions on the angles as we are 
using.

In radian mode, sin−1(0.97) ≈ 1.3252. In degree mode, sin−1(0.97) ≈ 75.93°. Note that in calculus and beyond we will 
use radians in almost all cases.

Try It #3

Evaluate cos−1 (−0.4) using a calculator.
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How To…
Given two sides of a right triangle like the one shown in Figure 7, find an angle.

p
h

a
θ

Figure 7

1. If one given side is the hypotenuse of length h and the side of length a adjacent to the desired angle is given, use 
the equation θ = cos−1    a __ h    .

2. If one given side is the hypotenuse of length h and the side of length p opposite to the desired angle is given, use 

the equation θ = sin−1    
p

 _ 
h

    

3. If the two legs (the sides adjacent to the right angle) are given, then use the equation θ = tan−1    
p

 _ a    .

Example 4 Applying the Inverse Cosine to a Right Triangle

Solve the triangle in Figure 8 for the angle θ.

9

12

θ

Figure 8

Solution Because we know the hypotenuse and the side adjacent to the angle, it makes sense for us to use the cosine 
function.
 cos θ =   9 __ 12  

 θ = cos−1    9 _ 
12

     Apply definition of the inverse.

 θ ≈ 0.7227 or about 41.4096° Evaluate.

Try It #4

Solve the triangle in Figure 9 for the angle θ. 

610

θ
Figure 9
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Finding exact Values of Composite Functions with Inverse Trigonometric Functions
There are times when we need to compose a trigonometric function with an inverse trigonometric function. In 
these cases, we can usually find exact values for the resulting expressions without resorting to a calculator. Even 
when the input to the composite function is a variable or an expression, we can often find an expression for the 
output. To help sort out different cases, let f (x) and g(x) be two different trigonometric functions belonging to the set  
{sin(x), cos(x), tan(x)} and let f −1(y) and g −1(y) be their inverses.

Evaluating Compositions of the Form f (f  −1(y )) and f  −1(f (x ))
For any trigonometric function, f (f −1 (y)) = y for all y in the proper domain for the given function. This follows from 
the definition of the inverse and from the fact that the range of f was defined to be identical to the domain of f −1. 
However, we have to be a little more careful with expressions of the form f −1(f (x)).

compositions of a trigonometric function and its inverse
sin(sin−1 x) = x for −1 ≤ x ≤ 1

cos(cos−1 x) = x for −1 ≤ x ≤ 1

tan(tan−1 x) = x for −∞ < x < ∞

sin−1(sin x) = x only for −  π __ 2   ≤ x ≤   π __ 2  

cos−1(cos x) = x only for 0 ≤ x ≤ π

tan−1(tan x) = x only for −  π __ 2   < x <   π __ 2  

Q & A…
Is it correct that sin−1(sin x) = x?

No. This equation is correct if x belongs to the restricted domain   −  π __ 2  ,   π __ 2     , but sine is defined for all real input 
values, and for x outside the restricted interval, the equation is not correct because its inverse always returns a value in  

  −  π __ 2  ,   π __ 2     . The situation is similar for cosine and tangent and their inverses. For example, sin−1  sin     3π __ 4       =   π __ 4  .

How To…
Given an expression of the form f −1(f(θ)) where f(θ) = sin θ, cos θ, or tan θ, evaluate.

1. If θ is in the restricted domain of f , then f  −1(f(θ)) = θ.
2. If not, then find an angle ϕ within the restricted domain of f such that f(ϕ) = f(θ). Then f−1(f(θ)) = ϕ.

Example 5 Using Inverse Trigonometric Functions

Evaluate the following:

a. sin−1  sin     π __ 3         b. sin−1  sin     2π ___ 3         c. cos−1  cos     2π ___ 3         d. cos−1  cos   −  π __ 3      

Solution

 a.   π __ 3   is in   −  π __ 2  ,   π __ 2     , so sin−1  sin     π __ 3       =   π __ 3  .

 b.   2π ___ 3   is not in   −  π __ 2  ,   π __ 2     , but sin     2π ___ 3     = sin     π __ 3    , so sin−1  sin     2π ___ 3       =   π __ 3  .

 c.   2π ___ 3   is in [0, π], so cos−1  cos     2π ___ 3       =   2π ___ 3  .

 d. −  π __ 
3

   is not in [0, π], but cos   −  π __ 3     = cos    π __ 3     because cosine is an even function.   π __ 3   is in [0, π], so cos−1  cos  
 −  π __ 3       =   π __ 3  .
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Try It #5

Evaluate tan−1   tan     π __ 8       and tan−1   tan     11π ___ 9      .

Evaluating Compositions of the Form f  −1(g(x ))
Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of 
a trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the 
form f−1(g(x)). For special values of x, we can exactly evaluate the inner function and then the outer, inverse function. 
However, we can find a more general approach by considering the relation between the two acute angles of a right 
triangle where one is θ, making the other   π __ 2   − θ. Consider the sine and cosine of each angle of the right triangle in 
Figure 10.

ac

b
θ

2 θπ – 

Figure 10 Right triangle illustrating the cofunction relationships

Because cos θ =   b __ c   = sin     π __ 2   − θ  , we have sin−1 (cos θ) =   π __ 
2

   − θ if 0 ≤ θ ≤ π. If θ is not in this domain, then we 

need to find another angle that has the same cosine as θ and does belong to the restricted domain; we then subtract 

this angle from   π __ 2  . Similarly, sin θ =   a __ c   = cos     π __ 2   − θ  , so cos−1 (sin θ) =   π __ 2   − θ if −  π __ 
2

   ≤ θ ≤   π __ 2  . These are just the 
function-cofunction relationships presented in another way.

How To…
Given functions of the form sin−1 (cos x) and cos−1 (sin x), evaluate them.

1. If x is in [0, π], then sin−1 (cos x) =   π __ 2   − x.
2. If x is not in [0, π], then find another angle y in [0, π] such that cos y = cos x.

sin−1 (cos x) =   π __ 2   − y

3. If x is in   −  π __ 2  ,   π __ 2     , then cos−1 (sin x) =   π __ 2   − x.

4. If x is not in   −  π __ 2  ,   π __ 2     , then find another angle y in   −  π __ 2  ,   π __ 2      such that sin y = sin x.

cos−1 (sin x) =   π __ 2   − y

Example 6 Evaluating the Composition of an Inverse Sine with a Cosine

Evaluate sin−1  cos     13π ___ 6      

a. by direct evaluation.    b. by the method described previously.

Solution
 a. Here, we can directly evaluate the inside of the composition.

 cos     13π ___ 6     = cos     π _ 
6

   + 2π  

 = cos     π _ 
6

    

 =    √
—
 3   ____ 2  
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  Now, we can evaluate the inverse function as we did earlier.

 sin−1     √
—
 3   ____ 2     =   π _ 

3
  

 b. We have x =   13π _ 
6

  , y =   π _ 
6

  , and

 sin−1   cos    13π ___ 6       =   π _ 
2

   −   π _ 
6

  

 =   π _ 
3

  

Try It #6

Evaluate cos−1  sin   −  11π ___ 4      .

Evaluating Compositions of the Form f (g −1(x ))
To evaluate compositions of the form f (g −1(x)), where f and g are any two of the functions sine, cosine, or tangent and 
x is any input in the domain of g −1, we have exact formulas, such as sin(cos−1 x) =  √

—
 1 − x2  . When we need to use 

them, we can derive these formulas by using the trigonometric relations between the angles and sides of a right triangle, 
together with the use of Pythagorean’s relation between the lengths of the sides. We can use the Pythagorean identity, 
sin2 x + cos2 x = 1, to solve for one when given the other. We can also use the inverse trigonometric functions to find 
compositions involving algebraic expressions.

Example 7 Evaluating the Composition of a Sine with an Inverse Cosine

Find an exact value for sin   cos−1    4 _ 5      .

Solution Beginning with the inside, we can say there is some angle such that θ = cos−1    4 __ 5    , which means cos θ =   4 __ 
5

  ,  
and we are looking for sin θ. We can use the Pythagorean identity to do this.

 sin2 θ + cos2 θ = 1 Use our known value for cosine.

 sin2 θ +     4 __ 5    
2
 = 1 Solve for sine.

 sin2 θ = 1 −   16 _ 
25

  

 sin θ = ±   √ 
___

   9 _ 
25

      = ±  3 __ 
5

  

Since θ = cos−1    4 __ 5     is in quadrant I, sin θ must be positive, so the solution is   3 __ 5  . See Figure 11.

35

4
θ

Figure 11 Right triangle illustrating that if cos θ =   4 __ 
5
  , then sin θ =   3 __ 

5
  

We know that the inverse cosine always gives an angle on the interval [0, π], so we know that the sine of that angle 
must be positive; therefore sin   cos−1    4 __ 5       = sin θ =   3 __ 5  .

Try It #7

Evaluate cos   tan−1    5 __ 12      .
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Example 8 Evaluating the Composition of a Sine with an Inverse Tangent

Find an exact value for sin   tan−1    7 __ 4      .

Solution While we could use a similar technique as in Example 6, we will demonstrate a different technique here. 

From the inside, we know there is an angle such that tan θ =   7 __ 4  . We can envision this as the opposite and adjacent 
sides on a right triangle, as shown in Figure 12.

4

7

θ

Figure 12 A right triangle with two sides known

Using the Pythagorean Theorem, we can find the hypotenuse of this triangle.
 42 + 72 = hypotenuse 2

 hypotenuse =  √
—

 65  

Now, we can evaluate the sine of the angle as the opposite side divided by the hypotenuse.

 sin θ =   7 _ 
 √

—
 65  
  

This gives us our desired composition.

 sin   tan−1     7 _ 4       = sin θ

 =   7 _ 
 √

—
 65  
  

 =   7  √
—

 65   ______ 65  

Try It #8
Evaluate cos   sin−1    7 __ 9      .

Example 9   Finding the Cosine of the Inverse Sine of an Algebraic Expression

Find a simplified expression for cos   sin−1    x _ 
3

       for −3 ≤ x ≤ 3.

Solution We know there is an angle θ such that sin θ =   x _ 
3

  .

 sin2 θ + cos2 θ = 1  Use the Pythagorean Theorem.

     x _ 
3

    2 + cos2 θ = 1 Solve for cosine.
 cos2 θ = 1 −   x

2
 _ 

9
  

 cos θ = ±   √ 
______

   9 − x2
 ______ 9      = ±     √

—
 9 − x2   _______ 

3
  

Because we know that the inverse sine must give an angle on the interval   −  π __ 
2

  ,   π __ 2     , we can deduce that the cosine of 
that angle must be positive.
 cos   sin−1    x _ 

3
        =     √

—
 9 − x2   _______ 

3
  

Try It #9
Find a simplified expression for sin(tan−1 (4x)) for −  1 _ 

4
   ≤ x ≤   1 _ 

4
  .

Access this online resource for additional instruction and practice with inverse trigonometric functions.
•	 evaluate expressions Involving Inverse Trigonometric Functions (http://openstaxcollege.org/l/evalinverstrig) 

http://openstaxcollege.org/l/evalinverstrig
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6.3 SeCTIOn exeRCISeS

VeRBAl
1. Why do the functions f (x) = sin−1 x and 

g(x) = cos−1 x have different ranges?
2. Since the functions y = cos x and y = cos−1 x are 

inverse functions, why is cos−1  cos   −  π ___ 6       not equal 
to −   π __ 6  ?

3. Explain the meaning of   π __ 6   = arcsin(0.5). 4. Most calculators do not have a key to evaluate  
sec−1(2). Explain how this can be done using the 
cosine function or the inverse cosine function.

5. Why must the domain of the sine function, sin x,  
be restricted to   −  π ___ 2  ,   π __ 2      for the inverse sine 
function to exist?

6. Discuss why this statement is incorrect:  
arccos (cos x) = x for all x.

7. Determine whether the following statement 
is true or false and explain your answer: 
arccos(−x) = π − arccos x.

AlGeBRAIC
For the following exercises, evaluate the expressions.

8. sin−1     √
—
 2   ____ 2    9. sin−1  −  1 __ 2    10. cos−1    1 __ 2    

11. cos−1  −   √
—
 2   ____ 2    12. tan−1 (1) 13. tan−1  − √

—
 3    

14. tan−1 (−1) 15. tan−1   √
—
 3    16. tan−1    −1 _ 

 √
—
 3  
    

For the following exercises, use a calculator to evaluate each expression. Express answers to the nearest hundredth.

17. cos−1 (−0.4) 18. arcsin(0.23) 19. arccos     3 _ 5    

20. cos−1 (0.8) 21. tan−1 (6)

For the following exercises, find the angle θ in the given right triangle. Round answers to the nearest hundredth.
22. 

710

θ

23. 

12

19
θ

For the following exercises, find the exact value, if possible, without a calculator. If it is not possible, explain why.

24. sin−1(cos(π)) 25. tan−1(sin(π)) 26. cos−1   sin    π _ 
3

      

27. tan−1   sin    π _ 
3

      28. sin−1   cos    −π _ 
2

      29. tan−1   sin    4π _ 
3

      

30. sin−1   sin    5π _ 
6

      31. tan−1   sin    −5π _ 
2

      32. cos   sin−1    4 _ 5      

33. sin   cos−1    3 _ 5      34. sin   tan−1    4 _ 
3

      35. cos   tan−1    12 __ 5      

36. cos   sin−1    1 _ 
2
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For the following exercises, find the exact value of the expression in terms of x with the help of a reference triangle.

37. tan(sin−1 (x − 1)) 38. sin(cos−1 (1 − x)) 39. cos   sin−1    1 _ x      

40. cos(tan−1 (3x − 1)) 41. tan   sin−1  x +   1 __ 2      

exTenSIOnS
For the following exercise, evaluate the expression without using a calculator. Give the exact value.

42. sin−1    1 __ 2     − cos−1     √
—
 2   ___ 2     + sin−1     √

—
 3   _ 

2
      − cos−1(1)

cos−1     √
—
 3   _ 

2
      − sin−1     √

—
 2   ___ 2     + cos−1    1 __ 2     − sin−1(0)

For the following exercises, find the function if sin t =   x ____ x + 1  .

43. cos t 44. sec t 45. cot t

46. cos   sin−1    x ____ x + 1      47. tan−1    x _ 
 √
—

 2x + 1  
    

GRAPHICAl

48. Graph y = sin−1 x and state the domain and range of 
the function.

49. Graph y = arccos x and state the domain and range 
of the function.

50. Graph one cycle of y = tan−1 x and state the domain 
and range of the function.

51. For what value of x does sin x = sin−1 x? Use a 
graphing calculator to approximate the answer.

52. For what value of x does cos x = cos−1 x? Use a 
graphing calculator to approximate the answer.

ReAl-WORlD APPlICATIOnS
53. Suppose a 13-foot ladder is leaning against a 

building, reaching to the bottom of a second-floor 
window 12 feet above the ground. What angle, in 
radians, does the ladder make with the building?

54. Suppose you drive 0.6 miles on a road so that the 
vertical distance changes from 0 to 150 feet. What is 
the angle of elevation of the road?

55. An isosceles triangle has two congruent sides of 
length 9 inches. The remaining side has a length of 8 
inches. Find the angle that a side of 9 inches makes 
with the 8-inch side.

56. Without using a calculator, approximate the value 
of arctan(10,000). Explain why your answer is 
reasonable.

57. A truss for the roof of a house is constructed from 
two identical right triangles. Each has a base of 
12 feet and height of 4 feet. Find the measure of the 
acute angle adjacent to the 4-foot side.

58. The line y =   3 __ 5  x passes through the origin in the x,y-
plane. What is the measure of the angle that the line 
makes with the positive x-axis?

59. The line y = −  3 _ 7   x passes through the origin in the 
x,y-plane. What is the measure of the angle that the 
line makes with the negative x-axis?

60. What percentage grade should a road have if the angle 
of elevation of the road is 4 degrees? (The percentage 
grade is defined as the change in the altitude of the 
road over a 100-foot horizontal distance. For example 
a 5% grade means that the road rises 5 feet for every 
100 feet of horizontal distance.)

61. A 20-foot ladder leans up against the side of a 
building so that the foot of the ladder is 10 feet from 
the base of the building. If specifications call for the 
ladder’s angle of elevation to be between 35 and 45 
degrees, does the placement of this ladder satisfy 
safety specifications?

62. Suppose a 15-foot ladder leans against the side of a 
house so that the angle of elevation of the ladder is 
42 degrees. How far is the foot of the ladder from the 
side of the house?
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CHAPTeR 6 ReVIeW

Key Terms
amplitude the vertical height of a function; the constant A appearing in the definition of a sinusoidal function 

arccosine another name for the inverse cosine; arccos x = cos−1 x

arcsine another name for the inverse sine; arcsin x = sin−1 x

arctangent another name for the inverse tangent; arctan x = tan−1 x

inverse cosine function the function cos−1 x, which is the inverse of the cosine function and the angle that has a cosine 
equal to a given number

inverse sine function the function sin−1 x, which is the inverse of the sine function and the angle that has a sine equal to a 
given number

inverse tangent function the function tan−1 x, which is the inverse of the tangent function and the angle that has a tangent 
equal to a given number

midline the horizontal line y = D, where D appears in the general form of a sinusoidal function 

periodic function a function f (x) that satisfies f (x + P) = f (x) for a specific constant P and any value of x

phase shift the horizontal displacement of the basic sine or cosine function; the constant   C __ B  

sinusoidal function any function that can be expressed in the form f (x) = Asin(Bx − C) + D or f (x) = Acos(Bx − C) + D

Key equations
Sinusoidal functions f (x) = Asin(Bx − C) + D

 f (x) = Acos(Bx − C) + D

Shifted, compressed, and/or stretched tangent function y = A tan(Bx − C) + D

Shifted, compressed, and/or stretched secant function y = A sec(Bx − C) + D

Shifted, compressed, and/or stretched cosecant function y = A csc(Bx − C) + D

Shifted, compressed, and/or stretched cotangent function y = A cot(Bx − C) + D

Key Concepts

6.1 Graphs of the Sine and Cosine Functions
•	 Periodic functions repeat after a given value. The smallest such value is the period. The basic sine and cosine functions 

have a period of 2π.

•	 The function sin x is odd, so its graph is symmetric about the origin. The function cos x is even, so its graph is symmetric 
about the y-axis.

•	 The graph of a sinusoidal function has the same general shape as a sine or cosine function.

•	 In the general formula for a sinusoidal function, the period is P =   2π _ 
∣B∣

   See Example 1.

•	 In the general formula for a sinusoidal function, ∣A∣ represents amplitude. If ∣A∣ > 1, the function is stretched, whereas 
if ∣A∣ < 1, the function is compressed. See Example 2.

•	 The value   C __ B   in the general formula for a sinusoidal function indicates the phase shift. See Example 3.

•	 The value D in the general formula for a sinusoidal function indicates the vertical shift from the midline. See Example 4.

•	 Combinations of variations of sinusoidal functions can be detected from an equation. See Example 5.

•	 The equation for a sinusoidal function can be determined from a graph. See Example 6 and Example 7.

•	 A function can be graphed by identifying its amplitude and period. See Example 8 and Example 9.

•	 A function can also be graphed by identifying its amplitude, period, phase shift, and horizontal shift. See Example 10.

•	 Sinusoidal functions can be used to solve real-world problems. See Example 11, Example 12, and Example 13.
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6.2 Graphs of the Other Trigonometric Functions
•	 The tangent function has period π.

•	 f (x) = Atan(Bx − C) + D is a tangent with vertical and/or horizontal stretch/compression and shift. See Example 1, 
Example 2, and Example 3.

•	 The secant and cosecant are both periodic functions with a period of 2π. f (x) = Asec(Bx − C) + D gives a shifted, 
compressed, and/or stretched secant function graph. See Example 4 and Example 5.

•	 f (x) = Acsc(Bx − C) + D gives a shifted, compressed, and/or stretched cosecant function graph. See Example 6 and 
Example 7.

•	 The cotangent function has period π and vertical asymptotes at 0, ±π, ±2π, ...

•	 The range of cotangent is (−∞, ∞), and the function is decreasing at each point in its range.

•	 The cotangent is zero at ±  π __ 
2

  , ±  3π __ 
2

  , ...

•	 f (x) = Acot(Bx − C) + D is a cotangent with vertical and/or horizontal stretch/compression and shift. See Example 
8 and Example 9.

•	 Real-world scenarios can be solved using graphs of trigonometric functions. See Example 10.

6.3 Inverse Trigonometric Functions
•	 An inverse function is one that “undoes” another function. The domain of an inverse function is the range of the original 

function and the range of an inverse function is the domain of the original function.

•	 Because the trigonometric functions are not one-to-one on their natural domains, inverse trigonometric functions are 
defined for restricted domains.

•	 For any trigonometric function f (x), if x  = f−1(y), then f (x) = y. However, f (x) = y only implies x = f−1(y) if x  is in 
the restricted domain of f . See Example 1.

•	 Special angles are the outputs of inverse trigonometric functions for special input values; for example,  

  π __ 4   = tan−1(1) and   π __ 6   = sin−1    1 __ 2    . See Example 2.

•	 A calculator will return an angle within the restricted domain of the original trigonometric function. See Example 3.

•	 Inverse functions allow us to find an angle when given two sides of a right triangle. See Example 4.

•	 In function composition, if the inside function is an inverse trigonometric function, then there are exact expressions; 
for example, sin(cos−1 (x)) =  √

—
 1 − x2  . See Example 5.

•	 If the inside function is a trigonometric function, then the only possible combinations are sin−1 (cos x) =   π _ 
2

   − x if  
0 ≤ x ≤ π and cos−1 (sin x) =   π _ 

2
   − x if −   π _ 

2
   ≤ x ≤   π _ 

2
  . See Example 6 and Example 7.

•	 When evaluating the composition of a trigonometric function with an inverse trigonometric function, draw a reference 
triangle to assist in determining the ratio of sides that represents the output of the trigonometric function. See Example 8.

•	 When evaluating the composition of a trigonometric function with an inverse trigonometric function, you may use 
trig identities to assist in determining the ratio of sides. See Example 9.
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CHAPTeR 6 ReVIeW exeRCISeS

GRAPHS OF THe SIne AnD COSIne FUnCTIOnS

For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor, 
period, midline equation, and asymptotes.

1. f (x) = −3cos x  + 3 2.  f (x) =   1 _ 4  sin x 3. f (x) = 3cos   x +   π _ 
6

     

4. f (x) = −2sin   x −   2π _ 
3

    5. f (x) = 3sin   x −   π _ 4     − 4 6.  f (x) = 2  cos  x −   4π _ 
3

     + 1   

7.  f (x) = 6sin   3x −   π _ 
6

     − 1 8. f (x) = −100sin(50x − 20)

GRAPHS OF THe OTHeR TRIGOnOMeTRIC FUnCTIOnS

For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor, 
period, midline equation, and asymptotes.

9. f (x) = tan x − 4 10. f (x) = 2tan  x −   π _ 
6

    11. f (x) = −3tan(4x) − 2

12. f (x) = 0.2cos(0.1x) + 0.3

For the following exercises, graph two full periods. Identify the period, the phase shift, the amplitude, and asymptotes.

13. f (x) =   1 _ 
3

  sec x 14.  f (x) = 3cot x 15.  f (x) = 4csc(5x)

16.  f (x) = 8sec     1 _ 4  x  17. f (x) =   2 __ 3  csc     1 _ 
2

  x  18. f (x) = −csc(2x + π)

For the following exercises, use this scenario: The population of a city has risen and fallen over a 20-year interval. Its 
population may be modeled by the following function: y = 12,000 + 8,000sin(0.628x), where the domain is the years 
since 1980 and the range is the population of the city.

19. What is the largest and smallest population the city 
may have?

20. Graph the function on the domain of [0, 40].

21. What are the amplitude, period, and phase shift for 
the function?

22. Over this domain, when does the population reach 
18,000? 13,000?

23. What is the predicted population in 2007? 2010?

For the following exercises, suppose a weight is attached to a spring and bobs up and down, exhibiting symmetry.

24. Suppose the graph of the displacement function is shown in Figure 1, where the values on the x-axis represent 
the time in seconds and the y-axis represents the displacement in inches. Give the equation that models the 
vertical displacement of the weight on the spring.

2 4 6 8 10

–5
–4
–3
–2
–1

1
2
3
4
5

x

y

Figure 1
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25.  At time = 0, what is the displacement of the weight?

26. At what time does the displacement from the equilibrium point equal zero?

27. What is the time required for the weight to return to its initial height of 5 inches? In other words, what is the 
period for the displacement function?

InVeRSe TRIGOnOMeTRIC FUnCTIOnS

For the following exercises, find the exact value without the aid of a calculator.

28. sin−1(1) 29. cos−1     √
—
 3   _ 

2
    30. tan−1(−1)

31. cos−1    1 _ 
 √

—
 2  
     32.  sin−1     − √

—
 3   _ 

2
     33. sin−1  cos    π _ 

6
      

34. cos−1  tan    3π _ 4      35. sin   sec−1    3 _ 5      36. cot   sin−1    3 _ 5      

37. tan   cos−1    5 _ 
13

      38. sin   cos−1    x _ 
x + 1

      

39. Graph f (x) = cos x  and f (x) = sec x  on the interval [0, 2π) and explain any observations.

40. Graph f (x) = sin x  and f (x) = csc x  and explain any observations.

41. Graph the function f (x) =   x _ 
1

   −   x
3
 _ 

3!
   +   x

5
 _ 

5!
   −   x

7
 _ 

7!
   on the interval [−1, 1] and compare the graph to the graph of  

f (x) = sin x  on the same interval. Describe any observations.
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CHAPTeR 6 PRACTICe TeST

For the following exercises, sketch the graph of each function for two full periods. Determine the amplitude, the 
period, and the equation for the midline.

1. f (x) = 0.5sin x 2. f (x) = 5cos x 3. f (x) = 5sin x

4. f (x) = sin(3x) 5. f (x) = −cos   x +   π _ 
3

     + 1 6.  f (x) = 5sin   3  x −   π _ 
6

       + 4

7. f (x) = 3cos     1 _ 
3

  x −   5π _ 
6

    8.  f (x) = tan(4x) 9. f (x) = −2tan   x −   7π _ 
6

     + 2

10. f (x) = πcos(3x + π) 11. f (x) = 5csc(3x) 12. f (x) = πsec     π _ 
2

  x  

13.  f (x) = 2csc   x +   π _ 4     − 3

 For the following exercises, determine the amplitude, period, and midline of the graph, and then find a formula for 
the function.

14. Give in terms of a sine function.

2

x

y

–2–3 –1

–2

–4

–6

1 2 3

4

6

15.  Give in terms of a sine function.

2

x

y

–1

–2

–2–3

–4

–6

1 2 3

4

6

16. Give in terms of a tangent function.

4

x

y

–4

–8

–12

8

12

– π
2

π
2

–π– 3π
2

3π
2

π

For the following exercises, find the amplitude, period, phase shift, and midline.

17. y = sin     π _ 
6

  x + π   − 3 18. y = 8sin     7π _ 
6

  x +   7π _ 
2

     + 6

19. The outside temperature over the course of a day can 
be modeled as a sinusoidal function. Suppose you 
know the temperature is 68°F at midnight and the 
high and low temperatures during the day are 80°F 
and 56°F, respectively. Assuming t is the number 
of hours since midnight, find a function for the 
temperature, D, in terms of t.

20. Water is pumped into a storage bin and empties 
according to a periodic rate. The depth of the water 
is 3 feet at its lowest at 2:00 a.m. and 71 feet at its 
highest, which occurs every 5 hours. Write a cosine 
function that models the depth of the water as a 
function of time, and then graph the function for 
one period.

For the following exercises, find the period and horizontal shift of each function.

21. g(x) = 3tan(6x + 42) 22. n(x) = 4csc     5π _ 
3

  x −   20π _ 
3

    

23. Write the equation for the graph in Figure 1 in terms of the secant function 
and give the period and phase shift.

2

x

y

–1

–2

–2–3

–4

–6

1 2

4

3

6

Figure 1 
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24. If tan x  = 3, find tan(−x). 25. If sec x  = 4, find sec(−x).

For the following exercises, graph the functions on the specified window and answer the questions.

26. Graph m(x) = sin(2x) + cos(3x) on the viewing 
window [−10, 10] by [−3, 3]. Approximate the 
graph’s period.

27. Graph n(x) = 0.02sin(50πx) on the following 
domains in x: [0, 1] and [0, 3]. Suppose this function 
models sound waves. Why would these views look 
so different?

28. Graph f (x) =    sin x  _____ x    on [−0.5, 0.5] and explain any 
observations.

For the following exercises, let f (x) =    3 __ 5    cos(6x).

29. What is the largest possible value for f (x)? 30. What is the smallest possible value for f (x)?
31. Where is the function increasing on the interval  

[0, 2π]?

For the following exercises, find and graph one period of the periodic function with the given amplitude, period, and 
phase shift.

32. Sine curve with amplitude 3, period    π _ 
3

   , and phase 
shift (h, k) =     π _ 4  , 2  

33. Cosine curve with amplitude 2, period   π _ 
6

  , and phase 
shift (h, k) =   −  π _ 

4
  , 3  

For the following exercises, graph the function. Describe the graph and, wherever applicable, any periodic behavior, 
amplitude, asymptotes, or undefined points.

34.  f (x) = 5cos(3x) + 4sin(2x) 35. f (x) = esint

For the following exercises, find the exact value.

36. sin−1      √
—
 3   _ 

2
    37. tan−1   √

—
 3    38. cos−1   −    √

—
 3   _ 

2
    

39. cos−1(sin(π)) 40. cos−1   tan    7π _ 4      41. cos(sin−1(1 − 2x))

42. cos−1(−0.4) 43. cos(tan−1(x2))

For the following exercises, suppose sin t =   x _ 
x + 1

  .

44. tan t 45. csc t

46. Given Figure 2, find the measure of angle θ to three decimal places. 
Answer in radians.

12

19
θ

For the following exercises, determine whether the equation is true or false.

47. arcsin   sin     5π _ 
6

       =   5π _ 
6

  48. arccos   cos     5π _ 
6

       =   5π _ 
6

  

49. The grade of a road is 7%. This means that for every horizontal distance of 100 feet on the road, the vertical rise 
is 7 feet. Find the angle the road makes with the horizontal in radians.
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Trigonometric  Identities  
and  Equations

CHAPTeR OUTlIne

7.1 Solving Trigonometric equations with Identities
7.2 Sum and Difference Identities
7.3 Double-Angle, Half-Angle, and Reduction Formulas
7.4 Sum-to-Product and Product-to-Sum Formulas
7.5 Solving Trigonometric equations
7.6 Modeling with Trigonometric equations

Figure 1  A sine wave models disturbance. (credit: modification of work by Mikael Altemark, Flickr).

Introduction
Math is everywhere, even in places we might not immediately recognize. For example, mathematical relationships 
describe the transmission of images, light, and sound. The sinusoidal graph in Figure 1 models music playing on a 
phone, radio, or computer. Such graphs are described using trigonometric equations and functions. In this chapter, 
we discuss how to manipulate trigonometric equations algebraically by applying various formulas and trigonometric 
identities. We will also investigate some of the ways that trigonometric equations are used to model real-life phenomena.
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leARnInG OBjeCTIVeS

In this section, you will:
•	  Verify the fundamental trigonometric identities.
•	  Simplify trigonometric expressions using algebra and the identities.

7.1  SOlVInG TRIGOnOMeTRIC eQUATIOnS WITH IDenTITIeS

Figure 1  International passports and travel documents

In espionage movies, we see international spies with multiple passports, each claiming a different identity. However, 
we know that each of those passports represents the same person. The trigonometric identities act in a similar manner 
to multiple passports—there are many ways to represent the same trigonometric expression. Just as a spy will choose 
an Italian passport when traveling to Italy, we choose the identity that applies to the given scenario when solving a 
trigonometric equation.

In this section, we will begin an examination of the fundamental trigonometric identities, including how we can verify 
them and how we can use them to simplify trigonometric expressions.

Verifying the Fundamental Trigonometric Identities
Identities enable us to simplify complicated expressions. They are the basic tools of trigonometry used in solving 
trigonometric equations, just as factoring, finding common denominators, and using special formulas are the 
basic tools of solving algebraic equations. In fact, we use algebraic techniques constantly to simplify trigonometric 
expressions. Basic properties and formulas of algebra, such as the difference of squares formula and the perfect squares 
formula, will simplify the work involved with trigonometric expressions and equations. We already know that all 
of the trigonometric functions are related because they all are defined in terms of the unit circle. Consequently, any 
trigonometric identity can be written in many ways.

To verify the trigonometric identities, we usually start with the more complicated side of the equation and 
essentially rewrite the expression until it has been transformed into the same expression as the other side of the 
equation. Sometimes we have to factor expressions, expand expressions, find common denominators, or use other 
algebraic strategies to obtain the desired result. In this first section, we will work with the fundamental identities: the 
Pythagorean identities, the even-odd identities, the reciprocal identities, and the quotient identities.

We will begin with the Pythagorean identities (see Table 1), which are equations involving trigonometric functions 
based on the properties of a right triangle. We have already seen and used the first of these identifies, but now we will 
also use additional identities.

Pythagorean Identities
sin2 θ + cos2 θ = 1 1 + cot2 θ = csc2 θ 1 + tan2 θ = sec2 θ

Table 1
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The second and third identities can be obtained by manipulating the first. The identity 1 + cot2 θ = csc2 θ is found by 
rewriting the left side of the equation in terms of sine and cosine.

Prove: 1 + cot2 θ = csc2 θ
 1 + cot2 θ =   1 +   cos2 θ _____ sin2 θ     Rewrite the left side.

 =     sin2 θ _____ sin2 θ     +     cos2 θ _____ sin2 θ      Write both terms with the common 
denominator.

 =   sin2 θ + cos2 θ ___________ sin2 θ   

 =   1 ____ sin2 θ  

 = csc2 θ

Similarly, 1 + tan2 θ = sec2 θ can be obtained by rewriting the left side of this identity in terms of sine and cosine. 
This gives
 1 + tan2 θ = 1 +     sin θ ____ cos θ    

2
 Rewrite left side.

 =     cos θ ____ cos θ    
2
 +     sin θ ____ cos θ    

2
  Write both terms with the 

common denominator.

 =   cos2 θ + sin2 θ ___________ cos2 θ    

 =   1 _____ cos2 θ   

 = sec2 θ

The next set of fundamental identities is the set of even-odd identities. The even-odd identities relate the value of a 
trigonometric function at a given angle to the value of the function at the opposite angle and determine whether the 
identity is odd or even. (See Table 2).

Even-Odd Identities
tan(−θ) = −tan θ sin(−θ) = −sin θ cos(−θ) = cos θ
cot(−θ) = −cot θ csc(−θ) = −csc θ sec(−θ) = sec θ

Table 2

Recall that an odd function is one in which f (−x) = −f (x) for all x in the domain of f. The sine function is an odd 
function because sin(−θ) = −sin θ. The graph of an odd function is symmetric about the origin. For example, consider 
corresponding inputs of   π __ 2   and −  π __ 2  . The output of sin     π __ 2     is opposite the output of sin   −  π __ 2    . Thus,

 sin     π __ 2     = 1
and
 sin   −  π __ 2     = −sin     π __ 2     

 = −1
This is shown in Figure 2.

x

y

–2

2

π 2π–2π –π

–1– 2
π ,

12
π ,f(x) = sin x

Figure 2  Graph of y = sin θ

Recall that an even function is one in which

f (−x) = f (x) for all x in the domain of f



CHAPTER 7 trigonometric  identities and  eQuations562

The graph of an even function is symmetric about the y-axis. The cosine function is an even function because  
cos(−θ) = cos θ. For example, consider corresponding inputs   π __ 4   and −  π __ 4  . The output of cos     π __ 4     is the same as the 
output of cos   −  π __ 4    . Thus, 

cos   −  π __ 4     = cos     π __ 4     

 ≈ 0.707
See Figure 3.

x

y

–2

2

π 2π–2π –π

0.707– 4
π , 0.7074

π ,

f(x) = cos x

Figure 3 Graph of y = cos θ

For all θ in the domain of the sine and cosine functions, respectively, we can state the following:

•	 Since sin(−θ) = −sin θ, sine is an odd function.

•	 Since, cos(−θ) = cos θ, cosine is an even function.

The other even-odd identities follow from the even and odd nature of the sine and cosine functions. For 
example, consider the tangent identity, tan(−θ) = −tan θ. We can interpret the tangent of a negative angle as  
tan(−θ) =   sin(−θ) ______ cos(−θ)   =   −sin θ ______ cos θ   = −tan θ. Tangent is therefore an odd function, which means that tan(−θ) = −tan(θ) 

for all θ in the domain of the tangent function.

The cotangent identity, cot(−θ) = −cot θ, also follows from the sine and cosine identities. We can interpret the 
cotangent of a negative angle as cot(−θ) =   cos(−θ) _______ sin(−θ)   =   cos θ _____ 

−sin θ   = −cot θ. Cotangent is therefore an odd function, 
which means that cot(−θ) = −cot(θ) for all θ in the domain of the cotangent function.

The cosecant function is the reciprocal of the sine function, which means that the cosecant of a negative angle will be 
interpreted as csc(−θ) =   1 ______ sin(−θ)   =   1 _____ 

−sin θ   = −csc θ. The cosecant function is therefore odd. 

Finally, the secant function is the reciprocal of the cosine function, and the secant of a negative angle is interpreted 
as sec(−θ) =   1 ______ cos(−θ)   =   1 ____ cos θ   = sec θ. The secant function is therefore even.

To sum up, only two of the trigonometric functions, cosine and secant, are even. The other four functions are odd, 
verifying the even-odd identities.

The next set of fundamental identities is the set of reciprocal identities, which, as their name implies, relate 
trigonometric functions that are reciprocals of each other. See Table 3.

Reciprocal Identities

sin θ =   1 ____ csc θ  csc θ =   1 ____ sin θ  

cos θ =   1 ____ sec θ  sec θ =   1 ____ cos θ  

tan θ =   1 ____ cot θ  cot θ =   1 ____ tan θ  

Table 3

The final set of identities is the set of quotient identities, which define relationships among certain trigonometric 
functions and can be very helpful in verifying other identities. See Table 4.

Quotient Identities

tan θ =   sin θ ____ cos θ  cot θ =   cos θ ____ sin θ  

Table 4
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The reciprocal and quotient identities are derived from the definitions of the basic trigonometric functions.

summarizing trigonometric identities 
The Pythagorean identities are based on the properties of a right triangle.
 cos2 θ + sin2 θ = 1

 1 + cot2 θ = csc2 θ

 1 + tan2 θ = sec2 θ

The even-odd identities relate the value of a trigonometric function at a given angle to the value of the function 
at the opposite angle.
 tan(−θ) = −tan θ

 cot(−θ) = −cot θ

 sin(−θ) = −sin θ

 csc(−θ) = −csc θ

 cos(−θ) = cos θ

 sec(−θ) = sec θ

The reciprocal identities define reciprocals of the trigonometric functions.

sin θ =   1 ____ csc θ  

cos θ =   1 ____ sec θ  

tan θ =   1 ____ cot θ  

csc θ =   1 ____ sin θ  

sec θ =   1 ____ cos θ  

cot θ =   1 ____ tan θ  

The quotient identities define the relationship among the trigonometric functions.

tan θ =   sin θ ____ cos θ  

cot θ =   cos θ ____ sin θ  

Example 1 Graphing the Equations of an Identity

Graph both sides of the identity cot θ =   1 ____ tan θ  . In other words, on the graphing calculator, graph y = cot θ and y =   1 ____ tan θ  .

Solution See Figure 4.
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3π
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Figure 4
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Analysi s We see only one graph because both expressions generate the same image. One is on top of the other. This is a 
good way to prove any identity. If both expressions give the same graph, then they must be identities.

How To…
Given a trigonometric identity, verify that it is true.

1. Work on one side of the equation. It is usually better to start with the more complex side, as it is easier to simplify 
than to build.

2. Look for opportunities to factor expressions, square a binomial, or add fractions.
3. Noting which functions are in the final expression, look for opportunities to use the identities and make the proper 

substitutions.
4. If these steps do not yield the desired result, try converting all terms to sines and cosines.

Example 2 Verifying a Trigonometric Identity

Verify tan θ cos θ = sin θ.

Solution We will start on the left side, as it is the more complicated side:

tan θcos θ =     sin θ ____ cos θ     cos θ

 =     sin θ ____ cos θ     cos θ

 = sin θ

Analysi s This identity was fairly simple to verify, as it only required writing tan θ in terms of sin θ and cos θ.

Try It #1

Verify the identity csc θ cos θ tan θ = 1.

Example 3 Verifying the Equivalency Using the Even-Odd Identities

Verify the following equivalency using the even-odd identities:
(1 + sin x)[1 + sin(−x)] = cos2 x

Solution Working on the left side of the equation, we have
 (1 + sin x)[1 + sin(−x)] = (1 + sin x)(1 − sin x) Since sin(−x) = −sin x
 = 1 − sin2 x Difference of squares
 = cos2 x cos2 x = 1 − sin2 x

Example 4 Verifying a Trigonometric Identity Involving sec2 θ

Verify the identity   sec2 θ − 1 ________ sec2 θ   = sin2 θ

Solution As the left side is more complicated, let’s begin there.

   sec2 θ − 1 ________ sec2 θ   =   (tan2 θ + 1) − 1  _____________ sec2 θ   sec2 θ = tan2 θ + 1

 =   tan2 θ _____ sec2 θ  

 = tan2 θ     1 ____ sec2 θ    

 = tan2 θ(cos2 θ) cos2 θ =   1 ____ sec2 θ  

 =     sin2 θ _____ cos2 θ    (cos2 θ) tan2 θ =   sin2 θ _____ cos2 θ  

 =     sin2 θ _____ cos2 θ    (cos2 θ)

 = sin2 θ
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There is more than one way to verify an identity. Here is another possibility. Again, we can start with the left side.

   sec2 θ − 1 ________ sec2 θ   =   sec2 θ _____ sec2 θ   −   1 ____ 
sec2 θ

  

 = 1 − cos2 θ
 = sin2 θ

Analysi s In the first method, we used the identity sec2 θ = tan2 θ + 1 and continued to simplify. In the second method, 
we split the fraction, putting both terms in the numerator over the common denominator. This problem illustrates that 
there are multiple ways we can verify an identity. Employing some creativity can sometimes simplify a procedure. As 
long as the substitutions are correct, the answer will be the same.

Try It #2

Show that   cot θ ____ csc θ   = cos θ.

Example 5 Creating and Verifying an Identity

Create an identity for the expression 2tan θ sec θ by rewriting strictly in terms of sine.

Solution There are a number of ways to begin, but here we will use the quotient and reciprocal identities to rewrite 
the expression:

 2 tan θ sec θ = 2    sin θ ____ cos θ        1 ____ cos θ    

 =   2 sin θ _____ cos2 θ  

 =   2 sin θ ________ 1 − sin2 θ   Substitute 1 − sin2 θ for cos2 θ
Thus,

 2tan θ sec θ =   2 sin θ ________ 1 − sin2 θ  

Example 6 Verifying an Identity Using Algebra and Even/Odd Identities

Verify the identity:
   sin2(−θ) − cos2(−θ)  _________________  sin(−θ) − cos(−θ)   = cos θ − sin θ

Solution Let’s start with the left side and simplify:

   sin2(−θ) − cos2(−θ)  _________________  sin(−θ) − cos(−θ)   =   [sin(−θ)]2 − [cos(−θ)]2
  __________________  sin(−θ) − cos(−θ)  

 =   (−sin θ)2 − (cos θ)2
  ________________  

−sin θ − cos θ    
sin(−x) = −sin x and cos(−x) = cos x

 =   (sin θ)2 − (cos θ)2
  ______________  

−sin θ − cos θ
   Difference of squares

 =   (sin θ − cos θ)(sin θ + cos θ)   ______________________  
−(sin θ + cos θ)  

 =   (sin θ − cos θ)(sin θ + cos θ)   ______________________  
−(sin θ + cos θ)  

 = cos θ − sin θ

Try It #3

Verify the identity   sin2 θ − 1  _____________  tan θ sin θ − tan θ   =   sin θ + 1 _______ 
tan θ

  .
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Example 7 Verifying an Identity Involving Cosines and Cotangents

Verify the identity: (1 − cos2 x)(1 + cot2 x) = 1.

Solution We will work on the left side of the equation

 (1 − cos2 x)(1 + cot2 x) = (1 − cos2 x)  1 +   cos2 x _____ sin2 x    

 = (1 − cos2 x)    sin2 x _____ sin2 x   +   cos2 x _____ sin2 x      Find the common denominator.

 = (1 − cos2 x)    sin2 x + cos2 x  ___________ sin2 x    

 = (sin2 x)    1 ____ sin2 x    

 = 1

Using Algebra to Simplify Trigonometric expressions
We have seen that algebra is very important in verifying trigonometric identities, but it is just as critical in simplifying 
trigonometric expressions before solving. Being familiar with the basic properties and formulas of algebra, such as 
the difference of squares formula, the perfect square formula, or substitution, will simplify the work involved with 
trigonometric expressions and equations.

For example, the equation (sin x + 1)(sin x − 1) = 0 resembles the equation (x + 1)(x − 1) = 0, which uses the factored 
form of the difference of squares. Using algebra makes finding a solution straightforward and familiar. We can set 
each factor equal to zero and solve. This is one example of recognizing algebraic patterns in trigonometric expressions 
or equations.

Another example is the difference of squares formula, a2 − b2 = (a − b)(a + b), which is widely used in many areas other 
than mathematics, such as engineering, architecture, and physics. We can also create our own identities by continually 
expanding an expression and making the appropriate substitutions. Using algebraic properties and formulas makes 
many trigonometric equations easier to understand and solve.

Example 8 Writing the Trigonometric Expression as an Algebraic Expression

Write the following trigonometric expression as an algebraic expression: 2cos2 θ + cos θ − 1.

Solution Notice that the pattern displayed has the same form as a standard quadratic expression, ax2 + bx + c. 
Letting cos θ = x, we can rewrite the expression as follows:

2x2 + x − 1

This expression can be factored as (2x − 1)(x + 1). If it were set equal to zero and we wanted to solve the equation, we 
would use the zero factor property and solve each factor for x. At this point, we would replace x with cos θ and solve 
for θ.

Example 9  Rewriting a Trigonometric Expression Using the Difference of Squares

Rewrite the trigonometric expression: 4 cos2 θ − 1.

Solution Notice that both the coefficient and the trigonometric expression in the first term are squared, and the 
square of the number 1 is 1. This is the difference of squares. Thus,

 4 cos2 θ − 1 = (2 cos θ)2 − 1

 = (2 cos θ − 1)(2 cos θ + 1)

Analysi s If this expression were written in the form of an equation set equal to zero, we could solve each factor using 
the zero factor property. We could also use substitution like we did in the previous problem and let cos θ = x, rewrite the 
expression as 4x2 − 1, and factor (2x − 1)(2x + 1). Then replace x with cos θ and solve for the angle.

Try It #4

Rewrite the trigonometric expression: 25 − 9 sin2 θ.
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Example 10   Simplify by Rewriting and Using Substitution

Simplify the expression by rewriting and using identities:

csc2 θ − cot2 θ

Solution We can start with the Pythagorean Identity.

 1 + cot2 θ = csc2 θ

Now we can simplify by substituting 1 + cot2 θ for csc2 θ. We have

 csc2 θ − cot2 θ = 1 + cot2 θ − cot2 θ

 = 1

Try It #5

Use algebraic techniques to verify the identity:   cos θ _______ 1 + sin θ   =   1 − sin θ _______ cos θ  .

(Hint: Multiply the numerator and denominator on the left side by 1 − sin θ.)

 

Access these online resources for additional instruction and practice with the fundamental trigonometric identities.

•	 Fundamental Trigonometric Identities (http://openstaxcollege.org/l/funtrigiden)

•	 Verifying Trigonometric Identities (http://openstaxcollege.org/l/verifytrigiden)

http://openstaxcollege.org/l/funtrigiden
http://openstaxcollege.org/l/verifytrigiden
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7.1 SeCTIOn exeRCISeS

VeRBAl

1. We know g(x) = cos x is an even function, and 
f (x) = sin x and h(x) = tan x are odd functions. What 
about G(x) = cos2 x, F (x) = sin2 x, and H(x) = tan2 x? 
Are they even, odd, or neither? Why?

2. Examine the graph of f (x) = sec x on the interval 
[−π, π]. How can we tell whether the function 
is even or odd by only observing the graph of 
f (x) = sec x?

3. After examining the reciprocal identity for sec t, 
explain why the function is undefined at certain 
points.

4. All of the Pythagorean identities are related. 
Describe how to manipulate the equations to get 
from sin2 t + cos2 t = 1 to the other forms.

AlGeBRAIC

For the following exercises, use the fundamental identities to fully simplify the expression.

5. sin x cos x sec x 6. sin(−x)cos(−x)csc(−x)

7. tan x sin x + sec x cos2 x 8. csc x + cos x cot(−x)

9.   cot t + tan t __________ sec(−t)  10. 3 sin3 t csc t + cos2 t + 2 cos(−t)cos t

11.  −tan(−x)cot(−x) 12.   −sin(−x)cos x sec x csc x tan x   ________________________  cot x  

13.   1 + tan2 θ ________ csc2 θ   + sin2 θ +   1 ____ sec2 θ  14.     tan x ____ csc2 x   +   tan x ____ sec2 x        1 + tan x ________ 1 + cot x     −   1 _____ cos2 x  

15.   1 − cos2 x ________ 
tan2 x 

  + 2 sin2 x

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms  
of the second expression.

16.   tan x + cot x __________ csc x  ; cos x 17.   sec x + csc x __________ 1 + tan x  ; sin x

18.   cos x _______ 1 + sin x   + tan x; cos x 19.   1 ________ sin x cos x   − cot x; cot x

20.   1 _______ 1 − cos x   −   cos x _______ 1 + cos x  ; csc x 21. (sec x + csc x)(sin x + cos x) − 2 − cot x; tan x

22.   1 __________  csc x − sin x  ; sec x and tan x 23.   1 − sin x _______ 1 + sin x   −   1 + sin x _______ 1 − sin x  ; sec x and tan x

24. tan x; sec x 25. sec x; cot x

26. sec x; sin x 27. cot x; sin x

28. cot x; csc x

For the following exercises, verify the identity.

29. cos x − cos3 x = cos x sin2 x 30. cos x(tan x − sec(−x)) = sin x − 1

31.   1 + sin2 x ________ cos2 x   =   1 _____ cos2 x   +   sin2 x _____ cos2 x   = 1 + 2 tan2 x 32. (sin x + cos x)2 = 1 + 2 sin x cos x

33. cos2 x − tan2 x = 2 − sin2 x − sec2 x
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exTenSIOnS

For the following exercises, prove or disprove the identity.

34.   1 _______ 1 + cos x   −   1 ___________  1 − cos( − x)   = −2 cot x csc x 35. csc2 x(1 + sin2 x) = cot2 x

36.     sec2(−x) − tan2 x  ______________ tan x        2 + 2 tan x _________ 2 + 2 cot x     − 2 sin2 x = cos 2x

37.   tan x ____ sec x   sin(−x) = cos2 x 38.   sec(−x) __________  tan x + cot x   = −sin(−x)

39.   1 + sin x _______ cos x   =   cos x _________  1 + sin(−x)  

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent 
expression.

40.   cos2 θ − sin2 θ  ___________  1 − tan2 θ   = sin2 θ 41. 3 sin2 θ + 4 cos2 θ = 3 + cos2 θ

42.   sec θ + tan θ __________  
cot θ + cos θ 

  = sec2 θ



CHAPTER 7 trigonometric  identities and  eQuations570

leARnInG OBjeCTIVeS

In this section, you will:
•	  Use sum and difference formulas for cosine.
•	  Use sum and difference formulas for sine.
•	  Use sum and difference formulas for tangent.
•	  Use sum and difference formulas for cofunctions.
•	  Use sum and difference formulas to verify identities.

7. 2 SUM AnD DIFFeRenCe IDenTITIeS

Figure 1 Mount McKinley, in Denali National Park, Alaska, rises 20,237 feet (6,168 m) above sea level.  
It is the highest peak in North America. (credit: Daniel A. Leifheit, Flickr)

How can the height of a mountain be measured? What about the distance from Earth to the sun? Like many seemingly 
impossible problems, we rely on mathematical formulas to find the answers. The trigonometric identities, commonly used 
in mathematical proofs, have had real-world applications for centuries, including their use in calculating long distances.

The trigonometric identities we will examine in this section can be traced to a Persian astronomer who lived around 
950 AD, but the ancient Greeks discovered these same formulas much earlier and stated them in terms of chords. 
These are special equations or postulates, true for all values input to the equations, and with innumerable applications.

In this section, we will learn techniques that will enable us to solve problems such as the ones presented above. The 
formulas that follow will simplify many trigonometric expressions and equations. Keep in mind that, throughout this 
section, the term formula is used synonymously with the word identity.

Using the Sum and Difference Formulas for Cosine
Finding the exact value of the sine, cosine, or tangent of an angle is often easier if we can rewrite the given angle in 
terms of two angles that have known trigonometric values. We can use the special angles, which we can review in the 
unit circle shown in Figure 2.
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We will begin with the sum and difference formulas for cosine, so that we can find the cosine of a given angle if we 
can break it up into the sum or difference of two of the special angles. See Table 1.

Sum formula for cosine cos(α + β) = cos α cos β − sin α sin β 
Difference formula for cosine cos(α − β) = cos α cos β + sin α sin β

Table 1

First, we will prove the difference formula for cosines. Let’s consider two points on the unit circle. See Figure 
3. Point P is at an angle α from the positive x-axis with coordinates (cos α, sin α) and point Q is at an angle of β 
from the positive x-axis with coordinates (cos β, sin β). Note the measure of angle POQ is α − β.

Label two more points: A at an angle of (α − β) from the positive x-axis with coordinates (cos(α − β), sin(α − β)); and 
point B with coordinates (1, 0). Triangle POQ is a rotation of triangle AOB and thus the distance from P to Q is the 
same as the distance from A to B.

x

y

–2

2

π 2π–2π –π

–1– 2
π ,

12
π ,f(x) = sin x

Figure 3

We can find the distance from P to Q using the distance formula.

 dPQ =  √
——

   (cos α − cos β)2 + (sin α − sin β)2  

 =  √
————

      cos2 α − 2 cos α cos β + cos2 β + sin2 α − 2 sin α sin β + sin2 β  

Then we apply the Pythagorean Identity and simplify.

 =  √
————

      (cos2 α + sin2 α) + (cos2 β + sin2 β) − 2 cos α cos β − 2 sin α sin β  

 =  √
——

    1 + 1 − 2 cos α cos β − 2 sin α sin β  

 =  √
——

   2 − 2 cos α cos β − 2 sin α sin β  

Similarly, using the distance formula we can find the distance from A to B.

 dAB =  √
——

    (cos(α − β) − 1)2 + (sin(α − β) − 0)2  

 =  √
———

    cos2(α − β) − 2 cos(α − β) + 1 + sin2(α − β)  

Applying the Pythagorean Identity and simplifying we get:

 =  √
———

    (cos2(α − β) + sin2(α − β)) − 2 cos(α − β) + 1  

 =  √
——

  1 − 2 cos(α − β) + 1  

 =  √
—

  2 − 2 cos(α − β)  

Because the two distances are the same, we set them equal to each other and simplify.

  √
——

   2 − 2 cos α cos β − 2 sin α sin β   =  √
—

  2 − 2 cos(α − β)  

 2 − 2 cos α cos β − 2 sin α sin β = 2 − 2 cos(α − β)

Finally we subtract 2 from both sides and divide both sides by −2.

 cos α cos β + sin α sin β = cos(α − β)

Thus, we have the difference formula for cosine. We can use similar methods to derive the cosine of the sum of two 
angles.
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sum and difference formulas for cosine 
These formulas can be used to calculate the cosine of sums and differences of angles.

cos(α + β) = cos α cos β − sin α sin β    cos(α − β) = cos α cos β + sin α sin β

How To…
Given two angles, find the cosine of the difference between the angles.
1. Write the difference formula for cosine.
2. Substitute the values of the given angles into the formula.
3. Simplify.

Example 1  Finding the Exact Value Using the Formula for the Cosine of the Difference of Two Angles

Using the formula for the cosine of the difference of two angles, find the exact value of cos     5π __ 4   −   π __ 6    .

Solution Use the formula for the cosine of the difference of two angles. We have

 cos(α − β) = cos α cos β + sin α sin β

 cos     5π ___ 4   −   π __ 6     = cos     5π ___ 4     cos     π __ 6     + sin     5π ___ 4     sin     π __ 6    

 =   −    √
—
 2   ____ 2         √

—
 3   ____ 2     −      √

—
 2   ____ 2        1 __ 2    

 = −    √
—
 6   ____ 4   −    √

—
 2   ____ 4  

 =   − √
—
 6   −  √

—
 2   __________ 4  

Try It #1

Find the exact value of cos     π __ 3   −   π __ 4    .

Example 2  Finding the Exact Value Using the Formula for the Sum of Two Angles for Cosine

Find the exact value of cos(75°).

Solution As 75° = 45° + 30°, we can evaluate cos(75°) as cos(45° + 30°). Thus,

 cos(45° + 30°) = cos(45°)cos(30°) − sin(45°)sin(30°)

 =    √
—
 2   ____ 2       √

—
 3   ____ 2     −    √

—
 2   ____ 2      1 __ 2    

 =    √
—
 6   ____ 4   −    √

—
 2   ____ 4  

 =    √
—
 6   −  √

—
 2   __________ 4  

Try It #2

Find the exact value of cos(105°).

Using the Sum and Difference Formulas for Sine
The sum and difference formulas for sine can be derived in the same manner as those for cosine, and they resemble 
the cosine formulas.
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sum and difference formulas for sine 
These formulas can be used to calculate the sines of sums and differences of angles.

sin(α + β) = sin α cos β + cos α sin β   sin(α − β) = sin α cos β − cos α sin β

How To…
Given two angles, find the sine of the difference between the angles.
1. Write the difference formula for sine.
2. Substitute the given angles into the formula.
3. Simplify.

Example 3  Using Sum and Difference Identities to Evaluate the Difference of Angles

Use the sum and difference identities to evaluate the difference of the angles and show that part a equals part b.

a. sin(45° − 30°)   b. sin(135° − 120°)

Solution

a. Let’s begin by writing the formula and substitute the given angles.

 sin(α − β) = sin α cos β − cos α sin β
 sin(45° − 30°) = sin(45°)cos(30°) − cos(45°)sin(30°)

 Next, we need to find the values of the trigonometric expressions.

 sin(45°) =    √
—
 2   ____ 2  , cos(30°) =    √

—
 3   ____ 2  , cos(45°) =    √

—
 2   ____ 2  , sin(30°) =   1 __ 2  

 Now we can substitute these values into the equation and simplify.

 sin(45° − 30°) =    √
—
 2   ____ 2       √

—
 3   ____ 2     −    √

—
 2   ____ 2      1 __ 2    

 =    √
—
 6   −  √

—
 2   _________ 4  

b. Again, we write the formula and substitute the given angles.

 sin(α − β) = sin α cos β − cos α sin β

 sin(135° − 120°) = sin(135°)cos(120°) − cos(135°)sin(120°)

 Next, we find the values of the trigonometric expressions.

sin(135°) =    √
—
 2   ____ 2  , cos(120°) = −  1 __ 2  , cos(135°) = −   √

—
 2   ____ 2  , sin(120°) =    √

—
 3   ____ 2  

 Now we can substitute these values into the equation and simplify.

 sin(135° − 120°) =    √
—
 2   ____ 2    −  1 __ 2     −   −    √

—
 2   ____ 2         √

—
 3   ____ 2    

 =   − √
—
 2   +  √

—
 6   __________ 4  

 =    √
—
 6   −  √

—
 2   _________ 4  

 sin(135° − 120°) =    √
—
 2   ____ 2    −  1 __ 2     −   −    √

—
 2   ____ 2         √

—
 3   ____ 2    

 =   − √
—
 2   +  √

—
 6   __________ 4  

 =    √
—
 6   −  √

—
 2   _________ 4  
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Example 4  Finding the Exact Value of an Expression Involving an Inverse Trigonometric Function

Find the exact value of sin   cos−1  1 __ 2   + sin−1  3 __ 5    .

Solution The pattern displayed in this problem is sin(α + β). Let α = cos−1  1 __ 2   and β = sin−1  3 __ 5  . Then we can write

 cos α =   1 __ 2  , 0 ≤ α ≤ π

 sin β =   3 __ 5  , −  π __ 2   ≤ β ≤   π __ 2  

We will use the Pythagorean identities to find sin α and cos β.

 sin α =  √
—

 1 − cos2 α   

 =  √ 
______

 1 −   1 __ 4    

 =  √ 
__

   3 __ 4    

 =    √
—
 3   _ 

2
  

Using the sum formula for sine,

 sin   cos−1   1 __ 2   + sin−1   3 __ 5     = sin(α + β)

 = sin α cos β + cos α sin β

 =    √
—
 3   ____ 2   ·   4 __ 5   +   1 __ 2   ·   3 __ 5  

 =   4 √
—
 3   + 3 ________ 10  

Using the Sum and Difference Formulas for Tangent
Finding exact values for the tangent of the sum or difference of two angles is a little more complicated, but again, it is 
a matter of recognizing the pattern.

Finding the sum of two angles formula for tangent involves taking quotient of the sum formulas for sine and cosine 
and simplifying. Recall, tan x =   sin x ____ cos x  , cos x ≠ 0.

Let’s derive the sum formula for tangent.

 tan(α + β) =   
sin(α + β)

 _ 
cos(α + β)

   =   sin α cos β + cos α sin β  __________________  cos α cos β − sin α sin β  

 
= 

    sin α cos β + cos α sin β  __________________  cos α cos β   

  cos α cos β − sin α sin β  __________________  cos α cos β  

 
=  

   sin α cos β ________ cos α cos β   +   cos α sin β ________ cos α cos β   

   cos α cos β _________ cos α cos β   −   sin α sin β ________ cos α cos β  

 =    sin α ____ cos α   +   sin β ____ cos β   

1 −   sin α sin β ________ cos α cos β  

 =   tan α + tan β  ____________  1 − tan α tan β  

We can derive the difference formula for tangent in a similar way.

cos β =  √
—

 1 − sin2 β  

 =  √ 
______

 1 −   9 __ 25    

 =  √ 
___

   16 __ 25       

 =   4 __ 5  

Divide the numerator and 
denominator by cos α cos β
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sum and difference formulas for tangent 
The sum and difference formulas for tangent are:

tan(α + β) =   tan α + tan β  ___________  1 − tan α tan β     tan(α − β) =   tan α − tan β  ___________  1 + tan α tan β  

How To…
Given two angles, find the tangent of the sum of the angles.

1. Write the sum formula for tangent.
2. Substitute the given angles into the formula.
3. Simplify.

Example 5 Finding the Exact Value of an Expression Involving Tangent

Find the exact value of tan     π __ 6   +   π __ 4    .

Solution Let’s first write the sum formula for tangent and substitute the given angles into the formula.

 tan(α + β) =   
tan α + tan β

  __  
1 − tan α tan β

  

 tan     π __ 6   +   π __ 4     =      
tan     π __ 6     + tan     π __ 4    

  ___   
   1 −   tan     π __ 6    tan     π __ 4      

     

Next, we determine the individual tangents within the formulas:

 tan     π __ 6     =   1 _ 
 √

—
 3  
    tan     π __ 4     = 1

So we have

 tan    π __ 6   +   π __ 4     =   
  1 _ 
 √

—
 3  
   + 1
 __  

1 −     1 _ 
 √

—
 3  
    (1)

    

 =   
  1 +  √

—
 3   _ 

 √
—
 3  
  
 _ 

   √
—
 3   − 1 _ 

 √
—
 3  
  

  

 =   1 +  √
—
 3   _ 

 √
—
 3  
       √

—
 3   _ 

 √
—
 3   − 1

    

 =    √
—
 3   + 1 _ 

 √
—
 3   − 1

  

Try It #3

Find the exact value of tan     2π __ 3   +   π __ 4    .

Example 6 Finding Multiple Sums and Differences of Angles

Given sin α =   3 __ 5  , 0 < α <   π __ 2  , cos β = −  5 __ 13  , π < β <   3π __ 2  , find

a. sin(α + β)   b. cos(α + β)   c. tan(α + β)   d. tan(α − β)
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Solution We can use the sum and difference formulas to identify the sum or difference of angles when the ratio of 
sine, cosine, or tangent is provided for each of the individual angles. To do so, we construct what is called a reference 
triangle to help find each component of the sum and difference formulas.

a. To find sin(α + β), we begin with sin α =   3 __ 
5

   and 0 < α <   π __ 
2

  . The side opposite α has length 3, the hypotenuse 
has length 5, and α is in the first quadrant. See Figure 4. Using the Pythagorean Theorem,we can find the 
length of side a:

 a2 + 32 = 52

 a2 = 16
 a = 4

α

y

x

5

(4, 3)

(4, 0)

Figure 4

Since cos β = −  5 __ 13   and π < β <   3π __ 2  , the side adjacent to β is −5, the hypotenuse is 13, and β is in the third 
quadrant. See Figure 5. Again, using the Pythagorean Theorem, we have

 (−5)2 + a2 = 132

 25 + a2 = 169
 a2 = 144
 a = ±12

Since β is in the third quadrant, a = –12.

β

y

x
(–5, 0)

(–5, –12)

13

Figure 5

The next step is finding the cosine of α and the sine of β. The cosine of α is the adjacent side over the hypotenuse. 
We can find it from the triangle in Figure 5: cos α =   4 __ 5  . We can also find the sine of β from the triangle in Figure 5, 

as opposite side over the hypotenuse: sin β = −  12 __ 13  . Now we are ready to evaluate sin(α + β).

 sin(α + β) = sin αcos β + cos αsin β

 =     3 __ 5      −  5 __ 13     +     4 __ 5      −  12 __ 13    

 = −  15 __ 65   −   48 __ 65  

 = −  63 __ 65  
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 b. We can find cos(α + β) in a similar manner. We substitute the values according to the formula.

 cos(α + β) = cos α cos β − sin α sin β

 =     4 __ 5      −  5 __ 13     −     3 __ 5      −  12 __ 13    

 = −  20 __ 65   +   36 __ 65  

 =   16 __ 65  

 c. For tan(α + β), if sin α =   3 __ 
5

   and cos α =   4 __ 
5

  , then 

 tan α =   
  3 __ 5  

 _ 
  4 __ 5  

   =   3 __ 4  

If sin β = −  12 __ 13   and cos β = −  5 __ 13  , then

 tan β =   
  −12 _ 

13
  
 _ 

  −5 _ 
13

  
   =   12 __ 5  

Then,

 tan(α + β) =   
tan α + tan β

  __  
1 − tan α tan β

   =   
  3 __ 4   +   12 __ 5  

 __  
1 −   3 __ 4      12 __ 5    

  

 =   
  63 __ 20  

 _ 
−  16 __ 20  

  

 = −  63 __ 16  

 d. To find tan(α − β), we have the values we need. We can substitute them in and evaluate.

 tan(α − β) =   
tan α − tan β

  __  
1 + tan α tan β

   =   
  3 __ 4   −   12 __ 5  

 __  
1 +  3 __ 4       12 __ 5    

  

 =   
−  33 __ 20  

 _ 
  56 __ 20  

  

 = −  33 _ 
56

  

Analysi s A common mistake when addressing problems such as this one is that we may be tempted to think that α and 
β are angles in the same triangle, which of course, they are not. Also note that 

tan(α + β) =   sin(α + β) ________ cos(α + β)  
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Using Sum and Difference Formulas for Cofunctions
Now that we can find the sine, cosine, and tangent functions for the sums and differences of angles, we can use them 
to do the same for their cofunctions. You may recall from Right Triangle Trigonometry that, if the sum of two 
positive angles is   π __ 2  , those two angles are complements, and the sum of the two acute angles in a right triangle is   π __ 2  , 
so they are also complements. In Figure 6, notice that if one of the acute angles is labeled as θ, then the other acute 
angle must be labeled     π __ 2   − θ  .

Notice also that sin θ = cos     π __ 2   − θ  : opposite over hypotenuse. Thus, when two angles are complimentary, we can 
say that the sine of θ equals the cofunction of the complement of θ. Similarly, tangent and cotangent are cofunctions, 
and secant and cosecant are cofunctions.

2

θ

π – θ

Figure 6

From these relationships, the cofunction identities are formed. 

cofunction identities 
The cofunction identities are summarized in Table 2.

sin θ = cos     π __ 2   − θ   cos θ = sin     π __ 2   − θ  tan θ = cot     π __ 2   − θ  

sec θ = csc     π __ 2   − θ  csc θ = sec     π __ 2   − θ  cot θ = tan     π __ 2   − θ  

Table 2 

Notice that the formulas in the table may also be justified algebraically using the sum and difference formulas. For 
example, using
 cos(α − β) = cos αcos β + sin αsin β,
we can write
 cos     π __ 2   − θ   = cos  π __ 2   cos θ + sin  π __ 2   sin θ

 = (0)cos θ + (1)sin θ

 = sin θ

Example 7 Finding a Cofunction with the Same Value as the Given Expression

Write tan   π __ 9   in terms of its cofunction.

Solution The cofunction of tan θ = cot     π __ 2   − θ  . Thus,

 tan     π __ 9     = cot     π __ 2   −   π __ 9    

 = cot     9π ___ 18   −   2π ___ 18    

 = cot     7π ___ 18    
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Try It #4

Write sin   π __ 7   in terms of its cofunction.

Using the Sum and Difference Formulas to Verify Identities
Verifying an identity means demonstrating that the equation holds for all values of the variable. It helps to be very 
familiar with the identities or to have a list of them accessible while working the problems. Reviewing the general 
rules from Solving Trigonometric Equations with Identities may help simplify the process of verifying an identity.

How To…
Given an identity, verify using sum and difference formulas.

1. Begin with the expression on the side of the equal sign that appears most complex. Rewrite that expression until it 
matches the other side of the equal sign. Occasionally, we might have to alter both sides, but working on only one 
side is the most efficient.

2. Look for opportunities to use the sum and difference formulas.
3. Rewrite sums or differences of quotients as single quotients.
4. If the process becomes cumbersome, rewrite the expression in terms of sines and cosines.

Example 8 Verifying an Identity Involving Sine

Verify the identity sin(α + β) + sin(α − β) = 2 sin α cos β.

Solution We see that the left side of the equation includes the sines of the sum and the difference of angles.

sin(α + β) = sin α cos β + cos α sin β

sin(α − β) = sin α cos β − cos α sin β

We can rewrite each using the sum and difference formulas.

sin(α + β) + sin(α − β) = sin α cos β + cos α sin β + sin α cos β − cos α sin β

 = 2 sin α cos β

We see that the identity is verified.

Example 9 Verifying an Identity Involving Tangent

Verify the following identity.

   
sin(α − β)

 _ 
cos α cos β

   = tan α − tan β

Solution We can begin by rewriting the numerator on the left side of the equation.

   
sin(α − β)

 _ 
cos α cos β

   =   
sin α cos β − cos α sin β

  __  
cos α cos β

   

 =   
sin α cos β

 _ 
cos α cos β

   −   
cos α sin β 

 _ 
cos α cos β

    Rewrite using a common denominator.

 =   sin α _ cos α   −   
sin β

 _ 
cos β

   Cancel.

 = tan α − tan β Rewrite in terms of tangent.

We see that the identity is verified. In many cases, verifying tangent identities can successfully be accomplished by 
writing the tangent in terms of sine and cosine.
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Try It #5

Verify the identity: tan(π − θ) = −tan θ.

Example 10    Using Sum and Difference Formulas to Solve an Application Problem

Let L1 and L2 denote two non-vertical intersecting lines, and let θ denote the acute angle between L1 and L2. 
See Figure 7. Show that

tan θ =   
m2 − m1 _ 

1 + m1 m2

  

where m1 and m2 are the slopes of L1 and L2 respectively. (Hint: Use the fact that tan θ1 = m1 and tan θ2 = m2.)

θ

θ1
θ2

y

x

L1 L2

Figure 7

Solution Using the difference formula for tangent, this problem does not seem as daunting as it might.

 tan θ = tan(θ2 − θ1)

 =   
tan θ2 − tan θ1  __  

1 + tan θ1 tan θ2

  

 =   
m2 − m1 _ 

1 + m1m2

  

Example 11   Investigating a Guy-wire Problem

For a climbing wall, a guy-wire R is attached 47 feet high on a vertical pole. Added support is provided by another 
guy-wire S attached 40 feet above ground on the same pole. If the wires are attached to the ground 50 feet from the 
pole, find the angle α between the wires. See Figure 8.

α
β

R

S
47 �

40 �

50 �
Figure 8

Solution Let’s first summarize the information we can gather from the diagram. As only the sides adjacent to the 

right angle are known, we can use the tangent function. Notice that tan β =   47 __ 50  , and tan( β − α) =   40 __ 50   =   4 __ 5  . We can 
then use difference formula for tangent.

tan(β − α) =   
tan β − tan α

  __  
1 + tan β tan α
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Now, substituting the values we know into the formula, we have

   4 __ 5   =   
  47 __ 50   − tan α

 __  
1 +   47 ___ 50   tan α

    

 4   1 +   47 __ 50  tan α   = 5    47 __ 50   − tan α   

Use the distributive property, and then simplify the functions.

 4(1) + 4    47 __ 50     tan α = 5    47 __ 50     − 5tan α

 4 + 3.76tan α = 4.7 − 5tan α

 5tan α + 3.76tan α = 0.7

 8.76tan α = 0.7

 tan α ≈ 0.07991

 tan−1(0.07991) ≈ .079741

Now we can calculate the angle in degrees.

α ≈ 0.079741    180 ___ π     ≈ 4.57°

Analysi s Occasionally, when an application appears that includes a right triangle, we may think that solving is a matter 
of applying the Pythagorean Theorem. That may be partially true, but it depends on what the problem is asking and what 
information is given.

Access these online resources for additional instruction and practice with sum and difference identities.

•	 Sum and Difference Identities for Cosine (http://openstaxcollege.org/l/sumdifcos)

•	 Sum and Difference Identities for Sine (http://openstaxcollege.org/l/sumdifsin)

•	 Sum and Difference Identities for Tangent (http://openstaxcollege.org/l/sumdiftan)

http://openstaxcollege.org/l/sumdifcos
http://openstaxcollege.org/l/sumdifsin
http://openstaxcollege.org/l/sumdiftan


582 CHAPTER 7 trigonometric  identities and  eQuations

7.2 SeCTIOn exeRCISeS

VeRBAl

1. Explain the basis for the cofunction identities and 
when they apply.

2. Is there only one way to evaluate cos     5π ___ 4     ? Explain 
how to set up the solution in two different ways, 
and then compute to make sure they give the same 
answer.

3. Explain to someone who has forgotten the  
even-odd properties of sinusoidal functions how the 
addition and subtraction formulas can determine 
this characteristic for f(x) = sin(x) and g(x) = cos(x). 
(Hint: 0 − x = −x)

AlGeBRAIC
For the following exercises, find the exact value.

4. cos     7π ___ 12    5. cos     π __ 12    6. sin     5π ___ 12    7. sin     11π ___ 12    

8. tan   −  π __ 12    9. tan     19π ___ 12    

For the following exercises, rewrite in terms of sin x and cos x.

10. sin   x +   11π ___ 6     11. sin   x −   3π ___ 4    12. cos   x −   5π ___ 6    13. cos   x +   2π ___ 3    

For the following exercises, simplify the given expression.

14. csc     π __ 2   − t  15. sec     π __ 2   − θ  16. cot     π __ 2   − x  17. tan     π __ 2   − x  

18. sin(2x) cos(5x) − sin(5x) cos(2x) 19.     tan     3 __ 2  x   − tan     7 __ 5  x   

1 + tan     3 __ 2  x   tan     7 __ 5  x  

For the following exercises, find the requested information.

20. Given that sin a =   2 __ 3   and cos b = −  1 __ 4  , with a and b both in the interval     π __ 2  , π   , find sin(a + b) and cos(a − b).

21. Given that sin a =   4 __ 5  , and cos b =   1 __ 3  , with a and b both in the interval   0,   π __ 2     , find sin(a − b) and cos(a + b).

For the following exercises, find the exact value of each expression.

22. sin   cos−1(0) − cos−1     1 __ 2      23. cos   cos−1      √
—
 2   ____ 2     + sin− 1     √

—
 3   ____ 2      

24. tan   sin−1    1 __ 2     − cos−1     1 __ 2      
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GRAPHICAl

For the following exercises, simplify the expression, and then graph both expressions as functions to verify the graphs 
are identical.

25. cos     π __ 2   − x  26. sin(π − x) 27. tan     π __ 3   + x  28. sin     π __ 3   + x  

29. tan     π __ 4   − x  30. cos     7π ___ 6   + x  31. sin     π __ 4   + x  32. cos     5π ___ 4   + x  

For the following exercises, use a graph to determine whether the functions are the same or different. If they are the 
same, show why. If they are different, replace the second function with one that is identical to the first. (Hint: think 
2x = x + x. )

33. f(x) = sin(4x) − sin(3x)cos x, g(x) = sin x cos(3x) 34. f(x) = cos(4x) + sin x sin(3x), g(x) = −cos x cos(3x)

35. f(x) = sin(3x)cos(6x), g(x) = −sin(3x)cos(6x) 36. f(x) = sin(4x), g(x) = sin(5x)cos x − cos(5x)sin x

37. f(x) = sin(2x), g(x) = 2 sin x cos x 38. f(θ) = cos(2θ), g(θ) = cos2 θ − sin2 θ

39. f(θ) = tan(2θ), g(θ) =   tan θ _ 
1 + tan2θ

  40. f(x) = sin(3x)sin x,  
g(x) = sin2(2x)cos2 x − cos2(2x)sin2 x

41. f(x) = tan(−x), g(x) =   
tan x − tan(2x)

  __  
1 − tan x tan(2x)

  

TeCHnOlOGY
For the following exercises, find the exact value algebraically, and then confirm the answer with a calculator to the 
fourth decimal point.

42. sin(75°) 43. sin(195°) 44. cos(165°) 45. cos(345°)

46. tan(−15°)

exTenSIOnS

For the following exercises, prove the identities provided.

47. tan   x +   π __ 4     =   tan x + 1 ________ 1 − tan x  48.   tan(a + b) ________ tan(a − b)   =   sin a cos a + sin b cos b  __________________  sin a cos a − sin b cos b  

49.   cos(a + b) ________ cos a cos b   = 1 − tan a tan b 50. cos(x + y)cos(x − y) = cos2 x − sin2 y

51.   cos(x + h) − cos x  ______________ h   = cos x   cos h − 1 _ 
h

   − sin x  sin h _ 
h

  

For the following exercises, prove or disprove the statements.

52. tan(u + v) =   tan u + tan v  ___________  1 − tan u tan v  53. tan(u − v) =   tan u − tan v  ___________  1 + tan u tan v  

54.   
tan(x + y)

 __  
1 + tan x tan x

   =   
tan x + tan y

  __  
1 − tan2 x tan2 y

  55. If α, β, and γ are angles in the same triangle, then 
prove or disprove sin(α + β) = sin γ.

56. If α, β, and γ are angles in the same triangle, then 
prove or disprove:  
tan α + tan β + tan γ = tan α tan β tan γ.
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leARnInG OBjeCTIVeS

In this section, you will:
•	  Use double-angle formulas to find exact values.
•	  Use double-angle formulas to verify identities.
•	  Use reduction formulas to simplify an expression.
•	  Use half-angle formulas to find exact values.

7. 3 DOUBle-AnGle, HAlF-AnGle, AnD ReDUCTIOn FORMUlAS

Figure 1 Bicycle ramps for advanced riders have a steeper incline than those designed for novices.

Bicycle ramps made for competition (see Figure 1) must vary in height depending on the skill level of the competitors. 
For advanced competitors, the angle formed by the ramp and the ground should be θ such that tan θ =   5 __ 3  . The angle 
is divided in half for novices. What is the steepness of the ramp for novices ? In this section, we will investigate three 
additional categories of identities that we can use to answer questions such as this one.

Using Double-Angle Formulas to Find exact Values
In the previous section, we used addition and subtraction formulas for trigonometric functions. Now, we take another 
look at those same formulas. The double-angle formulas are a special case of the sum formulas, where α = β. Deriving 
the double-angle formula for sine begins with the sum formula,

 sin(α + β) = sin α cos β + cos α sin β

If we let α = β = θ, then we have

 sin(θ + θ) = sin θ cos θ + cos θ sin θ

 sin(2θ) = 2sin θ cos θ

Deriving the double-angle for cosine gives us three options. First, starting from the sum formula,  
cos(α + β) = cos α cos β − sin α sin β, and letting α = β = θ, we have

 cos(θ + θ) = cos θ cos θ − sin θ sin θ

 cos(2θ) = cos2 θ − sin2 θ

Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more 
interpretations. The first one is:

 cos(2θ) = cos2 θ − sin2 θ

 = (1 − sin2 θ) − sin2 θ

 = 1 − 2sin2 θ

The second interpretation is:

 cos(2θ) = cos2 θ − sin2 θ

 = cos2 θ − (1 − cos2 θ)

 = 2 cos2 θ − 1
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Similarly, to derive the double-angle formula for tangent, replacing α = β = θ in the sum formula gives

tan(α + β) =   tan α + tan β  ____________  1 − tan α tan β  

 tan(θ + θ) =    tan θ + tan θ  ___________  
1 − tan θ tan θ

   tan(2θ) =   2tan θ ________ 1 − tan2 θ  

double-angle formulas 
The double-angle formulas are summarized as follows:

 sin(2θ) = 2 sin θ cos θ

 cos(2θ) = cos2 θ − sin2 θ

 = 1 − 2 sin2 θ

 = 2 cos2 θ − 1

 tan(2θ) =   2 tan θ ________ 1 − tan2 θ  

How To…
Given the tangent of an angle and the quadrant in which it is located, use the double-angle formulas to find the exact 
value.

1. Draw a triangle to reflect the given information.
2. Determine the correct double-angle formula.
3. Substitute values into the formula based on the triangle.
4. Simplify.

Example 1  Using a Double-Angle Formula to Find the Exact Value Involving Tangent

Given that tan θ = −  3 __ 
4

   and θ is in quadrant II, find the following:

a. sin(2θ)   b. cos(2θ)   c. tan(2θ)

Solution If we draw a triangle to reflect the information given, we can find the values needed to solve the problems 
on the image. We are given tan θ = −  3 __ 

4
  , such that θ is in quadrant II. The tangent of an angle is equal to the opposite 

side over the adjacent side, and because θ is in the second quadrant, the adjacent side is on the x-axis and is negative. 
Use the Pythagorean Theorem to find the length of the hypotenuse:

 (−4)2 + (3)2 = c2

 16 + 9 = c2

 25 = c2

 c = 5

Now we can draw a triangle similar to the one shown in Figure 2.

5

x

y

θ

(–4, 3)

(–4, 0)

Figure 2
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a. Let’s begin by writing the double-angle formula for sine.
 sin(2θ) = 2 sin θ cos θ

We see that we to need to find sin θ and cos θ. Based on Figure 2, we see that the hypotenuse equals 5, so 
sin θ =   3 __ 

5
  , and cos θ = −  4 __ 

5
  . Substitute these values into the equation, and simplify.

Thus,
 sin(2θ) = 2     3 __ 5      −  4 __ 5    

 = −  24 __ 
25  b. Write the double-angle formula for cosine.

 cos(2θ) = cos2 θ − sin2 θ

  Again, substitute the values of the sine and cosine into the equation, and simplify.

 cos(2θ) =   −  4 __ 5    
2
 −     3 __ 5    

2
 

 =   16 __ 25   −   9 __ 25  

 =   7 __ 25  

c. Write the double-angle formula for tangent.

 tan(2θ) =   2 tan θ ________ 1 − tan2 θ  

  In this formula, we need the tangent, which we were given as tan θ = −  3 __ 
4

  . Substitute this value into the 
equation, and simplify.

 tan(2θ) =      
2   −  3 __ 4    

 __  
1 −   −  3 __ 4     

2 
 
  

 =    
−  3 __ 2  

 _ 
1 −   9 __ 16  

  

 = −  3 __ 2      16 __ 7    

 = −  24 __ 7  

Try It #1

Given sin α =   5 __ 8  , with θ in quadrant I, find cos(2α).

Example 2  Using the Double-Angle Formula for Cosine without Exact Values

Use the double-angle formula for cosine to write cos(6x) in terms of cos(3x).

Solution cos(6x) = cos(2(3x))
 = cos2 3x − sin2 3x
 = 2cos2 3x − 1

Analysis This example illustrates that we can use the double-angle formula without having exact values. It emphasizes that 
the pattern is what we need to remember and that identities are true for all values in the domain of the trigonometric function.

Using Double-Angle Formulas to Verify Identities
Establishing identities using the double-angle formulas is performed using the same steps we used to derive the sum 
and difference formulas. Choose the more complicated side of the equation and rewrite it until it matches the other side.

Example 3 Using the Double-Angle Formulas to Establish an Identity

Establish the following identity using double-angle formulas:  1 + sin(2θ) = (sin θ + cos θ)2
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Solution We will work on the right side of the equal sign and rewrite the expression until it matches the left side.
 (sin θ + cos θ)2 = sin2 θ + 2 sin θ cos θ + cos2 θ
 = (sin2 θ + cos2 θ) + 2 sin θ cos θ
 = 1 + 2 sin θ cos θ
 = 1 + sin(2θ)

Analysi s This process is not complicated, as long as we recall the perfect square formula from algebra:

 (a ± b)2 = a2 ± 2ab + b2 

where a = sin θ and b = cos θ. Part of being successful in mathematics is the ability to recognize patterns. While the 
terms or symbols may change, the algebra remains consistent.

Try It #2

Establish the identity: cos4 θ − sin4 θ = cos(2θ).

Example 4 Verifying a Double-Angle Identity for Tangent

Verify the identity:
tan(2θ) =   2 __________  

cot θ − tan θ
  

Solution In this case, we will work with the left side of the equation and simplify or rewrite until it equals the right 
side of the equation.

 tan(2θ) =   2 tan θ ________ 1 − tan2 θ   Double-angle formula

 =     
2 tan θ     1 ____ tan θ    

  __  
(1 − tan2 θ)    1 ____ tan θ    

     Multiply by a term that results  
in desired numerator.

 =   2 __  

  1 ____ tan θ   −   tan2 θ _____ tan θ  
  

 =   2 __________  cot θ − tan θ   Use reciprocal identity for   1 ____ tan θ  .

Analysi s Here is a case where the more complicated side of the initial equation appeared on the right, but we chose to 
work the left side. However, if we had chosen the left side to rewrite, we would have been working backwards to arrive at 
the equivalency. For example, suppose that we wanted to show

   2tan θ ________ 1 − tan2 θ   =   2 __________  cot θ − tan θ  

Let’s work on the right side.

   2 __________  cot θ − tan θ   =   2 __  
  1 ____ tan θ   − tan θ

       tan θ ____ tan θ    

 =    2 tan θ  ___   
      1 _ 

tan θ
   (tan θ) − tan θ(tan θ)

  

 =    2 tan θ _ 
1 − tan2 θ

  

When using the identities to simplify a trigonometric expression or solve a trigonometric equation, there are usually 
several paths to a desired result. There is no set rule as to what side should be manipulated. However, we should begin 
with the guidelines set forth earlier.

Try It #3

Verify the identity: cos(2θ)cos θ = cos3 θ − cos θ sin2 θ.
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Use Reduction Formulas to Simplify an expression
The double-angle formulas can be used to derive the reduction formulas, which are formulas we can use to reduce the 
power of a given expression involving even powers of sine or cosine. They allow us to rewrite the even powers of sine 
or cosine in terms of the first power of cosine. These formulas are especially important in higher-level math courses, 
calculus in particular. Also called the power-reducing formulas, three identities are included and are easily derived 
from the double-angle formulas.

We can use two of the three double-angle formulas for cosine to derive the reduction formulas for sine and cosine. 
Let’s begin with cos(2θ) = 1 − 2 sin2 θ. Solve for sin2 θ:
 cos(2θ) = 1 − 2 sin2 θ
 2 sin2 θ = 1 − cos(2θ)

 sin2 θ =   1 − cos(2θ) _________ 2  

Next, we use the formula cos(2θ) = 2 cos2 θ − 1. Solve for cos2 θ:
 cos(2θ) = 2 cos2 θ − 1
 1 + cos(2θ) = 2 cos2 θ

   1 + cos(2θ) _________ 2   = cos2 θ

The last reduction formula is derived by writing tangent in terms of sine and cosine:

 tan2 θ =   sin2 θ _____ cos2 θ  

 =    
  1 − cos(2θ) _________ 2  

 __  
  1 + cos(2θ) _________ 2  

   Substitute the reduction formulas.

 =     1 − cos(2θ) _________ 2        2 _________ 1 + cos(2θ)    

 =   1 − cos(2θ) _________ 1 + cos(2θ)  

reduction formulas 
The reduction formulas are summarized as follows:
 

sin2 θ =   1 − cos(2θ) _________ 2     cos2 θ =   1 + cos(2θ) _________ 2     tan2 θ =   1 − cos(2θ) _________ 1 + cos(2θ)  

Example 5  Writing an Equivalent Expression Not Containing Powers Greater Than 1

Write an equivalent expression for cos4 x that does not involve any powers of sine or cosine greater than 1.

Solution We will apply the reduction formula for cosine twice.

 cos4 x = (cos2 x)2

 =      1 + cos(2x) _________ 2     
2
   Substitute reduction formula for cos2 x.

 =   1 __ 4  (1 + 2cos(2x) + cos2(2x))

 =   1 __ 4   +   1 __ 2   cos(2x) +   1 __ 4      1 + cos2(2x) __________ 2      Substitute reduction formula for cos2 x.

 =   1 __ 4   +   1 __ 2   cos(2x) +   1 __ 8   +   1 __ 8   cos(4x)

 =   3 __ 8   +   1 __ 2   cos(2x) +   1 __ 8   cos(4x)

Analysi s The solution is found by using the reduction formula twice, as noted, and the perfect square formula from 
algebra.
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Example 6  Using the Power-Reducing Formulas to Prove an Identity

Use the power-reducing formulas to prove
 sin3 (2x) =     1 __ 2   sin(2x)   [1 − cos(4x)]

Solution We will work on simplifying the left side of the equation:

 sin3(2x) = [sin(2x)][sin2(2x)]

 = sin(2x)     1 − cos(4x) _________ 2      Substitute the power-reduction formula.

 = sin(2x)    1 __ 2    [1 − cos(4x)]

 =   1 __ 2  [sin(2x)][1 − cos(4x)]

Analysi s Note that in this example, we substituted

   1 − cos(4x) _________ 2  

for sin2(2x). The formula states
 sin2 θ =   1 − cos(2θ) _________ 2  

We let θ = 2x, so 2θ = 4x.

Try It #4

Use the power-reducing formulas to prove that 10 cos4 x =   15 __ 4   + 5 cos(2x) +   5 __ 4   cos(4x).

Using Half-Angle Formulas to Find exact Values
The next set of identities is the set of half-angle formulas, which can be derived from the reduction formulas and we can 
use when we have an angle that is half the size of a special angle. If we replace θ with   α __ 2  , the half-angle formula for sine 
is found by simplifying the equation and solving for sin     α __ 2    . Note that the half-angle formulas are preceded by a  ± sign.

This does not mean that both the positive and negative expressions are valid. Rather, it depends on the quadrant in 
which   α __ 2   terminates.

The half-angle formula for sine is derived as follows:

 sin2 θ =    1 − cos(2θ) _________ 2  

 sin2     α __ 2     =      
1 − cos   2 ⋅   α __ 2    

  __ 
2

  

 =     1 − cos α ________ 2  

 sin      α __ 2      = ±  √ 
_________

   1 − cos α ________ 2        

To derive the half-angle formula for cosine, we have

 cos2 θ =   1 + cos(2θ) _________ 2  

 cos2    α __ 2     =       
1 + cos   2 ⋅   α __ 2    

  __ 
2

  

 =    1 + cos α ________ 2  

 cos      α __ 2      = ±  √ 
_________

   1 + cos α ________ 2        
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For the tangent identity, we have
 tan2 θ =    1 − cos(2θ) _________ 1 + cos(2θ)  

 tan2     α __ 2     =      
1 − cos  2 ⋅   α __ 2    

  __  
1 + cos  2 ⋅   α __ 2    

  

 =     1 − cos α ________ 1 + cos α  

 tan     α __ 2     = ±  √ 
_________

   1 − cos α _ 
1 + cos α

     

half-angle formulas 
The half-angle formulas are as follows:
 sin     α __ 2     = ±  √ 

_________

   1 − cos α ________ 2      

 cos     α __ 2     = ±  √ 
_________

   1 + cos α ________ 2      

 tan     α __ 2     = ±  √ 
_________

   1 − cos α ________ 1 + cos α      

  =     sin α ________ 1 + cos α  

 =     1 − cos α ________ sin α   

Example 7  Using a Half-Angle Formula to Find the Exact Value of a Sine Function

Find sin(15°) using a half-angle formula.

Solution Since 15° =   30° ___ 2   , we use the half-angle formula for sine:

 sin   30° ___ 2   =   √ 
__________

   1 − cos30° _________ 2     

 =  √ 
—————

   
1 −    √

—
 3   _ 

2
  
 _ 

2
    

 =  √ 
—————

   
  2 −  √

—
 3   _______ 2  
 _ 

2
    

 =  √ 

________

   2 −  √
—
 3   _______ 4    

 =   
 √ 

_______

 2 −  √
—
 3    
 _ 

2
     

Analysi s Notice that we used only the positive root because sin(15°) is positive.

How To…
Given the tangent of an angle and the quadrant in which the angle lies, find the exact values of trigonometric functions 
of half of the angle.
1. Draw a triangle to represent the given information.
2. Determine the correct half-angle formula.
3. Substitute values into the formula based on the triangle.
4. Simplify.
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Example 8 Finding Exact Values Using Half-Angle Identities

Given that tan α =   8 __ 15   and α lies in quadrant III, find the exact value of the following:

a. sin     α __ 2       b. cos     α __ 2       c. tan     α __ 2    

Solution Using the given information, we can draw the triangle shown in Figure 3. Using the Pythagorean Theorem, 

we find the hypotenuse to be 17. Therefore, we can calculate sin α = −  8 __ 17   and cos α = −  15 __ 17  .

17

x

y

(–15, 0)

(–15, –8)

α

Figure 3

a.  Before we start, we must remember that, if α is in quadrant III, then 180° < α < 270°, so   180° ____ 2   <   α __ 2   <   270° ____ 2  . 

This means that the terminal side of   α __ 2   is in quadrant II, since 90° <   α __ 2   < 135°. To find sin   α __ 2  , we begin by writing 

the half-angle formula for sine. Then we substitute the value of the cosine we found from the triangle in Figure 
3 and simplify.

 sin   α _ 
2

   = ±   √ 
_________

   1 − cos α _ 
2

       

  = ±   √ 
———————

      
1 −  −  15 _ 

17
    
 __ 

2
         

 = ±   √ 
———

   
  32 _ 
17

  
 _ 

2
     

 = ±  √ 
______

   32 _ 
17

   ·   1 _ 
2

    

 = ±   √ 
___

   16 _ 
17

     

 = ±   4 _ 
 √

—
 17  
  

 =   4 √
—

 17   _ 
17

  

We choose the positive value of sin   α __ 2   because the angle terminates in quadrant II and sine is positive in 
quadrant II.

b.  To find cos   α __ 2  , we will write the half-angle formula for cosine, substitute the value of the cosine we found from 
the triangle in Figure 3, and simplify.
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 cos      α __ 2     = ±   √ 
__________

     1 + cos α ________ 2       

  = ±   √ 

———————————

    
1 +   −  15 ___ 17    

 __ 
2

       

 = ±  √ 

———

   
  2 _ 
17

  
 _ 

2
    

 = ±  √ 
______

   2 __ 17   ·  1 __ 2    

 = ±   √ 
___

   1 __ 17     

 = −    √
—

 17   _ 
17

  

We choose the negative value of cos   α __ 2   because the angle is in quadrant II because cosine is negative in 
quadrant II.

c.  To find tan   α __ 2  , we write the half-angle formula for tangent. Again, we substitute the value of the cosine we 
found from the triangle in Figure 3 and simplify.

 tan    α _ 
2

    = ±   √ 
_________

   1 − cos α _ 
1 + cos α

     

 = ±   √
————————

      
1 −   −  15 _ 

17
     
  __  

   1 +   −  15 _ 
17

    
     

 = ±   √
——

   
  32 _ 
17

  
 _ 

  2 _ 
17

  
      = ± √ 

___

   32 _ 
2

    

 = − √
—

 16  

 = −4

We choose the negative value of tan   α __ 2   because   α __ 2   lies in quadrant II, and tangent is negative in quadrant II.

Try It #5

Given that sin α = −  4 __ 5   and α lies in quadrant IV, find the exact value of cos     α __ 2    .

Example 9 Finding the Measurement of a Half Angle

Now, we will return to the problem posed at the beginning of the section. A bicycle ramp is constructed for high-level 
competition with an angle of θ formed by the ramp and the ground. Another ramp is to be constructed half as steep 
for novice competition. If tan θ =   5 __ 3   for higher-level competition, what is the measurement of the angle for novice 
competition?
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Solution Since the angle for novice competition measures half the steepness of the angle for the high-level competition, 
and tan θ =   5 __ 3   for high-level competition, we can find cos θ from the right triangle and the Pythagorean theorem so 
that we can use the half-angle identities. See Figure 4.

 32 + 52 = 34

 c =  √
—

 34  

5

3

34

θ

Figure 4

We see that cos θ =   3 _ 
 √

—
 34  
   =    3 √

—
 34   _ 34  . We can use the half-angle formula for tangent: tan   θ _ 2   =  √ 

_________

   1 − cos θ _ 1 + cos θ    . Since tan θ  

is in the first quadrant, so is tan   θ _ 2  . Thus,

 tan   θ _ 2   =   √
——————

   
1 −   3 √

—
 34   _ 34  
 __ 

1 +   3 √
—

 34   _ 34  
    

 =   √
——————

    
  34 − 3 √

—
 34   __ 34  
 __ 

  34 + 3 √
—

 34   __ 34

  
     =   √ 

___________

   34 − 3 √
—

 34   __________ 34 + 3 √
—

 34       

 ≈ 0.57

We can take the inverse tangent to find the angle: tan−1 (0.57) ≈ 29.7°. So the angle of the ramp for novice competition 
is ≈ 29.7°.

Access these online resources for additional instruction and practice with double-angle, half-angle, and reduction 
formulas.

•	 Double-Angle Identities (http://openstaxcollege.org/l/doubleangiden)

•	 Half-Angle Identities (http://openstaxcollege.org/l/halfangleident)

http://openstaxcollege.org/l/doubleangiden
http://openstaxcollege.org/l/halfangleident
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7.3 SeCTIOn exeRCISeS

VeRBAl

1. Explain how to determine the reduction identities 
from the double-angle identity  
cos(2x) = cos2 x − sin2 x.

2. Explain how to determine the double-angle formula  
for tan(2x) using the double-angle formulas for 
cos(2x) and sin(2x).

3. We can determine the half-angle formula for tan  

   x __ 2     = ±     √
—

 1 − cos x   __  
 √
—

 1 + cos x  
   by dividing the formula for 

sin     x __ 2     by cos     x __ 2    . Explain how to determine two 

formulas for tan     x __ 2     that do not involve any square 
roots.

4. For the half-angle formula given in the previous 
exercise for tan     x _ 2    , explain why dividing by 0 is not a 
concern. (Hint: examine the values of cos x necessary 
for the denominator to be 0.)

AlGeBRAIC

For the following exercises, find the exact values of a) sin(2x), b) cos(2x), and c) tan(2x) without solving for x.

5. If sin x =   1 __ 8  , and x is in quadrant I. 6. If cos x =   2 __ 3  , and x is in quadrant I.

7. If cos x = −  1 __ 2  , and x is in quadrant III. 8. If tan x = −8, and x is in quadrant IV.

For the following exercises, find the values of the six trigonometric functions if the conditions provided hold.

9. cos(2θ) =  3 __ 5   and 90° ≤ θ ≤ 180° 10. cos(2θ) =   1 _ 
 √

—
 2   
  and 180° ≤ θ ≤ 270°

For the following exercises, simplify to one trigonometric expression.

11. 2 sin     π __ 4     2 cos     π __ 4    12. 4 sin     π __ 8     cos     π __ 8    

For the following exercises, find the exact value using half-angle formulas.

13. sin     π __ 8    14. cos   −  11π ___ 12    15. sin     11π ___ 12    16. cos     7π ___ 8    

17. tan     5π ___ 12    18. tan   −  3π ___ 12    19. tan   −  3π ___ 8    

For the following exercises, find the exact values of a) sin     x __ 2    , b) cos     x __ 2    , and c) tan     x __ 2     without solving for x, when 
0 ≤ x ≤ 360°.

20. If tan x = −  4 __ 3  , and x is in quadrant IV. 21. If sin x = −  12 __ 13  , and x is in quadrant III.

22. If csc x = 7, and x is in quadrant II. 23. If sec x = −4, and x is in quadrant II.
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For the following exercises, use Figure 5 to find the requested half and double angles.

5

12
θ

α

Figure 5

24. Find sin(2θ), cos(2θ), and tan(2θ). 25. Find sin(2α), cos(2α), and tan(2α).

26. Find sin     θ __ 2    , cos     θ __ 2    , and tan     θ __ 2    . 27. Find sin     α __ 2    , cos     α __ 2    , and tan     α __ 2    .

For the following exercises, simplify each expression. Do not evaluate.

28. cos2(28°) − sin2(28°) 29. 2 cos2(37°) − 1 30. 1 − 2 sin2(17°)
31. cos2(9x) − sin2(9x) 32. 4 sin(8x) cos(8x) 33. 6 sin(5x) cos(5x)

For the following exercises, prove the identity given.

34. (sin t − cos t)2 = 1 − sin(2t) 35. sin(2x) = −2 sin(−x) cos(−x)

36. cot x − tan x = 2 cot(2x) 37.   sin(2θ) _________ 1 + cos(2θ)  tan2 θ = tan3 θ

For the following exercises, rewrite the expression with an exponent no higher than 1.

38. cos2(5x) 39. cos2(6x) 40. sin4(8x) 41. sin4(3x)
42. cos2 x sin4 x 43. cos4 x sin2 x 44. tan2 x sin2 x

TeCHnOlOGY
For the following exercises, reduce the equations to powers of one, and then check the answer graphically.

45. tan4 x 46. sin2(2x) 47. sin2 x cos2 x 48. tan2 x sin x

49. tan4 x cos2 x 50. cos2 x sin(2x) 51. cos2 (2x)sin x 52. tan2     x __ 2     sin x

For the following exercises, algebraically find an equivalent function, only in terms of sin x and/or cos x, and then 
check the answer by graphing both equations.

53. sin(4x) 54. cos(4x)

exTenSIOnS
For the following exercises, prove the identities.

55. sin(2x) =   2 tan x ________ 1 + tan2 x  56. cos(2α) =   1 − tan2 α ________ 1 + tan2 α  

57. tan(2x) =   2 sin x cos x _________ 2 cos2 x − 1  58. (sin2 x − 1)2 = cos(2x) + sin4 x

59. sin(3x) = 3 sin x cos2 x − sin3 x 60. cos(3x) = cos3 x − 3 sin2 x cos x

61.   1 + cos(2t) ___________  sin(2t) − cos t   =   2 cos t ________ 2 sin t − 1  62. sin(16x) = 16 sin x cos x cos(2x)cos(4x)cos(8x)

63. cos(16x) = (cos2 (4x) − sin2 (4x) − sin(8x))(cos2 (4x) − sin2 (4x) + sin(8x))
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leARnInG OBjeCTIVeS

In this section, you will:
•	  Express products as sums.
•	  Express sums as products.

7.4 SUM-TO-PRODUCT AnD PRODUCT-TO-SUM FORMUlAS

Figure 1 The UCLA marching band (credit: Eric Chan, Flickr).

A band marches down the field creating an amazing sound that bolsters the crowd. That sound travels as a wave that 
can be interpreted using trigonometric functions. For example, Figure 2 represents a sound wave for the musical note 
A. In this section, we will investigate trigonometric identities that are the foundation of everyday phenomena such as 
sound waves.

0.002 0.004 0.006 0.008 0.01
–1

1

x

y

Figure 2

expressing Products as Sums
We have already learned a number of formulas useful for expanding or simplifying trigonometric expressions, but 
sometimes we may need to express the product of cosine and sine as a sum. We can use the product-to-sum formulas, 
which express products of trigonometric functions as sums. Let’s investigate the cosine identity first and then the sine 
identity.

Expressing Products as Sums for Cosine

We can derive the product-to-sum formula from the sum and difference identities for cosine. If we add the two 
equations, we get:

 cos α cos β + sin α sin β = cos(α − β)

 + cos α cos β − sin α sin β = cos(α + β)

 2 cos α cos β = cos(α − β) + cos(α + β)

Then, we divide by 2 to isolate the product of cosines:

 cos α cos β =   1 __ 2  [cos(α − β) + cos(α + β)]
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How To…
Given a product of cosines, express as a sum.

1. Write the formula for the product of cosines.
2. Substitute the given angles into the formula.
3. Simplify.

Example 1  Writing the Product as a Sum Using the Product-to-Sum Formula for Cosine

Write the following product of cosines as a sum: 2 cos     7x __ 2     cos   3x __ 2  .

Solution We begin by writing the formula for the product of cosines:

 cos α cos β =   1 __ 2  [cos(α − β) + cos(α + β)]

We can then substitute the given angles into the formula and simplify.

 2 cos     7x __ 2     cos     3x __ 2     = (2)    1 __ 2      cos     7x __ 2   −   3x __ 2     + cos     7x __ 2   +   3x __ 2       

  =   cos     4x __ 2     + cos     10x ___ 2        

 = cos 2x + cos 5x

Try It #1

Use the product-to-sum formula to write the product as a sum or difference: cos(2θ)cos(4θ).

Expressing the Product of Sine and Cosine as a Sum

Next, we will derive the product-to-sum formula for sine and cosine from the sum and difference formulas for sine. 
If we add the sum and difference identities, we get:

sin(α + β) = sin α cos β + cos α sin β

+     sin(α − β) = sin α cos β − cos α sin β

 sin(α + β) + sin(α − β) = 2 sin α cos β

Then, we divide by 2 to isolate the product of cosine and sine:

 sin α cos β =   1 __ 2  [sin(α +β) + sin(α − β)]

Example 2  Writing the Product as a Sum Containing only Sine or Cosine

Express the following product as a sum containing only sine or cosine and no products: sin(4θ)cos(2θ).

Solution Write the formula for the product of sine and cosine. Then substitute the given values into the formula and 
simplify.

 sin α cos β =   1 __ 2  [sin(α + β) + sin(α − β)]

 sin(4θ)cos(2θ) =   1 __ 2  [sin(4θ + 2θ) + sin(4θ − 2θ)]

 =   1 __ 2  [sin(6θ) + sin(2θ)]

Try It #2

Use the product-to-sum formula to write the product as a sum: sin(x + y)cos(x − y). 
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Expressing Products of Sines in Terms of Cosine

Expressing the product of sines in terms of cosine is also derived from the sum and difference identities for cosine. In 
this case, we will first subtract the two cosine formulas:

cos(α − β) = cos α cos β + sin α sin β
−     cos(α + β) = − (cos α cos β − sin α sin β)

 cos(α − β) − cos(α + β) = 2 sin α sin β

Then, we divide by 2 to isolate the product of sines:

 sin α sin β =   1 __ 2  [cos(α − β) − cos(α + β)]

Similarly we could express the product of cosines in terms of sine or derive other product-to-sum formulas.

the product-to-sum formulas 

The product-to-sum formulas are as follows:

cos α cos β =   1 __ 2  [cos(α − β) + cos(α + β)]    sin α cos β =   1 __ 2  [sin(α + β) + sin(α − β)]

sin α sin β =   1 __ 2  [cos(α − β) − cos(α + β)]    cos α sin β =   1 __ 2  [sin(α + β) − sin(α − β)]

Example 3 Express the Product as a Sum or Difference

Write cos(3θ) cos(5θ) as a sum or difference.

Solution We have the product of cosines, so we begin by writing the related formula. Then we substitute the given 
angles and simplify.

 cos α cos β =   1 __ 2  [cos(α − β) + cos(α + β)]

 cos(3θ)cos(5θ) =   1 __ 2  [cos(3θ − 5θ) + cos(3θ + 5θ)]

 =   1 __ 2  [cos(2θ) + cos(8θ)] Use even-odd identity.

Try It #3

Use the product-to-sum formula to evaluate cos   11π ___ 12   cos   π __ 12  .

expressing Sums as Products
Some problems require the reverse of the process we just used. The sum-to-product formulas allow us to express sums 
of sine or cosine as products. These formulas can be derived from the product-to-sum identities. For example, with a 
few substitutions, we can derive the sum-to-product identity for sine. Let   u + v _____ 2   = α and   u − v _____ 2   = β.

Then, 
 α + β =   u + v _____ 2   +   u − v _____ 2  

 =   2u __ 2   

 = u 

 α − β =   u + v _____ 2   −   u − v _____ 2  

 =   2v __ 2  

 = v
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Thus, replacing α and β in the product-to-sum formula with the substitute expressions, we have

 sin α cos β =   1 __ 2  [sin(α + β) + sin(α − β)]

 sin     u + v _____ 2     cos     u − v _____ 2     =   1 __ 2  [sin u + sin v] Substitute for (α + β) and (α − β)

 2 sin     u + v _____ 2     cos     u − v _____ 2     = sin u + sin v

The other sum-to-product identities are derived similarly.

sum-to-product formulas 

The sum-to-product formulas are as follows:

sin α + sin β = 2 sin     α + β _____ 2     cos     α − β _____ 2        sin α − sin β = 2 sin     α − β _____ 2     cos     α + β _____ 2    

cos α − cos β = −2 sin     α + β _____ 2     sin     α − β _____ 2       cos α + cos β = 2 cos     α + β _____ 2     cos     α − β _____ 2    

Example 4 Writing the Difference of Sines as a Product

Write the following difference of sines expression as a product: sin(4θ) − sin(2θ).

Solution We begin by writing the formula for the difference of sines.

 sin α − sin β = 2 sin     α − β _____ 2     cos     α + β _____ 2    

Substitute the values into the formula, and simplify.

 sin(4θ) − sin(2θ) = 2 sin     4θ − 2θ ______ 2     cos     4θ + 2θ ______ 2    

 = 2 sin     2θ __ 2     cos     6θ __ 2    

 = 2 sin θ cos(3θ)

Try It #4

Use the sum-to-product formula to write the sum as a product: sin(3θ) + sin(θ).

Example 5 Evaluating Using the Sum-to-Product Formula

Evaluate cos(15°) − cos(75°).

Solution We begin by writing the formula for the difference of cosines.

 cos α − cos β = −2 sin     α + β _____ 2     sin     α − β _____ 2    

Then we substitute the given angles and simplify.

 cos(15°) − cos(75°) = −2 sin     15° + 75° ________ 2     sin     15° − 75° ________ 2    

 = −2 sin(45°)sin(−30°)

 = −2     √
—
 2   ___ 2      −  1 __ 2    

 =    √
—
 2   ___ 2  
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Example 6 Proving an Identity

Prove the identity:

   cos(4t) − cos(2t)  _____________  sin(4t) + sin(2t)   = −tan t

Solution  We will start with the left side, the more complicated side of the equation, and rewrite the expression until 
it matches the right side.

   cos(4t) − cos(2t)  _____________  sin(4t) + sin(2t)   =       
−2 sin    4t + 2t ______ 2    sin     4t − 2t ______ 2    

   ____   
2 sin     4t + 2t ______ 2     cos     4t − 2t ______ 2    

  

 =   −2 sin(3t)sin t  ___________  2 sin(3t)cos t  

 =   −2 sin(3t)sin t  ___________  2 sin(3t)cos t  

 = −  sin t ____ cos t  

 = −tan t

Analysi s  Recall that verifying trigonometric identities has its own set of rules. The procedures for solving an equation 
are not the same as the procedures for verifying an identity. When we prove an identity, we pick one side to work on and 
make substitutions until that side is transformed into the other side.

Example 7  Verifying the Identity Using Double-Angle Formulas and Reciprocal Identities

Verify the identity csc2 θ − 2 =   cos(2θ) ______ sin2 θ  .

Solution For verifying this equation, we are bringing together several of the identities. We will use the double-angle 
formula and the reciprocal identities. We will work with the right side of the equation and rewrite it until it matches 
the left side.

   cos(2θ) ______ sin2 θ   =   1 − 2 sin2 θ _________ sin2 θ  

 =   1 ____ sin2 θ   −   2 sin2 θ ______ sin2 θ  

 = csc2 θ − 2

Try It #5

Verify the identity tan θ cot θ − cos2θ = sin2θ.

Access these online resources for additional instruction and practice with the product-to-sum and sum-to-product 
identities.

•	 Sum to Product Identities (http://openstaxcollege.org/l/sumtoprod)

•	 Sum to Product and Product to Sum Identities (http://openstaxcollege.org/l/sumtpptsum)

http://openstaxcollege.org/l/sumtoprod
http://openstaxcollege.org/l/sumtpptsum
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7.4 SeCTIOn exeRCISeS

VeRBAl

1. Starting with the product to sum formula  
sin α cos β =   1 __ 2  [sin(α + β) + sin(α − β)], explain 
how to determine the formula for cos α sin β. 

2. Explain two different methods of calculating 
cos(195°)cos(105°), one of which uses the product 
to sum. Which method is easier?

3. Explain a situation where we would convert an 
equation from a sum to a product and give an 
example.

4. Explain a situation where we would convert an 
equation from a product to a sum, and give an 
example.

AlGeBRAIC

For the following exercises, rewrite the product as a sum or difference.

5. 16sin(16x)sin(11x) 6. 20cos(36t)cos(6t) 7. 2sin(5x)cos(3x)

8. 10cos(5x)sin(10x) 9. sin(−x)sin(5x) 10. sin(3x)cos(5x)

For the following exercises, rewrite the sum or difference as a product.

11. cos(6t) + cos(4t) 12. sin(3x) + sin(7x) 13. cos(7x) + cos(−7x)

14. sin(3x) − sin(−3x) 15. cos(3x) + cos(9x) 16. sin h − sin(3h)

For the following exercises, evaluate the product using a sum or difference of two functions. Evaluate exactly.

17. cos(45°)cos(15°) 18. cos(45°)sin(15°) 19. sin(−345°)sin(−15°)

20. sin(195°)cos(15°) 21. sin(−45°)sin(−15°)

For the following exercises, evaluate the product using a sum or difference of two functions. Leave in terms of  
sine and cosine.

22. cos(23°)sin(17°) 23. 2sin(100°)sin(20°) 24. 2sin(−100°)sin(−20°)

25. sin(213°)cos(8°) 26. 2cos(56°)cos(47°)

For the following exercises, rewrite the sum as a product of two functions. Leave in terms of sine and cosine.

27. sin(76°) + sin(14°) 28. cos(58°) − cos(12°) 29. sin(101°) − sin(32°)

30. cos(100°) + cos(200°) 31. sin(−1°) + sin(−2°)

For the following exercises, prove the identity.

32.   cos(a + b) ________  cos(a − b)    =   1 − tan a tan b  ___________  1 + tan a tan b  33. 4sin(3x)cos(4x) = 2 sin(7x) − 2 sinx

34.   6cos(8x)sin(2x)  ____________  sin(−6x)   = −3 sin(10x)csc(6x) + 3 35. sin x + sin(3x) = 4sin x cos2 x

36. 2(cos3 x − cos x sin2 x)= cos(3x) + cos x 37. 2 tan x cos(3x) = sec x(sin(4x) − sin(2x))

38. cos(a + b) + cos(a − b) = 2cos a cos b
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nUMeRIC

For the following exercises, rewrite the sum as a product of two functions or the product as a sum of two functions. 
Give your answer in terms of sines and cosines. Then evaluate the final answer numerically, rounded to four 
decimal places.

39. cos(58°) + cos(12°) 40. sin(2°) − sin(3°) 41. cos(44°) − cos(22°)

42. cos(176°)sin(9°) 43. sin(−14°)sin(85°)

TeCHnOlOGY

For the following exercises, algebraically determine whether each of the given expressions is a true identity. If it 
is not an identity, replace the right-hand side with an expression equivalent to the left side. Verify the results by 
graphing both expressions on a calculator.

44. 2sin(2x)sin(3x) = cos x − cos(5x) 45.   cos(10θ) + cos(6θ)  _______________  cos(6θ) − cos(10θ)   = cot(2θ)cot(8θ)

46.   sin(3x) − sin(5x)  _____________  cos(3x) + cos(5x)   = tan x 47. 2cos(2x)cos x + sin(2x)sin x = 2 sin x

48.   sin(2x) + sin(4x)  _____________  sin(2x) − sin(4x)   = −tan(3x)cot x

For the following exercises, simplify the expression to one term, then graph the original function and your  
simplified version to verify they are identical.

49.   sin(9t) − sin(3t)  _____________  cos(9t) + cos(3t)  50. 2sin(8x)cos(6x) − sin(2x)

51.   sin(3x) − sin x  ____________ sin x  52.   cos(5x) + cos(3x)  ______________  sin(5x) + sin(3x)  

53. sin x cos(15x) − cos x sin(15x)

exTenSIOnS

For the following exercises, prove the following sum-to-product formulas.

54. sin x − sin y = 2 sin     x − y
 _ 

2
    cos     x + y

 _ 
2

    55. cos x + cos y = 2cos     x + y
 _ 

2
     cos     x − y

 _ 
2

    

For the following exercises, prove the identity.

56.   sin(6x) + sin(4x)  _____________  sin(6x) − sin(4x)   = tan (5x)cot x 57.   cos(3x) + cos x  ____________  cos(3x) − cos x   = −cot (2x)cot x

58.   cos(6y) + cos(8y)  ______________  sin(6y) − sin(4y)   = cot y cos(7y) sec(5y) 59.   cos(2y) − cos(4y)  ______________  sin(2y) + sin(4y)   = tan y

60.   sin(10x) − sin(2x)  ______________  cos(10x) + cos(2x)   = tan(4x) 61. cos x − cos(3x) = 4 sin2 x cos x

62. (cos(2x) − cos(4x))2 + (sin(4x) + sin(2x))2 = 4 sin2(3x) 63. tan    π __ 4   − t   =   1 − tan t _ 
1 + tan t
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leARnInG OBjeCTIVeS

In this section, you will:
•	  Solve linear trigonometric equations in sine and cosine.
•	  Solve equations involving a single trigonometric function.
•	  Solve trigonometric equations using a calculator.
•	  Solve trigonometric equations that are quadratic in form.
•	  Solve trigonometric equations using fundamental identities.
•	  Solve trigonometric equations with multiple angles.
•	  Solve right triangle problems.

7. 5 SOlVInG TRIGOnOMeTRIC eQUATIOnS

Figure 1 Egyptian pyramids standing near a modern city. (credit: Oisin Mulvihill)

Thales of Miletus (circa 625–547 BC) is known as the founder of geometry. The legend is that he calculated the 
height of the Great Pyramid of Giza in Egypt using the theory of similar triangles, which he developed by measuring 
the shadow of his staff. Based on proportions, this theory has applications in a number of areas, including fractal 
geometry, engineering, and architecture. Often, the angle of elevation and the angle of depression are found using 
similar triangles.

In earlier sections of this chapter, we looked at trigonometric identities. Identities are true for all values in the domain 
of the variable. In this section, we begin our study of trigonometric equations to study real-world scenarios such as 
the finding the dimensions of the pyramids.

Solving linear Trigonometric equations in Sine and Cosine
Trigonometric equations are, as the name implies, equations that involve trigonometric functions. Similar in many 
ways to solving polynomial equations or rational equations, only specific values of the variable will be solutions, if 
there are solutions at all. Often we will solve a trigonometric equation over a specified interval. However, just as often, 
we will be asked to find all possible solutions, and as trigonometric functions are periodic, solutions are repeated 
within each period. In other words, trigonometric equations may have an infinite number of solutions. Additionally, 
like rational equations, the domain of the function must be considered before we assume that any solution is valid. 
The period of both the sine function and the cosine function is 2π. In other words, every 2π units, the y-values repeat. 
If we need to find all possible solutions, then we must add 2πk, where k is an integer, to the initial solution. Recall the 
rule that gives the format for stating all possible solutions for a function where the period is 2π:

sin θ = sin(θ ± 2kπ)

There are similar rules for indicating all possible solutions for the other trigonometric functions. Solving trigonometric 
equations requires the same techniques as solving algebraic equations. We read the equation from left to right, 
horizontally, like a sentence. We look for known patterns, factor, find common denominators, and substitute certain 
expressions with a variable to make solving a more straightforward process. However, with trigonometric equations, 
we also have the advantage of using the identities we developed in the previous sections.
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Example 1  Solving a Linear Trigonometric Equation Involving the Cosine Function

Find all possible exact solutions for the equation cos θ =   1 __ 2  .

Solution From the unit circle, we know that
 cos θ =   1 __ 2  

 θ =   π __ 3  ,   5π ___ 3  

These are the solutions in the interval [0, 2π]. All possible solutions are given by

 θ =   π __ 3   ± 2kπ and θ =   5π ___ 3   ± 2kπ
where k is an integer.

Example 2 Solving a Linear Equation Involving the Sine Function

Find all possible exact solutions for the equation sin t =   1 __ 2  .

Solution Solving for all possible values of t means that solutions include angles beyond the period of 2π. From Section 
7.2 Figure 2, we can see that the solutions are t =   π __ 6   and t =   5π ___ 6  . But the problem is asking for all possible values that 
solve the equation. Therefore, the answer is

t =   π __ 6   ± 2πk and t =   5π ___ 6   ± 2πk
where k is an integer.

How To…
Given a trigonometric equation, solve using algebra.

1. Look for a pattern that suggests an algebraic property, such as the difference of squares or a factoring opportunity.
2. Substitute the trigonometric expression with a single variable, such as x or u.
3. Solve the equation the same way an algebraic equation would be solved.
4. Substitute the trigonometric expression back in for the variable in the resulting expressions.
5. Solve for the angle.

Example 3 Solve the Trigonometric Equation in Linear Form

Solve the equation exactly: 2cos θ − 3 = − 5, 0 ≤ θ < 2π.

Solution Use algebraic techniques to solve the equation.
 2cos θ − 3 = −5
 2cos θ = −2
 cos θ = −1
 θ = π

Try It #1

Solve exactly the following linear equation on the interval [0, 2π): 2sin x + 1 = 0.

Solving equations Involving a Single Trigonometric Function
When we are given equations that involve only one of the six trigonometric functions, their solutions involve using 
algebraic techniques and the unit circle (see Section 7.2 Figure 2). We need to make several considerations when 
the equation involves trigonometric functions other than sine and cosine. Problems involving the reciprocals of the 
primary trigonometric functions need to be viewed from an algebraic perspective. In other words, we will write the 
reciprocal function, and solve for the angles using the function. Also, an equation involving the tangent function is 
slightly different from one containing a sine or cosine function. First, as we know, the period of tangent is π, not 2π. 
Further, the domain of tangent is all real numbers with the exception of odd integer multiples of   π __ 2  , unless, of course, 
a problem places its own restrictions on the domain.
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Example 4 Solving a Problem Involving a Single Trigonometric Function

Solve the problem exactly: 2sin2 θ − 1 = 0, 0 ≤ θ < 2π.

Solution As this problem is not easily factored, we will solve using the square root property. First, we use algebra to 
isolate sin θ. Then we will find the angles.

 2sin2 θ − 1 = 0

 2sin2 θ = 1

 sin2 θ =   1 __ 2  

  √
—

 sin2 θ   = ± √ 
__

   1 __ 2    

 sin θ = ±   1 _ 
 √

—
 2  
   = ±   √

—
 2   ____ 2  

 θ =   π __ 4  ,   3π ___ 4  ,   5π ___ 4  ,   7π ___ 4  

Example 5 Solving a Trigonometric Equation Involving Cosecant

Solve the following equation exactly: csc θ = −2, 0 ≤ θ < 4π.

Solution We want all values of θ for which csc θ = −2 over the interval 0 ≤ θ < 4π.

 csc θ = −2

   1 ____ sin θ   = −2

 sin θ = −  1 __ 2  

 θ =   7π ___ 6  ,   11π ___ 6  ,   19π ___ 6  ,   23π ___ 6  

Analysi s As sin θ = −    1 _ 
2

  , notice that all four solutions are in the third and fourth quadrants.

Example 6 Solving an Equation Involving Tangent

Solve the equation exactly: tan   θ −   π __ 2     = 1, 0 ≤ θ < 2π.

Solution Recall that the tangent function has a period of π. On the interval [0, π), and at the angle of   π __ 4  , the tangent has a 

value of 1. However, the angle we want is   θ −   π __ 2    . Thus, if tan     π __ 4     = 1, then

 θ −   π __ 2   =   π __ 4  

 θ =   3π ___ 4   ± kπ

Over the interval [0, 2π), we have two solutions:

 θ =   3π ___ 4   and θ =   3π ___ 4   + π =   7π ___ 4  

Try It #2

Find all solutions for tan x =  √
—
 3  .

Example 7 Identify all Solutions to the Equation Involving Tangent

Identify all exact solutions to the equation 2(tan x + 3) = 5 + tan x, 0 ≤ x < 2π.
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Solution We can solve this equation using only algebra. Isolate the expression tan x on the left side of the equals sign.

 2(tan x) + 2(3) = 5 + tan x

 2tan x + 6 = 5 + tan x

 2tan x − tan x = 5 − 6

 tan x = −1

There are two angles on the unit circle that have a tangent value of −1: θ =   3π __ 4   and θ =   7π __ 4  .

Solve Trigonometric equations Using a Calculator
Not all functions can be solved exactly using only the unit circle. When we must solve an equation involving an angle 
other than one of the special angles, we will need to use a calculator. Make sure it is set to the proper mode, either 
degrees or radians, depending on the criteria of the given problem.

Example 8  Using a Calculator to Solve a Trigonometric Equation Involving Sine

Use a calculator to solve the equation sin θ = 0.8, where θ is in radians.

Solution Make sure mode is set to radians. To find θ, use the inverse sine function. On most calculators, you will 
need to push the 2ND button and then the SIN button to bring up the sin−1 function. What is shown on the screen is 
sin−1( . The calculator is ready for the input within the parentheses. For this problem, we enter sin−1 (0.8), and press 
ENTER. Thus, to four decimals places,
 sin−1(0.8) ≈ 0.9273
The solution is
 θ ≈ 0.9273 ± 2πk
The angle measurement in degrees is
 θ ≈ 53.1°

 θ ≈ 180° − 53.1°

 ≈ 126.9°

Analysi s Note that a calculator will only return an angle in quadrants I or IV for the sine function, since that is the 
range of the inverse sine. The other angle is obtained by using π − θ.

Example 9  Using a Calculator to Solve a Trigonometric Equation Involving Secant

Use a calculator to solve the equation sec θ = −4, giving your answer in radians.

Solution We can begin with some algebra.

 sec θ = −4

   1 ____ cos θ   = −4

 cos θ = −   1 __ 
4

  

Check that the MODE is in radians. Now use the inverse cosine function.

 cos−1  −  1 __ 4     ≈ 1.8235

 θ ≈ 1.8235 + 2πk

Since   π __ 2   ≈ 1.57 and π ≈ 3.14, 1.8235 is between these two numbers, thus θ ≈ 1.8235 is in quadrant II.

Cosine is also negative in quadrant III. Note that a calculator will only return an angle in quadrants I or II for the 
cosine function, since that is the range of the inverse cosine. See Figure 2.
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θʹ ≈ π – 1.8235 ≈ 1.3181

θʹ ≈ π + 1.3181 ≈ 4.4597

θ ≈ 1.8235

x

y

Figure 2

So, we also need to find the measure of the angle in quadrant III. In quadrant III, the reference angle is  
θ´≈ π − 1.8235 ≈ 1.3181. The other solution in quadrant III is θ´ ≈ π + 1.3181 ≈ 4.4597.

The solutions are θ ≈ 1.8235 ± 2πk and θ ≈ 4.4597 ± 2πk.

Try It #3

Solve cos θ = −0.2.

Solving Trigonometric equations in Quadratic Form
Solving a quadratic equation may be more complicated, but once again, we can use algebra as we would for any 
quadratic equation. Look at the pattern of the equation. Is there more than one trigonometric function in the equation, 
or is there only one? Which trigonometric function is squared? If there is only one function represented and one of 
the terms is squared, think about the standard form of a quadratic. Replace the trigonometric function with a variable 
such as x or u. If substitution makes the equation look like a quadratic equation, then we can use the same methods 
for solving quadratics to solve the trigonometric equations.

Example 10 Solving a Trigonometric Equation in Quadratic Form

Solve the equation exactly: cos2 θ + 3 cos θ − 1 = 0, 0 ≤ θ < 2π.

Solution We begin by using substitution and replacing cos θ with x. It is not necessary to use substitution, but it may 
make the problem easier to solve visually. Let cos θ = x. We have

 x2 + 3x − 1 = 0

The equation cannot be factored, so we will use the quadratic formula x =   −b ±  √
—

 b2 − 4ac    _____________ 2a  .

 x =   −3 ±  √
——

  (−3)2 − 4(1)(−1)    ______________________  2  

 =   −3 ±  √
—

 13   _________ 2  
Replace x with cos θ, and solve. Thus,

 cos θ =   −3 ±  √
—

 13   _________ 2  

 θ = cos−1    −3 +  √
—

 13   _________ 2    

Note that only the + sign is used. This is because we get an error when we solve θ = cos−1    −3 −  √
—

 13   _________ 2     on a 

calculator, since the domain of the inverse cosine function is [−1, 1]. However, there is a second solution:

 θ = cos−1    −3 +  √
—

 13   _________ 2    

 ≈ 1.26
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This terminal side of the angle lies in quadrant I. Since cosine is also positive in quadrant IV, the second solution is

 θ = 2π − cos−1    −3 +  √
—

 13   _________ 2    
 ≈ 5.02

Try It #4

Solve sin2 θ = 2 cos θ + 2, 0 ≤ θ ≤ 2π. [Hint: Make a substitution to express the equation only in terms of cosine.]

Example 11 Solving a Trigonometric Equation in Quadratic Form by Factoring

Solve the equation exactly: 2 sin2 θ − 5 sin θ + 3 = 0, 0 ≤ θ ≤ 2π.

Solution Using grouping, this quadratic can be factored. Either make the real substitution, sin θ = u, or imagine it, 
as we factor:
 2sin2 θ − 5sin θ + 3 = 0
 (2sin θ − 3)(sin θ − 1) = 0

Now set each factor equal to zero.
 2sin θ − 3 = 0
 2sin θ = 3

 sin θ =   3 __ 2  

 sin θ − 1 = 0
 sin θ = 1

Next solve for θ: sin θ ≠   3 __ 2  , as the range of the sine function is [−1, 1]. However, sin θ = 1, giving the solution θ =   π __ 2  .

Analysi s Make sure to check all solutions on the given domain as some factors have no solution.

Try It #5

Solve sin2 θ = 2cos θ + 2, 0 ≤ θ ≤ 2π. [Hint: Make a substitution to express the equation only in terms of cosine.]

Example 12 Solving a Trigonometric Equation Using Algebra

Solve exactly:
2sin2 θ + sin θ = 0; 0 ≤ θ < 2π

Solution This problem should appear familiar as it is similar to a quadratic. Let sin θ = x. The equation becomes 
2x2 + x = 0. We begin by factoring:
 2x2 + x = 0
 x(2x + 1) = 0
Set each factor equal to zero.
 x = 0
 (2x + 1) = 0

 x = −  1 __ 2  

Then, substitute back into the equation the original expression sin θ for x. Thus,

 sin θ = 0
 θ = 0, π

 sin θ = −  1 __ 2  

 θ =   7π ___ 6  ,   11π ___ 6  

The solutions within the domain 0 ≤ θ < 2π are θ = 0, π,   7π ___ 6  ,   11π ___ 6  .

If we prefer not to substitute, we can solve the equation by following the same pattern of factoring and setting each 
factor equal to zero.
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 2sin2 θ + sin θ = 0

 sin θ(2sin θ + 1) = 0

 sin θ = 0

 θ = 0, π

 2sin θ + 1 = 0

 2sin θ = −1

 sin θ = −  1 __ 2  

 θ =   7π ___ 6  ,   11π ___ 6  

Analysi s We can see the solutions on the graph in Figure 3. On the interval 0 ≤ θ < 2π, the graph crosses the x-axis 
four times, at the solutions noted. Notice that trigonometric equations that are in quadratic form can yield up to four 
solutions instead of the expected two that are found with quadratic equations. In this example, each solution (angle) 
corresponding to a positive sine value will yield two angles that would result in that value.

4

3

2

1

–1

π 2π
θ

y

– π
6

π
6

π
3

π
2

13π
6

11π
6

7π
6

4π
3

3π
2

5π
3

5π
6

2π
3

f(θ) = 2 sin2 θ + sin θ

Figure 3

We can verify the solutions on the unit circle in Section 7.2 Figure 2 as well.

Example 13 Solving a Trigonometric Equation Quadratic in Form

Solve the equation quadratic in form exactly: 2sin2 θ − 3sin θ + 1 = 0, 0 ≤ θ < 2π.

Solution We can factor using grouping. Solution values of θ can be found on the unit circle:

 (2sin θ − 1)(sin θ − 1) = 0

 2sin θ − 1 = 0

 sin θ =   1 __ 2  

 θ =   π __ 6  ,   5π ___ 6  

 sin θ = 1

 θ =   π __ 2  

Try It #6

Solve the quadratic equation 2cos2 θ + cos θ = 0.

Solving Trigonometric equations Using Fundamental Identities
While algebra can be used to solve a number of trigonometric equations, we can also use the fundamental identities 
because they make solving equations simpler. Remember that the techniques we use for solving are not the same as 
those for verifying identities. The basic rules of algebra apply here, as opposed to rewriting one side of the identity to 
match the other side. In the next example, we use two identities to simplify the equation.
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Example 14   Use Identities to Solve an Equation

Use identities to solve exactly the trigonometric equation over the interval 0 ≤ x < 2π.

 cos x cos(2x) + sin x sin(2x) =    √
—
 3   ____ 2  

Solution  Notice that the left side of the equation is the difference formula for cosine.

 cos x cos(2x) + sin x sin(2x) =    √
—
 3   ____ 2  

 cos(x − 2x) =    √
—
 3   ____ 2   Difference formula for cosine

 cos(−x) =    √
—
 3   ____ 2   Use the negative angle identity.

 cos x =    √
—
 3   ____ 2  

From the unit circle in Figure 2, we see that cos x =    √
—
 3   ____ 2   when x =   π __ 6  ,   11π ___ 6  .

Example 15   Solving the Equation Using a Double-Angle Formula

Solve the equation exactly using a double-angle formula: cos(2θ) = cos θ.

Solution We have three choices of expressions to substitute for the double-angle of cosine. As it is simpler to solve 
for one trigonometric function at a time, we will choose the double-angle identity involving only cosine:
 cos(2θ) = cos θ
 2cos2 θ − 1 = cos θ
 2cos2 θ − cos θ − 1 = 0
 (2cos θ + 1)(cos θ − 1) = 0
 2cos θ + 1 = 0
 cos θ = −  1 __ 2  
 cos θ − 1 = 0
 cos θ = 1

So, if cos θ = −  1 __ 2  , then θ =   2π __ 3   ± 2πk and θ =   4π __ 3   ± 2πk; if cos θ = 1, then θ = 0 ± 2πk.

Example 16    Solving an Equation Using an Identity

Solve the equation exactly using an identity: 3cos θ + 3 = 2sin2 θ, 0 ≤ θ < 2π.

Solution If we rewrite the right side, we can write the equation in terms of cosine:

 3cos θ + 3 = 2sin2 θ

 3cos θ + 3 = 2(1 − cos2 θ)

 3cos θ + 3 = 2 − 2cos2 θ

 2cos2 θ + 3cos θ + 1 = 0

 (2cos θ + 1)(cos θ + 1) = 0

 2cos θ + 1 = 0

 cos θ = −  1 __ 2  

 θ =   2π ___ 3  ,   4π ___ 3  

 cos θ + 1 = 0

 cos θ = −1

 θ = π
Our solutions are θ =   2π ___ 3  ,   4π ___ 3  ,  π
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Solving Trigonometric equations with Multiple Angles
Sometimes it is not possible to solve a trigonometric equation with identities that have a multiple angle, such as sin(2x) 
or cos(3x). When confronted with these equations, recall that y = sin(2x) is a horizontal compression by a factor of 
2 of the function y = sin x. On an interval of 2π, we can graph two periods of y = sin(2x), as opposed to one cycle of 
y = sin x. This compression of the graph leads us to believe there may be twice as many x-intercepts or solutions to 
sin(2x) = 0 compared to sin x = 0. This information will help us solve the equation.

Example 17 Solving a Multiple Angle Trigonometric Equation

Solve exactly: cos(2x) =   1 __ 2   on [0, 2π).

Solution We can see that this equation is the standard equation with a multiple of an angle. If cos(α) =   1 __ 2  , we know 
α is in quadrants I and IV. While θ = cos−1  1 __ 2   will only yield solutions in quadrants I and II, we recognize that the 
solutions to the equation cos θ =   1 __ 2   will be in quadrants I and IV.

Therefore, the possible angles are θ =   π __ 3   and θ =   5π __ 3  . So, 2x =   π __ 3   or 2x =   5π __ 3  , which means that x =   π __ 6   or x =   5π __ 6  . 

Does this make sense? Yes, because cos   2     π __ 6       = cos     π __ 3     =   1 __ 2  .

Are there any other possible answers? Let us return to our first step.

In quadrant I, 2x =   π __ 3  , so x =   π __ 6   as noted. Let us revolve around the circle again:

 2x =   π __ 3   + 2π

 =   π __ 3   +   6π ___ 3  

 =   7π ___ 3  

so x =   7π ___ 6  .

One more rotation yields

 2x =   π __ 3   + 4π

 =   π __ 3   +   12π ___ 3  

 =   13π ___ 3  

x =   13π ___ 6   > 2π, so this value for x is larger than 2π, so it is not a solution on [0, 2π).

In quadrant IV, 2x =   5π __ 3  , so x =   5π __ 6   as noted. Let us revolve around the circle again:

 2x =   5π ___ 3   + 2π

 =   5π ___ 3   +   6π ___ 3  

 =   11π ___ 3  

so x =   11π ___ 6  .
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One more rotation yields

 2x =   5π ___ 3   + 4π

 =   5π ___ 3   +   12π ___ 3  

 =   17π ___ 3  

x =   17π ___ 6   > 2π, so this value for x is larger than 2π, so it is not a solution on [0, 2π).

Our solutions are x =   π __ 6  ,   5π __ 6  ,   7π __ 6  , and   11π ___ 6  . Note that whenever we solve a problem in the form of sin(nx) = c, we 
must go around the unit circle n times.

Solving Right Triangle Problems
We can now use all of the methods we have learned to solve problems that involve applying the properties of right 
triangles and the Pythagorean Theorem. We begin with the familiar Pythagorean Theorem, a2 + b2 = c2, and model 
an equation to fit a situation.

Example 18 Using the Pythagorean Theorem to Model an Equation

Use the Pythagorean Theorem, and the properties of right triangles to model an equation that fits the problem. One 
of the cables that anchors the center of the London Eye Ferris wheel to the ground must be replaced. The center of the 
Ferris wheel is 69.5 meters above the ground, and the second anchor on the ground is 23 meters from the base of the 
Ferris wheel. Approximately how long is the cable, and what is the angle of elevation (from ground up to the center of 
the Ferris wheel)? See Figure 4. 

23

69.5
θ

Figure 4

Solution Using the information given, we can draw a right triangle. We can find the length of the cable with the 
Pythagorean Theorem.

 a2 + b2 = c2

 (23)2 + (69.5)2 ≈ 5359

  √
—

 5359   ≈ 73.2 m

The angle of elevation is θ, formed by the second anchor on the ground and the cable reaching to the center of the 
wheel. We can use the tangent function to find its measure. Round to two decimal places.

 tan θ =   69.5 ____ 23  

 tan−1    69.5 ____ 23     ≈ 1.2522

 ≈ 71.69°

The angle of elevation is approximately 71.7°, and the length of the cable is 73.2 meters.
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Example 19 Using the Pythagorean Theorem to Model an Abstract Problem

OSHA safety regulations require that the base of a ladder be placed 1 foot from the wall for every 4 feet of ladder length. 
Find the angle that a ladder of any length forms with the ground and the height at which the ladder touches the wall.

Solution For any length of ladder, the base needs to be a distance from the wall equal to one fourth of the ladder’s 
length. Equivalently, if the base of the ladder is “a” feet from the wall, the length of the ladder will be 4a feet. See 
Figure 5.

4a

θ
a

b

Figure 5

The side adjacent to θ is a and the hypotenuse is 4a. Thus,

 cos θ =   a __ 4a   =   1 __ 4  

 cos−1    1 __ 4     ≈ 75.5°

The elevation of the ladder forms an angle of 75.5° with the ground. The height at which the ladder touches the wall 
can be found using the Pythagorean Theorem:

 a2 + b2 = (4a)2

 b2 = (4a)2 − a2

 b2 = 16a2 − a2

 b2 = 15a2

 b = a √
—

 15  

Thus, the ladder touches the wall at a √
—

 15   feet from the ground.

Access these online resources for additional instruction and practice with solving trigonometric equations.

•	 Solving Trigonometric equations I (http://openstaxcollege.org/l/solvetrigeqI)

•	 Solving Trigonometric equations II (http://openstaxcollege.org/l/solvetrigeqII)

•	 Solving Trigonometric equations III (http://openstaxcollege.org/l/solvetrigeqIII)

•	 Solving Trigonometric equations IV (http://openstaxcollege.org/l/solvetrigeqIV)

•	 Solving Trigonometric equations V (http://openstaxcollege.org/l/solvetrigeqV)

•	 Solving Trigonometric equations VI (http://openstaxcollege.org/l/solvetrigeqVI)

http://openstaxcollege.org/l/solvetrigeqI
http://openstaxcollege.org/l/solvetrigeqII
http://openstaxcollege.org/l/solvetrigeqIII
http://openstaxcollege.org/l/solvetrigeqIV
http://openstaxcollege.org/l/solvetrigeqV
http://openstaxcollege.org/l/solvetrigeqVI
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7.5 SeCTIOn exeRCISeS

VeRBAl
1. Will there always be solutions to trigonometric 

function equations? If not, describe an equation that 
would not have a solution. Explain why or why not.

2. When solving a trigonometric equation involving 
more than one trig function, do we always want to try 
to rewrite the equation so it is expressed in terms of 
one trigonometric function? Why or why not?

3. When solving linear trig equations in terms of only 
sine or cosine, how do we know whether there will 
be solutions?

AlGeBRAIC

For the following exercises, find all solutions exactly on the interval 0 ≤ θ < 2π.

4. 2sin θ = − √
—
 2  5. 2sin θ =  √

—
 3  6. 2cos θ = 1

7. 2cos θ = − √
—
 2  8. tan θ = −1 9. tan x = 1

10. cot x + 1 = 0 11. 4sin2 x − 2 = 0 12. csc2 x − 4 = 0

For the following exercises, solve exactly on [0, 2π).

13. 2cos θ =  √
—
 2  14. 2cos θ = −1 15. 2sin θ = −1

16. 2sin θ = − √
—
 3  17. 2sin(3θ) = 1 18. 2sin(2θ) =  √

—
 3  

19. 2cos(3θ) = − √
—
 2  20. cos(2θ) = −   √

—
 3   ____ 2  21. 2sin(πθ) = 1

22. 2cos    π __ 5  θ   =  √
—
 3  

For the following exercises, find all exact solutions on [0, 2π).
23. sec(x)sin(x) − 2sin(x) = 0 24. tan(x) − 2sin(x)tan(x) = 0

25. 2cos2 t + cos(t) = 1 26. 2tan2(t) = 3sec(t)

27. 2sin(x)cos(x) − sin(x) + 2cos(x) − 1 = 0 28. cos2 θ =   1 __ 2  

29. sec2 x = 1 30. tan2 (x) = −1 + 2tan(−x)

31. 8sin2(x) + 6sin(x) + 1 = 0 32. tan5(x) = tan(x)

For the following exercises, solve with the methods shown in this section exactly on the interval [0, 2π).

33. sin(3x)cos(6x) − cos(3x)sin(6x) = −0.9 34. sin(6x)cos(11x) − cos(6x)sin(11x) = −0.1

35. cos(2x)cos x + sin(2x)sin x = 1 36. 6sin(2t) + 9sin t = 0

37. 9cos(2θ) = 9cos2 θ − 4 38. sin(2t) = cos t

39. cos(2t) = sin t 40. cos(6x) − cos(3x) = 0

For the following exercises, solve exactly on the interval [0, 2π). Use the quadratic formula if the equations do not factor.

41. tan2 x −  √
—
 3  tan x = 0 42. sin2 x + sin x − 2 = 0 43. sin2 x − 2sin x − 4 = 0

44. 5cos2 x + 3cos x − 1 = 0 45. 3cos2 x − 2cos x − 2 = 0 46. 5sin2 x + 2sin x − 1 = 0

47. tan2 x + 5tan x − 1 = 0 48. cot2 x = −cot x 49. −tan2 x − tan x − 2 = 0
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For the following exercises, find exact solutions on the interval [0, 2π). Look for opportunities to use trigonometric 
identities.

50. sin2 x − cos2 x − sin x = 0 51. sin2 x + cos2 x = 0 52. sin(2x) − sin x = 0

53. cos(2x) − cos x = 0 54.   2 tan x ________ 2 − sec2 x   − sin2 x = cos2 x 55. 1 − cos(2x) = 1 + cos(2x)

56. sec2 x = 7 57. 10sin x cos x = 6cos x 58. −3sin t = 15cos t sin t

59. 4cos2 x − 4 = 15cos x 60. 8sin2 x + 6sin x + 1 = 0 61. 8cos2 θ = 3 − 2cos θ

62. 6cos2 x + 7sin x − 8 = 0 63. 12sin2 t + cos t − 6 = 0 64. tan x = 3sin x

65. cos3 t = cos t

GRAPHICAl

For the following exercises, algebraically determine all solutions of the trigonometric equation exactly, then verify the 
results by graphing the equation and finding the zeros.

66. 6sin2 x − 5sin x + 1 = 0 67. 8cos2 x − 2cos x − 1 = 0 68. 100tan2 x + 20tan x − 3 = 0

69. 2cos2 x − cos x + 15 = 0 70. 20sin2 x − 27sin x + 7 = 0 71. 2tan2 x + 7tan x + 6 = 0

72. 130tan2 x + 69tan x − 130 = 0

TeCHnOlOGY

For the following exercises, use a calculator to find all solutions to four decimal places.
73. sin x = 0.27 74. sin x = −0.55 75. tan x = −0.34

76. cos x = 0.71

For the following exercises, solve the equations algebraically, and then use a calculator to find the values on the interval 
[0, 2π). Round to four decimal places.

77. tan2 x + 3tan x − 3 = 0 78. 6tan2 x + 13tan x = −6 79. tan2 x − sec x = 1

80. sin2 x − 2cos2 x = 0 81. 2tan2 x + 9tan x − 6 = 0 82. 4sin2 x + sin(2x)sec x − 3 = 0

exTenSIOnS

For the following exercises, find all solutions exactly to the equations on the interval [0, 2π).
83. csc2 x − 3csc x − 4 = 0 84. sin2 x − cos2 x − 1 = 0

85. sin2 x( 1 − sin2 x) + cos2 x( 1 − sin2 x) = 0 86. 3sec2 x + 2 + sin2 x − tan2 x + cos2 x = 0

87. sin2 x − 1 + 2 cos(2x) − cos2 x = 1 88. tan2 x − 1 − sec3 x cos x = 0

89.   sin(2x) ______ sec2 x   = 0 90.   sin(2x) ______ 2 csc2 x   = 0

91. 2cos2 x − sin2 x − cos x − 5 = 0 92.   1 ____ sec2 x   + 2 + sin2 x + 4cos2 x = 4
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ReAl-WORlD APPlICATIOnS
93. An airplane has only enough gas to fly to a city 200 

miles northeast of its current location. If the pilot 
knows that the city is 25 miles north, how many 
degrees north of east should the airplane fly?

94. If a loading ramp is placed next to a truck, at a height 
of 4 feet, and the ramp is 15 feet long, what angle 
does the ramp make with the ground?

95. If a loading ramp is placed next to a truck, at a height 
of 2 feet, and the ramp is 20 feet long, what angle 
does the ramp make with the ground?

96. A woman is watching a launched rocket currently 
11 miles in altitude. If she is standing 4 miles from 
the launch pad, at what angle is she looking up from 
horizontal?

97. An astronaut is in a launched rocket currently 15 
miles in altitude. If a man is standing 2 miles from 
the launch pad, at what angle is she looking down at 
him from horizontal? (Hint: this is called the angle  
of depression.)

98. A woman is standing 8 meters away from a 10-meter 
tall building. At what angle is she looking to the top 
of the building?

99. A man is standing 10 meters away from a 6-meter 
tall building. Someone at the top of the building is 
looking down at him. At what angle is the person 
looking at him?

100. A 20-foot tall building has a shadow that is 55 feet 
long. What is the angle of elevation of the sun?

101. A 90-foot tall building has a shadow that is 2 feet 
long. What is the angle of elevation of the sun?

102. A spotlight on the ground 3 meters from a 2-meter 
tall man casts a 6 meter shadow on a wall 6 meters 
from the man. At what angle is the light?

103. A spotlight on the ground 3 feet from a 5-foot tall 
woman casts a 15-foot tall shadow on a wall 6 feet 
from the woman. At what angle is the light?

For the following exercises, find a solution to the word problem algebraically. Then use a calculator to verify the result. 
Round the answer to the nearest tenth of a degree.

104. A person does a handstand with his feet touching a 
wall and his hands 1.5 feet away from the wall. If the 
person is 6 feet tall, what angle do his feet make with 
the wall?

105. A person does a handstand with her feet touching a 
wall and her hands 3 feet away from the wall. If the 
person is 5 feet tall, what angle do her feet make with 
the wall?

106. A 23-foot ladder is positioned next to a house. If the 
ladder slips at 7 feet from the house when there is not 
enough traction, what angle should the ladder make 
with the ground to avoid slipping?
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leARnInG OBjeCTIVeS

In this section, you will:
•	  Determine the amplitude and period of sinusoidal functions.
•	  Model equations and graph sinusoidal functions.
•	  Model periodic behavior.
•	  Model harmonic motion functions.

7. 6 MODelInG WITH TRIGOnOMeTRIC eQUATIOnS

Figure 1  The hands on a clock are periodic: they repeat positions every twelve hours. (credit: “zoutedrop”/Flickr)

Suppose we charted the average daily temperatures in New York City over the course of one year. We would expect to 
find the lowest temperatures in January and February and highest in July and August. This familiar cycle repeats year 
after year, and if we were to extend the graph over multiple years, it would resemble a periodic function.

Many other natural phenomena are also periodic. For example, the phases of the moon have a period of approximately 
28 days, and birds know to fly south at about the same time each year.

So how can we model an equation to reflect periodic behavior? First, we must collect and record data. We then find 
a function that resembles an observed pattern. Finally, we make the necessary alterations to the function to get a 
model that is dependable. In this section, we will take a deeper look at specific types of periodic behavior and model 
equations to fit data.

Determining the Amplitude and Period of a Sinusoidal Function
Any motion that repeats itself in a fixed time period is considered periodic motion and can be modeled by a sinusoidal 
function. The amplitude of a sinusoidal function is the distance from the midline to the maximum value, or from the 
midline to the minimum value. The midline is the average value. Sinusoidal functions oscillate above and below the 
midline, are periodic, and repeat values in set cycles. Recall from Graphs of the Sine and Cosine Functions that the 
period of the sine function and the cosine function is 2π. In other words, for any value of x,

sin(x ± 2πk) = sin x and cos(x ± 2πk) = cos x where k is an integer

standard form of sinusoidal equations 
The general forms of a sinusoidal equation are given as

y = Asin(Bt − C) + D or y = Acos(Bt − C) + D

where amplitude =  ∣ A ∣ , B is related to period such that the period =   2π _ 
B

  , C is the phase shift such that   C _ 
B

   
denotes the horizontal shift, and D represents the vertical shift from the graph’s parent graph.

Note that the models are sometimes written as y = a sin(ω t ± C) + D or y = a cos(ω t ± C) + D, and period is 
given as   2π _ ω  .

The difference between the sine and the cosine graphs is that the sine graph begins with the average value of the 
function and the cosine graph begins with the maximum or minimum value of the function.
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Example 1  Showing How the Properties of a Trigonometric Function Can Transform a Graph

Show the transformation of the graph of y = sin x into the graph of y = 2sin  4x −   π _ 
2

     + 2.

Solution Consider the series of graphs in Figure 2 and the way each change to the equation changes the image.
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Figure 2 (a) The basic graph of y = sinx (b) Changing the amplitude from 1 to 2 generates the graph of y = 2sinx. (c) The period of the sine function changes 

with the value of B, such that period =   2π ___ B  . Here we have B = 4, which translates to a period of   π _ 
2
  . The graph completes one full cycle in   π _ 

2
   units. (d ) The graph 

displays a horizontal shift equal to   C __ B  , or   
  π __ 
2
  
 __ 

4
   =   π _ 

8
  . (e) Finally, the graph is shifted vertically by the value of D. In this case, the graph is shifted up by 2 units.

Example 2 Finding the Amplitude and Period of a Function

Find the amplitude and period of the following functions and graph one cycle.

a. y = 2sin     1 _ 4  x     b. y = −3sin   2x +   π _ 
2

       c. y = cos x + 3

Solution We will solve these problems according to the models.

a. y = 2sin    1 _ 4  x   involves sine, so we use the form

 y = Asin(Bt − C) + D

We know that  ∣ A ∣  is the amplitude, so the amplitude is 2. Period is   2π _ 
B

   , so the period is

   2π _ 
B

   =   2π _ 

  1 __ 4  
  

 = 8π
See the graph in Figure 3.
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b. y = −3sin  2x +   π _ 
2

     involves sine, so we use the form

 y = Asin(Bt − C) + D

Amplitude is  ∣ A ∣ , so the amplitude is  ∣ −3 ∣  = 3. Since A is negative, the graph is reflected over the x-axis. Period 
is   2π _ 

B
  , so the period is

   2π _ 
B

   =   2π _ 
2

   = π

The graph is shifted to the left by   C _ 
B

   =    
  π _ 
2

  
 _ 

2
   =   π _ 4   units. See Figure 4.
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c. y = cos x + 3 involves cosine, so we use the form
 y = Acos(Bt − C) + D

Amplitude is  ∣ A ∣ , so the amplitude is 1. The period is 2π. See Figure 5. This is the standard cosine function 
shifted up three units.
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y = cos x + 3

Figure 5

Try It #1

What are the amplitude and period of the function y = 3cos(3πx)?

Finding equations and Graphing Sinusoidal Functions

One method of graphing sinusoidal functions is to find five key points. These points will correspond to intervals of 
equal length representing   1 _ 4   of the period. The key points will indicate the location of maximum and minimum values. 
If there is no vertical shift, they will also indicate x-intercepts. For example, suppose we want to graph the function 
y = cos θ. We know that the period is 2π, so we find the interval between key points as follows.

  2π _ 4   =   π _ 
2

  

Starting with θ = 0, we calculate the first y-value, add the length of the interval   π _ 
2

   to 0, and calculate the second 
y-value. We then add   π _ 

2
   repeatedly until the five key points are determined. The last value should equal the first value, 

as the calculations cover one full period. Making a table similar to Table 1, we can see these key points clearly on the 
graph shown in Figure 6.
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θ 0   π _ 
2

  π   3π _ 
2

  2π

y = cos θ 1 0 −1 0 1
Table 1

–1

1

π 2ππ
2

3π
2

θ

y

y = cos θ

Figure 6

Example 3 Graphing Sinusoidal Functions Using Key Points

Graph the function y = −4cos(πx) using amplitude, period, and key points.

Solution The amplitude is  ∣ −4 ∣  = 4. The period is   2π _ ω   =   2π _ π   = 2. (Recall that we sometimes refer to B as ω.) One 
cycle of the graph can be drawn over the interval  [0, 2]. To find the key points, we divide the period by 4. Make a table 
similar to Table 2, starting with x = 0 and then adding   1 _ 

2
   successively to x and calculate y. See the graph in Figure 7.

x 0   1 _ 
2

  1   3 _ 
2

  2

y = −4 cos(πx) −4 0 4 0 −4

Table 2

1 2 3 4

–4

–2

2

4

x

y
y = –4 cos (πx)(1, 4)

(2, −4)

Figure 7

Try It #2

Graph the function y = 3sin(3x) using the amplitude, period, and five key points.

Modeling Periodic Behavior
We will now apply these ideas to problems involving periodic behavior.

Example 4  Modeling an Equation and Sketching a Sinusoidal Graph to Fit Criteria

The average monthly temperatures for a small town in Oregon are given in Table 3. Find a sinusoidal function of the 
form y = Asin(Bt − C) + D that fits the data (round to the nearest tenth) and sketch the graph.
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Month Temperature, ° F

January 42.5

February 44.5

March 48.5

April 52.5

May 58

June 63

July 68.5

August 69

September 64.5

October 55.5

November 46.5

December 43.5
Table 3

Solution Recall that amplitude is found using the formula

 A =   largest value − smallest value   ______________________  2  

Thus, the amplitude is

  ∣ A ∣  =   69 − 42.5 ________ 2  

 = 13.25

The data covers a period of 12 months, so   2π _ 
B

   = 12 which gives B =   2π _ 
12

   =   π _ 
6

  .

The vertical shift is found using the following equation.

 D =   highest value + lowest value   _____________________  2  

Thus, the vertical shift is

 D =   69 + 42.5 ________ 2  

 = 55.8

So far, we have the equation y = 13.3sin     π _ 
6

  x − C   + 55.8.

To find the horizontal shift, we input the x and y values for the first month and solve for C.

 42.5 = 13.3sin     π _ 
6

  (1) − C   + 55.8 

 −13.3 = 13.3sin     π _ 
6

   − C  

 −1 = sin    π _ 
6

   − C   sin θ = −1 → θ = −  π _ 
2

  

   π _ 
6

   − C = −  π _ 
2

  

   π _ 
6

   +   π _ 
2

   = C

 =   2π _ 
3
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We have the equation y = 13.3sin     π _ 
6

  x −   2π _ 
3

     + 55.8. See the graph in Figure 8.
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Example 5 Describing Periodic Motion

The hour hand of the large clock on the wall in Union Station measures 24 inches in length. At noon, the tip of the 
hour hand is 30 inches from the ceiling. At 3 PM, the tip is 54 inches from the ceiling, and at 6 PM, 78 inches. At 9 
PM, it is again 54 inches from the ceiling, and at midnight, the tip of the hour hand returns to its original position 
30 inches from the ceiling. Let y equal the distance from the tip of the hour hand to the ceiling x hours after noon. 
Find the equation that models the motion of the clock and sketch the graph.

Solution Begin by making a table of values as shown in Table 4.

x y Points to plot
Noon 30 in (0, 30)
3 PM 54 in (3, 54)
6 PM 78 in (6, 78)
9 PM 54 in (9, 54)

Midnight 30 in (12, 30)
Table 4

To model an equation, we first need to find the amplitude.

  ∣ A ∣  =     78 − 30 ______ 2    
 = 24
The clock’s cycle repeats every 12 hours. Thus,

 B =   2π _ 
12

  

 =   π _ 
6

  

The vertical shift is

 D =   78 + 30 ______ 2  

 = 54

There is no horizontal shift, so C = 0. Since the function begins with the minimum value of y when x = 0 
(as opposed to the maximum value), we will use the cosine function with the negative value for A. In the form  
y = A cos(Bx ± C) + D, the equation is 
 y = −24cos     π _ 

6
  x   + 54

See Figure 9.
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Example 6 Determining a Model for Tides

The height of the tide in a small beach town is measured along a seawall. Water levels oscillate between 7 feet at low tide 
and 15 feet at high tide. On a particular day, low tide occurred at 6 AM and high tide occurred at noon. Approximately 
every 12 hours, the cycle repeats. Find an equation to model the water levels.

Solution As the water level varies from 7 ft to 15 ft, we can calculate the amplitude as

  ∣ A ∣  =     (15 − 7) _______ 2    
 = 4
The cycle repeats every 12 hours; therefore, B is

   2π _ 
12

   =   π _ 
6

  

There is a vertical translation of    (15 + 7) _______ 2   = 11. Since the value of the function is at a maximum at t = 0, we will use 
the cosine function, with the positive value for A.

y = 4cos     π _ 
6

    t + 11
See Figure 10.
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Try It #3
The daily temperature in the month of March in a certain city varies from a low of 24°F to a high of 40°F. Find a 
sinusoidal function to model daily temperature and sketch the graph. Approximate the time when the temperature 
reaches the freezing point 32°F. Let t = 0 correspond to noon.

Example 7 Interpreting the Periodic Behavior Equation

The average person’s blood pressure is modeled by the function f(t) = 20 sin(160πt) + 100, where f(t) represents the 
blood pressure at time t, measured in minutes. Interpret the function in terms of period and frequency. Sketch the 
graph and find the blood pressure reading.

Solution The period is given by
   2π ___ ω   =   2π ____ 160π  

 =   1 __ 80  

In a blood pressure function, frequency represents the number of heart beats per minute. Frequency is the reciprocal 
of period and is given by
   ω __ 2π   =   160π ____ 2π  

 = 80
See the graph in Figure 11.
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Analysi s Blood pressure of   120 _ 
80

   is considered to be normal. The top number is the maximum or systolic reading, which 
measures the pressure in the arteries when the heart contracts. The bottom number is the minimum or diastolic reading, 
which measures the pressure in the arteries as the heart relaxes between beats, refilling with blood. Thus, normal blood 
pressure can be modeled by a periodic function with a maximum of 120 and a minimum of 80.

Modeling Harmonic Motion Functions
Harmonic motion is a form of periodic motion, but there are factors to consider that differentiate the two types. While 
general periodic motion applications cycle through their periods with no outside interference, harmonic motion requires 
a restoring force. Examples of harmonic motion include springs, gravitational force, and magnetic force.

Simple Harmonic Motion
A type of motion described as simple harmonic motion involves a restoring force but assumes that the motion will 
continue forever. Imagine a weighted object hanging on a spring, When that object is not disturbed, we say that the 
object is at rest, or in equilibrium. If the object is pulled down and then released, the force of the spring pulls the object 
back toward equilibrium and harmonic motion begins. The restoring force is directly proportional to the displacement 
of the object from its equilibrium point. When t = 0, d = 0.

simple harmonic motion 
We see that simple harmonic motion equations are given in terms of displacement:

d = acos(ωt) or d = asin(ωt)

where |a| is the amplitude,   2π _ ω   is the period, and   ω _ 
2π

   is the frequency, or the number of cycles per unit of time.

Example 8  Finding the Displacement, Period, and Frequency, and Graphing a Function

For the given functions,
1. Find the maximum displacement of an object.
2. Find the period or the time required for one vibration.
3. Find the frequency.
4. Sketch the graph.

a. y = 5sin(3t)   b. y = 6cos(πt)   c. y = 5cos     π _ 
2

  t  

Solution
a. y = 5sin(3t)

1. The maximum displacement is equal to the amplitude,  ∣ a ∣ , which is 5.

2. The period is   2π _ ω   =   2π _ 
3

  .

3. The frequency is given as   ω _ 
2π

   =   3 _ 
2π

  .

4. See Figure 12. The graph indicates the five key points.
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b. y = 6cos(πt)

1. The maximum displacement is 6.

2. The period is   2π _ ω   =   2π _ π   = 2.

3. The frequency is   ω _ 
2π

   =   π _ 
2π

   =   1 _ 
2

  .

4. See Figure 13. 1 2 3 4
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c. y = 5cos     π _ 
2

    t

1. The maximum displacement is 5.

2. The period is   2π _ ω   =   2π _ 
  π _ 
2

  
    = 4.

3. The frequency is   1 _ 4  .

4. See Figure 14.
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Damped Harmonic Motion

In reality, a pendulum does not swing back and forth forever, nor does an object on a spring bounce up and down 
forever. Eventually, the pendulum stops swinging and the object stops bouncing and both return to equilibrium. 
Periodic motion in which an energy-dissipating force, or damping factor, acts is known as damped harmonic motion. 
Friction is typically the damping factor.

In physics, various formulas are used to account for the damping factor on the moving object. Some of these are 
calculus-based formulas that involve derivatives. For our purposes, we will use formulas for basic damped harmonic 
motion models.

damped harmonic motion 
In damped harmonic motion, the displacement of an oscillating object from its rest position at time t is given as

f(t) = ae−ctsin(ωt) or f(t) = ae−ctcos(ωt)

where c is a damping factor,  ∣ a ∣  is the initial displacement and   2π _ ω   is the period.

Example 9 Modeling Damped Harmonic Motion

Model the equations that fit the two scenarios and use a graphing utility to graph the functions: Two mass-spring 
systems exhibit damped harmonic motion at a frequency of 0.5 cycles per second. Both have an initial displacement 
of 10 cm. The first has a damping factor of 0.5 and the second has a damping factor of 0.1.

Solution At time t = 0, the displacement is the maximum of 10 cm, which calls for the cosine function. The cosine 
function will apply to both models.

We are given the frequency f =   ω _ 
2π

   of 0.5 cycles per second. Thus,

   ω _ 
2π

   = 0.5

 ω = (0.5)2π
 = π

The first spring system has a damping factor of c = 0.5. Following the general model for damped harmonic motion, 
we have f(t) = 10e−0.5t cos(πt)

Figure 15 models the motion of the first spring system.
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f(t) = 10e–0.5tcos(πt)

Figure 15
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The second spring system has a damping factor of c = 0.1 and can be modeled as

 f (t) = 10e−0.1tcos(πt)

Figure 16 models the motion of the second spring system.
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f(t)
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f(t) = 10e–0.1tcos (πt)

Figure 16

Analysi s Notice the differing effects of the damping constant. The local maximum and minimum values of the function 
with the damping factor c = 0.5 decreases much more rapidly than that of the function with c = 0.1.

Example 10   Finding a Cosine Function that Models Damped Harmonic Motion

Find and graph a function of the form y = ae−ctcos(ωt) that models the information given.

a. a = 20, c = 0.05, p = 4

b. a = 2, c = 1.5, f = 3

Solution Substitute the given values into the model. Recall that period is   2π _ ω   and frequency is   ω _ 
2π

  .

a. y = 20e−0.05tcos     π _ 
2

  t  . See Figure 17.
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y = 20e–0.05t cos 2
π t

Figure 17 

b. y = 2e−1.5tcos(6πt). See Figure 18.
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y = 2e–1.5t cos(6πt)

Figure 18 

Try It #4

The following equation represents a damped harmonic motion model: f(t) = 5e−6tcos(4t) Find the initial 
displacement, the damping constant, and the frequency.
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Example 11   Finding a Sine Function that Models Damped Harmonic Motion

Find and graph a function of the form y = ae−ct sin(ωt) that models the information given.

a. a = 7, c = 10, p =   π _ 
6

     b. a = 0.3, c = 0.2, f = 20

Solution Calculate the value of ω and substitute the known values into the model.

a. As period is   2π _ ω  , we have
   π _ 

6
   =   2π _ ω  

 ωπ = 6(2π)

 ω = 12

The damping factor is given as 10 and the amplitude is 7. Thus, the model is y = 7e−10tsin(12t). See Figure 19.
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y

y = 7e–10t sin(12t)

Figure 19

b. As frequency is   ω _ 
2π

  , we have
 20 =   ω _ 

2π
  

 40π = ω

The damping factor is given as 0.2 and the amplitude is 0.3. The model is y = 0.3e−0.2tsin(40πt). See Figure 20.
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Figure 20

Analysi s A comparison of the last two examples illustrates how we choose between the sine or cosine functions to model 
sinusoidal criteria. We see that the cosine function is at the maximum displacement when t = 0, and the sine function 
is at the equilibrium point when t = 0. For example, consider the equation y = 20e−0.05tcos     π _ 

2
  t   from Example 10. We 

can see from the graph that when t = 0, y = 20, which is the initial amplitude. Check this by setting t = 0 in the cosine 
equation:
 y = 20e−0.05(0)cos     π _ 

2
    (0)

 = 20(1)(1)

 = 20

Using the sine function yields
 y = 20e−0.05(0)sin     π _ 

2
    (0)

 = 20(1)(0)

 = 0
Thus, cosine is the correct function.
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Try It #5

Write the equation for damped harmonic motion given a = 10, c = 0.5, and p = 2.

Example 12 Modeling the Oscillation of a Spring

A spring measuring 10 inches in natural length is compressed by 5 inches and released. It oscillates once every 3 
seconds, and its amplitude decreases by 30% every second. Find an equation that models the position of the spring t 
seconds after being released.

Solution The amplitude begins at 5 in. and deceases 30% each second. Because the spring is initially compressed, we 
will write A as a negative value. We can write the amplitude portion of the function as

 A(t) = 5(1 − 0.30)t

We put (1 − 0.30)t in the form ect as follows:
 0.7 = ec

 c = ln 0.7

 c = −0.357

Now let’s address the period. The spring cycles through its positions every 3 seconds, this is the period, and we can 
use the formula to find omega.
 3 =   2π _ ω  

 ω =   2π _ 
3

  

The natural length of 10 inches is the midline. We will use the cosine function, since the spring starts out at its 
maximum displacement. This portion of the equation is represented as

 y = cos     2π _ 
3

  t   + 10

Finally, we put both functions together. Our the model for the position of the spring at t seconds is given as

 y = −5e−0.357t cos     2π _ 
3

  t   + 10

See the graph in Figure 21.

t

y

8 16 24–8–16–24

–8

8

16

24

y = –5e–0.357t cos 3
2πt + 10

Figure 21

Try It #6

A mass suspended from a spring is raised a distance of 5 cm above its resting position. The mass is released at time 
t = 0 and allowed to oscillate. After   1 _ 

3
   second, it is observed that the mass returns to its highest position. Find a 

function to model this motion relative to its initial resting position.

Example 13  Finding the Value of the Damping Constant c According to the Given Criteria

A guitar string is plucked and vibrates in damped harmonic motion. The string is pulled and displaced 2 cm from its 
resting position. After 3 seconds, the displacement of the string measures 1 cm. Find the damping constant.

Solution The displacement factor represents the amplitude and is determined by the coefficient ae−ct in the model 
for damped harmonic motion. The damping constant is included in the term e−ct. It is known that after 3 seconds, the 
local maximum measures one-half of its original value. Therefore, we have the equation

ae−c(t + 3) =   1 _ 
2

  ae−ct
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Use algebra and the laws of exponents to solve for c.

 ae−c(t + 3) =   1 _ 
2

  ae−ct

 e−ct · e−3c =   1 _ 
2

  e−ct Divide out a.

 e−3c =   1 _ 
2

   Divide out e−ct.

 e3c = 2 Take reciprocals.

Then use the laws of logarithms.
 e3c = 2

 3c = ln(2)

 c =   
ln(2)

 _ 
3

  
The damping constant is   ln(2) ___ 3  .

Bounding Curves in Harmonic Motion

Harmonic motion graphs may be enclosed by bounding curves. When a function has a varying amplitude, such that 
the amplitude rises and falls multiple times within a period, we can determine the bounding curves from part of the 
function.

Example 14 Graphing an Oscillating Cosine Curve

Graph the function f(x) = cos(2πx) cos(16πx).

Solution The graph produced by this function will be shown in two parts. The first graph will be the exact function 
f(x) (see Figure 22), and the second graph is the exact function f(x) plus a bounding function (see Figure 23). The 
graphs look quite different.

f(x)

x
–1

1

1 2

f(x) = cos (2πx) cos (16πx)

Figure 22
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f(x) = cos (2πx) cos (16πx)
y = cos (2πx)

y = –cos (2πx)

Figure 23

Analysi s The curves y = cos(2πx) and y = −cos(2πx) are bounding curves: they bound the function from above and 
below, tracing out the high and low points. The harmonic motion graph sits inside the bounding curves. This is an example 
of a function whose amplitude not only decreases with time, but actually increases and decreases multiple times within 
a period.

Access these online resources for additional instruction and practice with trigonometric applications.
•	 Solving Problems Using Trigonometry (http://openstaxcollege.org/l/solvetrigprob)

•	 Ferris Wheel Trigonometry (http://openstaxcollege.org/l/ferriswheel)

•	 Daily Temperatures and Trigonometry (http://openstaxcollege.org/l/dailytemp)

•	 Simple Harmonic Motion (http://openstaxcollege.org/l/simpleharm)

http://openstaxcollege.org/l/solvetrigprob
http://openstaxcollege.org/l/ferriswheel
http://openstaxcollege.org/l/dailytemp
http://openstaxcollege.org/l/simpleharm
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7.6 SeCTIOn exeRCISeS

VeRBAl

1. Explain what types of physical phenomena are best 
modeled by sinusoidal functions. What are the 
characteristics necessary?

2. What information is necessary to construct a 
trigonometric model of daily temperature? Give 
examples of two different sets of information that 
would enable modeling with an equation.

3. If we want to model cumulative rainfall over the 
course of a year, would a sinusoidal function be a 
good model? Why or why not?

4. Explain the effect of a damping factor on the graphs 
of harmonic motion functions.

AlGeBRAIC

For the following exercises, find a possible formula for the trigonometric function represented by the given table of values. 

5.  x 0 3 6 9 12 15 18
y −4 −1 2 −1 −4 −1 2

6.  x 0 2 4 6 8 10 12
y 5 1 −3 1 5 1 −3

7. x 0   π _ 4    π _ 
2

    3π _ 4  π   5π _ 4    3π _ 
2

  

y 2 7 2 −3 2 7 2

8.  x 0 1 2 3 4 5 6
y 1 −3 −7 −3 1 −3 −7

9.  x 0 1 2 3 4 5 6
y −2 4 10 4 −2 4 10

10.  x 0 1 2 3 4 5 6
y 5 −3 5 13 5 −3 5

11.  x −3 −2 −1 0 1 2 3
y −1 − √

—
 2  −1 1 −  √

—
 2  0  √

—
 2   − 1 1  √

—
 2   + 1

12.  x −1 0 1 2 3 4 5

y  √
—
 3   − 2 0 2 −  √

—
 3     √

—
 3   ____ 3  1   √

—
 3   2 +  √

—
 3  

GRAPHICAl

For the following exercises, graph the given function, and then find a possible physical process that the equation could 
model.

13. f (x) = −30cos     xπ _ 
6

     − 20cos2     xπ _ 
6

     + 80 [0, 12]

14. f (x) = −18cos     xπ _ 
12

     − 5sin     xπ _ 
12

     + 100 on the interval [0, 24]

15. f (x) = 10 − sin     xπ _ 
6

     + 24tan     xπ _ 
240

     on the interval [0, 80]

TeCHnOlOGY

For the following exercise, construct a function modeling behavior and use a calculator to find desired results.
16. A city’s average yearly rainfall is currently 20 inches and varies seasonally by 5 inches. Due to unforeseen 

circumstances, rainfall appears to be decreasing by 15% each year. How many years from now would we expect 
rainfall to initially reach 0 inches? Note, the model is invalid once it predicts negative rainfall, so choose the first 
point at which it goes below 0.
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ReAl-WORlD APPlICATIOnS

For the following exercises, construct a sinusoidal function with the provided information, and then solve the equation 
for the requested values.

17. Outside temperatures over the course of a day can be 
modeled as a sinusoidal function. Suppose the high 
temperature of 105°F occurs at 5PM and the average 
temperature for the day is 85°F. Find the temperature, 
to the nearest degree, at 9AM.

18. Outside temperatures over the course of a day can be 
modeled as a sinusoidal function. Suppose the high 
temperature of 84°F occurs at 6PM and the average 
temperature for the day is 70°F. Find the temperature, 
to the nearest degree, at 7AM.

19. Outside temperatures over the course of a day can 
be modeled as a sinusoidal function. Suppose the 
temperature varies between 47°F and 63°F during the 
day and the average daily temperature first occurs 
at 10 AM. How many hours after midnight does the 
temperature first reach 51°F?

20. Outside temperatures over the course of a day can 
be modeled as a sinusoidal function. Suppose the 
temperature varies between 64°F and 86°F during the 
day and the average daily temperature first occurs 
at 12 AM. How many hours after midnight does the 
temperature first reach 70°F?

21. A Ferris wheel is 20 meters in diameter and boarded 
from a platform that is 2 meters above the ground. 
The six o’clock position on the Ferris wheel is level 
with the loading platform. The wheel completes 1 full 
revolution in 6 minutes. How much of the ride, in 
minutes and seconds, is spent higher than 13 meters 
above the ground?

22. A Ferris wheel is 45 meters in diameter and boarded 
from a platform that is 1 meter above the ground. 
The six o’clock position on the Ferris wheel is level 
with the loading platform. The wheel completes 1 
full revolution in 10 minutes. How many minutes of 
the ride are spent higher than 27 meters above the 
ground? Round to the nearest second

23. The sea ice area around the North Pole fluctuates 
between about 6 million square kilometers on 
September 1 to 14 million square kilometers on 
March 1. Assuming a sinusoidal fluctuation, when 
are there less than 9 million square kilometers of 
sea ice? Give your answer as a range of dates, to the 
nearest day.

24. The sea ice area around the South Pole fluctuates 
between about 18 million square kilometers in 
September to 3 million square kilometers in March. 
Assuming a sinusoidal fluctuation, when are there 
more than 15 million square kilometers of sea 
ice? Give your answer as a range of dates, to the 
nearest day.

25. During a 90-day monsoon season, daily rainfall can 
be modeled by sinusoidal functions. If the rainfall 
fluctuates between a low of 2 inches on day 10 and 12 
inches on day 55, during what period is daily rainfall 
more than 10 inches?

26. During a 90-day monsoon season, daily rainfall 
can be modeled by sinusoidal functions. A low of 4 
inches of rainfall was recorded on day 30, and overall 
the average daily rainfall was 8 inches. During what 
period was daily rainfall less than 5 inches?

27. In a certain region, monthly precipitation peaks at 
8 inches on June 1 and falls to a low of 1 inch on 
December 1. Identify the periods when the region is 
under flood conditions (greater than 7 inches) and 
drought conditions (less than 2 inches). Give your 
answer in terms of the nearest day.

28. In a certain region, monthly precipitation peaks at 24 
inches in September and falls to a low of 4 inches in 
March. Identify the periods when the region is under 
flood conditions (greater than  
22 inches) and drought conditions (less than  
5 inches). Give your answer in terms of the  
nearest day.

For the following exercises, find the amplitude, period, and frequency of the given function.

29. The displacement h(t) in centimeters of a mass 
suspended by a spring is modeled by the function 
h(t) = 8sin(6πt),where t is measured in seconds. 
Find the amplitude, period, and frequency of this 
displacement.

30. The displacement h(t) in centimeters of a mass 
suspended by a spring is modeled by the function 
h(t) = 11sin(12πt), where t is measured in seconds. 
Find the amplitude, period, and frequency of this 
displacement.
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31. The displacement h(t) in centimeters of a mass suspended by a spring is modeled by the function  

h(t) = 4cos     π _ 
2

  t  , where t is measured in seconds. Find the amplitude, period, and frequency of this displacement.

For the following exercises, construct an equation that models the described behavior.

32. The displacement h(t), in centimeters, of a mass suspended by a spring is modeled by the function  
h(t) = −5 cos(60πt), where t is measured in seconds. Find the amplitude, period, and frequency of this 
displacement.

For the following exercises, construct an equation that models the described behavior.

33. A deer population oscillates 19 above and below 
average during the year, reaching the lowest value 
in January. The average population starts at 800 deer 
and increases by 160 each year. Find a function that 
models the population, P, in terms of months since 
January, t.

34. A rabbit population oscillates 15 above and below 
average during the year, reaching the lowest  
value in January. The average population starts at  
650 rabbits and increases by 110 each year. Find a 
function that models the population, P, in terms of 
months since January, t.

35. A muskrat population oscillates 33 above and below 
average during the year, reaching the lowest value 
in January. The average population starts at 900 
muskrats and increases by 7% each month. Find a 
function that models the population, P, in terms of 
months since January, t.

36. A fish population oscillates 40 above and below 
average during the year, reaching the lowest value in 
January. The average population starts at 800 fish and 
increases by 4% each month. Find a function that 
models the population, P, in terms of months since 
January, t.

37. A spring attached to the ceiling is pulled 10 cm 
down from equilibrium and released. The amplitude 
decreases by 15% each second. The spring oscillates 
18 times each second. Find a function that models the 
distance, D, the end of the spring is from equilibrium 
in terms of seconds, t, since the spring was released.

38. A spring attached to the ceiling is pulled 7 cm down 
from equilibrium and released. The amplitude 
decreases by 11% each second. The spring oscillates 
20 times each second. Find a function that models 
the distance, D, the end of the spring is from 
equilibrium in terms of seconds, t, since the spring 
was released.

39. A spring attached to the ceiling is pulled 17 cm down 
from equilibrium and released. After  
3 seconds, the amplitude has decreased to 13 cm. 
The spring oscillates 14 times each second. Find a 
function that models the distance, D, the end of the 
spring is from equilibrium in terms of seconds, t, 
since the spring was released.

40. A spring attached to the ceiling is pulled 19 cm down 
from equilibrium and released. After  
4 seconds, the amplitude has decreased to 14 cm. 
The spring oscillates 13 times each second. Find a 
function that models the distance, D, the end of the 
spring is from equilibrium in terms of seconds, t, 
since the spring was released.

For the following exercises, create a function modeling the described behavior. Then, calculate the desired result using 
a calculator.

41. A certain lake currently has an average trout 
population of 20,000. The population naturally 
oscillates above and below average by 2,000 every 
year. This year, the lake was opened to fishermen. If 
fishermen catch 3,000 fish every year, how long will it 
take for the lake to have no more trout?

42. Whitefish populations are currently at 500 in a lake. 
The population naturally oscillates above and below 
by 25 each year. If humans overfish, taking 4% of the 
population every year, in how many years will the 
lake first have fewer than 200 whitefish?

43. A spring attached to a ceiling is pulled down 11 cm 
from equilibrium and released. After 2 seconds, the 
amplitude has decreased to 6 cm. The spring oscillates 
8 times each second. Find when the spring first comes 
between −0.1 and 0.1 cm, effectively at rest.

44. A spring attached to a ceiling is pulled down 21 cm 
from equilibrium and released. After 6 seconds, the 
amplitude has decreased to 4 cm. The spring oscillates 
20 times each second. Find when the spring first 
comes between −0.1 and 0.1 cm, effectively at rest.
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45. Two springs are pulled down from the ceiling and 
released at the same time. The first spring, which 
oscillates 8 times per second, was initially pulled 
down 32 cm from equilibrium, and the amplitude 
decreases by 50% each second. The second spring, 
oscillating 18 times per second, was initially pulled 
down 15 cm from equilibrium and after 4 seconds 
has an amplitude of 2 cm. Which spring comes to 
rest first, and at what time? Consider “rest” as an 
amplitude less than 0.1 cm.

46. Two springs are pulled down from the ceiling and 
released at the same time. The first spring, which 
oscillates 14 times per second, was initially pulled 
down 2 cm from equilibrium, and the amplitude 
decreases by 8% each second. The second spring, 
oscillating 22 times per second, was initially pulled 
down 10 cm from equilibrium and after 3 seconds 
has an amplitude of 2 cm. Which spring comes to 
rest first, and at what time? Consider “rest” as an 
amplitude less than 0.1 cm.

exTenSIOnS

47. A plane flies 1 hour at 150 mph at 22° east of north, 
then continues to fly for 1.5 hours at 120 mph, this 
time at a bearing of 112° east of north. Find the total 
distance from the starting point and the direct angle 
flown north of east.

48. A plane flies 2 hours at 200 mph at a bearing of 60°, 
then continues to fly for 1.5 hours at the same speed, 
this time at a bearing of 150°. Find the distance from 
the starting point and the bearing from the starting 
point. Hint: bearing is measured counterclockwise 
from north.

For the following exercises, find a function of the form y = abx + csin     π _ 
2

  x   that fits the given data.

49. x 0 1 2 3
y 6 29 96 379

50.  x 0 1 2 3
y 6 34 150 746

51.  x 0 1 2 3
y 4 0 16 −40

For the following exercises, find a function of the form y = abx cos    π _ 
2

  x   + c that fits the given data.

52.  x 0 1 2 3
y 11 3 1 3

53.  x 0 1 2 3
y 4 1 −11 1
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CHAPTeR 7 ReVIeW

Key Terms
damped harmonic motion oscillating motion that resembles periodic motion and simple harmonic motion, except that the 

graph is affected by a damping factor, an energy dissipating influence on the motion, such as friction

double-angle formulas identities derived from the sum formulas for sine, cosine, and tangent in which the angles  
are equal

even-odd identities set of equations involving trigonometric functions such that if f (−x) = −f (x), the identity is odd, and 
if f (−x) = f (x), the identity is even

half-angle formulas identities derived from the reduction formulas and used to determine half-angle values of trigonometric 
functions

product-to-sum formula a trigonometric identity that allows the writing of a product of trigonometric functions as a sum 
or difference of trigonometric functions 

Pythagorean identities set of equations involving trigonometric functions based on the right triangle properties

quotient identities pair of identities based on the fact that tangent is the ratio of sine and cosine, and cotangent is the ratio 
of cosine and sine

reciprocal identities set of equations involving the reciprocals of basic trigonometric definitions 

reduction formulas identities derived from the double-angle formulas and used to reduce the power of a trigonometric 
function

simple harmonic motion a repetitive motion that can be modeled by periodic sinusoidal oscillation

sum-to-product formula a trigonometric identity that allows, by using substitution, the writing of a sum of trigonometric 
functions as a product of trigonometric functions

Key equations
Pythagorean identities sin2 θ + cos2 θ = 1

1 + cot2 θ = csc2 θ

1 + tan2 θ = sec2 θ

Even-odd identities tan(−θ) = −tan θ

cot(−θ) = −cot θ

sin(−θ) = −sin θ

csc(−θ) = −csc θ

cos(−θ) = cos θ

sec(−θ) = sec θ

Reciprocal identities  sin θ =   1 _ 
csc θ

  

cos θ =   1 _ 
sec θ

  

tan θ =   1 _ 
cot θ

  

csc θ =    1 _ 
sin θ

  

sec θ =    1 _ 
cos θ

  

cot θ =    1 _ 
tan θ
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Quotient identities tan θ =   sin θ _ 
cos θ

  

cot θ =   cos θ _ 
sin θ

  

Sum Formula for Cosine cos(α + β) = cos α cos β − sin α sin β

Difference Formula for Cosine cos(α − β) = cos α cos β + sin α sin β

Sum Formula for Sine sin(α + β)= sin α cos β + cos α sin β

Difference Formula for Sine sin(α − β) = sin α cos β − cos α sin β

Sum Formula for Tangent tan(α + β) =   tan α + tan β  ___________  1 − tan α tan β   

Difference Formula for Tangent tan(α − β) =   tan α − tan β  ___________  1 + tan α tan β  

Cofunction identities sin θ = cos    π _ 
2

   − θ  

cos θ = sin    π _ 
2

   − θ  

tan θ = cot    π _ 
2

   − θ  

cot θ = tan    π _ 
2

   − θ  

sec θ = csc    π _ 
2

   − θ  

csc θ = sec    π _ 
2

   − θ  

Double-angle formulas sin(2θ) = 2sin θ cos θ

cos(2θ) = cos2 θ − sin2 θ

= 1 − 2sin2 θ

= 2cos2 θ − 1

tan(2θ) =    2tan θ ________ 1 − tan2 θ  

Reduction formulas  sin2θ =   1 − cos(2θ) _________ 2  

 cos2θ =   1 + cos(2θ) _________ 2  

 tan2θ =   1 − cos(2θ) _________ 1 + cos(2θ)  
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Half-angle formulas  sin   α _ 
2

   = ± √ 
_________

   1 − cos α _______ 2    

 cos   α _ 
2

   = ± √ 
_________

   1 + cos α _______ 2    

 tan   α _ 
2

   = ± √ 
_________

   1 − cos α _______ 1 + cos α    

 =   sin α _______ 1 + cos α  

 =   1 − cos α _______ sin α  

Product-to-sum Formulas cos α cos β =   1 __ 2  [cos(α − β) + cos(α + β)]

sin α cos β =   1 __ 2  [sin(α + β) + sin(α − β)]

sin α sin β =   1 __ 2  [cos(α − β) − cos(α + β)]

cos α sin β =   1 __ 2  [sin(α + β) − sin(α − β)]

Sum-to-product Formulas sin α + sin β = 2 sin    α + β _____ 2    cos    α − β _____ 2    

sin α − sin β = 2 sin    α − β _____ 2    cos    α + β _____ 2    

cos α − cos β = −2 sin    α + β _____ 2    sin    α − β _____ 2    

cos α + cos β = 2cos    α + β _____ 2    cos    α − β _____ 2    

Standard form of sinusoidal equation y = A sin(Bt − C) + D or y = A cos(Bt − C) + D

Simple harmonic motion d = a cos(ωt) or d = a sin(ωt)

Damped harmonic motion f (t) = ae−ct sin(ωt) or f (t) = ae−ct cos(ωt)

Key Concepts

7.1 Solving Trigonometric Equations with Identities

•	 There are multiple ways to represent a trigonometric expression. Verifying the identities illustrates how expressions 
can be rewritten to simplify a problem.

•	 Graphing both sides of an identity will verify it. See Example 1.

•	 Simplifying one side of the equation to equal the other side is another method for verifying an identity. See 
Example 2 and Example 3.

•	 The approach to verifying an identity depends on the nature of the identity. It is often useful to begin on the more 
complex side of the equation. See Example 4.

•	 We can create an identity by simplifying an expression and then verifying it. See Example 5.

•	 Verifying an identity may involve algebra with the fundamental identities. See Example 6 and Example 7.
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•	Algebraic techniques can be used to simplify trigonometric expressions. We use algebraic techniques throughout 
this text, as they consist of the fundamental rules of mathematics. See Example 8, Example 9, and Example 10.

7.2 Sum and Difference Identities

•	 The sum formula for cosines states that the cosine of the sum of two angles equals the product of the cosines of 
the angles minus the product of the sines of the angles. The difference formula for cosines states that the cosine 
of the difference of two angles equals the product of the cosines of the angles plus the product of the sines of 
the angles.

•	 The sum and difference formulas can be used to find the exact values of the sine, cosine, or tangent of an angle. 
See Example 1 and Example 2.

•	 The sum formula for sines states that the sine of the sum of two angles equals the product of the sine of the first 
angle and cosine of the second angle plus the product of the cosine of the first angle and the sine of the second 
angle. The difference formula for sines states that the sine of the difference of two angles equals the product of 
the sine of the first angle and cosine of the second angle minus the product of the cosine of the first angle and the 
sine of the second angle. See Example 3.

•	 The sum and difference formulas for sine and cosine can also be used for inverse trigonometric functions. See 
Example 4.

•	 The sum formula for tangent states that the tangent of the sum of two angles equals the sum of the tangents of 
the angles divided by 1 minus the product of the tangents of the angles. The difference formula for tangent states 
that the tangent of the difference of two angles equals the difference of the tangents of the angles divided by 1 
plus the product of the tangents of the angles. See Example 5.

•	 The Pythagorean Theorem along with the sum and difference formulas can be used to find multiple sums and 
differences of angles. See Example 6.

•	 The cofunction identities apply to complementary angles and pairs of reciprocal functions. See Example 7.

•	 Sum and difference formulas are useful in verifying identities. See Example 8 and Example 9.

•	 Application problems are often easier to solve by using sum and difference formulas. See Example 10 and Example 11.

7.3 Double-Angle, Half-Angle, and Reduction Formulas

•	 Double-angle identities are derived from the sum formulas of the fundamental trigonometric functions: sine, 
cosine, and tangent. See Example 1, Example 2, Example 3, and Example 4.

•	 Reduction formulas are especially useful in calculus, as they allow us to reduce the power of the trigonometric 
term. See Example 5 and Example 6.

•	 Half-angle formulas allow us to find the value of trigonometric functions involving half-angles, whether the 
original angle is known or not. See Example 7, Example 8, and Example 9.

7.4 Sum-to-Product and Product-to-Sum Formulas

•	 From the sum and difference identities, we can derive the product-to-sum formulas and the sum-to-product 
formulas for sine and cosine.

•	 We can use the product-to-sum formulas to rewrite products of sines, products of cosines, and products of sine 
and cosine as sums or differences of sines and cosines. See Example 1, Example 2, and Example 3.

•	 We can also derive the sum-to-product identities from the product-to-sum identities using substitution.

•	 We can use the sum-to-product formulas to rewrite sum or difference of sines, cosines, or products sine and 
cosine as products of sines and cosines. See Example 4.
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•	 Trigonometric expressions are often simpler to evaluate using the formulas. See Example 5.

•	 The identities can be verified using other formulas or by converting the expressions to sines and cosines. To verify 
an identity, we choose the more complicated side of the equals sign and rewrite it until it is transformed into the 
other side. See Example 6 and Example 7.

7.5 Solving Trigonometric Equations

•	 When solving linear trigonometric equations, we can use algebraic techniques just as we do solving algebraic 
equations. Look for patterns, like the difference of squares, quadratic form, or an expression that lends itself well 
to substitution. See Example 1, Example 2, and Example 3.

•	 Equations involving a single trigonometric function can be solved or verified using the unit circle. See Example 4, 
Example 5, and Example 6, and Example 7.

•	 We can also solve trigonometric equations using a graphing calculator. See Example 8 and Example 9.

•	 Many equations appear quadratic in form. We can use substitution to make the equation appear simpler, and then 
use the same techniques we use solving an algebraic quadratic: factoring, the quadratic formula, etc. See Example 
10, Example 11, Example 12, and Example 13.

•	 We can also use the identities to solve trigonometric equation. See Example 14, Example 15, and Example 16.

•	 We can use substitution to solve a multiple-angle trigonometric equation, which is a compression of a standard 
trigonometric function. We will need to take the compression into account and verify that we have found all 
solutions on the given interval. See Example 17.

•	 Real-world scenarios can be modeled and solved using the Pythagorean Theorem and trigonometric functions. 
See Example 18.

7.6 Modeling with Trigonometric Equations

•	 Sinusoidal functions are represented by the sine and cosine graphs. In standard form, we can find the amplitude, 
period, and horizontal and vertical shifts. See Example 1 and Example 2.

•	 Use key points to graph a sinusoidal function. The five key points include the minimum and maximum values 
and the midline values. See Example 3.

•	 Periodic functions can model events that reoccur in set cycles, like the phases of the moon, the hands on a clock, 
and the seasons in a year. See Example 4, Example 5, Example 6 and Example 7.

•	 Harmonic motion functions are modeled from given data. Similar to periodic motion applications, harmonic 
motion requires a restoring force. Examples include gravitational force and spring motion activated by weight. 
See Example 8.

•	 Damped harmonic motion is a form of periodic behavior affected by a damping factor. Energy dissipating factors, 
like friction, cause the displacement of the object to shrink. See Example 9, Example 10, Example 11, Example 
12, and Example 13.

•	 Bounding curves delineate the graph of harmonic motion with variable maximum and minimum values. See 
Example 14.
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CHAPTeR 7 ReVIeW exeRCISeS

SOlVInG TRIGOnOMeTRIC eQUATIOnS WITH IDenTITIeS

For the following exercises, find all solutions exactly that exist on the interval [0, 2π).

1. csc2 t = 3 2. cos2 x =   1 __ 4  3. 2sin θ = −1

4. tan x sin x + sin(−x) = 0 5. 9sin ω − 2 = 4 sin2 ω 6. 1 − 2tan(ω) = tan2(ω)

For the following exercises, use basic identities to simplify the expression.

7. sec x cos x + cos x −   1 ____ sec x  8. sin3 x + cos2 x sin x

For the following exercises, determine if the given identities are equivalent.

9. sin2 x + sec2 x − 1 =   
(1 − cos2 x)(1 + cos2 x)

  __  
cos2 x

  10. tan3 x csc2 x cot2 x cos x sin x = 1

SUM AnD DIFFeRenCe IDenTITIeS

For the following exercises, find the exact value.

11. tan     7π ___ 12    12. cos     25π ___ 12    

13. sin(70°)cos(25°) − cos(70°)sin(25°) 14. cos(83°)cos(23°) + sin(83°)sin(23°)

For the following exercises, prove the identity.

15. cos(4x) − cos(3x)cosx = sin2 x − 4cos2 x sin2 x 16. cos(3x) − cos3 x = − cos x sin2 x − sin x sin(2x)

For the following exercise, simplify the expression.

17.       
tan    1 __ 2  x   + tan    1 __ 8  x  

  ___   
1 − tan    1 __ 8  x   tan    1 __ 2  x  

  

For the following exercises, find the exact value.

18. cos   sin−1 (0) − cos−1     1 __ 2      19. tan   sin−1 (0) + sin−1     1 __ 2      

DOUBle-AnGle, HAlF-AnGle, AnD ReDUCTIOn FORMUlAS

For the following exercises, find the exact value.

20. Find sin(2θ), cos(2θ), and tan(2θ) given  
cos θ = −  1 __ 3   and θ is in the interval     π __ 2  , π   

21. Find sin(2θ), cos(2θ), and tan(2θ) given  
sec θ = −  5 __ 3   and θ is in the interval     π __ 2  , π   

22. sin     7π ___ 8    23. sec     3π ___ 8    
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For the following exercises, use Figure 1 to find the desired quantities.

24

25α

β

Figure 1

24. sin(2β), cos(2β), tan(2β), sin(2α), cos(2α),  
and tan(2α)

25. sin     β __ 2    , cos     β __ 2    , tan     β __ 2    , sin     α __ 2    , cos     α __ 2    ,  

and tan     α __ 2    

For the following exercises, prove the identity.

26.   2cos(2x) _______ sin(2x)   = cot x − tan x 27. cot x cos(2x) = − sin(2x) + cot x

For the following exercises, rewrite the expression with no powers.

28. cos2 x sin4(2x) 29. tan2 x sin3 x

SUM-TO-PRODUCT AnD PRODUCT-TO-SUM FORMUlAS

For the following exercises, evaluate the product for the given expression using a sum or difference of two functions. 
Write the exact answer.

30. cos     π __ 3     sin     π _ 4    31. 2sin     2π __ 3     sin     5π __ 6    

32. 2cos     π __ 5     cos     π __ 3    

For the following exercises, evaluate the sum by using a product formula. Write the exact answer.

33. sin     π __ 12     − sin     7π __ 12    34. cos     5π __ 12     + cos     7π __ 12    

For the following exercises, change the functions from a product to a sum or a sum to a product.

35. sin(9x)cos(3x) 36. cos(7x)cos(12x)

37. sin(11x) + sin(2x) 38. cos(6x) + cos(5x)

SOlVInG TRIGOnOMeTRIC eQUATIOnS

For the following exercises, find all exact solutions on the interval [0, 2π).

39. tan x + 1 = 0 40. 2sin(2x) +  √
—
 2   = 0

For the following exercises, find all exact solutions on the interval [0, 2π).

41. 2sin2 x − sin x = 0 42. cos2 x − cos x − 1 = 0

43. 2sin2 x + 5 sin x + 3 = 0 44. cos x − 5sin(2x) = 0

45.   1 ____ sec2 x   + 2 + sin2 x + 4cos2 x = 0
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For the following exercises, simplify the equation algebraically as much as possible. Then use a calculator to find the 
solutions on the interval [0, 2π). Round to four decimal places.

46.  √
—
 3   cot2 x + cot x = 1 47. csc2 x − 3csc x − 4 = 0

For the following exercises, graph each side of the equation to find the zeroes on the interval [0, 2π).

48. 20cos2 x + 21cos x + 1 = 0 49. sec2 x − 2sec x = 15

MODelInG WITH TRIGOnOMeTRIC eQUATIOnS

For the following exercises, graph the points and find a possible formula for the trigonometric values in the given table.

50.  x 0 1 2 3 4 5
y 1 6 11 6 1 6

51.  x 0 1 2 3 4 5
y −2 1 −2 −5 −2 1

52.  x −3 −2 −1 0 1 2 3
y 3 + 2 √

—
 2   3 2 √

—
 2   − 1 1 3 − 2 √

—
 2  −1 −1 − 2 √

—
 2  

53. A man with his eye level 6 feet above the ground 
is standing 3 feet away from the base of a 15-foot 
vertical ladder. If he looks to the top of the ladder, at 
what angle above horizontal is he looking?

54. Using the ladder from the previous exercise, if a 
6-foot-tall construction worker standing at the 
top of the ladder looks down at the feet of the 
man standing at the bottom, what angle from the 
horizontal is he looking?

For the following exercises, construct functions that model the described behavior.

55. A population of lemmings varies with a yearly low 
of 500 in March. If the average yearly population of 
lemmings is 950, write a function that models the 
population with respect to t, the month.

56. Daily temperatures in the desert can be very 
extreme. If the temperature varies from 90°F to 30°F 
and the average daily temperature first occurs at 10 
AM, write a function modeling this behavior.

For the following exercises, find the amplitude, frequency, and period of the given equations.

57. y = 3cos(xπ) 58. y = −2sin(16xπ)

For the following exercises, model the described behavior and find requested values.

59. An invasive species of carp is introduced to Lake 
Freshwater. Initially there are 100 carp in the lake 
and the population varies by 20 fish seasonally. If by 
year 5, there are 625 carp, find a function modeling 
the population of carp with respect to t, the number 
of years from now.

60. The native fish population of Lake Freshwater 
averages 2500 fish, varying by 100 fish seasonally. 
Due to competition for resources from the invasive 
carp, the native fish population is expected to 
decrease by 5% each year. Find a function modeling 
the population of native fish with respect to t, the 
number of years from now. Also determine how 
many years it will take for the carp to overtake the 
native fish population.
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CHAPTeR 7 PRACTICe TeST

For the following exercises, simplify the given expression.
1. cos(−x)sin x cot x + sin2 x 2. sin(−x)cos(−2x)−sin(−x)cos(−2x)

For the following exercises, find the exact value.

3. cos     7π __ 12    4. tan     3π ___ 8    5. tan   sin−1      √
—
 2   ____ 2     + tan−1  √

—
 3    6. 2sin     π __ 4     sin     π __ 6    

For the following exercises, find all exact solutions to the equation on [0, 2π).

7. cos2 x − sin2 x − 1 = 0 8. cos2 x = cos x 4sin2 x + 2sin x − 3 = 0
9. cos(2x) + sin2 x = 0 10. 2sin2 x − sin x = 0

11. Rewrite the expression as a product instead of a 
sum: cos(2x) + cos(−8x).

12. Find all solutions of tan(x) −  √
—
 3   = 0.

13. Find the solutions of sec2 x − 2sec x = 15 on the 
interval [0, 2π) algebraically; then graph both sides 
of the equation to determine the answer.

14. Find sin(2θ), cos(2θ), and tan(2θ) given  
cot θ = −  3 __ 4   and θ is on the interval     π __ 2  , π   .

15. Find sin    θ __ 2    , cos    θ __ 2    , and tan    θ __ 2     given  

cos θ =   7 __ 25   and θ is in quadrant IV.

16. Rewrite the expression sin4 x with no powers greater 
than 1.

For the following exercises, prove the identity.

17. tan3 x − tan x sec2 x = tan(−x) 18. sin(3x) − cos x sin(2x) = cos2 x sin x − sin3 x 

19.   sin(2x) ______ sin x   −   cos(2x) ______ cos x   = sec x 20. Plot the points and find a function of the form  
y = Acos(Bx + C) + D that fits the given data.

x 0 1 2 3 4 5
y −2 2 −2 2 −2 2

21.  The displacement h(t) in centimeters of a mass 
suspended by a spring is modeled by the function 
h(t) =   1 __ 4   sin(120πt), where t is measured in seconds. 
Find the amplitude, period, and frequency of this 
displacement.

22. A woman is standing 300 feet away from a 2,000-
foot building. If she looks to the top of the building, 
at what angle above horizontal is she looking? 
A bored worker looks down at her from the 15th floor 
(1500 feet above her). At what angle is he looking 
down at her? Round to the nearest tenth of a degree.

23. Two frequencies of sound are played on an 
instrument governed by the equation  
n(t) = 8 cos(20πt)cos(1,000πt). What are the period 
and frequency of the “fast” and “slow” oscillations? 
What is the amplitude?

24. The average monthly snowfall in a small village in 
the Himalayas is 6 inches, with the low of 1 inch 
occurring in July. Construct a function that models 
this behavior. During what period is there more than 
10 inches of snowfall?

25. A spring attached to a ceiling is pulled down 20 cm. 
After 3 seconds, wherein it completes 6 full periods, 
the amplitude is only 15 cm. Find the function 
modeling the position of the spring t seconds after 
being released. At what time will the spring come to 
rest? In this case, use 1 cm amplitude as rest.

26. Water levels near a glacier currently average 9 feet, 
varying seasonally by 2 inches above and below the 
average and reaching their highest point in January. 
Due to global warming, the glacier has begun melting 
faster than normal. Every year, the water levels rise by 
a steady 3 inches. Find a function modeling the depth 
of the water t months from now. If the docks are 2 
feet above current water levels, at what point will the 
water first rise above the docks?
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Further Applications of Trigonometry

CHAPTeR OUTlIne

8.1 non-right Triangles: law of Sines
8.2 non-right Triangles: law of Cosines
8.3 Polar Coordinates
8.4 Polar Coordinates: Graphs
8.5 Polar Form of Complex numbers
8.6 Parametric equations
8.7 Parametric equations: Graphs
8.8 Vectors

Figure 1 General Sherman, the world’s largest living tree. (credit: Mike Baird, Flickr)

Introduction
The world’s largest tree by volume, named General Sherman, stands 274.9 feet tall and resides in Northern California.[27] 
Just how do scientists know its true height? A common way to measure the height involves determining the angle of 
elevation, which is formed by the tree and the ground at a point some distance away from the base of the tree. This 
method is much more practical than climbing the tree and dropping a very long tape measure.

In this chapter, we will explore applications of trigonometry that will enable us to solve many different kinds of problems, 
including finding the height of a tree. We extend topics we introduced in Trigonometric Functions and investigate 
applications more deeply and meaningfully.

27 Source: National Park Service. "The General Sherman Tree." http://www.nps.gov/seki/naturescience/sherman.htm. Accessed April 25, 2014. 

http://www.nps.gov/seki/naturescience/sherman.htm


CHAPTER 8 Further applications oF trigonometry644

leARnInG OBjeCTIVeS

In this section, you will:
•	 Use the Law of Sines to solve oblique triangles.
•	 Find the area of an oblique triangle using the sine function.
•	 Solve applied problems using the Law of Sines.

8.1 nOn-RIGHT TRIAnGleS: lAW OF SIneS 

Suppose two radar stations located 20 miles apart each detect an aircraft between them. The angle of elevation measured 
by the first station is 35 degrees, whereas the angle of elevation measured by the second station is 15 degrees. How can 
we determine the altitude of the aircraft? We see in Figure 1 that the triangle formed by the aircraft and the two stations 
is not a right triangle, so we cannot use what we know about right triangles. In this section, we will find out how to 
solve problems involving non-right triangles.

Figure 1

15° 35°
20 miles

Using the law of Sines to Solve Oblique Triangles 
In any triangle, we can draw an altitude, a perpendicular line from one vertex to the opposite side, forming two right 
triangles. It would be preferable, however, to have methods that we can apply directly to non-right triangles without 
first having to create right triangles. 

Any triangle that is not a right triangle is an oblique triangle. Solving an oblique triangle means finding the 
measurements of all three angles and all three sides. To do so, we need to start with at least three of these values, 
including at least one of the sides. We will investigate three possible oblique triangle problem situations: 

1. ASA (angle-side-angle) We know the measurements of two angles and the included side. See Figure 2. 

Figure 2

γα

β

2. AAS (angle-angle-side) We know the measurements of two angles and a side that is not between the known 
angles. See Figure 3. 

Figure 3

γα

β

3. SSA (side-side-angle) We know the measurements of two sides and an angle that is not between the known 
sides. See Figure 4. 

Figure 4

γα

β
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Knowing how to approach each of these situations enables us to solve oblique triangles without having to drop a 
perpendicular to form two right triangles. Instead, we can use the fact that the ratio of the measurement of one of the 
angles to the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. Let’s see 
how this statement is derived by considering the triangle shown in Figure 5. 

Figure 5

γ

βα

a
b

c

h

Using the right triangle relationships, we know that sin α =   h _ 
b

   and sin β =   h _ a  . Solving both equations for h gives two 
different expressions for h. 

 h = bsin α and h = asin β 

We then set the expressions equal to each other. 

 bsin α = asin β 

     1 _ 
ab

    (bsin α) = (asin β)    1 _ 
ab

     Multiply both sides by   1 _ 
ab

  .

   sin α _ a   =   
sin β

 _ 
b

  

Similarly, we can compare the other ratios. 

   sin α _ a   =   
sin γ

 _ c   and   
sin β

 _ 
b

   =   
sin γ

 _ c  

Collectively, these relationships are called the Law of Sines. 

   sin α _ a   =   
sin β

 _ 
b

   =   
sin γ

 _ c  

Note the standard way of labeling triangles: angle α (alpha) is opposite side a; angle β (beta) is opposite side b; and angle 
γ (gamma) is opposite side c. See Figure 6. 

While calculating angles and sides, be sure to carry the exact values through to the final answer. Generally, final answers 
are rounded to the nearest tenth, unless otherwise specified. 

Figure 6

γ

β

α

a

b

c

Law of Sines
Given a triangle with angles and opposite sides labeled as in Figure 6, the ratio of the measurement of an angle to 
the length of its opposite side will be equal to the other two ratios of angle measure to opposite side. All proportions 
will be equal. The Law of Sines is based on proportions and is presented symbolically two ways.

   sin α _ a   =   
sin β

 _ 
b

   =   
sin γ

 _ c  

   a _ 
sin α

   =   b _ 
sin β

   =   c _ 
sin γ

  

To solve an oblique triangle, use any pair of applicable ratios.



CHAPTER 8 Further applications oF trigonometry646

Example 1 Solving for Two Unknown Sides and Angle of an AAS Triangle

Solve the triangle shown in Figure 7 to the nearest tenth.

Figure 7

γα
b

10

50° 30°

c

β

Solution The three angles must add up to 180 degrees. From this, we can determine that 

 β = 180° − 50° − 30°
 = 100° 

To find an unknown side, we need to know the corresponding angle and a known ratio. We know that angle α = 50° 
and its corresponding side a = 10. We can use the following proportion from the Law of Sines to find the length of c. 

   
sin(50°)

 _ 
10

   =   
sin(30°)

 _ c  

 c   
sin(50°)

 _ 
10

   = sin(30°)   Multiply both sides by c.

 c = sin(30°)   10 _ 
sin(50°)

    Multiply by the reciprocal to isolate c.
 c ≈ 6.5 

Similarly, to solve for b, we set up another proportion. 

   
sin(50°)

 _ 
10

   =   
sin(100°)

 _ 
b

  

 bsin(50°) = 10sin(100°)  Multiply both sides by b.

 b =   
10sin(100°)

 _ 
sin(50°)

    Multiply by the reciprocal to isolate b.

 b ≈ 12.9 

Therefore, the complete set of angles and sides is 
 α = 50° a = 10 
 β = 100° b ≈ 12.9
 γ = 30° c ≈ 6.5 

Try It #1

Solve the triangle shown in Figure 8 to the nearest tenth.   

α 22
98° 43°

c
a

β

Figure 8 

Using The law of Sines to Solve SSA Triangles 
We can use the Law of Sines to solve any oblique triangle, but some solutions may not be straightforward. In some cases, 
more than one triangle may satisfy the given criteria, which we describe as an ambiguous case. Triangles classified as 
SSA, those in which we know the lengths of two sides and the measurement of the angle opposite one of the given sides, 
may result in one or two solutions, or even no solution. 
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possible outcomes for SSA triangles
Oblique triangles in the category SSA may have four different outcomes. Figure 9 illustrates the solutions with the 
known sides a and b and known angle α. 

γ

βα

ab

γ

βα

ab

γ

βα

aa

h

b

γ

βα

ab

(a) (b) (c) (d)

No triangle, a < h Right triangle, a = h Two triangles, a > h, a < b One triangle, a ≥ b

Figure 9 

Example 2 Solving an Oblique SSA Triangle 

Solve the triangle in Figure 10 for the missing side and find the missing angle measures to the nearest tenth.

Figure 10

γ

α

8 6

35° β

Solution Use the Law of Sines to find angle β and angle γ, and then side c. Solving for β, we have the proportion

   sin α _ a   =   
sin β

 _ 
b

  

   
sin(35°)

 _ 
6

   =   
sin β

 _ 
8

  

   
8sin(35°)

 _ 
6

   = sin β

 0.7648 ≈ sin β

 sin−1(0.7648) ≈ 49.9°

 β ≈ 49.9° 

However, in the diagram, angle β appears to be an obtuse angle and may be greater than 90°. How did we get an acute 
angle, and how do we find the measurement of β? Let’s investigate further. Dropping a perpendicular from γ and viewing 
the triangle from a right angle perspective, we have Figure 11. It appears that there may be a second triangle that will fit 
the given criteria. 

Figure 11

γ'

β'
β φ

α'

8

35°

6 6

The angle supplementary to β is approximately equal to 49.9°, which means that β = 180° − 49.9° = 130.1°. (Remember 
that the sine function is positive in both the first and second quadrants.) Solving for γ, we have

 γ = 180° − 35° − 130.1° ≈ 14.9°



CHAPTER 8 Further applications oF trigonometry648

We can then use these measurements to solve the other triangle. Since γ' is supplementary to α and β, we have

 γ' = 180° − 35° − 49.9° ≈ 95.1°

Now we need to find c and c'.

We have 

   c _ 
sin(14.9°)

   =   6 _ 
sin(35°)

  

 c =   
6sin(14.9°)

 _ 
sin(35°)

   ≈ 2.7 

Finally, 

   c' _ 
sin(95.1°)

   =   6 _ 
sin(35°)

  

 c' =   
6sin(95.1°)

 _ 
sin(35°)

   ≈ 10.4

To summarize, there are two triangles with an angle of 35°, an adjacent side of 8, and an opposite side of 6, as shown 
in Figure 12. 

Figure 12

γ

βα 35° 130.1°

14.9°
b = 8

a = 6

c ≈ 2.7

γ'

β'α'
c' ≈ 10.4

b' = 8 a' = 6

95.1°

49.9°35°

(a) (b)

However, we were looking for the values for the triangle with an obtuse angle β. We can see them in the first triangle 
(a) in Figure 12. 

Try It #2

Given α = 80°, a = 120, and b = 121, find the missing side and angles. If there is more than one possible solution,  
show both.

Example 3 Solving for the Unknown Sides and Angles of a SSA Triangle 

In the triangle shown in Figure 13, solve for the unknown side and angles. Round your answers to the nearest tenth. 

Figure 13

α

12

9
85°

β

a

Solution  In choosing the pair of ratios from the Law of Sines to use, look at the information given. In this case, we 
know the angle γ = 85°, and its corresponding side c = 12, and we know side b = 9. We will use this proportion to solve 
for β. 

   
sin(85°)

 _ 
12

   =   
sin β

 _ 
9

   Isolate the unknown. 

   
9sin(85°)

 _ 
12

   = sin β
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To find β, apply the inverse sine function. The inverse sine will produce a single result, but keep in mind that there 
may be two values for β. It is important to verify the result, as there may be two viable solutions, only one solution (the 
usual case), or no solutions. 
 β = sin−1     

9sin(85°)
 _ 

12
    

 β ≈ sin−1(0.7471)

 β ≈ 48.3° 

In this case, if we subtract β from 180°, we find that there may be a second possible solution. Thus,  
β = 180° − 48.3° ≈ 131.7°. To check the solution, subtract both angles, 131.7° and 85°, from 180°. This gives
 α = 180° − 85° − 131.7° ≈ − 36.7°,
which is impossible, and so β ≈ 48.3°. 

To find the remaining missing values, we calculate α = 180° − 85° − 48.3° ≈ 46.7°. Now, only side a is needed. Use the 
Law of Sines to solve for a by one of the proportions. 

   
sin(85°)

 _ 
12

   =   
sin(46.7°)

 _ a  

 a   
sin(85°)

 _ 
12

   = sin(46.7°) 

 a =   
12sin(46.7°)

 __ 
sin(85°)

   ≈ 8.8 

The complete set of solutions for the given triangle is 
 α ≈ 46.7° a ≈ 8.8
 β ≈ 48.3° b = 9
 γ = 85° c = 12 

Try It #3

Given α = 80°, a = 100, b = 10, find the missing side and angles. If there is more than one possible solution, show both. 
Round your answers to the nearest tenth.

Example 4 Finding the Triangles That Meet the Given Criteria 

Find all possible triangles if one side has length 4 opposite an angle of 50°, and a second side has length 10. 

Solution Using the given information, we can solve for the angle opposite the side of length 10. See Figure 14. 

   sin α _ 
10

   =   
sin(50°)

 _ 4  

 sin α =   10sin(50°) _________ 
4

  

 sin α ≈ 1.915 

Figure 14

α

50°
10

4

We can stop here without finding the value of α. Because the range of the sine function is [−1, 1], it is impossible for 
the sine value to be 1.915. In fact, inputting sin−1 (1.915) in a graphing calculator generates an ERROR DOMAIN. 
Therefore, no triangles can be drawn with the provided dimensions. 

Try It #4
Determine the number of triangles possible given a = 31, b = 26,  β = 48°.
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Finding the Area of an Oblique Triangle Using the Sine Function 
Now that we can solve a triangle for missing values, we can use some of those values and the sine function to find the 
area of an oblique triangle. Recall that the area formula for a triangle is given as Area =   1 _ 

2
  bh, where b is base and h is 

height. For oblique triangles, we must find h before we can use the area formula. Observing the two triangles in Figure 15, 
one acute and one obtuse, we can drop a perpendicular to represent the height and then apply the trigonometric  

property sin α =   
opposite

 _ 
hypotenuse

   to write an equation for area in oblique triangles. In the acute triangle, we have sin α =   h _ c    

or csin α = h. However, in the obtuse triangle, we drop the perpendicular outside the triangle and extend the base b to 
form a right triangle. The angle used in calculation is α', or 180 − α. 

Figure 15

γ γ

β β

α
αα'

b b

a ac ch h

Thus, 
 Area =   1 _ 

2
  (base)(height) =   1 _ 

2
  b(csin α)

Similarly, 

 Area =   1 _ 
2

  a(bsin γ) =   1 _ 
2

  a(csin β)

area of an oblique triangle
The formula for the area of an oblique triangle is given by

 Area =   1 _ 
2

  bcsin α

 =   1 _ 
2

  acsin β

 =   1 _ 
2

  absin γ

This is equivalent to one-half of the product of two sides and the sine of their included angle.

Example 5 Finding the Area of an Oblique Triangle 

Find the area of a triangle with sides a = 90, b = 52, and angle γ = 102°. Round the area to the nearest integer. 

Solution Using the formula, we have 
 Area =   1 _ 

2
  absin γ 

 Area =   1 _ 
2

  (90)(52)sin(102°)

 Area ≈ 2289 square units 

Try It #5

Find the area of the triangle given β = 42°, a = 7.2 ft, c = 3.4 ft. Round the area to the nearest tenth.

Solving Applied Problems Using the law of Sines 
The more we study trigonometric applications, the more we discover that the applications are countless. Some are flat, 
diagram-type situations, but many applications in calculus, engineering, and physics involve three dimensions and 
motion. 
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Example 6 Finding an Altitude 

Find the altitude of the aircraft in the problem introduced at the beginning of this section, shown in Figure 16. Round 
the altitude to the nearest tenth of a mile. 

Figure 16

a

15° 35°
20 miles

Solution To find the elevation of the aircraft, we first find the distance from one station to the aircraft, such as the side 
a, and then use right triangle relationships to find the height of the aircraft, h. 

Because the angles in the triangle add up to 180 degrees, the unknown angle must be 180° − 15° − 35° = 130°. This 
angle is opposite the side of length 20, allowing us to set up a Law of Sines relationship. 

   
sin(130°)

 _ 
20

   =   
sin(35°)

 _ a  

 asin(130°) = 20sin(35°) 

 a =   
20sin(35°)

 _ 
sin(130°)

  

 a ≈ 14.98 

The distance from one station to the aircraft is about 14.98 miles.

Now that we know a, we can use right triangle relationships to solve for h. 

 sin(15°) =   
opposite

 _ 
hypotenuse

  

 sin(15°) =   h _ a  

 sin(15°) =   h _ 
14.98

  

 h = 14.98sin(15°)

 h ≈ 3.88 

The aircraft is at an altitude of approximately 3.9 miles. 

Try It #6

The diagram shown in Figure 17 represents the height of a blimp flying over 
a football stadium. Find the height of the blimp if the angle of elevation at the 
southern end zone, point A, is 70°, the angle of elevation from the northern 
end zone, point B, is 62°, and the distance between the viewing points of the 
two end zones is 145 yards. 

Figure 17

145 yards
70°

C

A B62°

 

Access the following online resources for additional instruction and practice with trigonometric applications.

•	 law of Sines: The Basics (http://openstaxcollege.org/l/sinesbasic)

•	 law of Sines: The Ambiguous Case (http://openstaxcollege.org/l/sinesambiguous)

http://openstaxcollege.org/l/sinesbasic
http://openstaxcollege.org/l/sinesambiguous
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8.1 SeCTIOn exeRCISeS

VeRBAl 

1. Describe the altitude of a triangle. 2. Compare right triangles and oblique triangles. 
3. When can you use the Law of Sines to find a missing 

angle? 
4. In the Law of Sines, what is the relationship between the 

angle in the numerator and the side in the denominator? 
5. What type of triangle results in an ambiguous case? 

AlGeBRAIC

For the following exercises, assume α is opposite side a, β is opposite side b, and γ is opposite side c. Solve each triangle, 
if possible. Round each answer to the nearest tenth. 

6. α = 43°, γ = 69°, a = 20 7. α = 35°, γ = 73°, c = 20 8. α = 60°, β = 60°, γ = 60°
9. a = 4, α = 60°, β = 100° 10. b = 10, β = 95°, γ = 30°

For the following exercises, use the Law of Sines to solve for the missing side for each oblique triangle. Round each answer 
to the nearest hundredth. Assume that angle A is opposite side a, angle B is opposite side b, and angle C is opposite side c. 

11. Find side b when A = 37°, B = 49°, c = 5. 12. Find side a when A = 132°, C = 23°, b = 10. 
13. Find side c when B = 37°, C = 21, b = 23. 

For the following exercises, assume α is opposite side a, β is opposite side b, and γ is opposite side c. Determine whether there 
is no triangle, one triangle, or two triangles. Then solve each triangle, if possible. Round each answer to the nearest tenth. 

14. α = 119°, a = 14, b = 26 15. γ = 113°, b = 10, c = 32 16. b = 3.5, c = 5.3, γ = 80°
17. a = 12, c = 17, α = 35° 18. a = 20.5, b = 35.0, β = 25° 19. a = 7, c = 9, α = 43°
20. a = 7, b = 3, β = 24° 21. b = 13, c = 5, γ = 10° 22. a = 2.3, c = 1.8, γ = 28°
23. β = 119°, b = 8.2, a = 11.3

For the following exercises, use the Law of Sines to solve, if possible, the missing side or angle for each triangle or 
triangles in the ambiguous case. Round each answer to the nearest tenth. 

24. Find angle A when a = 24, b = 5, B = 22°. 25. Find angle A when a = 13, b = 6, B = 20°. 
26. Find angle B when A = 12°, a = 2, b = 9.

For the following exercises, find the area of the triangle with the given measurements. Round each answer to the nearest 
tenth. 

27. a = 5, c = 6, β = 35° 28. b = 11, c = 8, α = 28° 29. a = 32, b = 24, γ = 75° 
30. a = 7.2, b = 4.5, γ = 43° 

GRAPHICAl

For the following exercises, find the length of side x. Round to the nearest tenth.

31.  

10 x

70° 50°

32.  

x

25°

6

120°

33.  

x
75°

45°

15
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34. 

x

110°
40°

18

35. 36. 

x

111°

22°

8.6

For the following exercises, find the measure of angle x, if possible. Round to the nearest tenth.
37. 

98°
5

10
x

38.  
37°

8

11
x

39. 

22°

13
5

x

40.  

59°

5.35.7

x

41. Notice that x is an obtuse angle.

55°

24
21

x

42.  
65°

12

10

x

For the following exercises, solve the triangle. Round each answer to the nearest tenth.
43.  

93°

24.1
32.6

A

B C

For the following exercises, find the area of each triangle. Round each answer to the nearest tenth.
44.  

30°
16

10

45. 
25°

18

15

46. 

51°

4.5
2.9

3.5

47.  
58°

51°

9 11

48. 

40°

25

18

49. 

30°

115°

30

50

x

42°50°

14
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exTenSIOnS

50. Find the radius of the circle in Figure 18. Round to 
the nearest tenth.

145° 3

Figure 18 

51. Find the diameter of the circle in Figure 19. Round 
to the nearest tenth.

110°

8.3

Figure 19 

52. Find m ∠ADC in Figure 20. Round to the nearest 
tenth.

60°

8
9

10

A

B C D

Figure 20

53. Find AD in Figure 21. Round to the nearest tenth.

53°
44°

1312

B C

A

D

Figure 21

54. Solve both triangles in Figure 22. Round each 
answer to the nearest tenth.

48°

46°

48° 2

4.2

A

B

E C

D
Figure 22 

55. Find AB in the parallelogram shown in Figure 23.

130°

130°

12

10

A B

DC

Figure 23

56. Solve the triangle in Figure 24. (Hint: Draw a 
perpendicular from H to JK). Round each answer to 
the nearest tenth.

20°

7

10

H

KJ

Figure 24 

57. Solve the triangle in Figure 25. (Hint: Draw a 
perpendicular from N to LM). Round each answer 
to the nearest tenth.

74°

4.6

5

L

M N

Figure 25 
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58. In Figure 26, ABCD is not a parallelogram. ∠m is 
obtuse. Solve both triangles. Round each answer to 
the nearest tenth.

35°

65°

29 45

40

A Bx
m

h
k

y

D

C

n

Figure 26 

ReAl-WORlD APPlICATIOnS

59. A pole leans away from the sun at an angle of 7° 
to the vertical, as shown in Figure 27. When the 
elevation of the sun is 55°, the pole casts a shadow 
42 feet long on the level ground. How long is the 
pole? Round the answer to the nearest tenth.

Figure 27 

60. To determine how far a boat is from shore, two radar 
stations 500 feet apart find the angles out to the 
boat, as shown in Figure 28. Determine the distance 
of the boat from station A and the distance of the 
boat from shore. Round your answers to the nearest 
whole foot.

70°

A B

60°

Figure 28 

61. Figure 29 shows a satellite orbiting Earth. The 
satellite passes directly over two tracking stations A 
and B, which are 69 miles apart. When the satellite 
is on one side of the two stations, the angles of 
elevation at A and B are measured to be 86.2° and 
83.9°, respectively. How far is the satellite from 
station A and how high is the satellite above the 
ground? Round answers to the nearest whole mile. 

Figure 29

83.9° 86.2°
A B

62. A communications tower is located at the top of 
a steep hill, as shown in Figure 30. The angle of 
inclination of the hill is 67°. A guy wire is to be 
attached to the top of the tower and to the ground, 
165 meters downhill from the base of the tower. The 
angle formed by the guy wire and the hill is 16°. 
Find the length of the cable required for the guy 
wire to the nearest whole meter. 

Figure 30

16°

67°

165m
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63. The roof of a house is at a 20° angle. An 8-foot solar 
panel is to be mounted on the roof and should be 
angled 38° relative to the horizontal for optimal 
results. (See Figure 31). How long does the vertical 
support holding up the back of the panel need to be? 
Round to the nearest tenth. 

Figure 31

20°

38°

8 �

64. Similar to an angle of elevation, an angle of 
depression is the acute angle formed by a horizontal 
line and an observer’s line of sight to an object 
below the horizontal. A pilot is flying over a straight 
highway. He determines the angles of depression to 
two mileposts, 6.6 km apart, to be 37° and 44°, as 
shown in Figure 32. Find the distance of the plane 
from point A to the nearest tenth of a kilometer. 

Figure 32

44°37°

A B

65. A pilot is flying over a straight highway. He 
determines the angles of depression to two 
mileposts, 4.3 km apart, to be 32° and 56°, as shown 
in Figure 33. Find the distance of the plane from 
point A to the nearest tenth of a kilometer. 

Figure 33

A B

32° 56°

66. In order to estimate the height of a building, two 
students stand at a certain distance from the 
building at street level. From this point, they find the 
angle of elevation from the street to the top of the 
building to be 39°. They then move 300 feet closer to 
the building and find the angle of elevation to be 50°. 
Assuming that the street is level, estimate the height 
of the building to the nearest foot.

67. In order to estimate the height of a building, two 
students stand at a certain distance from the 
building at street level. From this point, they find 
the angle of elevation from the street to the top of 
the building to be 35°. They then move 250 feet 
closer to the building and find the angle of elevation 
to be 53°. Assuming that the street is level, estimate 
the height of the building to the nearest foot. 

68. Points A and B are on opposite sides of a lake. Point 
C is 97 meters from A. The measure of angle BAC 
is determined to be 101°, and the measure of angle 
ACB is determined to be 53°. What is the distance 
from A to B, rounded to the nearest whole meter? 

69. A man and a woman standing 3  1 _ 
2

   miles apart spot 
a hot air balloon at the same time. If the angle of 
elevation from the man to the balloon is 27°, and  
the angle of elevation from the woman to the  
balloon is 41°, find the altitude of the balloon to  
the nearest foot. 

70. Two search teams spot a stranded climber on a 
mountain. The first search team is 0.5 miles from 
the second search team, and both teams are at an 
altitude of 1 mile. The angle of elevation from the 
first search team to the stranded climber is 15°. The 
angle of elevation from the second search team 
to the climber is 22°. What is the altitude of the 
climber? Round to the nearest tenth of a mile. 
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71. A street light is mounted on a pole. A 6-foot-tall 
man is standing on the street a short distance from 
the pole, casting a shadow. The angle of elevation 
from the tip of the man’s shadow to the top of his 
head of 28°. A 6-foot-tall woman is standing on the 
same street on the opposite side of the pole from 
the man. The angle of elevation from the tip of her 
shadow to the top of her head is 28°. If the man and 
woman are 20 feet apart, how far is the street light 
from the tip of the shadow of each person? Round 
the distance to the nearest tenth of a foot.

72. Three cities, A, B, and C, are located so that city A 
is due east of city B. If city C is located 35° west of 
north from city B and is 100 miles from city A and 
70 miles from city B, how far is city A from city B? 
Round the distance to the nearest tenth of a mile.

73. Two streets meet at an 80° angle. At the corner, a 
park is being built in the shape of a triangle. Find 
the area of the park if, along one road, the park 
measures 180 feet, and along the other road, the 
park measures 215 feet.

74. Brian’s house is on a corner lot. Find the area of the 
front yard if the edges measure 40 and 56 feet, as 
shown in Figure 34. 

Figure 34

House

56 � 40 �135°

75. The Bermuda triangle is a region of the Atlantic 
Ocean that connects Bermuda, Florida, and Puerto 
Rico. Find the area of the Bermuda triangle if the 
distance from Florida to Bermuda is 1030 miles, the 
distance from Puerto Rico to Bermuda is 980 miles, 
and the angle created by the two distances is 62°. 

76. A yield sign measures 30 inches on all three sides. 
What is the area of the sign? 

77. Naomi bought a modern dining table whose top 
is in the shape of a triangle. Find the area of the 
table top if two of the sides measure 4 feet and 4.5 
feet, and the smaller angles measure 32° and 42°, as 
shown in Figure 35. 

Figure 35

4.5 feet

32°

4 feet

42°
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leARnInG OBjeCTIVeS

In this section, you will:
•	  Use the Law of Cosines to solve oblique triangles. 
•	 Solve applied problems using the Law of Cosines. 
•	  Use Heron’s formula to find the area of a triangle.

8.2 nOn-RIGHT TRIAnGleS: lAW OF COSIneS  

Suppose a boat leaves port, travels 10 miles, turns 20 degrees, and travels another 8 miles as shown in Figure 1. How 
far from port is the boat? 

Figure 1

8 mi

20°

10 mi

Port

Unfortunately, while the Law of Sines enables us to address many non-right triangle cases, it does not help us with 
triangles where the known angle is between two known sides, a SAS (side-angle-side) triangle, or when all three sides 
are known, but no angles are known, a SSS (side-side-side) triangle. In this section, we will investigate another tool for 
solving oblique triangles described by these last two cases. 

Using the law of Cosines to Solve Oblique Triangles 
The tool we need to solve the problem of the boat’s distance from the port is the Law of Cosines, which defines the 
relationship among angle measurements and side lengths in oblique triangles. Three formulas make up the Law of 
Cosines. At first glance, the formulas may appear complicated because they include many variables. However, once the 
pattern is understood, the Law of Cosines is easier to work with than most formulas at this mathematical level. 

Understanding how the Law of Cosines is derived will be helpful in using the formulas. The derivation begins with the 
Generalized Pythagorean Theorem, which is an extension of the Pythagorean Theorem to non-right triangles. Here 
is how it works: An arbitrary non-right triangle ABC is placed in the coordinate plane with vertex A at the origin, side 
c drawn along the x-axis, and vertex C located at some point (x, y) in the plane, as illustrated in Figure 2. Generally, 
triangles exist anywhere in the plane, but for this explanation we will place the triangle as noted.

Figure 2

x

b

c B
A

(0, 0)
x

y

C (b cosθ, b sinθ)

x 2 c

a y

θ
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We can drop a perpendicular from C to the x-axis (this is the altitude or height). Recalling the basic trigonometric 
identities, we know that

cos θ =   
x(adjacent)

 __  
b(hypotenuse)

   and sin θ =   
y(opposite)

 __  
b(hypotenuse)

  

In terms of θ, x = bcos θ and y = bsin θ. The (x, y) point located at C has coordinates (bcos θ, bsin θ). Using the 
side (x − c) as one leg of a right triangle and y as the second leg, we can find the length of hypotenuse a using the 
Pythagorean Theorem. Thus, 

 a2 = (x − c)2 + y2

  = (bcos θ − c)2 + (bsin θ)2 Substitute (bcos θ) for x and (bsin θ) for y. 

  = (b2 cos2 θ − 2bccos θ + c2) + b2 sin2 θ Expand the perfect square.

  = b2 cos2 θ + b2 sin2 θ + c2 − 2bccos θ Group terms noting that cos2 θ + sin2 θ = 1.

  = b2(cos2 θ + sin2 θ) + c2 − 2bccos θ Factor out b2.

 a2 = b2 + c2 − 2bccos θ

The formula derived is one of the three equations of the Law of Cosines. The other equations are found in a similar 
fashion. 

Keep in mind that it is always helpful to sketch the triangle when solving for angles or sides. In a real-world scenario, 
try to draw a diagram of the situation. As more information emerges, the diagram may have to be altered. Make 
those alterations to the diagram and, in the end, the problem will be easier to solve. 

Law of Cosines
The Law of Cosines states that the square of any side of a triangle is equal to the sum of the squares of the other 
two sides minus twice the product of the other two sides and the cosine of the included angle. For triangles 
labeled as in Figure 3, with angles α, β, and γ, and opposite corresponding sides a, b, and c, respectively, the 
Law of Cosines is given as three equations. 

a2 = b2 + c2 − 2bc cos α

b2 = a2 + c2 − 2ac cos β

c2 = a2 + b2 − 2ab cos γ 

To solve for a missing side measurement, the corresponding 
opposite angle measure is needed.

When solving for an angle, the corresponding opposite side 
measure is needed. We can use another version of the Law of 
Cosines to solve for an angle.

cos α =   b
2 + c2 − a2

 _ 
2bc

      cos β =   a
2 + c2 − b2

 _ 
2ac

      cos γ =   a
2 + b2 − c2

 _ 
2ab

  

Figure 3

a

b

c

α

β

γ

How To…
Given two sides and the angle between them (SAS), find the measures of the remaining side and angles of a triangle. 

1. Sketch the triangle. Identify the measures of the known sides and angles. Use variables to represent the measures 
of the unknown sides and angles. 

2. Apply the Law of Cosines to find the length of the unknown side or angle. 
3. Apply the Law of Sines or Cosines to find the measure of a second angle. 
4. Compute the measure of the remaining angle. 
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Example 1 Finding the Unknown Side and Angles of a SAS Triangle 

Find the unknown side and angles of the triangle in Figure 4. 

Figure 4

γ

b a 5 10

30°
c 5 12

βα

Solution First, make note of what is given: two sides and the angle between them. This arrangement is classified as 
SAS and supplies the data needed to apply the Law of Cosines. 

Each one of the three laws of cosines begins with the square of an unknown side opposite a known angle. For this 
example, the first side to solve for is side b, as we know the measurement of the opposite angle β. 

 b2 = a2 + c2−2accos β 

 b2 = 102 + 122 − 2(10)(12)cos(30°)  Substitute the measurements for the 
known quantities.

 b2 = 100 + 144 − 240     √
—
 3   _ 

2
     Evaluate the cosine and begin to simplify.

 b2 = 244 − 120 √
—
 3  

 b =  √
—

  244 − 120 √
—
 3     Use the square root property.

 b ≈ 6.013

Because we are solving for a length, we use only the positive square root. Now that we know the length b, we can use 
the Law of Sines to fill in the remaining angles of the triangle. Solving for angle α, we have

   sin α _ a   =   
sin β

 _ 
b

  

   sin α _ 
10

   =   
sin(30°)

 _ 
6.013

  

 sin α =   
10sin(30°)

 _ 
6.013

   Multiply both sides of the equation by 10.

 α = sin−1    
10sin(30°)

 _ 
6.013)

     Find the inverse sine of   
10sin(30°)

 _ 
6.013

  .

 α ≈ 56.3°

The other possibility for α would be α = 180° − 56.3° ≈ 123.7°. In the original diagram, α is adjacent to the longest side, 
so α is an acute angle and, therefore, 123.7° does not make sense. Notice that if we choose to apply the Law of Cosines, 
we arrive at a unique answer. We do not have to consider the other possibilities, as cosine is unique for angles between 
0° and 180°. Proceeding with α ≈ 56.3°, we can then find the third angle of the triangle.

 γ = 180° − 30° − 56.3° ≈ 93.7°

The complete set of angles and sides is

 α ≈ 56.3° a = 10
 β = 30° b ≈ 6.013
 γ ≈ 93.7° c = 12

Try It #1

Find the missing side and angles of the given triangle: α = 30°, b = 12, c = 24. 
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Example 2 Solving for an Angle of a SSS Triangle 

Find the angle α for the given triangle if side a = 20, side b = 25, and side c = 18. 

Solution For this example, we have no angles. We can solve for any angle using the Law of Cosines. To solve for angle 
α, we have 
 a2 = b2 + c2 −2bccos α

 202 = 252 + 182−2(25)(18)cos α Substitute the appropriate measurements.

 400 = 625 + 324 − 900cos α Simplify in each step.

 400 = 949 − 900cos α

 −549 = −900cos α Isolate cos α.

   −549 _ 
−900

   = cos α

 0.61 ≈ cos α 

 cos−1(0.61) ≈ α Find the inverse cosine.

 α ≈ 52.4° 

See Figure 5. 

Figure 5

c = 18

a = 20

b = 25

52.4°

γ

β

α

Analysis Because the inverse cosine can return any angle between 0 and 180 degrees, there will not be any ambiguous 
cases using this method.

Try It #2

Given a = 5, b = 7, and c = 10, find the missing angles.

Solving Applied Problems Using the law of Cosines 
Just as the Law of Sines provided the appropriate equations to solve a number of applications, the Law of Cosines is 
applicable to situations in which the given data fits the cosine models. We may see these in the fields of navigation, 
surveying, astronomy, and geometry, just to name a few. 

Example 3 Using the Law of Cosines to Solve a Communication Problem 

On many cell phones with GPS, an approximate location can be given before the GPS signal is received. This is 
accomplished through a process called triangulation, which works by using the distances from two known points. 
Suppose there are two cell phone towers within range of a cell phone. The two towers are located 6,000 feet apart along 
a straight highway, running east to west, and the cell phone is north of the highway. Based on the signal delay, it can 
be determined that the signal is 5,050 feet from the first tower and 2,420 feet from the second tower. Determine the 
position of the cell phone north and east of the first tower, and determine how far it is from the highway. 
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Solution For simplicity, we start by drawing a diagram similar to Figure 6 and labeling our given information. 

Figure 6

5,050 �.

θ
6,000 �.

2,420 �.

Using the Law of Cosines, we can solve for the angle θ. Remember that the Law of Cosines uses the square of one side 
to find the cosine of the opposite angle. For this example, let a = 2420, b = 5050, and c = 6000. Thus, θ corresponds 
to the opposite side a = 2420. 

 a2 = b2 + c2 − 2bccos θ 

 (2420)2 = (5050)2 + (6000)2 − 2(5050)(6000)cos θ 

 (2420)2 − (5050)2 − (6000)2 = − 2(5050)(6000)cos θ 

   
(2420)2 − (5050)2 − (6000)2

   ___  
−2(5050)(6000)

   = cos θ

 cos θ ≈ 0.9183 

 θ ≈ cos−1(0.9183) 

 θ ≈ 23.3° 

To answer the questions about the phone’s position north and east of the tower, and the distance to the highway, drop 
a perpendicular from the position of the cell phone, as in Figure 7. This forms two right triangles, although we only 
need the right triangle that includes the first tower for this problem. 

Figure 7

5,050 �.

x

y
23.3°

Using the angle θ = 23.3° and the basic trigonometric identities, we can find the solutions. Thus 

 cos(23.3°) =   x _ 
5050

  

 x = 5050 cos(23.3°)

 x ≈ 4638.15 feet

 sin(23.3°) =   
y
 _ 

5050
  

 y = 5050sin(23.3°)

 y ≈ 1997.5 feet 

The cell phone is approximately 4,638 feet east and 1,998 feet north of the first tower, and 1,998 feet from the highway. 

Example 4 Calculating Distance Traveled Using a SAS Triangle 

Returning to our problem at the beginning of this section, suppose a boat leaves port, travels 10 miles, turns 20 degrees, 
and travels another 8 miles. How far from port is the boat? The diagram is repeated here in Figure 8. 
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Figure 8

8 mi

20°

10 mi

Port

Solution The boat turned 20 degrees, so the obtuse angle of the non-right triangle is the supplemental angle, 
180° − 20° = 160°. With this, we can utilize the Law of Cosines to find the missing side of the obtuse triangle—the 
distance of the boat to the port. 

 x2 = 82 + 102 − 2(8)(10)cos(160°)

 x2 = 314.35 

 x =  √
—

 314.35  

 x ≈ 17.7 miles 

The boat is about 17.7 miles from port. 

Using Heron’s Formula to Find the Area of a Triangle 
We already learned how to find the area of an oblique triangle when we know two sides and an angle. We also know the 
formula to find the area of a triangle using the base and the height. When we know the three sides, however, we can use 
Heron’s formula instead of finding the height. Heron of Alexandria was a geometer who lived during the first century 
A.D. He discovered a formula for finding the area of oblique triangles when three sides are known. 

Heron’s formula 
Heron’s formula finds the area of oblique triangles in which sides a, b, and c are known.

Area =  √
——

  s(s − a)(s − b)(s − c)  

where s =   
(a + b + c)

 _ 
2

   is one half of the perimeter of the triangle, sometimes called the semi-perimeter.

Example 5 Using Heron’s Formula to Find the Area of a Given Triangle 

Find the area of the triangle in Figure 9 using Heron’s formula.

Figure 9

A

B

a = 10

b = 15

c = 7

C

Solution First, we calculate s. 

 s =   
(a + b + c)

 _ 
2

  

 s =   
(10 + 15 + 7)

  __ 
2

   = 16 
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Then we apply the formula. 
 Area =  √

——
  s(s − a)(s − b)(s − c)  

 Area =  √
——

   16(16 − 10)(16 − 15)(16 − 7)  

 Area ≈ 29.4 

The area is approximately 29.4 square units. 

Try It #3

Use Heron’s formula to find the area of a triangle with sides of lengths a = 29.7 ft, b = 42.3 ft, and c = 38.4 ft.

Example 6 Applying Heron’s Formula to a Real-World Problem 

A Chicago city developer wants to construct a building consisting of artist’s lofts on a triangular lot bordered by Rush 
Street, Wabash Avenue, and Pearson Street. The frontage along Rush Street is approximately 62.4 meters, along Wabash 
Avenue it is approximately 43.5 meters, and along Pearson Street it is approximately 34.1 meters. How many square 
meters are available to the developer? See Figure 10 for a view of the city property. 

Figure 10

E. Pearson St

(34.1 meters)

N
. W

abash Ave

(43.5 m
eters)

Rush St

(62.4 m
eters)

Solution Find the measurement for s, which is one-half of the perimeter. 

 s =   62.4 + 43.5 + 34.1  __ 
2

  

 s = 70 m 

Apply Heron’s formula. 
 Area =  √

——
    70(70 − 62.4)(70 − 43.5)(70 − 34.1)  

 Area =  √
—

 506,118.2  

 Area ≈ 711.4 

The developer has about 711.4 square meters. 

Try It #4

Find the area of a triangle given a = 4.38 ft , b = 3.79 ft, and c = 5.22 ft.

Access these online resources for additional instruction and practice with the Law of Cosines.

•	 law of Cosines (http://openstaxcollege.org/l/lawcosines)

•	 law of Cosines: Applications (http://openstaxcollege.org/l/cosineapp)

•	 law of Cosines: Applications 2 (http://openstaxcollege.org/l/cosineapp2)

http://openstaxcollege.org/l/lawcosines
http://openstaxcollege.org/l/cosineapp
http://openstaxcollege.org/l/cosineapp2
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8.2 SeCTIOn exeRCISeS 

VeRBAl 

1. If you are looking for a missing side of a triangle, what 
do you need to know when using the Law of Cosines? 

2. If you are looking for a missing angle of a triangle, what 
do you need to know when using the Law of Cosines? 

3. Explain what s represents in Heron’s formula. 4. Explain the relationship between the Pythagorean 
Theorem and the Law of Cosines. 

5. When must you use the Law of Cosines instead of 
the Pythagorean Theorem?

AlGeBRAIC 

For the following exercises, assume α is opposite side a, β is opposite side b, and γ is opposite side c. If possible, solve 
each triangle for the unknown side. Round to the nearest tenth. 

6. γ = 41.2°, a = 2.49, b = 3.13 7. α = 120°, b = 6, c =7 

8. β = 58.7°, a = 10.6, c = 15.7 9. γ = 115°, a = 18, b = 23 

10. α = 119°, a = 26, b = 14 11. γ = 113°, b = 10, c = 32 

12. β = 67°, a = 49, b = 38 13. α = 43.1°, a = 184.2, b = 242.8 

14. α = 36.6°, a = 186.2, b = 242.2 15. β = 50°, a = 105, b = 45

For the following exercises, use the Law of Cosines to solve for the missing angle of the oblique triangle. Round to the 
nearest tenth. 

16. a = 42, b = 19, c = 30; find angle A. 17. a = 14, b = 13, c = 20; find angle C. 

18. a = 16, b = 31, c = 20; find angle B. 19. a = 13, b = 22, c = 28; find angle A. 

20. a = 108, b = 132, c = 160; find angle C.

For the following exercises, solve the triangle. Round to the nearest tenth. 

21. A = 35°, b = 8, c = 11 22. B = 88°, a = 4.4, c = 5.2 

23. C = 121°, a = 21, b = 37 24. a = 13, b = 11, c = 15 

25. a = 3.1, b = 3.5, c = 5 26. a = 51, b = 25, c = 29

For the following exercises, use Heron’s formula to find the area of the triangle. Round to the nearest hundredth. 

27. Find the area of a triangle with sides of length 18 in, 
21 in, and 32 in. Round to the nearest tenth. 

28. Find the area of a triangle with sides of length 20 cm, 
26 cm, and 37 cm. Round to the nearest tenth. 

29. a =   1 _ 
2

   m, b =   1 _ 
3

   m, c =   1 _ 4   m 30. a = 12.4 ft, b = 13.7 ft, c = 20.2 ft 

31. a = 1.6 yd, b = 2.6 yd, c = 4.1 yd 

GRAPHICAl 

For the following exercises, find the length of side x. Round to the nearest tenth. 
32. x

6.5 572°

33. 4.5

3.4 x 

42º
34. 12 A

B

x 15

40°
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35. 30

23
x

65°

36. 225

305
x

50°

37. 

1
5

1
3

123°

x

For the following exercises, find the measurement of angle A.

38. 

A
1.5

2.5
2.3

39. 

115

125

100
A

40. 4.3

6.8 8.2

A

41. 42. Find the measure of each angle 
in the triangle shown in Figure 
11. Round to the nearest tenth.

Figure 11

12 A

B

C

10 7

For the following exercises, solve for the unknown side. Round to the nearest tenth.

43. 

2820

60°

44. 

16

10

30°

45. 

13

20

22°

46. 

9

5
88°

38.7
40.6

23.3
A
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For the following exercises, find the area of the triangle. Round to the nearest hundredth.

47. 12

8
17

48. 

50

36

22

49. 

1.9

2.6

4.3

50. 12.5

8.9
16.2

51. 

exTenSIOnS 

52. A parallelogram has sides of length 16 units and 
10 units. The shorter diagonal is 12 units. Find the 
measure of the longer diagonal.

53. The sides of a parallelogram are 11 feet and 17 feet. 
The longer diagonal is 22 feet. Find the length of the 
shorter diagonal.

54. The sides of a parallelogram are 28 centimeters and 
40 centimeters. The measure of the larger angle is 
100°. Find the length of the shorter diagonal.

55. A regular octagon is inscribed in a circle with 
a radius of 8 inches. (See Figure 12.) Find the 
perimeter of the octagon. 

Figure 12

56. A regular pentagon is inscribed in a circle of radius 
12 cm. (See Figure 13.) Find the perimeter of the 
pentagon. Round to the nearest tenth of a centimeter. 

Figure 13

For the following exercises, suppose that x2 = 25 + 36 − 60 cos(52) represents the relationship of three sides of a triangle 
and the cosine of an angle. 

57. Draw the triangle. 58. Find the length of the third side. 
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For the following exercises, find the area of the triangle. 

59. 5.3 3.4

22°

60. 

8

6

80°

61. 

12.8

18.8
18°

ReAl-WORlD APPlICATIOnS 

62. A surveyor has taken the measurements shown in 
Figure 14. Find the distance across the lake. Round 
answers to the nearest tenth. 

Figure 14

800 �

70°

900 �

63. A satellite calculates the distances and angle shown in 
Figure 15 (not to scale). Find the distance between 
the two cities. Round answers to the nearest tenth. 

Figure 15

370 km
350 km

2.1°

64. An airplane flies 220 miles with a heading of 40°, 
and then flies 180 miles with a heading of 170°. 
How far is the plane from its starting point, and 
at what heading? Round answers to the nearest 
tenth. 

65. A 113-foot tower is located on a hill that is inclined 
34° to the horizontal, as shown in Figure 16. A guy-
wire is to be attached to the top of the tower and 
anchored at a point 98 feet uphill from the base of 
the tower. Find the length of wire needed. 

Figure 16

98 �

34°

113 �
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66. Two ships left a port at the same time. One ship 
traveled at a speed of 18 miles per hour at a heading 
of 320°. The other ship traveled at a speed of 22 miles 
per hour at a heading of 194°. Find the distance 
between the two ships after 10 hours of travel. 

67. The graph in Figure 17 represents two boats 
departing at the same time from the same dock. 
The first boat is traveling at 18 miles per hour at a 
heading of 327° and the second boat is traveling at 4 
miles per hour at a heading of 60°. Find the distance 
between the two boats after 2 hours. 

Figure 17 

4 mph

18 mph

68. A triangular swimming pool measures 40 feet on 
one side and 65 feet on another side. These sides 
form an angle that measures 50°. How long is the 
third side (to the nearest tenth)? 

69. A pilot flies in a straight path for 1 hour 30 min. She 
then makes a course correction, heading 10° to the 
right of her original course, and flies 2 hours in the 
new direction. If she maintains a constant speed of 
680 miles per hour, how far is she from her starting 
position? 

70. Los Angeles is 1,744 miles from Chicago, Chicago 
is 714 miles from New York, and New York is 
2,451 miles from Los Angeles. Draw a triangle 
connecting these three cities, and find the angles 
in the triangle. 

71. Philadelphia is 140 miles from Washington, D.C., 
Washington, D.C. is 442 miles from Boston, and 
Boston is 315 miles from Philadelphia. Draw a 
triangle connecting these three cities and find the 
angles in the triangle. 

72. Two planes leave the same airport at the same time. 
One flies at 20° east of north at 500 miles per hour. 
The second flies at 30° east of south at 600 miles per 
hour. How far apart are the planes after 2 hours? 

73. Two airplanes take off in different directions. One 
travels 300 mph due west and the other travels 25° 
north of west at 420 mph. After 90 minutes, how far 
apart are they, assuming they are flying at the same 
altitude? 

74. A parallelogram has sides of length 15.4 units and 
9.8 units. Its area is 72.9 square units. Find the 
measure of the longer diagonal. 

75. The four sequential sides of a quadrilateral have 
lengths 4.5 cm, 7.9 cm, 9.4 cm, and 12.9 cm. The 
angle between the two smallest sides is 117°. What is 
the area of this quadrilateral? 

76. The four sequential sides of a quadrilateral have 
lengths 5.7 cm, 7.2 cm, 9.4 cm, and 12.8 cm. The 
angle between the two smallest sides is 106°. What is 
the area of this quadrilateral? 

77. Find the area of a triangular piece of land that 
measures 30 feet on one side and 42 feet on another; 
the included angle measures 132°. Round to the 
nearest whole square foot. 

78. Find the area of a triangular piece of land that 
measures 110 feet on one side and 250 feet on 
another; the included angle measures 85°. Round to 
the nearest whole square foot.
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leARnInG OBjeCTIVeS

In this section, you will:
•	 Plot points using polar coordinates.
•	 Convert from polar coordinates to rectangular coordinates.
•	 Convert from rectangular coordinates to polar coordinates.
•	 Transform equations between polar and rectangular forms.
•	 Identify and graph polar equations by converting to rectangular equations.

8.3 POlAR COORDInATeS 

Over 12 kilometers from port, a sailboat encounters rough weather and is blown off course by a 16-knot wind (see 
Figure 1). How can the sailor indicate his location to the Coast Guard? In this section, we will investigate a method of 
representing location that is different from a standard coordinate grid.

Figure 1

Port

16-knot wind

60°

30°

6 9 12

330°

300°
270°

240°

210°

180°

150°

120°

0°/360°

0

90°

Plotting Points Using Polar Coordinates
When we think about plotting points in the plane, we usually think of rectangular coordinates (x, y) in the Cartesian 
coordinate plane. However, there are other ways of writing a coordinate pair and other types of grid systems. In this section, 
we introduce to polar coordinates, which are points labeled (r, θ) and plotted on a polar grid. The polar grid is represented 
as a series of concentric circles radiating out from the pole, or the origin of the coordinate plane. 

The polar grid is scaled as the unit circle with the positive x-axis now viewed as the polar axis and the origin as the pole. 
The first coordinate r is the radius or length of the directed line segment from the pole. The angle θ, measured in radians, 
indicates the direction of r. We move counterclockwise from the polar axis by an angle of θ, and measure a directed line 
segment the length of r in the direction of θ. Even though we measure θ first and then r, the polar point is written with 

the r-coordinate first. For example, to plot the point   2,   π _ 4    , we would move   π _ 4   units in the counterclockwise direction 

and then a length of 2 from the pole. This point is plotted on the grid in Figure 2.

Figure 2

–4 –3 –2 –1
–1

1

2

3

4

–2

–3

–4

1

Polar Grid

2 3 4
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Example 1 Plotting a Point on the Polar Grid

Plot the point   3,   π _ 
2

     on the polar grid.

Solution The angle   π _ 
2

   is found by sweeping in a counterclockwise direction 90° from the polar axis. The point is located 

at a length of 3 units from the pole in the   π _ 
2

   direction, as shown in Figure 3.

Figure 3

–4 –3 –2 –1
–1

1

2

3

4

–2

–3

–4

1 2 3 4

Try It #1

Plot the point   2,   π _ 
3

     in the polar grid.

Example 2 Plotting a Point in the Polar Coordinate System with a Negative Component

Plot the point   −2,   π _ 
6

     on the polar grid.

Solution We know that   π _ 
6

   is located in the first quadrant. However, r = −2. We can approach plotting a point with a 
negative r in two ways:

1. Plot the point   2,   π _ 
6

     by moving   π _ 
6

   in the counterclockwise direction and extending a directed line segment 2 units 

into the first quadrant. Then retrace the directed line segment back through the pole, and continue 2 units into the 
third quadrant;

2. Move   π _ 
6

   in the counterclockwise direction, and draw the directed line segment from the pole 2 units in the negative 

direction, into the third quadrant.

See Figure 4(a). Compare this to the graph of the polar coordinate   2,   π _ 
6

      shown in Figure 4(b).

Figure 4

(a) (b)

– – 44 –4 –3 –2 –1
–1

1

2

3

4

–2

–3

–4

1 2 3 4

Try It #2

Plot the points   3, −   π _ 
6

     and   2,   9π _ 4     on the same polar grid.
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Converting from Polar Coordinates to Rectangular Coordinates
When given a set of polar coordinates, we may need to convert them to rectangular coordinates. To do so, we can recall 
the relationships that exist among the variables x, y, r, and θ.

 cos θ =   x _ r   → x = rcos θ

 sin θ =   
y
 _ r   → y = rsin θ

Dropping a perpendicular from the point in the plane to the x-axis forms a right triangle, as illustrated in Figure 5. An 
easy way to remember the equations above is to think of cos θ as the adjacent side over the hypotenuse and sin θ as the 
opposite side over the hypotenuse.

Figure 5

x

r y

x

(x, y) or (r, θ)

y

θ

converting from polar coordinates to rectangular coordinates 
To convert polar coordinates (r, θ) to rectangular coordinates (x, y), let

 cos θ =   x _ r   → x = rcos θ

 sin θ =   
y
 _ r   → y = rsin θ

How To…
Given polar coordinates, convert to rectangular coordinates.

1. Given the polar coordinate (r, θ), write x = rcos θ and y = rsin θ.
2. Evaluate cos θ and sin θ.
3. Multiply cos θ by r to find the x-coordinate of the rectangular form.
4. Multiply sin θ by r to find the y-coordinate of the rectangular form.

Example 3 Writing Polar Coordinates as Rectangular Coordinates

Write the polar coordinates   3,   π _ 
2

     as rectangular coordinates.

Solution Use the equivalent relationships.

 x = rcos θ

 x = 3cos   π _ 
2

   = 0

 y = rsin θ

 y = 3sin   π _ 
2

   = 3

The rectangular coordinates are (0, 3). See Figure 6.
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Figure 6

–4 –3 –2 –1
–1

1

2

3

4

–2

–3

–4

1

Polar Grid Coordinate Grid

2 3 4

2

x

y

–1
–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4
(0, 3)

5

5

0

Example 4 Writing Polar Coordinates as Rectangular Coordinates

Write the polar coordinates (−2, 0) as rectangular coordinates.

Solution See Figure 7. Writing the polar coordinates as rectangular, we have

 x = rcos θ

 x = −2cos(0) = −2

 y = rsin θ

 y = −2sin(0) = 0

The rectangular coordinates are also (−2, 0).

Figure 7

– – – –
–

2

x

y

–1
–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

Try It #3

Write the polar coordinates   −1,   2π _ 
3

     as rectangular coordinates.

Converting from Rectangular Coordinates to Polar Coordinates
To convert rectangular coordinates to polar coordinates, we will use two other familiar relationships. With this conversion, 
however, we need to be aware that a set of rectangular coordinates will yield more than one polar point.
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converting from rectangular coordinates to polar coordinates 
Converting from rectangular coordinates to polar coordinates requires the 
use of one or more of the relationships illustrated in Figure 8.

 cos θ =   x _ r   or x = rcos θ

 sin θ =   
y
 _ r   or y = rsin θ

 r 2 = x 2 + y 2

 tan θ =   
y
 _ x  

Figure 8 

xx

yr

(x, y), (r, θ)

y

θ

Example 5 Writing Rectangular Coordinates as Polar Coordinates

Convert the rectangular coordinates (3, 3) to polar coordinates.

Solution We see that the original point (3, 3) is in the first quadrant. To find θ, use the formula tan θ =   
y
 _ x  . This gives

 tan θ =   3 _ 
3

  

 tan θ = 1

 θ = tan−1(1) 

 θ =   π _ 4  

To find r, we substitute the values for x and y into the formula r =  √
—

 x 2 + y 2  . We know that r must be positive, as   π _ 4   is 
in the first quadrant. Thus
 r =  √

—
 3 2 + 3 2  

 r =  √
—

 9 + 9  

 r =  √
—

 18   = 3 √
—
 2  

So, r = 3 √
—
 2   and θ =   π _ 4  , giving us the polar point   3 √

—
 2  ,   π _ 4    . See Figure 9.

Figure 9

–5 –4 –3 –2 –1–1

1
2
3

5
4

–2
–3
–4
–5

1 2 3 54

2

x

y

–1
–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4 (3, 3)

5

5

Analysis There are other sets of polar coordinates that will be the same as our first solution. For example, the points   −3 √
—
 2  ,   5π ___ 4      

and   3 √
—
 2  , −  7π _ 4     and will coincide with the original solution of   3 √

—
 2  ,   π _ 4    . The point   −3 √

—
 2  ,   5π _ 4     indicates a move 

further counterclockwise by π, which is directly opposite   π _ 4  . The radius is expressed as −3 √
—
 2  . However, the angle   5π _ 4   is 

located in the third quadrant and, as r is negative, we extend the directed line segment in the opposite direction, into the 
first quadrant. This is the same point as   3 √

—
 2  ,   π __ 4    . The point   3 √

—
 2  , −   7π _ 4     is a move further clockwise by −   7π _ 4  , from   π _ 4  .  

The radius, 3 √
—
 2  , is the same.
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Transforming equations between Polar and Rectangular Forms
We can now convert coordinates between polar and rectangular form. Converting equations can be more difficult, 
but it can be beneficial to be able to convert between the two forms. Since there are a number of polar equations that 
cannot be expressed clearly in Cartesian form, and vice versa, we can use the same procedures we used to convert 
points between the coordinate systems. We can then use a graphing calculator to graph either the rectangular form or 
the polar form of the equation.

How To…
Given an equation in polar form, graph it using a graphing calculator.

1. Change the MODE to POL, representing polar form.
2. Press the Y= button to bring up a screen allowing the input of six equations: r1, r2, ... , r6.
3. Enter the polar equation, set equal to r.
4. Press GRAPH.

Example 6 Writing a Cartesian Equation in Polar Form

Write the Cartesian equation x 2 + y 2 = 9 in polar form.

Solution The goal is to eliminate x and y from the equation and introduce r and θ. Ideally, we would write the equation 
r as a function of θ. To obtain the polar form, we will use the relationships between (x, y) and (r, θ). Since x = rcos θ 
and y = rsin θ, we can substitute and solve for r.

  (rcos θ) 2   + (rsin θ) 2  = 9

  r  2 cos 2 θ +  r  2   sin 2  θ = 9

  r  2 (cos 2 θ +  sin 2  θ) = 9

  r  2 (1) = 9  Substitute cos 2 θ + sin 2 θ = 1.

 r = ± 3  Use the square root property.

Thus, x 2 + y 2 = 9, r = 3, and r = −3 should generate the same graph. See Figure 10.

Figure 10 (a) Cartesian form x 2 + y 2 = 9 (b) Polar form r = 3
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To graph a circle in rectangular form, we must first solve for y.

 x 2 + y 2 = 9

 y 2 = 9− x 2

 y = ±  √
—

 9 − x 2  

Note that this is two separate functions, since a circle fails the vertical line test. Therefore, we need to enter the positive 
and negative square roots into the calculator separately, as two equations in the form Y1 =  √

—
 9− x 2   and Y2 = − √

—
 9− x 2  .  

Press GRAPH.
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Example 7 Rewriting a Cartesian Equation as a Polar Equation

Rewrite the Cartesian equation x 2 + y 2 = 6y as a polar equation.

Solution This equation appears similar to the previous example, but it requires different steps to convert the equation. 
We can still follow the same procedures we have already learned and make the following substitutions:

 r 2 = 6y Use x 2 + y 2 = r 2.

 r 2 = 6rsin θ Substitute y = rsin θ.

 r 2−6rsin θ = 0 Set equal to 0.

 r (r − 6sin θ) = 0 Factor and solve.

 r = 0 We reject r = 0, as it only represents one point, (0, 0).

 or r = 6sin θ

Therefore, the equations x 2 + y 2 = 6y and r = 6sin θ should give us the same graph. See Figure 11.

Figure 11   (a) Cartesian form x 2 + y 2 = 6y (b) polar form r = 6sin θ
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(b)

–1–2–3–4–5–6 321 4 5 6

The Cartesian or rectangular equation is plotted on the rectangular grid, and the polar equation is plotted on the polar 
grid. Clearly, the graphs are identical.

Example 8 Rewriting a Cartesian Equation in Polar Form

Rewrite the Cartesian equation y = 3x + 2 as a polar equation.

Solution We will use the relationships x = rcos θ and y = rsin θ.

 y = 3x + 2

 rsin θ = 3rcos θ + 2

 rsin θ − 3rcos θ = 2

 r(sin θ − 3cos θ) = 2   Isolate r.

 r =    2 __  
sin θ − 3cos θ 

    Solve for r.

Try It #4

Rewrite the Cartesian equation y 2 = 3 − x 2 in polar form.

Identify and Graph Polar equations by Converting to Rectangular equations
We have learned how to convert rectangular coordinates to polar coordinates, and we have seen that the points are indeed 
the same. We have also transformed polar equations to rectangular equations and vice versa. Now we will demonstrate 
that their graphs, while drawn on different grids, are identical.
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Example 9 Graphing a Polar Equation by Converting to a Rectangular Equation

Covert the polar equation r = 2sec θ to a rectangular equation, and draw its corresponding graph.

Solution The conversion is
 r = 2sec θ

 r =   2 _ 
cos θ

  

 rcos θ = 2

 x = 2

Notice that the equation r = 2sec θ drawn on the polar grid is clearly the same as the vertical line x = 2 drawn on the 
rectangular grid (see Figure 12). Just as x = c is the standard form for a vertical line in rectangular form, r = csec θ is 
the standard form for a vertical line in polar form.

Figure 12  (a) Polar grid (b) Rectangular coordinate system
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A similar discussion would demonstrate that the graph of the function r = 2csc θ will be the horizontal line y = 2. In 
fact, r = ccsc θ is the standard form for a horizontal line in polar form, corresponding to the rectangular form y = c.

Example 10 Rewriting a Polar Equation in Cartesian Form

Rewrite the polar equation r =   3 _ 
1 − 2cos θ

   as a Cartesian equation.

Solution The goal is to eliminate θ and r, and introduce x and y. We clear the fraction, and then use substitution. In 
order to replace r with x and y, we must use the expression x 2 + y 2 = r 2.

 r =   3 _ 
1 − 2cos θ

  

 r(1 − 2cos θ) = 3

 r   1 − 2    x _ r       = 3  Use cos θ =   x _ r   to eliminate θ.

 r −2x = 3

 r = 3 + 2x  Isolate r.

 r 2 = (3 + 2x) 2 Square both sides.

 x 2 + y 2 = (3 + 2x) 2 Use x 2 + y 2 = r 2.

The Cartesian equation is x 2 + y 2 = (3 + 2x) 2. However, to graph it, especially using a graphing calculator or computer 
program, we want to isolate y.

 x 2 + y 2 = (3 + 2x) 2

 y 2 = (3 + 2x) 2 − x 2

 y = ±  √
—

  (3 + 2x) 2 − x 2  

When our entire equation has been changed from r and θ to x and y, we can stop, unless asked to solve for y or simplify. 
See Figure 13.



CHAPTER 8 Further applications oF trigonometry678

Figure 13
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x2 + y2 = (3 + 2x)2

0

r = 3
1 – 2 cosθ

The “hour-glass” shape of the graph is called a hyperbola. Hyperbolas have many interesting geometric features and 
applications, which we will investigate further in Analytic Geometry.

Analysis In this example, the right side of the equation can be expanded and the equation simplified further, as shown 
above. However, the equation cannot be written as a single function in Cartesian form. We may wish to write the rectangular 
equation in the hyperbola’s standard form. To do this, we can start with the initial equation.
 x 2 + y 2 = (3 + 2x) 2

 x 2 + y 2 − (3 + 2x) 2 = 0
 x 2 + y 2 − (9 + 12x + 4x 2) = 0
 x 2 + y 2 − 9 − 12x −4x 2 = 0
 −3x 2 − 12x + y 2 = 9 Multiply through by −1.
 3x 2 + 12x − y 2 = −9
 3(x 2 + 4x +   ) − y 2 = −9 + 12 Organize terms to complete the square for x.
 3(x 2 + 4x + 4) − y 2 = −9 + 12
 3(x + 2)2 − y 2 = 3

 (x + 2)2 −   
y 2

 _ 
3

   = 1

Try It #5

Rewrite the polar equation r = 2sin θ in Cartesian form.

Example 11 Rewriting a Polar Equation in Cartesian Form

Rewrite the polar equation r = sin(2θ) in Cartesian form.

Solution r = sin(2θ) Use the double angle identity for sine.

 r = 2sin θcos θ Use cos θ =   x __ r   and sin θ =   y __ r  .

 r = 2    x __ 
r
        y __ 

r
     Simplify.

 r =   
2xy

 _ 
r 2

   Multiply both sides by r 2.

 r3 = 2xy

     √
—

 x 2 + y 2     
3

  = 2xy As x 2 + y 2 = r 2, r =  √
—

 x 2 + y 2  .

This equation can also be written as
  (x 2 + y 2)   

3 _ 
2

    = 2xy or x 2 + y 2 =  (2xy)   
2 _ 
3

   .

Access these online resources for additional instruction and practice with polar coordinates.
•	 Introduction to Polar Coordinates (http://openstaxcollege.org/l/intropolar)

•	 Comparing Polar and Rectangular Coordinates (http://openstaxcollege.org/l/polarrect)

http://openstaxcollege.org/l/intropolar
http://openstaxcollege.org/l/polarrect
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8.3 SeCTIOn exeRCISeS

VeRBAl

1. How are polar coordinates different from 
rectangular coordinates?

2. How are the polar axes different from the x- and 
y-axes of the Cartesian plane?

3. Explain how polar coordinates are graphed. 4. How are the points   3,   π _ 
2

     and   −3,   π _ 
2

     related?

5. Explain why the points   −3,   π _ 
2

     and   3, −   π _ 
2

     are 
the same.

AlGeBRAIC

For the following exercises, convert the given polar coordinates to Cartesian coordinates with r > 0 and 0 ≤ θ ≤2π. 
Remember to consider the quadrant in which the given point is located when determining θ for the point.

6.   7,   7π _ 
6

    7. (5, π) 8.   6, −   π _ 4    9.   −3,   π _ 
6

    10.   4,   7π _ 4    

For the following exercises, convert the given Cartesian coordinates to polar coordinates with r > 0, 0 ≤ θ <2π. 
Remember to consider the quadrant in which the given point is located.

11. (4, 2) 12. (−4, 6) 13. (3, −5) 14. (−10, −13) 15. (8, 8)

For the following exercises, convert the given Cartesian equation to a polar equation.

16. x = 3 17. y = 4 18. y = 4x 2 19. y = 2x4

20. x 2 + y 2 = 4y 21. x 2 + y 2 = 3x 22. x 2 − y 2 = x 23. x 2 − y 2 = 3y
24. x 2 + y 2 = 9 25. x 2 = 9y 26. y 2 = 9x 27. 9xy = 1

For the following exercises, convert the given polar equation to a Cartesian equation. Write in the standard form of a 
conic if possible, and identify the conic section represented.

28. r = 3sin θ 29. r = 4cos θ 30. r =   4 __  
sin θ + 7cos θ

  31. r =   6 __  
cos θ + 3sin θ

  

32. r = 2sec θ 33. r = 3csc θ 34. r =  √
—

 rcos θ + 2  35. r 2 = 4sec θ csc θ

36. r = 4 37. r 2 = 4 38. r =   1 __  
4cos θ − 3sin θ

  39. r =   3 __  
cos θ − 5sin θ

  

GRAPHICAl

For the following exercises, find the polar coordinates of the point.

40. π

0

2

3π
2

41. 

π 0

π
2

3π
2

42. 

π 0

3π
2

π
2



680 CHAPTER 8 Further applications oF trigonometry

43. 

π 0

π
2

3π
2

44. 

π 0

3π
2

π
2

For the following exercises, plot the points.

45.   −2,   π _ 
3

    46.   −1, −   π _ 
2

    47.   3.5,   7π _ 4    48.   −4,   π _ 
3

    49.   5,   π _ 
2

    

50.   4,   −5π _ 4    51.   3,   5π _ 
6

    52.   −1.5,   7π _ 
6

    53.   −2,   π _ 4    54.   1,   3π _ 
2

    

For the following exercises, convert the equation from rectangular to polar form and graph on the polar axis.

55. 5x − y = 6 56. 2x + 7y = −3 57. x 2 +(y − 1) 2 = 1 58. (x + 2) 2 +(y + 3) 2 = 13
59. x = 2 60. x 2 + y 2 = 5y 61. x 2 + y 2 = 3x

For the following exercises, convert the equation from polar to rectangular form and graph on the rectangular plane.

62. r = 6 63. r = − 4 64. θ = −   2π _ 
3

  65. θ =   π _ 4  

66. r = sec θ 67. r = −10sin θ 68. r = 3cos θ

TeCHnOlOGY

69. Use a graphing calculator to find the rectangular 
coordinates of   2, −   π _ 5    . Round to the nearest 
thousandth.

70. Use a graphing calculator to find the rectangular 
coordinates of   −3,   3π _ 7    . Round to the nearest 
thousandth.

71. Use a graphing calculator to find the polar 
coordinates of (−7, 8) in degrees. Round to the 
nearest thousandth.

72. Use a graphing calculator to find the polar 
coordinates of (3, −4) in degrees. Round to the 
nearest hundredth.

73. Use a graphing calculator to find the polar 
coordinates of (−2, 0) in radians. Round to the 
nearest hundredth.

exTenSIOnS
74. Describe the graph of r = asec θ; a > 0. 75. Describe the graph of r = asec θ; a < 0.
76. Describe the graph of r = acsc θ; a > 0. 77. Describe the graph of r = acsc θ; a < 0.
78. What polar equations will give an oblique line? 

For the following exercises, graph the polar inequality.
79. r < 4 80. 0 ≤ θ ≤   π _ 4  

81. θ =   π _ 4  , r ≥ 2 82. θ =   π _ 4  , r ≥ −3

83. 0 ≤ θ ≤   π _ 
3

  , r < 2 84. −   π _ 
6

   < θ ≤   π _ 
3

  , −3 < r < 2



SECTION 8.4 polar coordinates: graphs 681

leARnInG OBjeCTIVeS

In this section, you will:
•	 Test polar equations for symmetry. 
•	 Graph polar equations by plotting points. 

8.4 POlAR COORDInATeS: GRAPHS 

The planets move through space in elliptical, periodic orbits about the sun, as shown in Figure 1. They are in constant 
motion, so fixing an exact position of any planet is valid only for a moment. In other words, we can fix only a planet’s 
instantaneous position. This is one application of polar coordinates, represented as (r, θ). We interpret r as the distance  
from the sun and θ as the planet’s angular bearing, or its direction from a fixed point on the sun. In this section, we will 
focus on the polar system and the graphs that are generated directly from polar coordinates. 

Mercury

Earth

Venus

Mars

Figure 1 Planets follow elliptical paths as they orbit around the Sun. (credit: modification of work by nASA/jPl-Caltech) 

Testing Polar equations for Symmetry 
Just as a rectangular equation such as y = x2 describes the relationship between x and y on a Cartesian grid, a polar 
equation describes a relationship between r and θ on a polar grid. Recall that the coordinate pair (r, θ) indicates that 
we move counterclockwise from the polar axis (positive x-axis) by an angle of θ, and extend a ray from the pole (origin) 
r units in the direction of θ. All points that satisfy the polar equation are on the graph. 
Symmetry is a property that helps us recognize and plot the graph of any equation. If an equation has a graph that is 
symmetric with respect to an axis, it means that if we folded the graph in half over that axis, the portion of the graph 
on one side would coincide with the portion on the other side. By performing three tests, we will see how to apply the 
properties of symmetry to polar equations. Further, we will use symmetry (in addition to plotting key points, zeros, 
and maximums of r) to determine the graph of a polar equation. 
In the first test, we consider symmetry with respect to the line θ =   π _ 

2
  (y-axis). We replace (r, θ) with (−r, −θ) to 

determine if the new equation is equivalent to the original equation. For example, suppose we are given the equation 
r = 2sin θ; 
 r = 2sin θ
 −r = 2sin(−θ) Replace (r, θ) with (−r, −θ).
 −r = −2sin θ Identity: sin(−θ)= −sin θ.
 r = 2sin θ Multiply both sides by−1. 
 This equation exhibits symmetry with respect to the line θ =   π _ 

2
  . 

In the second test, we consider symmetry with respect to the polar axis (x -axis). We replace (r, θ) with (r, −θ) or (−r, π − θ) 
to determine equivalency between the tested equation and the original. For example, suppose we are given the equation  
r = 1 − 2cos θ. 
 r = 1 − 2cos θ
 r = 1 − 2cos(−θ) Replace (r, θ) with (r, −θ).
 r = 1 − 2cos θ Even/Odd identity 
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The graph of this equation exhibits symmetry with respect to the polar axis. In the third test, we consider symmetry 
with respect to the pole (origin). We replace (r, θ) with (−r, θ) to determine if the tested equation is equivalent to the 
original equation. For example, suppose we are given the equation r = 2sin(3θ). 
 r = 2sin(3θ)
 −r = 2sin(3θ) 
The equation has failed the symmetry test, but that does not mean that it is not symmetric with respect to the pole. 
Passing one or more of the symmetry tests verifies that symmetry will be exhibited in a graph. However, failing the 
symmetry tests does not necessarily indicate that a graph will not be symmetric about the line θ =   π _ 

2
  , the polar axis, 

or the pole. In these instances, we can confirm that symmetry exists by plotting reflecting points across the apparent 
axis of symmetry or the pole. Testing for symmetry is a technique that simplifies the graphing of polar equations, but 
its application is not perfect. 

symmetry tests 
A polar equation describes a curve on the polar grid. The graph of a polar equation can be evaluated for three types 
of symmetry, as shown in Figure 2.

θ
θ θθ

θ

θ

(a) (b) (c)

Figure 2 (a) A graph is symmetric with respect to the line θ =   π _ 
2
   (y-axis) if replacing (r, θ ) with (−r, −θ ) yields an equivalent equation.  

(b) A graph is symmetric with respect to the polar axis (x-axis) if replacing (r, θ) with (r, −θ ) or (−r, π−θ ) yields an equivalent equation.  

(c) A graph is symmetric with respect to the pole (origin) if replacing (r, θ ) with (−r, θ ) yields an equivalent equation. 

How To…
Given a polar equation, test for symmetry. 

1. Substitute the appropriate combination of components for (r, θ): (−r,− θ) for θ =   π _ 
2

   symmetry; (r,− θ) for polar 
axis symmetry; and (−r, θ) for symmetry with respect to the pole. 

2. If the resulting equations are equivalent in one or more of the tests, the graph produces the expected symmetry. 

Example 1 Testing a Polar Equation for Symmetry 

Test the equation r = 2sin θ for symmetry. 

Solution Test for each of the three types of symmetry. 

1) Replacing (r, θ) with (−r, −θ) yields the same result.  
Thus, the graph is symmetric with respect to the line θ =   π _ 

2
  . 

 −r = 2sin(−θ) 
 −r = −2sin θ Even-odd identity  
 r = 2sin θ Multiply by −1
Passed 

2) Replacing θ with −θ does not yield the same equation. 
Therefore, the graph fails the test and may or may not be 
symmetric with respect to the polar axis. 

 r = 2sin(−θ) 
 r = −2sin θ Even-odd identity  
 r = −2sin θ ≠ 2sin θ
Failed 

3) Replacing r with −r changes the equation and fails the test. 
The graph may or may not be symmetric with respect to  
the pole. 

 −r = 2sin θ 
r = −2sin θ ≠ 2sin θ

Failed 

Table 1
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Analysis Using a graphing calculator, we can see that the equation r = 2sin θ is a circle centered at (0, 1) with radius π 
r = 1 and is indeed symmetric to the line θ =   π _ 

2
  . We can also see that the graph is not symmetric with the polar axis or the 

pole. See Figure 3.

Figure 3
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Try It #1

Test the equation for symmetry: r = − 2cos θ. 

Graphing Polar equations by Plotting Points 
To graph in the rectangular coordinate system we construct a table of x and y values. To graph in the polar coordinate 
system we construct a table of θ and r values. We enter values of θ into a polar equation and calculate r. However, using 
the properties of symmetry and finding key values of θ and r means fewer calculations will be needed. 

Finding Zeros and Maxima 

To find the zeros of a polar equation, we solve for the values of θ that result in r = 0. Recall that, to find the zeros of 
polynomial functions, we set the equation equal to zero and then solve for x. We use the same process for polar equations. 
Set r = 0, and solve for θ. 

For many of the forms we will encounter, the maximum value of a polar equation is found by substituting those values of 
θ into the equation that result in the maximum value of the trigonometric functions. Consider r = 5cos θ; the maximum 
distance between the curve and the pole is 5 units. The maximum value of the cosine function is 1 when θ = 0, so our 
polar equation is 5cos θ, and the value θ = 0 will yield the maximum  | r | . 

Similarly, the maximum value of the sine function is 1 when θ =   π _ 
2

  , and if our polar equation is r = 5sin θ, the value 

θ =   π _ 
2

   will yield the maximum  | r | . We may find additional information by calculating values of r when θ = 0. These points 

would be polar axis intercepts, which may be helpful in drawing the graph and identifying the curve of a polar equation. 

Example 2 Finding Zeros and Maximum Values for a Polar Equation 

Using the equation in Example 1, find the zeros and maximum  | r |  and, if necessary, the polar axis intercepts of r = 2sin θ. 

Solution  To find the zeros, set r equal to zero and solve for θ. 

 2sin θ = 0 
 sin θ = 0
 θ = sin−1 0
 θ = nπ  where n is an integer 

Substitute any one of the θ values into the equation. We will use 0. 
 r = 2sin(0)
 r =0 

The points (0, 0) and (0, ± nπ) are the zeros of the equation. They all coincide, so only one point is visible on the graph. 
This point is also the only polar axis intercept.
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To find the maximum value of the equation, look at the maximum value of the trigonometric function sin θ, which 
occurs when θ =   π _ 

2
   ± 2kπ resulting in sin    π _ 

2
     = 1. Substitute   π _ 

2
   for θ.

 r = 2sin    π _ 
2

     

 r = 2(1)

 r = 2 

Analysis  The point   2,   π _ 
2

     will be the maximum value on the graph. Let’s plot a few more points to verify the graph of a 

circle. See Table 2 and Figure 4. 

θ r = 2sin θ r

0 r = 2sin(0) = 0 0

  π _ 
6

  r = 2sin    π _ 
6

     = 1 1

  π _ 
3

  r = 2sin    π _ 
3

    ≈ 1.73 1.73

  π _ 
2

  r = 2sin    π _ 
2

    = 2 2

  2π _ 
3

  r = 2sin    2π _ 
3

     ≈ 1.73 1.73

  5π _ 
6

  r = 2sin    5π _ 
6

    = 1 1

π r = 2sin(π) = 0 0

Table 2

Figure 4
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4444

333–––

3 33 33 33 33 3

Try It #2

Without converting to Cartesian coordinates, test the given equation for symmetry and find the zeros and maximum 
values of  | r | : r = 3cos θ. 

Investigating Circles 

Now we have seen the equation of a circle in the polar coordinate system. In the last two examples, the same equation 
was used to illustrate the properties of symmetry and demonstrate how to find the zeros, maximum values, and plotted 
points that produced the graphs. However, the circle is only one of many shapes in the set of polar curves. 

There are five classic polar curves: cardioids, limaçons, lemniscates, rose curves, and Archimedes’ spirals. We will 
briefly touch on the polar formulas for the circle before moving on to the classic curves and their variations. 
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formulas for the equation of a circle 
Some of the formulas that produce the graph of a circle in polar coordinates are given by r = acos θ and r = asin θ, 
where a is the diameter of the circle or the distance from the pole to the farthest point on the circumference. The 

radius is    | a |  _ 
2

  , or one-half the diameter. For r = acos θ, the center is     a _ 
2

  , 0  . For r = asin θ, the center is     a _ 
2

  , π  . 

Figure 5 shows the graphs of these four circles.

r = acos θ, a > 0 r = acos θ, a < 0 r = asin θ, a > 0 r = asin θ, a < 0
(a) (b) (c) (d)

Figure 5 

Example 3 Sketching the Graph of a Polar Equation for a Circle 

Sketch the graph of r = 4cos θ. 

Solution First, testing the equation for symmetry, we find that the graph is symmetric about the polar axis. Next, we 
find the zeros and maximum  | r |  for r = 4cos θ. First, set r = 0, and solve for θ . Thus, a zero occurs at θ =   π _ 

2
   ± kπ. 

A key point to plot is   0,   π _ 
2

    

To find the maximum value of r, note that the maximum value of the cosine function is 1 when θ = 0 ± 2kπ. Substitute 
θ = 0 into the equation: 
 r = 4cos θ 

 r = 4cos(0) 

 r = 4(1) = 4 

The maximum value of the equation is 4. A key point to plot is (4, 0). 

As r = 4cos θ is symmetric with respect to the polar axis, we only need to calculate r-values for θ over the interval [0, π]. 
Points in the upper quadrant can then be reflected to the lower quadrant. Make a table of values similar to Table 3. The 
graph is shown in Figure 6. 

θ 0   π _ 
6

    π _ 4    π _ 
3

    π _ 
2

    2π _ 
3

    3π _ 4    5π _ 
6

  π

r 4 3.46 2.83 2 0 −2 −2.83 −3.46 4
Table 3 

Figure 6
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Investigating Cardioids

While translating from polar coordinates to Cartesian coordinates may seem simpler in some instances, graphing the 
classic curves is actually less complicated in the polar system. The next curve is called a cardioid, as it resembles a heart. 
This shape is often included with the family of curves called limaçons, but here we will discuss the cardioid on its own.

formulas for a cardioid 
The formulas that produce the graphs of a cardioid are given by r = a ± bcos θ and r = a ± bsin θ where a > 0, 
b > 0, and   a __ 

b
   = 1. The cardioid graph passes through the pole, as we can see in Figure 7.

r = a + bcosθ r = a − bcosθ r = a + bsinθ r = a − bsinθ
(a) (b) (c) (d)

Figure 7 

How To…
Given the polar equation of a cardioid, sketch its graph. 

1. Check equation for the three types of symmetry. 
2. Find the zeros. Set r = 0. 
3. Find the maximum value of the equation according to the maximum value of the trigonometric expression. 
4. Make a table of values for r and θ. 
5. Plot the points and sketch the graph. 

Example 4 Sketching the Graph of a Cardioid 

Sketch the graph of r = 2 + 2cos θ. 

Solution  First, testing the equation for symmetry, we find that the graph of this equation will be symmetric about 
the polar axis. Next, we find the zeros and maximums. Setting r = 0, we have θ = π +2kπ. The zero of the equation is 
located at (0, π). The graph passes through this point.

The maximum value of r = 2 + 2cos θ occurs when cos θ is a maximum, which is when cos θ =1 or when θ = 0. 
Substitute θ =0 into the equation, and solve for r. 

 r = 2 + 2cos(0)

 r = 2 + 2(1) = 4

The point (4, 0) is the maximum value on the graph. 

We found that the polar equation is symmetric with respect to the polar axis, but as it extends to all four quadrants, we 
need to plot values over the interval [0, π]. The upper portion of the graph is then reflected over the polar axis. Next, 
we make a table of values, as in Table 4, and then we plot the points and draw the graph. See Figure 8. 

θ 0   π _ 4    π _ 
2

    2π _ 
3

  π

r 4 3.41 2 1 0
Table 4
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Figure 8

(4, 0)
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Investigating Limaçons

The word limaçon is Old French for “snail,” a name that describes the shape of the graph. As mentioned earlier, the 
cardioid is a member of the limaçon family, and we can see the similarities in the graphs. The other images in this 
category include the one-loop limaçon and the two-loop (or inner-loop) limaçon. One-loop limaçons are sometimes 
referred to as dimpled limaçons when 1 <   a __ 

b
   < 2 and convex limaçons when   a __ 

b
   ≥ 2. 

formulas for one-loop limaçons 
The formulas that produce the graph of a dimpled one-loop limaçon are given by r = a ± bcos θ and r = a ± bsin θ 
where a > 0, b > 0, and 1 <   a __ 

b
   < 2. All four graphs are shown in Figure 9. 

r = a + bcosθ
(a)

r = a − bcosθ
(b)

r = a + bsinθ
(c)

r = a − bsinθ
(d)

Figure 9 Dimpled limaçons

How To…
Given a polar equation for a one-loop limaçon, sketch the graph. 

1. Test the equation for symmetry. Remember that failing a symmetry test does not mean that the shape will not exhibit 
symmetry. Often the symmetry may reveal itself when the points are plotted. 

2. Find the zeros. 
3. Find the maximum values according to the trigonometric expression. 
4. Make a table. 
5. Plot the points and sketch the graph. 

Example 5 Sketching the Graph of a One-Loop Limaçon 

Graph the equation r = 4 − 3sin θ. 

Solution First, testing the equation for symmetry, we find that it fails all three symmetry tests, meaning that the graph 
may or may not exhibit symmetry, so we cannot use the symmetry to help us graph it. However, this equation has a  
graph that clearly displays symmetry with respect to the line θ =   π __ 2  , yet it fails all the three symmetry tests. A graphing 
calculator will immediately illustrate the graph’s reflective quality. 

Next, we find the zeros and maximum, and plot the reflecting points to verify any symmetry. Setting r =0 results in θ 
being undefined. What does this mean? How could θ be undefined? The angle θ is undefined for any value of sin θ > 1. 
Therefore, θ is undefined because there is no value of θ for which sin θ > 1. Consequently, the graph does not pass 
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through the pole. Perhaps the graph does cross the polar axis, but not at the pole. We can investigate other intercepts 
by calculating r when θ = 0. 
 r(0) = 4 − 3sin(0)
 r = 4−3 ⋅ 0 = 4
So, there is at least one polar axis intercept at (4, 0). 

Next, as the maximum value of the sine function is 1 when θ =   π _ 
2

  , we will substitute θ =   π _ 
2

   into the equation and solve 
for r. Thus, r = 1. 

Make a table of the coordinates similar to Table 5. 

θ 0   π _ 
6

    π _ 
3

    π _ 
2

    2π _ 
3

    5π _ 
6

  π   7π _ 
6

    4π _ 
3

    3π _ 
2

    5π _ 
3

    11π _ 
6

  2π

r 4 2.5 1.4 1 1.4 2.5 4 5.5 6.6 7 6.6 5.5 4
Table 5 

The graph is shown in Figure 10.

Figure 10

)
–4

1

Analysis This is an example of a curve for which making a table of values is critical to producing an accurate graph. The 
symmetry tests fail; the zero is undefined. While it may be apparent that an equation involving sin θ is likely symmetric 
with respect to the line θ =   π __ 2  , evaluating more points helps to verify that the graph is correct.

Try It #3

Sketch the graph of r = 3 − 2cos θ.

Another type of limaçon, the inner-loop limaçon, is named for the loop formed inside the general limaçon shape. It 
was discovered by the German artist Albrecht Dürer(1471-1528), who revealed a method for drawing the inner-loop 
limaçon in his 1525 book Underweysung der Messing. A century later, the father of mathematician Blaise Pascal, Étienne 
Pascal(1588-1651), rediscovered it.

formulas for inner-loop limaçons 
The formulas that generate the inner-loop limaçons are given by r = a ± bcos θ and r = a ± bsin θ where a > 0, 
b > 0, and a < b. The graph of the inner-loop limaçon passes through the pole twice: once for the outer loop, and 
once for the inner loop. See Figure 11 for the graphs. 

r = a + bcosθ, a < b
(a)

r = a − bcosθ, a < b
(b)

r = a + bsinθ, a < b
(c)

r = a − bsinθ, a < b
(d)

Figure 11 
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Example 6 Sketching the Graph of an Inner-Loop Limaçon 

Sketch the graph of r = 2 + 5cos θ. 

Solution  Testing for symmetry, we find that the graph of the equation is symmetric about the polar axis. Next, finding 
the zeros reveals that when r = 0, θ = 1.98. The maximum  | r |  is found when cos θ =1 or when θ = 0. Thus, the maximum 
is found at the point (7, 0).

Even though we have found symmetry, the zero, and the maximum, plotting more points will help to define the shape, 
and then a pattern will emerge. 

See Table 6. 

θ 0   π __ 6    π __ 3    π __ 2    2π ___ 3    5π ___ 6  π   7π ___ 6    4π ___ 3    3π ___ 2    5π ___ 3    11π ____ 6  2π

r 7 6.3 4.5 2 −0.5 −2.3 −3 −2.3 −0.5 2 4.5 6.3 7
Table 6 

As expected, the values begin to repeat after θ = π. The graph is shown in Figure 12.

Figure 12 Inner-loop limaçon

(7, 0)(−3, π)

Investigating Lemniscates

The lemniscate is a polar curve resembling the infinity symbol ∞ or a figure 8. Centered at the pole, a lemniscate is 
symmetrical by definition.

formulas for lemniscates 
The formulas that generate the graph of a lemniscate are given by r2 = a2 cos 2θ and r2 = a2 sin 2θ where a ≠ 0. The 
formula r2 = a2 sin 2θ is symmetric with respect to the pole. The formula r2 = a2 cos 2θ is symmetric with respect 
to the pole, the line θ =   π __ 2  , and the polar axis. See Figure 13 for the graphs.

r2 = a2cos(2θ) r2 = −a2cos(2θ) r2 = a2sin(2θ) r2 = −a2sin(2θ)
(a) (b) (c) (d)

Figure 13 

Example 7 Sketching the Graph of a Lemniscate

Sketch the graph of r2 = 4cos 2θ.

Solution The equation exhibits symmetry with respect to the line θ =   π _ 
2

  , the polar axis, and the pole.

Let’s find the zeros. It should be routine by now, but we will approach this equation a little differently by making the 
substitution u = 2θ.
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 0 = 4cos 2θ

 0 = 4cos u

 0 = cos u

 cos−1 0 =   π _ 
2

  

 u =   π _ 
2

    Substitute 2θ back in for u.

 2θ =   π _ 
2

  

 θ =   π _ 4  

So, the point   0,   π _ 4     is a zero of the equation.

Now let’s find the maximum value. Since the maximum of cos u = 1 when u = 0, the maximum cos 2θ = 1 when 
2θ = 0. Thus,
 r2 = 4cos(0)

 r2 = 4(1) = 4

 r = ±  √
—
 4   = 2

We have a maximum at (2, 0). Since this graph is symmetric with respect to the pole, the line θ =   π _ 
2

  , and the polar axis, 
we only need to plot points in the first quadrant.

Make a table similar to Table 7.

θ 0   π _ 
6

    π _ 4    π _ 
3

    π _ 
2

  

r 2  √
—
 2  0  √

—
 2  0

Table 7

Plot the points on the graph, such as the one shown in Figure 14.

(2, 0)
–4 –3 –2 –1

–1

1

2

3

4

–2

–3

–4

1 2 3 4

Figure 14 lemniscate

Analysis Making a substitution such as u = 2θ is a common practice in mathematics because it can make calculations 
simpler. However, we must not forget to replace the substitution term with the original term at the end, and then solve for 
the unknown. Some of the points on this graph may not show up using the Trace function on the TI-84 graphing calculator, 
and the calculator table may show an error for these same points of r. This is because there are no real square roots for 
these values of θ. In other words, the corresponding r-values of  √

—
 4cos(2θ)   are complex numbers because there is a negative 

number under the radical.

Investigating Rose Curves

The next type of polar equation produces a petal-like shape called a rose curve. Although the graphs look complex, a 
simple polar equation generates the pattern.
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rose curves 
The formulas that generate the graph of a rose curve are given by r = acos nθ and r = asin nθ where a ≠ 0. If n 
is even, the curve has 2n petals. If n is odd, the curve has n petals. See Figure 15.

r = acos(nθ), n even

(a)
r = asin(nθ), n odd

(b)
Figure 15 

Example 8 Sketching the Graph of a Rose Curve (n Even)

Sketch the graph of r = 2cos 4θ.

Solution Testing for symmetry, we find again that the symmetry tests do not tell the whole story. The graph is not only 
symmetric with respect to the polar axis, but also with respect to the line θ =   π _ 

2
   and the pole.

Now we will find the zeros. First make the substitution u = 4θ.

 0 = 2cos 4θ
 0 = cos 4θ
 0 = cos u
 cos−1 0 = u

 u =   π _ 
2

  

 4θ =   π _ 
2

  

 θ =   π _ 
8

  

The zero is θ =   π _ 
8

  . The point   0,   π _ 
8

     is on the curve.

Next, we find the maximum  | r | . We know that the maximum value of cos u = 1 when θ = 0. Thus,

 r = 2cos(4 ⋅ 0)

 r = 2cos(0)

 r = 2(1) = 2
The point (2, 0) is on the curve.

The graph of the rose curve has unique properties, which are revealed in Table 8.

θ 0   π _ 
8

    π _ 4    3π _ 
8

    π _ 
2

    5π _ 
8

    3π _ 4  

r 2 0 −2 0 2 0 −2
Table 8

As r = 0 when θ =   π __ 8  , it makes sense to divide values in the table by   π __ 8   units. A definite pattern emerges. Look at the 
range of r-values: 2, 0, −2, 0, 2, 0, −2, and so on. This represents the development of the curve one petal at a time. 
Starting at r = 0, each petal extends out a distance of r = 2, and then turns back to zero 2n times for a total of eight 
petals. See the graph in Figure 16.
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n = 4

2

a

1

444444

11

–2 –1

2

–2

1

Figure 16 Rose curve, n even

Analysis When these curves are drawn, it is best to plot the points in order, as in the Table 8. This allows us to see how 
the graph hits a maximum (the tip of a petal), loops back crossing the pole, hits the opposite maximum, and loops back to 
the pole. The action is continuous until all the petals are drawn.

Try It #4

Sketch the graph of r = 4sin(2θ).

Example 9 Sketching the Graph of a Rose Curve (  n Odd)

Sketch the graph of r = 2sin(5θ).

Solution The graph of the equation shows symmetry with respect to the line θ =   π _ 
2

  . Next, find the zeros and maximum.
We will want to make the substitution u = 5θ.
 0 = 2sin(5θ)
 0 = sin u
  sin −1  0 = 0
 u = 0
 5θ = 0
 θ = 0

The maximum value is calculated at the angle where sin θ is a maximum. Therefore,

 r = 2sin  5 ⋅   π _ 
2

    

 r = 2(1) = 2

Thus, the maximum value of the polar equation is 2. This is the length of each petal. As the curve for n odd yields the 
same number of petals as n, there will be five petals on the graph. See Figure 17.

–

a
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3

4

–2

–3

–4

1 2 3 4

Figure 17 Rose curve, n odd

Create a table of values similar to Table 9.

θ 0   π _ 
6

    π _ 
3

    π _ 
2

    2π _ 
3

    5π _ 
6

  π

r 0 1 −1.73 2 −1.73 1 0

Table 9



SECTION 8.4 polar coordinates: graphs 693

Try It #5

Sketch the graph of r = 3cos(3θ).

Investigating the Archimedes’ Spiral

The final polar equation we will discuss is the Archimedes’ spiral, named for its discoverer, the Greek mathematician 
Archimedes (c. 287 BCE–c. 212 BCE), who is credited with numerous discoveries in the fields of geometry and mechanics.

Archimedes’ spiral 
The formula that generates the graph of the Archimedes’ spiral is given by r = θ for θ ≥ 0. As θ increases, r increases 
at a constant rate in an ever-widening, never-ending, spiraling path. See Figure 18.

r = θ, [0, 2π]
(a)

r = θ, [0, 4π]
(b)

Figure 18 

How To…
Given an Archimedes’ spiral over [0, 2π], sketch the graph.

1. Make a table of values for r and θ over the given domain.
2. Plot the points and sketch the graph.

Example 10  Sketching the Graph of an Archimedes’ Spiral

Sketch the graph of r = θ over [0, 2π].

Solution As r is equal to θ, the plot of the Archimedes’ spiral begins at the pole at the point (0, 0). While the graph hints 
of symmetry, there is no formal symmetry with regard to passing the symmetry tests. Further, there is no maximum 
value, unless the domain is restricted.

Create a table such as Table 10.

θ   π _ 4    π _ 
2

  π   3π _ 
2

    7π _ 4  2π

r 0.785 1.57 3.14 4.71 5.50 6.28
Table 10

Notice that the r-values are just the decimal form of the angle measured in radians. We can see them on a graph in 
Figure 19.

Figure 19 Archimedes’ spiral
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Analysis The domain of this polar curve is [0, 2π]. In general, however, the domain of this function is (−∞, ∞). Graphing 
the equation of the Archimedes’ spiral is rather simple, although the image makes it seem like it would be complex.

Try It #6

Sketch the graph of r = −θ over the interval [0, 4π].

Summary of Curves
We have explored a number of seemingly complex polar curves in this section. Figure 20 and Figure 21 summarize 
the graphs and equations for each of these curves.

r = asin θ
r = acos θ

r = a ± bcos θ
r = a ± bsin θ

r = a ± bcos θ
r = a ± bsin θ

r = a ± bcos θ
r = a ± bsin θ

a > 0, b > 0, a < ba > 0, b > 0, 1 < a/b < 2a > 0, b > 0, a/b = 1

(a)

Circle Cardioid One-Loop Limaçon Inner-Loop Limaçon

(b) (c) (d)

Figure 20

r2 = a2cos 2θ
r2 = a2sin 2θ

a ≠ 0

(a)

Lemniscate Rose Curve (n even) Rose Curve (n odd) Archimedes’ Spiral

r = acos nθ
r = asin nθ

n even, 2n petals

(b)
n odd, n petals

r = acos nθ
r = asin nθ

(c)

r = θ
θ ≥ 0

(d)

Figure 21

Access these online resources for additional instruction and practice with graphs of polar coordinates.

•	 Graphing Polar equations Part 1 (http://openstaxcollege.org/l/polargraph1)

•	 Graphing Polar equations Part 2 (http://openstaxcollege.org/l/polargraph2)

•	 Animation: The Graphs of Polar equations (http://openstaxcollege.org/l/polaranim)

•	 Graphing Polar equations on the TI-84 (http://openstaxcollege.org/l/polarTI84)

http://openstaxcollege.org/l/polargraph1
http://openstaxcollege.org/l/polargraph2
http://openstaxcollege.org/l/polaranim
http://openstaxcollege.org/l/polarTI84
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8.4 SeCTIOn exeRCISeS

VeRBAl 

1. Describe the three types of symmetry in polar 
graphs, and compare them to the symmetry of the 
Cartesian plane. 

2. Which of the three types of symmetries for polar 
graphs correspond to the symmetries with respect to 
the x-axis, y-axis, and origin? 

3. What are the steps to follow when graphing polar 
equations? 

4. Describe the shapes of the graphs of cardioids, 
limaçons, and lemniscates. 

5. What part of the equation determines the shape of 
the graph of a polar equation? 

GRAPHICAl 

For the following exercises, test the equation for symmetry. 

6. r = 5cos 3θ 7. r = 3 − 3cos θ 8. r = 3 + 2sin θ 9. r = 3sin 2θ 

10. r = 4 11. r = 2θ 12. r = 4cos   θ _ 
2

  13. r =   2 _ 
θ

  

14. r = 3 √
—

 1−cos2θ  15. r =  √
—

 5sin 2θ   

For the following exercises, graph the polar equation. Identify the name of the shape. 

16. r = 3cos θ 17. r = 4sin θ 18. r = 2 + 2cos θ 19. r = 2 − 2cos θ 

20. r = 5 − 5sin θ 21. r = 3 + 3sin θ 22. r = 3 + 2sin θ 23. r = 7 + 4sin θ

24. r = 4 + 3cos θ 25. r = 5 + 4cos θ 26. r = 10 + 9cos θ 27. r = 1 + 3sin θ

28. r = 2 + 5sin θ 29. r = 5 + 7sin θ 30. r = 2 + 4cos θ 31. r = 5 + 6cos θ

32. r 2 = 36cos(2θ) 33. r 2 = 10cos(2θ) 34. r 2 = 4sin(2θ) 35. r 2 = 10sin(2θ)

36. r = 3sin(2θ) 37. r = 3cos(2θ) 38. r = 5sin(3θ) 39. r = 4sin(4θ)

40. r = 4sin(5θ) 41. r = −θ 42. r = 2θ 43. r = − 3θ

TeCHnOlOGY

For the following exercises, use a graphing calculator to sketch the graph of the polar equation.

44. r =   1 _ 
θ

  45. r =    1 _ 
 √

—
 θ  
    46. r = 2sin θ tan θ, a cissoid

47. r = 2 √
—

 1 − sin2 θ  , a hippopede 48. r = 5 + cos(4θ) 49. r = 2 − sin(2θ)

50. r = θ2 51. r = θ + 1 52. r = θsin θ

53. r = θcos θ

For the following exercises, use a graphing utility to graph each pair of polar equations on a domain of [0, 4π] and then 
explain the differences shown in the graphs.

54. r = θ, r = −θ 55. r = θ, r = θ + sin θ 56. r = sin θ + θ, r = sin θ − θ

57. r = 2sin    θ _ 
2

    , r = θsin    θ _ 
2

    58. r = sin(cos(3θ)) r = sin(3θ)
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59. On a graphing utility, graph r = sin    16 _ 5  θ   on  

[0, 4π], [0, 8π], [0, 12π], and [0, 16π]. Describe the 
effect of increasing the width of the domain.

60. On a graphing utility, graph and sketch  

r = sin θ +    sin     5 _ 
2

  θ     
3
  on [0, 4π].

61. On a graphing utility, graph each polar equation. 
Explain the similarities and differences you observe 
in the graphs.

r1 = 3sin(3θ)

r2 = 2sin(3θ)

r3 = sin(3θ)

62. On a graphing utility, graph each polar equation. 
Explain the similarities and differences you observe 
in the graphs.

r1 = 3 + 3cos θ

r2 = 2 + 2cos θ

r3 = 1 + cos θ

63. On a graphing utility, graph each polar equation. 
Explain the similarities and differences you observe 
in the graphs.

 r1 = 3θ

 r2 = 2θ

 r3 = θ

exTenSIOnS

For the following exercises, draw each polar equation on the same set of polar axes, and find the points of intersection.

64. r1 = 3 + 2sin θ, r2 = 2 65. r1 = 6 − 4cos θ, r2 = 4

66. r1 = 1 + sin θ, r2 = 3sin θ 67. r1 = 1 + cos θ, r2 = 3cos θ

68. r1 = cos(2θ), r2 = sin(2θ) 69. r1 = sin2 (2θ), r2 = 1 − cos(4θ)

70. r1 =  √
—
 3  , r2 = 2sin(θ) 71. r1

2 = sin θ, r2 
2 = cos θ

72. r1 = 1 + cos θ, r2 = 1 − sin θ
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leARnInG OBjeCTIVeS

In this section, you will:
•	 Plot complex numbers in the complex plane. 
•	 Find the absolute value of a complex number. 
•	 Write complex numbers in polar form. 
•	 Convert a complex number from polar to rectangular form. 
•	 Find products of complex numbers in polar form. 
•	 Find quotients of complex numbers in polar form. 
•	 Find powers of complex numbers in polar form. 
•	 Find roots of complex numbers in polar form. 

8.5 POlAR FORM OF COMPlex nUMBeRS 

“God made the integers; all else is the work of man.” This rather famous quote by nineteenth-century German 
mathematician Leopold Kronecker sets the stage for this section on the polar form of a complex number. Complex 
numbers were invented by people and represent over a thousand years of continuous investigation and struggle by 
mathematicians such as Pythagoras, Descartes, De Moivre, Euler, Gauss, and others. Complex numbers answered 
questions that for centuries had puzzled the greatest minds in science. 

We first encountered complex numbers in Complex Numbers. In this section, we will focus on the mechanics of 
working with complex numbers: translation of complex numbers from polar form to rectangular form and vice versa, 
interpretation of complex numbers in the scheme of applications, and application of De Moivre’s Theorem. 

Plotting Complex numbers in the Complex Plane 
Plotting a complex number a + bi is similar to plotting a real number, except that the horizontal axis represents the real 
part of the number, a, and the vertical axis represents the imaginary part of the number, bi. 

How To…
Given a complex number a + bi, plot it in the complex plane. 

1. Label the horizontal axis as the real axis and the vertical axis as the imaginary axis. 
2. Plot the point in the complex plane by moving a units in the horizontal direction and b units in the vertical direction. 

Example 1 Plotting a Complex Number in the Complex Plane 

Plot the complex number 2 − 3i in the complex plane. 

Solution From the origin, move two units in the positive horizontal direction and three units in the negative vertical 
direction. See Figure 1.
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4

4

5

5

Figure 1
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Try It #1

Plot the point 1 + 5i in the complex plane.

Finding the Absolute Value of a Complex number
The first step toward working with a complex number in polar form is to find the absolute value. The absolute value of 
a complex number is the same as its magnitude, or  ∣ z ∣ . It measures the distance from the origin to a point in the plane. 
For example, the graph of z = 2 + 4i, in Figure 2, shows  ∣ z ∣ .

2

Real

Imaginary

–1–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21

(2 + 4i)

|z| =  

4

4

5

5

20

Figure 2

absolute value of a complex number 

Given z = x + yi, a complex number, the absolute value of z is defined as

  ∣ z ∣  =  √
—

 x2 + y2  

It is the distance from the origin to the point (x, y).

Notice that the absolute value of a real number gives the distance of the number from 0, while the absolute value 
of a complex number gives the distance of the number from the origin, (0, 0).

Example 2 Finding the Absolute Value of a Complex Number with a Radical

Find the absolute value of z =  √
—
 5   − i.

Solution Using the formula, we have
  ∣ z ∣  =  √

—
 x2 + y2  

  ∣ z ∣  =  √
—

   √
—
 5  2 + (−1)2  

  ∣ z ∣  =  √
—

 5 + 1  

  ∣ z ∣  =  √
—
 6  

See Figure 3.
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Try It #2

Find the absolute value of the complex number z = 12 − 5i.

Example 3 Finding the Absolute Value of a Complex Number 

Given z = 3 − 4i, find  ∣ z ∣ . 
Solution  Using the formula, we have 

  ∣ z ∣  =  √
—

 x2+ y2  
  ∣ z ∣  =  √

—
  (3)2 + (−4)2   

  ∣ z ∣  =  √
—

 9 + 16  

  ∣ z ∣  =  √
—

 25  

  ∣ z ∣  = 5

The absolute value of z is 5. See Figure 4. 

Figure 4 
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(3 − 4i)

Try It #3

Given z =1 − 7i, find  ∣ z ∣ . 

Writing Complex numbers in Polar Form 
The polar form of a complex number expresses a number in terms of an angle θ and its distance from the origin r. 
Given a complex number in rectangular form expressed as z = x + yi, we use the same conversion formulas as we do 
to write the number in trigonometric form: 

 x = rcos θ 

 y = rsin θ 

 r =  √
—

 x2+ y2  

We review these relationships in Figure 5.

Figure 5
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Imaginary
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θ
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x + yi
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We use the term modulus to represent the absolute value of a complex number, or the distance from the origin to the 
point (x, y). The modulus, then, is the same as r, the radius in polar form. We use θ to indicate the angle of direction 
(just as with polar coordinates). Substituting, we have

 z = x + yi
 z = rcos θ + (rsin θ)i
 z = r(cos θ + isin θ)

polar form of a complex number 
Writing a complex number in polar form involves the following conversion formulas:
 x = rcos θ

 y = rsin θ

 r =  √
—

 x2+ y2  

Making a direct substitution, we have

 z = x + yi

 z = (rcos θ) + i(rsin θ)

 z = r(cos θ + isin θ)

where r is the modulus and θ is the argument. We often use the abbreviation rcis θ to represent r(cos θ + isin θ).

Example 4 Expressing a Complex Number Using Polar Coordinates

Express the complex number 4i using polar coordinates.

Solution On the complex plane, the number z = 4i is the same as z = 0 + 4i. Writing it in polar form, we have to 
calculate r first.

 r =  √
—

 x2+ y2  

 r =  √
—

 02 + 42  

 r =  √
—

 16  

 r = 4

Next, we look at x. If x = rcos θ, and x = 0, then θ =   π _ 
2

  . In polar coordinates, the complex number z = 0 + 4i can be 

written as z = 4  cos     π _ 
2

     + isin     π _ 
2

       or 4cis     π _ 
2

    . See Figure 6.

Figure 6
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π
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Try It #4

Express z = 3i as rcis θ in polar form.
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Example 5 Finding the Polar Form of a Complex Number

Find the polar form of −4 + 4i.

Solution First, find the value of r.

 r =  √
—

 x2+ y2  

 r =  √
—

  (−4)2 + (42)  

 r =  √
—

 32  

 r = 4 √
—
 2  

Find the angle θ using the formula:

 cos θ =   x _ r  

 cos θ =   −4 ______ 
4 √

—
 2  
   

 cos θ = −   1 _____ 
 √

—
 2  
  

 θ = cos−1   −   1 _____ 
 √

—
 2  
    =   3π _ 4  

Thus, the solution is 4 √
—
 2  cis    3π _ 4     .

Try It #5

Write z =  √ 
_
 3   + i in polar form.

Converting a Complex number from Polar to Rectangular Form
Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and using 
the distributive property. In other words, given z = r(cos θ + isin θ), first evaluate the trigonometric functions cos θ 
and sin θ. Then, multiply through by r.

Example 6 Converting from Polar to Rectangular Form

Convert the polar form of the given complex number to rectangular form:

 z = 12  cos     π _ 
6

     + isin     π _ 
6

      

Solution We begin by evaluating the trigonometric expressions.

 cos     π _ 
6

     =    √
—
 3   _ 

2
   and sin     π _ 

6
     =   1 _ 

2
  

After substitution, the complex number is

 z = 12     √
—
 3   _ 

2
   +   1 _ 

2
  i  

We apply the distributive property:

 z = 12     √
—
 3   _ 

2
   +   1 _ 

2
  i  

 = (12)   √
—
 3   _ 

2
   + (12)  1 _ 

2
  i

 = 6 √
—
 3   + 6i

The rectangular form of the given point in complex form is 6 √
—
 3   + 6i.
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Example 7 Finding the Rectangular Form of a Complex Number

Find the rectangular form of the complex number given r = 13 and tan θ =   5 _ 
12

  .

Solution If tan θ =   5 _ 
12

  , and tan θ =   
y
 _ x  , we first determine r =  √

—
 x2+ y2   =  √
—

 122 + 52   = 13. We then find cos θ =   x _ r   

and sin θ =   
y
 _ r  .

 z = 13(cos θ + isin θ)

 = 13    12 _ 
13

   +   5 _ 
13

  i  

 = 12 + 5i

The rectangular form of the given number in complex form is 12 + 5i.

Try It #6
Convert the complex number to rectangular form:

 z = 4  cos   11π _ 
6

   + isin   11π _ 
6

    

Finding Products of Complex numbers in Polar Form
Now that we can convert complex numbers to polar form we will learn how to perform operations on complex numbers 
in polar form. For the rest of this section, we will work with formulas developed by French mathematician Abraham 
De Moivre (1667–1754). These formulas have made working with products, quotients, powers, and roots of complex 
numbers much simpler than they appear. The rules are based on multiplying the moduli and adding the arguments.

products of complex numbers in polar form 
If z1 = r1(cos θ1 + isin θ1) and z2 = r2(cos θ2 + isin θ2), then the product of these numbers is given as:

 z1z2 = r1r2[cos(θ1 + θ2) + isin(θ1 + θ2)]

 z1z2 = r1r2cis(θ1 + θ2)

Notice that the product calls for multiplying the moduli and adding the angles.

Example 8 Finding the Product of Two Complex Numbers in Polar Form

Find the product of z1z2, given z1 = 4(cos(80°) + isin(80°)) and z2 = 2(cos(145°) + isin(145°)).

Solution Follow the formula
 z1z2 = 4 ⋅ 2[cos(80° + 145°) + isin(80° + 145°)]

 z1z2 = 8[cos(225°) + isin(225°)]

 z1z2 = 8  cos     5π _ 4     + isin     5π _ 4       

 z1z2 = 8  −    √
—
 2   _ 

2
   + i   −    √

—
 2   _ 

2
       

 z1z2 = − 4 √
—
 2   − 4i √

—
 2  

Finding Quotients of Complex numbers in Polar Form
The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the two 
arguments.
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quotients of complex numbers in polar form 
If z1 = r1(cos θ1 + isin θ1) and z2 = r2(cos θ2 + isin θ2), then the quotient of these numbers is

   
z1 __ z2

   =   
r1 __ r2

  [cos(θ1 −θ2) + isin(θ1 − θ2)], z2 ≠ 0

   
z1 __ z2

   =   
r1 __ r2

   cis(θ1 − θ2), z2 ≠ 0

Notice that the moduli are divided, and the angles are subtracted.

How To…

Given two complex numbers in polar form, find the quotient.

1. Divide   r1 __ r2
  .

2. Find θ1 − θ2.

3. Substitute the results into the formula: z = r(cos θ + isin θ). Replace r with   r1 __ r2
  , and replace θ with θ1 − θ2.

4. Calculate the new trigonometric expressions and multiply through by r.

Example 9 Finding the Quotient of Two Complex Numbers

Find the quotient of z1 = 2(cos(213°) + isin(213°)) and z2 = 4(cos(33°) + isin(33°)).

Solution Using the formula, we have

   z1 __ z2
   =   2 __ 4  [cos(213° − 33°) + isin(213° − 33°)]

   z1 __ z2
   =   1 __ 2  [cos(180°) + isin(180°)]

   z1 __ z2
   =   1 __ 2  [ − 1 + 0i]

   z1 __ z2
   = −   1 __ 2  + 0i

   z1 __ z2
   = −   1 __ 2  

Try It #7

Find the product and the quotient of z1 = 2 √
—
 3  (cos(150°) + isin(150°)) and z2 = 2(cos(30°) + isin(30°)).

Finding Powers of Complex numbers in Polar Form
Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem. It states that, for a positive integer 
n, zn is found by raising the modulus to the nth power and multiplying the argument by n. It is the standard method 
used in modern mathematics.

De Moivre’s Theorem 
If z = r(cos θ + isin θ) is a complex number, then
 zn = r n[cos(nθ) + isin(nθ)]

 zn = r n cis(nθ)

where n is a positive integer.
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Example 10   Evaluating an Expression Using De Moivre’s Theorem

Evaluate the expression (1 + i)5 using De Moivre’s Theorem.

Solution Since De Moivre’s Theorem applies to complex numbers written in polar form, we must first write (1 + i) in 
polar form. Let us find r.

 r =  √
—

 x2 + y2  

 r =  √
—

 (1)2 + (1)2  

 r =  √
—
 2  

Then we find θ. Using the formula tan θ =   
y
 _ x   gives

 tan θ =   1 _ 
1

  

 tan θ = 1

 θ =   π _ 4  

Use De Moivre’s Theorem to evaluate the expression.

 (a + bi)n = rn[cos(nθ) + isin(nθ)]

 (1 + i)5 = ( √
—
 2  )5  cos   5 ⋅   π _ 4    + isin   5 ⋅   π _ 4       

 (1 + i)5 = 4 √
—
 2     cos     5π _ 4     + isin     5π _ 4       

 (1 + i)5 = 4 √
—
 2     −    √

—
 2   _ 

2
   + i   −    √

—
 2   _ 

2
       

 (1 + i)5 = − 4 − 4i

Finding Roots of Complex numbers in Polar Form

To find the nth root of a complex number in polar form, we use the nth Root Theorem or De Moivre’s Theorem and 
raise the complex number to a power with a rational exponent. There are several ways to represent a formula for finding 
nth roots of complex numbers in polar form.

the nth root theorem 
To find the nth root of a complex number in polar form, use the formula given as

  z   
1 __ n    =  r   

1 __ n     cos     θ _ n  +   2kπ _ n     + isin     θ _ n  +   2kπ _ n       

where k = 0, 1, 2, 3, . . . , n − 1. We add   2kπ _ n   to   θ _ n   in order to obtain the periodic roots.
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Example 11   Finding the nth Root of a Complex Number

Evaluate the cube roots of z = 8  cos     2π ___ 3      + isin     2π ___ 3        .
Solution We have

  z   
1 __ 3    =  8   

1 __ 3     cos       
2π ___ 3  

 _ 
3

  +   2kπ ____ 3      + isin       
2π ___ 3  

 _ 
3

  +   2kπ ____ 3         
  z   

1 __ 3    = 2  cos     2π ___ 9   +   2kπ ____ 3     + isin     2π ___ 9   +   2kπ ____ 3        

There will be three roots: k = 0, 1, 2. When k = 0, we have

  z   
1 __ 3    = 2  cos     2π ___ 9     + isin     2π ___ 9        

When k = 1, we have

  z   
1 __ 3    = 2  cos     2π ___ 9   +   6π ___ 9     + isin     2π ___ 9   +   6π ___ 9         Add   

2(1)π
 _ 

3
   to each angle.

  z   
1 __ 3    = 2  cos     8π ___ 9     + isin     8π ___ 9        

When k = 2, we have

  z   
1 __ 3    = 2  cos     2π ___ 9   +   12π ____ 9     + isin     2π ___ 9   +   12π ____ 9         Add   

2(2)π
 _ 

3
   to each angle.

  z   
1 __ 3    = 2  cos     14π ____ 9     + isin     14π ____ 9        

Remember to find the common denominator to simplify fractions in situations like this one. For k = 1, the angle 
simplification is

   
  2π ___ 3  

 _ 
3

   +   2(1)π _____ 3   =   2π ___ 3      1 __ 3      +   2(1)π _____ 3      3 __ 3     

 =   2π ___ 9   +   6π ___ 9  

 =   8π ___ 9  

Try It #8

Find the four fourth roots of 16(cos(120°) + isin(120°)).

Access these online resources for additional instruction and practice with polar forms of complex numbers.

•	 The Product and Quotient of Complex numbers in Trigonometric Form (http://openstaxcollege.org/l/prodquocomplex)

•	 De Moivre’s Theorem (http://openstaxcollege.org/l/demoivre)

http://openstaxcollege.org/l/prodquocomplex
http://openstaxcollege.org/l/demoivre
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8.5 SeCTIOn exeRCISeS

VeRBAl

1. A complex number is a + bi. Explain each part. 2. What does the absolute value of a complex number 
represent?

3. How is a complex number converted to polar form? 4. How do we find the product of two complex numbers?
5. What is De Moivre’s Theorem and what is it used for?

AlGeBRAIC

For the following exercises, find the absolute value of the given complex number.

6. 5 + 3i 7.  −7 + i 8.  −3 − 3i

9.  √ 
_
 2   − 6i 10. 2i 11. 2.2 − 3.1i

For the following exercises, write the complex number in polar form.

12. 2 + 2i 13. 8 − 4i 14.  −    1 __ 2    −    1 __ 2   i

15.  √
—
 3   + i 16. 3i

For the following exercises, convert the complex number from polar to rectangular form.

17. z = 7cis     π _ 
6

     18. z = 2cis     π _ 
3

     19. z = 4cis     7π _ 
6

     
20. z = 7cis(25°) 21. z = 3cis(240°) 22. z =  √

—
 2  cis(100°)

For the following exercises, find z1 z2 in polar form.

23. z1 = 2 √
—
 3  cis(116°); z2 = 2cis(82°) 24. z1 =  √

—
 2  cis(205°); z2 = 2 √

—
 2  cis(118°)

25. z1 = 3cis(120°); z2 =   1 _ 4  cis(60°) 26. z1 = 3cis     π _ 4     ; z2 = 5cis     π _ 
6

     

27. z1 =  √
—
 5  cis     5π _ 

8
     ; z2 =  √

—
 15   cis     π _ 

12
     28. z1 = 4cis     π _ 

2
     ; z2 = 2cis     π _ 4     

For the following exercises, find   
z1 _ z2

   in polar form.

29. z1 = 21cis(135°); z2 = 3cis(65°) 30. z1 =  √
—
 2  cis(90°); z2 = 2cis(60°)

31. z1 = 15cis(120°); z2 = 3cis(40°) 32. z1 = 6cis     π _ 
3

     ; z2 = 2cis     π _ 4     

33. z1 = 5 √
—
 2  cis(π); z2 =  √

—
 2  cis     2π _ 

3
     34. z1 = 2cis     3π _ 5     ; z2 = 3cis     π _ 4     

For the following exercises, find the powers of each complex number in polar form.

35. Find z3 when z = 5cis(45°). 36. Find z4 when z = 2cis(70°).

37. Find z2 when z = 3cis(120°). 38. Find z2 when z = 4cis     π _ 4     .

39. Find z4 when z = cis     3π _ 
16

     . 40. Find z3 when z = 3cis     5π _ 
3

     .
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For the following exercises, evaluate each root.
41. Evaluate the cube root of z when z = 27cis(240°). 42. Evaluate the square root of z when z = 16cis(100°).

43. Evaluate the cube root of z when z = 32cis     2π _ 
3

     . 44. Evaluate the square root of z when z = 32cis(π).

45. Evaluate the cube root of z when z = 8cis     7π _ 4     .

GRAPHICAl

For the following exercises, plot the complex number in the complex plane.
46. 2 + 4i 47.  −3 − 3i 48. 5 − 4i

49.  −1 − 5i 50. 3 + 2i 51. 2i

52. −4 53. 6 − 2i 54.  −2 + i

55. 1 − 4i

TeCHnOlOGY

For the following exercises, find all answers rounded to the nearest hundredth.

56. Use the rectangular to polar feature on the graphing 
calculator to change 5 + 5i to polar form.

57. Use the rectangular to polar feature on the graphing 
calculator to change 3 − 2i to polar form.

58. Use the rectangular to polar feature on the graphing 
calculator to change −3 − 8i to polar form.

59. Use the polar to rectangular feature on the graphing 
calculator to change 4cis(120°) to rectangular form.

60. Use the polar to rectangular feature on the graphing 
calculator to change 2cis(45°) to rectangular form.

61. Use the polar to rectangular feature on the graphing 
calculator to change 5cis(210°) to rectangular form.
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8.6 PARAMeTRIC eQUATIOnS 

Consider the path a moon follows as it orbits a planet, which simultaneously rotates around the sun, as seen in Figure 1. 
At any moment, the moon is located at a particular spot relative to the planet. But how do we write and solve the equation 
for the position of the moon when the distance from the planet, the speed of the moon’s orbit around the planet, and 
the speed of rotation around the sun are all unknowns? We can solve only for one variable at a time.

Figure 1

In this section, we will consider sets of equations given by x(t) and y(t) where t is the independent variable of time.

We can use these parametric equations in a number of applications when we are looking for not only a particular position 
but also the direction of the movement. As we trace out successive values of t, the orientation of the curve becomes clear.

This is one of the primary advantages of using parametric equations: we are able to trace the movement of an object 
along a path according to time. We begin this section with a look at the basic components of parametric equations 
and what it means to parameterize a curve. Then we will learn how to eliminate the parameter, translate the equations 
of a curve defined parametrically into rectangular equations, and find the parametric equations for curves defined by 
rectangular equations.

Parameterizing a Curve
When an object moves along a curve—or curvilinear path—in a given direction and in a given amount of time, the 
position of the object in the plane is given by the x-coordinate and the y-coordinate. However, both x and y vary over 
time and so are functions of time. For this reason, we add another variable, the parameter, upon which both x and y 
are dependent functions. In the example in the section opener, the parameter is time, t. The x position of the moon at 
time, t, is represented as the function x(t), and the y position of the moon at time, t, is represented as the function y(t). 
Together, x(t) and y(t) are called parametric equations, and generate an ordered pair (x(t), y(t)). Parametric equations 
primarily describe motion and direction.

When we parameterize a curve, we are translating a single equation in two variables, such as x and y, into an equivalent 
pair of equations in three variables, x, y, and t. One of the reasons we parameterize a curve is because the parametric 
equations yield more information: specifically, the direction of the object’s motion over time.

When we graph parametric equations, we can observe the individual behaviors of x and of y. There are a number of 
shapes that cannot be represented in the form y = f (x), meaning that they are not functions. For example, consider 
the graph of a circle, given as r 2 = x 2 + y 2. Solving for y gives y = ±  √

—
 r2 − x2  , or two equations: y1 =  √

—
 r2 − x2   and  

y2 = − √
—

 r2 − x2  . If we graph y1 and y2 together, the graph will not pass the vertical line test, as shown in Figure 2. Thus, 
the equation for the graph of a circle is not a function.

leARnInG OBjeCTIVeS

In this section, you will:
•	 Parameterize a curve.
•	 Eliminate the parameter.
•	 Find a rectangular equation for a curve defined parametrically.
•	 Find parametric equations for curves defined by rectangular equations.
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Figure 2

2

x

y

–1
–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

Vertical line
test on circle

r2 = x2 + y2

However, if we were to graph each equation on its own, each one would pass the vertical line test and therefore would 
represent a function. In some instances, the concept of breaking up the equation for a circle into two functions is similar 
to the concept of creating parametric equations, as we use two functions to produce a non-function. This will become 
clearer as we move forward.

parametric equations 
Suppose t is a number on an interval, I. The set of ordered pairs, (x(t), y(t)), where x = f (t) and y = g(t), forms a 
plane curve based on the parameter t. The equations x = f (t) and y = g(t) are the parametric equations.

Example 1 Parameterizing a Curve

Parameterize the curve y = x2 − 1 letting x(t) = t. Graph both equations.

Solution If x(t) = t, then to find y(t) we replace the variable x with the expression given in x(t). In other words, 
y(t) = t 2 − 1. Make a table of values similar to Table 1, and sketch the graph.

t x(t) y(t)
−4 −4 y(−4) = (−4)2 − 1 = 15
−3 −3 y(−3) = (−3)2 − 1 = 8
−2 −2 y(−2) = (−2)2 − 1 = 3
−1 −1 y(−1) = (−1)2 − 1 = 0

0 0 y(0) = (0)2 − 1 = − 1
1 1 y(1) = (1)2 − 1 = 0
2 2 y(2) = (2)2 − 1 = 3
3 3 y(3) = (3)2 − 1 = 8
4  4 y(4) = (4)2 − 1 = 15

Table 1

See the graphs in Figure 3. It may be helpful to use the TRACE feature of a graphing calculator to see how the points 
are generated as t increases.

Figure 3 
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(b)
(a) Parametric y(t ) = t 2 − 1 (b) Rectangular y = x 2 − 1
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Analysis The arrows indicate the direction in which the curve is generated. Notice the curve is identical to the curve of 
y = x2 − 1.

Try It #1

Construct a table of values and plot the parametric equations: x(t) = t − 3, y(t) = 2t + 4; − 1 ≤ t ≤ 2.

Example 2 Finding a Pair of Parametric Equations

Find a pair of parametric equations that models the graph of y = 1 − x2, using the parameter x(t) = t. Plot some points 
and sketch the graph.

Solution If x(t) = t and we substitute t for x into the y equation, then y(t) = 1 − t2. Our pair of parametric equations is
 x(t) = t
 y(t) = 1 − t2

To graph the equations, first we construct a table of values like that in Table 2. We can choose values around t = 0, from 
t = − 3 to t = 3. The values in the x(t) column will be the same as those in the t column because x(t) = t. Calculate 
values for the column y(t).

t x(t) = t y(t) = 1 − t2

−3 −3 y(−3) = 1 − (−3)2 = − 8

−2 −2 y(−2) = 1 − (−2)2 = − 3

−1 −1 y(−1) = 1 − (−1)2 = 0

0 0 y(0) = 1 − 0 = 1

1 1 y(1) = 1 − (1)2 = 0

2 2 y(2) = 1 − (2)2 = − 3

3 3 y(3) = 1 − (3)2 = − 8

Table 2

The graph of y = 1 − t2 is a parabola facing downward, as shown in Figure 4. We have mapped the curve over the 
interval [−3, 3], shown as a solid line with arrows indicating the orientation of the curve according to t. Orientation 
refers to the path traced along the curve in terms of increasing values of t. As this parabola is symmetric with respect 
to the line x = 0, the values of x are reflected across the y-axis.

Figure 4
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Try It #2

Parameterize the curve given by x = y3 − 2y.
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Example 3 Finding Parametric Equations That Model Given Criteria

An object travels at a steady rate along a straight path (−5, 3) to (3, −1) in the same plane in four seconds. The 
coordinates are measured in meters. Find parametric equations for the position of the object.

Solution The parametric equations are simple linear expressions, but we need to view this problem in a step-by-step 
fashion. The x-value of the object starts at −5 meters and goes to 3 meters. This means the distance x has changed by 
8 meters in 4 seconds, which is a rate of   8m _ 4s  , or 2 m/s. We can write the x-coordinate as a linear function with respect 

to time as x(t) = 2t − 5. In the linear function template y = mx + b, 2t = mx and −5 = b. Similarly, the y-value of the 
object starts at 3 and goes to −1, which is a change in the distance y of −4 meters in 4 seconds, which is a rate of   −4m _ 4s  ,  

or −1 m/s. We can also write the y-coordinate as the linear function y(t) = −t + 3. Together, these are the parametric 
equations for the position of the object, where x and y are expressed in meters and t represents time:

 x(t) = 2t − 5

 y(t) = −t + 3

Using these equations, we can build a table of values for t, x, and y (see Table 3). In this example, we limited values of 
t to non-negative numbers. In general, any value of t can be used.

t x(t) = 2t − 5 y(t) = −t + 3
0 x = 2(0) − 5 = −5 y = −(0) + 3 = 3
1 x = 2(1) − 5 = −3 y = −(1) + 3 = 2
2 x = 2(2) − 5 = −1 y = −(2) + 3 = 1
3 x = 2(3) − 5 = 1 y = −(3) + 3 = 0
4 x = 2(4) − 5 = 3 y = −(4) + 3 = − 1

Table 3

From this table, we can create three graphs, as shown in Figure 5.

Figure 5 
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(c)
(a) A graph of x vs. t, representing the horizontal position over time. (b) A graph of y vs. t, representing the vertical position over time.  

(c) A graph of y vs. x, representing the position of the object in the plane at time t.

Analysis Again, we see that, in Figure 5(c), when the parameter represents time, we can indicate the movement of the 
object along the path with arrows.

eliminating the Parameter
In many cases, we may have a pair of parametric equations but find that it is simpler to draw a curve if the equation 
involves only two variables, such as x and y. Eliminating the parameter is a method that may make graphing some 
curves easier.

However, if we are concerned with the mapping of the equation according to time, then it will be necessary to indicate 
the orientation of the curve as well. There are various methods for eliminating the parameter t from a set of parametric 
equations; not every method works for every type of equation. Here we will review the methods for the most common 
types of equations.
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Eliminating the Parameter from Polynomial, Exponential, and Logarithmic Equations

For polynomial, exponential, or logarithmic equations expressed as two parametric equations, we choose the equation 
that is most easily manipulated and solve for t. We substitute the resulting expression for t into the second equation. 
This gives one equation in x and y.

Example 4 Eliminating the Parameter in Polynomials

Given x(t) = t2 + 1 and y(t) = 2 + t, eliminate the parameter, and write the parametric equations as a Cartesian equation.

Solution We will begin with the equation for y because the linear equation is easier to solve for t.

 y = 2 + t

 y − 2 = t

Next, substitute y − 2 for t in x(t).

 x = t2 + 1

 x = (y − 2)2 + 1  Substitute the expression for t into x.

 x = y2 − 4y + 4 + 1

 x = y2 − 4y + 5

 x = y2 − 4y + 5

The Cartesian form is x = y2 − 4y + 5.

Analysis This is an equation for a parabola in which, in rectangular terms, x is dependent on y. From the curve’s vertex at (1, 2), 
the graph sweeps out to the right. See Figure 6. In this section, we consider sets of equations given by the functions x(t) and y(t), 
where t is the independent variable of time. Notice, both x and y are functions of time; so in general y is not a function of x.

Figure 6
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Try It #3

Given the equations below, eliminate the parameter and write as a rectangular equation for y as a function of x.

 x(t) = 2t2 + 6

 y(t) = 5 − t

Example 5 Eliminating the Parameter in Exponential Equations

Eliminate the parameter and write as a Cartesian equation: x(t) = e−t and y(t) = 3et, t > 0.

Solution Isolate et.

 x = e−t

 et =   1 _ x  
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Substitute the expression into y(t).

 y = 3et

 y = 3    1 _ x    

 y =   3 _ x  

The Cartesian form is y =   3 _ x  

Analysis The graph of the parametric equation is shown in Figure 7(a). The domain is restricted to t > 0. The Cartesian 
equation, y = 3x is shown in Figure 7(b) and has only one restriction on the domain, x ≠ 0.

Figure 7
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y(t) = 3et
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Example 6 Eliminating the Parameter in Logarithmic Equations

Eliminate the parameter and write as a Cartesian equation: x(t) =  √
—
 t   + 2 and y(t) = log(t).

Solution Solve the first equation for t.

 x =  √
—
 t   + 2

 x − 2 =  √
—
 t   

 (x − 2)2 = t Square both sides.

Then, substitute the expression for t into the y equation.

 y = log(t)
 y = log(x − 2)2

The Cartesian form is y = log(x − 2)2.

Analysis To be sure that the parametric equations are equivalent to the Cartesian equation, check the domains. The 
parametric equations restrict the domain on x =  √

—
 t   + 2 to t > 0; we restrict the domain on x to x > 2. The domain for 

the parametric equation y = log(t) is restricted to t > 0; we limit the domain on y = log(x − 2)2 to x > 2.

Try It #4

Eliminate the parameter and write as a rectangular equation.

 x(t) = t2

 y(t) = ln(t)   t > 0

Eliminating the Parameter from Trigonometric Equations

Eliminating the parameter from trigonometric equations is a straightforward substitution. We can use a few of the 
familiar trigonometric identities and the Pythagorean Theorem.
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First, we use the identities:
 x(t) = acos t
 y(t) = bsin t
Solving for cos t and sin t, we have
   x _ a   = cos t

   
y
 _ a   = sin t

Then, use the Pythagorean Theorem:
 cos2 t + sin2 t = 1
Substituting gives
 cos2 t + sin2 t =      x _ a      2  +      y _ 

b
      

2
  = 1

Example 7 Eliminating the Parameter from a Pair of Trigonometric Parametric Equations

Eliminate the parameter from the given pair of trigonometric equations where 0 ≤ t ≤ 2π and sketch the graph.

 x(t) = 4cos t

 y(t) = 3sin t

Solution Solving for cos t and sin t, we have

 x = 4cos t

   x _ 4   = cos t

 y = 3sin t

   
y
 _ 

3
   = sin t

Next, use the Pythagorean identity and make the substitutions.

 cos2 t + sin2 t = 1

      x _ 4      2  +      y _ 
3

      
2
  = 1

   x
2
 _ 

16
   +   

y2

 _ 
9

   = 1

The graph for the equation is shown in Figure 8.

Figure 8
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Analysis Applying the general equations for conic sections (introduced in Analytic Geometry, we can identify  

  x
2
 _ 

16
   +   

y2

 _ 
9

   = 1 as an ellipse centered at (0, 0). Notice that when t = 0 the coordinates are (4, 0), and when t =   π _ 
2

   the 
coordinates are (0, 3). This shows the orientation of the curve with increasing values of t.
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Try It #5

Eliminate the parameter from the given pair of parametric equations and write as a Cartesian equation:  
x(t) = 2cos t and y(t) = 3sin t.

Finding Cartesian equations from Curves Defined Parametrically
When we are given a set of parametric equations and need to find an equivalent Cartesian equation, we are essentially 

“eliminating the parameter.” However, there are various methods we can use to rewrite a set of parametric equations as 
a Cartesian equation. The simplest method is to set one equation equal to the parameter, such as x(t) = t. In this case, 
y(t) can be any expression. For example, consider the following pair of equations.

 x(t) = t

 y(t) = t 2 − 3

Rewriting this set of parametric equations is a matter of substituting x for t. Thus, the Cartesian equation is y = x2 − 3.

Example 8 Finding a Cartesian Equation Using Alternate Methods

Use two different methods to find the Cartesian equation equivalent to the given set of parametric equations.

 x(t) = 3t − 2

 y(t) = t + 1

Solution 

Method 1. First, let’s solve the x equation for t. Then we can substitute the result into the y equation.

 x = 3t − 2

 x + 2 = 3t

   x + 2 _ 
3

   = t

Now substitute the expression for t into the y equation.

 y = t + 1

 y =    x + 2 _ 
3

     + 1

 y =   x _ 
3

   +   2 _ 
3

   + 1

 y =   1 _ 
3

  x +   5 _ 
3

  

Method 2. Solve the y equation for t and substitute this expression in the x equation.

 y = t + 1

 y − 1 = t

Make the substitution and then solve for y.

 x = 3(y − 1) − 2

 x = 3y − 3 − 2

 x = 3y − 5

 x + 5 = 3y

   x + 5 _ 
3

   = y

 y =   1 _ 
3

  x +   5 _ 
3
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Try It #6

Write the given parametric equations as a Cartesian equation: x(t) = t3 and y(t) = t 6.

Finding Parametric equations for Curves Defined by Rectangular equations
Although we have just shown that there is only one way to interpret a set of parametric equations as a rectangular 
equation, there are multiple ways to interpret a rectangular equation as a set of parametric equations. Any strategy we 
may use to find the parametric equations is valid if it produces equivalency. In other words, if we choose an expression 
to represent x, and then substitute it into the y equation, and it produces the same graph over the same domain as 
the rectangular equation, then the set of parametric equations is valid. If the domain becomes restricted in the set of 
parametric equations, and the function does not allow the same values for x as the domain of the rectangular equation, 
then the graphs will be different.

Example 9 Finding a Set of Parametric Equations for Curves Defined by Rectangular Equations

Find a set of equivalent parametric equations for y = (x + 3)2 + 1.

Solution An obvious choice would be to let x(t) = t. Then y(t) = (t + 3)2 + 1. But let’s try something more interesting.

What if we let x = t + 3? Then we have

 y = (x + 3)2 + 1

 y = ((t + 3) + 3)2 + 1

 y = (t + 6)2 + 1

The set of parametric equations is

 x(t) = t + 3

 y(t) = (t + 6)2 + 1

See Figure 9.

Figure 9
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Access these online resources for additional instruction and practice with parametric equations.

•	 Introduction to Parametric equations (http://openstaxcollege.org/l/introparametric)

•	 Converting Parametric equations to Rectangular Form (http://openstaxcollege.org/l/convertpara)

http://openstaxcollege.org/l/introparametric
http://openstaxcollege.org/l/convertpara
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8.6 SeCTIOn exeRCISeS

VeRBAl

1. What is a system of parametric equations? 2. Some examples of a third parameter are time, length, 
speed, and scale. Explain when time is used as a 
parameter.

3. Explain how to eliminate a parameter given a set of 
parametric equations.

4. What is a benefit of writing a system of parametric 
equations as a Cartesian equation?

5. What is a benefit of using parametric equations? 6. Why are there many sets of parametric equations to 
represent on Cartesian function?

AlGeBRAIC

For the following exercises, eliminate the parameter t to rewrite the parametric equation as a Cartesian equation.

7. 
x(t) = 5 − t
y(t) = 8 − 2t{ 8. 

x(t) = 6 − 3t
y(t) = 10 − t{ 9. 

x(t) = 2t + 1
y(t) = 3 √

—
 t  { 10. 

x(t) = 3t  −  1
y(t) = 2t 2{

11. 
x(t) = 2e t
y(t) = 1 − 5t{ 12. 

x(t) = e –2t

y(t) = 2e −t{ 13. 
x(t) = 4 log (t)
y(t) = 3 + 2t{ 14. 

x(t) = log (2t)
y(t) =  √

—
 t − 1  {

15. 
x(t) = t  3 − t
y(t) = 2t{ 16. 

x(t) = t − t 4
y(t) = t + 2{ 17. 

x(t) = e 2t

y(t) = e 6t{ 18. 
x(t) = t 5
y(t) = t10{

19. 
x(t) = 4 cos t
y(t) = 5 sin t{ 20. 

x(t) = 3 sin t
y(t) = 6 cos t{ 21. 

x(t) = 2 cos2 t
y(t) = −sin t{ 22. 

x(t) = cos t + 4
y(t) = 2 sin2 t{

23. 
x(t) = t − 1
y(t) = t 2{ 24. 

x(t) = −t
y(t) = t 3 + 1{ 25. 

x(t) = 2t − 1
y(t) = t3 −  2{

For the following exercises, rewrite the parametric equation as a Cartesian equation by building an x-y table.

26. 
x(t) = 2t − 1
y(t) = t + 4{ 27. 

x(t) = 4 − t
y(t) = 3t + 2{ 28. 

x(t) = 2t − 1
y(t) = 5t{ 29. 

x(t) = 4t − 1
y(t) = 4t + 2{

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by setting  
x(t) = t or by setting y(t) = t.

30. y(x) = 3x2 + 3 31. y(x) = 2 sin x + 1 32. x(y) = 3 log (y) + y 33. x(y) =  √
—
 y   + 2y

For the following exercises, parameterize (write parametric equations for) each Cartesian equation by using  
x(t) = a cos t and y(t) = b sin t. Identify the curve.

34.   x 2 _ 4   +   
y 2

 _ 
9

   = 1 35.   x 2 _ 
16

   +   
y 2

 _ 
36

   = 1 36. x 2 + y 2 = 16 37. x 2 + y 2 = 10

38. Parameterize the line from (3, 0) to (−2, −5) so that 
the line is at (3, 0) at t = 0, and at (−2, −5) at t = 1.

39. Parameterize the line from (−1, 0) to (3, −2) so that 
the line is at (−1, 0) at t = 0, and at (3, −2) at t = 1.

40. Parameterize the line from (−1, 5) to (2, 3) so that 
the line is at (−1, 5) at t = 0, and at (2, 3) at t = 1.

41. Parameterize the line from (4, 1) to (6, −2) so that 
the line is at (4, 1) at t = 0, and at (6, −2) at t = 1.
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TeCHnOlOGY

For the following exercises, use the table feature in the graphing calculator to determine whether the graphs intersect.

42. 
x1(t) = 3t
y1(t) = 2t − 1{   and  

x2(t) = t + 3
y2(t) = 4t − 4{ 43. 

x1(t) = t 2
y1(t) = 2t − 1{   and  

x2(t) = −t + 6
y2(t) = t + 1{

For the following exercises, use a graphing calculator to complete the table of values for each set of parametric equations.

44. x1(t) = 3t 2 − 3t + 7
y1(t) = 2t + 3{  

t x y

−1

0

1

45. x1(t) = t 2 − 4
y1(t) = 2t 2 − 1{  

t x y

1

2

3

46. x1(t) = t 4
y1(t) = t 3 + 4{  

t x y

−1

0

1

2

exTenSIOnS

47. Find two different sets of parametric equations for 
y = (x + 1)2.

48. Find two different sets of parametric equations for 
y = 3x − 2.

49. Find two different sets of parametric equations for 
y = x 2 − 4x + 4.
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8.7 PARAMeTRIC eQUATIOnS: GRAPHS 

It is the bottom of the ninth inning, with two outs and two men on base. The home team is losing by two runs. The batter 
swings and hits the baseball at 140 feet per second and at an angle of approximately 45° to the horizontal. How far will 
the ball travel? Will it clear the fence for a game-winning home run? The outcome may depend partly on other factors 
(for example, the wind), but mathematicians can model the path of a projectile and predict approximately how far it will 
travel using parametric equations. In this section, we’ll discuss parametric equations and some common applications, 
such as projectile motion problems.

Figure 1  Parametric equations can model the path of a projectile. (credit: Paul Kreher, Flickr)

Graphing Parametric equations by Plotting Points
In lieu of a graphing calculator or a computer graphing program, plotting points to represent the graph of an equation 
is the standard method. As long as we are careful in calculating the values, point-plotting is highly dependable.

How To…
Given a pair of parametric equations, sketch a graph by plotting points.
1. Construct a table with three columns: t, x(t), and y(t).
2. Evaluate x and y for values of t over the interval for which the functions are defined.
3. Plot the resulting pairs (x, y).

Example 1 Sketching the Graph of a Pair of Parametric Equations by Plotting Points

Sketch the graph of the parametric equations x(t) = t 2 + 1, y(t) = 2 + t.

Solution Construct a table of values for t, x(t), and y(t), as in Table 1, and plot the points in a plane.

leARnInG OBjeCTIVeS

In this section, you will:
•	 Graph plane curves described by parametric equations by plotting points.
•	 Graph parametric equations.
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t x(t) = t 2 + 1 y(t) = 2 + t
−5 26 −3
−4 17 −2
−3 10 −1
−2 5 0
−1 2 1

0 1 2
1 2 3
2 5 4
3 10 5
4 17 6
5 26 7

Table 1

The graph is a parabola with vertex at the point (1, 2), opening to the right. See Figure 2.

Figure 2
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t = 3, (10, 5)

t = 2, (5, 4)

t = 0, (1, 2)

t = −2, (5, 0)

t = −3, (10,−1)

t = 1, (2, 3)

t = −1, (2, 1)

Analysis As values for t progress in a positive direction from 0 to 5, the plotted points trace out the top half of the 
parabola. As values of t become negative, they trace out the lower half of the parabola. There are no restrictions on 
the domain. The arrows indicate direction according to increasing values of t. The graph does not represent a function, 
as it will fail the vertical line test. The graph is drawn in two parts: the positive values for t, and the negative values  
for t.

Try It #1

Sketch the graph of the parametric equations x =  √
—
 t  , y = 2t + 3, 0 ≤ t ≤ 3.

Example 2 Sketching the Graph of Trigonometric Parametric Equations

Construct a table of values for the given parametric equations and sketch the graph:

 x = 2cos t
 y = 4sin t

Solution Construct a table like that in Table 2 using angle measure in radians as inputs for t, and evaluating x and y. 
Using angles with known sine and cosine values for t makes calculations easier.
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t x = 2cos t y = 4sin t

0 x = 2cos(0) = 2 y = 4sin(0) = 0

  π __ 6  x = 2cos     π __ 6      =  √
—
 3  y = 4sin     π __ 6      = 2

  π __ 3   x = 2cos      π __ 3      = 1 y = 4sin     π __ 3      = 2 √ 
__

 3  

  π __ 2   x = 2cos     π __ 2      = 0 y = 4sin     π __ 2      = 4

  2π
 ___ 3   x = 2cos     2π

 ___ 3      = −1 y = 4sin     2π
 ___ 3      = −2 √

—
 3  

  5π
 ___ 6   x = 2cos     5π

 ___ 6      = − √
—
 3  y = 4sin     5π

 ___ 6      = 2

π x = 2cos(π) = −2 y = 4sin(π) = 0

  7π
 ___ 6   x = 2cos     7π

 ___ 6      = − √
—
 3   y = 4sin     7π

 ___ 6      = −2

  4π
 ___ 3   x = 2cos     4π

 ___ 3      = −1 y = 4sin     4π
 ___ 3      = −2 √

—
 3  

  3π
 ___ 2  x = 2cos     3π

 ___ 2      = 0 y = 4sin     3π
 ___ 2      = −4

  5π
 ___ 3  x = 2cos     5π

 ___ 3      = 1 y = 4sin     5π
 ___ 3      = −2 √

—
 3  

  11π
 ____ 6  x = 2cos     11π

 ____ 6      =  √
—
 3   y = 4sin     11π

 ____ 6      = −2

2π x = 2cos(2π) = 2 y = 4sin(2π) = 0
Table 2

Figure 3 shows the graph.

Figure 3 
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By the symmetry shown in the values of x and y, we see that the parametric equations represent an ellipse.

The ellipse is mapped in a counterclockwise direction as shown by the arrows indicating increasing t values.

Analysis We have seen that parametric equations can be graphed by plotting points. However, a graphing calculator 
will save some time and reveal nuances in a graph that may be too tedious to discover using only hand calculations.
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Make sure to change the mode on the calculator to parametric (PAR). To confirm, the Y= window should show
 X1T =

 Y1T =
instead of Y1= .

Try It #2

Graph the parametric equations: x = 5cos t, y = 3sin t.

Example 3 Graphing Parametric Equations and Rectangular Form Together

Graph the parametric equations x = 5cos t and y = 2sin t. First, construct the graph using data points generated from 
the parametric form. Then graph the rectangular form of the equation. Compare the two graphs.

Solution Construct a table of values like that in Table 3.

t x = 5cos t y = 2sin t
0 x = 5cos(0) = 5 y = 2sin(0) = 0
1 x = 5cos(1) ≈ 2.7 y = 2sin(1) ≈ 1.7
2 x = 5cos(2) ≈ −2.1 y = 2sin(2) ≈ 1.8
3 x = 5cos(3) ≈ −4.95 y = 2sin(3) ≈ 0.28
4 x = 5cos(4) ≈ −3.3 y = 2sin(4) ≈ −1.5
5 x = 5cos(5) ≈ 1.4 y = 2sin(5) ≈ −1.9

−1 x = 5cos(−1) ≈ 2.7 y = 2sin(−1) ≈ −1.7
−2 x = 5cos(−2) ≈ −2.1 y = 2sin(−2) ≈ −1.8
−3 x = 5cos(−3) ≈ −4.95 y = 2sin(−3) ≈ −0.28
−4 x = 5cos(−4) ≈ −3.3 y = 2sin(−4) ≈ 1.5
−5 x = 5cos(−5) ≈ 1.4 y = 2sin(−5) ≈ 1.9

Table 3

Plot the (x, y) values from the table. See Figure 4.

Figure 4
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RectangularParametric

Next, translate the parametric equations to rectangular form. To do this, we solve for t in either x(t) or y(t), and then 
substitute the expression for t in the other equation. The result will be a function y(x) if solving for t as a function of x, 
or x(y) if solving for t as a function of y.
 x  = 5cos t

   x _ 5   = cos t Solve for cos t.

 y  = 2sin t Solve for sin t.

   
y
 _ 

2
   = sin t
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Then, use the Pythagorean Theorem.
 cos2 t + sin2 t = 1

      x _ 5      2  +       y _ 
2

      
2
  = 1

   x 2 _ 
25

   +   
y 2

 _ 4   = 1

Analysis In Figure 5, the data from the parametric equations and the rectangular equation are plotted together. The 
parametric equations are plotted in blue; the graph for the rectangular equation is drawn on top of the parametric in 
a dashed style colored red. Clearly, both forms produce the same graph.

Figure 5
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Example 4 Graphing Parametric Equations and Rectangular Equations on the Coordinate System

Graph the parametric equations x = t + 1 and y =  √
—
 t  , t ≥ 0, and the rectangular equivalent y =  √

—
 x − 1   on the same 

coordinate system.

Solution Construct a table of values for the parametric equations, as we did in the previous example, and graph  
y =  √

—
 t  , t ≥ 0 on the same grid, as in Figure 6.

Figure 6
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Analysis With the domain on t restricted, we only plot positive values of t. The parametric data is graphed in blue 
and the graph of the rectangular equation is dashed in red. Once again, we see that the two forms overlap.

Try It #3

Sketch the graph of the parametric equations x = 2cos θ and y = 4sin θ, along with the rectangular equation on the 
same grid.
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Applications of Parametric equations
Many of the advantages of parametric equations become obvious when applied to solving real-world problems. Although 
rectangular equations in x and y give an overall picture of an object's path, they do not reveal the position of an object 
at a specific time. Parametric equations, however, illustrate how the values of x and y change depending on t, as the 
location of a moving object at a particular time.

A common application of parametric equations is solving problems involving projectile motion. In this type of motion, 
an object is propelled forward in an upward direction forming an angle of θ to the horizontal, with an initial speed of 
v0, and at a height h above the horizontal.

The path of an object propelled at an inclination of θ to the horizontal, with initial speed v0, and at a height h above the 
horizontal, is given by
 x = (v0cos θ )t

 y = −   1 __ 2   gt 2 + (v0sin θ )t + h

where g accounts for the effects of gravity and h is the initial height of the object. Depending on the units involved in 
the problem, use g = 32 ft/s2 or g = 9.8 m/s2. The equation for x gives horizontal distance, and the equation for y gives 
the vertical distance.

How To…
Given a projectile motion problem, use parametric equations to solve.
1. The horizontal distance is given by x = (v0 cos θ)t. Substitute the initial speed of the object for v0.
2. The expression cos θ indicates the angle at which the object is propelled. Substitute that angle in degrees for cos θ.
3. The vertical distance is given by the formula y = −   1 __ 2  gt2 + (v0 sin θ)t + h. The term −   1 __ 2  gt2  represents the effect of 

gravity. Depending on units involved, use g = 32 ft/s2 or g = 9.8 m/s2. Again, substitute the initial speed for v0, and 
the height at which the object was propelled for h.

4. Proceed by calculating each term to solve for t.

Example 5 Finding the Parametric Equations to Describe the Motion of a Baseball

Solve the problem presented at the beginning of this section. Does the batter hit the game-winning home run? Assume 
that the ball is hit with an initial velocity of 140 feet per second at an angle of 45° to the horizontal, making contact 3 
feet above the ground.

a. Find the parametric equations to model the path of the baseball.
b. Where is the ball after 2 seconds?
c.  How long is the ball in the air?
d.  Is it a home run?

Solution 

a.  Use the formulas to set up the equations. The horizontal position is found using the parametric equation for x. Thus,
 x = (v0 cos θ)t
 x = (140cos(45°))t

The vertical position is found using the parametric equation for y. Thus,
 y = − 16t2 + (v0 sin θ)t + h
 y = − 16t2 + (140sin(45°))t + 3

b. Substitute 2 into the equations to find the horizontal and vertical positions of the ball.
 x = (140cos(45°))(2)
 x = 198 feet
 y = −16(2)2 + (140sin(45°))(2) + 3
 y = 137 feet

After 2 seconds, the ball is 198 feet away from the batter’s box and 137 feet above the ground.
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c. To calculate how long the ball is in the air, we have to find out when it will hit ground, or when y = 0. Thus,

 y = −16t 2 +(140sin(45°))t + 3

 y = 0  Set y (t) = 0 and solve the quadratic.

 t = 6.2173
 When t = 6.2173 seconds, the ball has hit the ground. (The quadratic equation can be solved in various ways, but this 
problem was solved using a computer math program.)

d.  We cannot confirm that the hit was a home run without considering the size of the outfield, which varies from field 
to field. However, for simplicity’s sake, let’s assume that the outfield wall is 400 feet from home plate in the deepest 
part of the park. Let’s also assume that the wall is 10 feet high. In order to determine whether the ball clears the wall, 
we need to calculate how high the ball is when x = 400 feet. So we will set x = 400, solve for t, and input t into y.

 x = (140cos(45°))t

 400 = (140cos(45°))t

 t = 4.04

 y = − 16(4.04)2 + (140sin(45°))(4.04) + 3

 y = 141.8
The ball is 141.8 feet in the air when it soars out of the ballpark. It was indeed a home run. See Figure 7.

Figure 7

300

200 Trajectory of ball

Position of hitter Outfield wall

H
ei

gh
t (

ft)

Distance (ft)

100

0 100 200 300 400 500 600

Access the following online resource for additional instruction and practice with graphs of parametric equations.

•	 Graphing Parametric equations on the TI-84 (http://openstaxcollege.org/l/graphpara84)

http://openstaxcollege.org/l/graphpara84
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8.7 SeCTIOn exeRCISeS

VeRBAl
1. What are two methods used to graph parametric 

equations?
2. What is one difference in point-plotting parametric 

equations compared to Cartesian equations?
3. Why are some graphs drawn with arrows? 4. Name a few common types of graphs of parametric 

equations.
5. Why are parametric graphs important in 

understanding projectile motion?

GRAPHICAl
For the following exercises, graph each set of parametric equations by making a table of values. Include the orientation 
on the graph.

6. 
x(t) = t 
y(t) = t 2 − 1{   7. 

x(t) = t − 1
y(t) = t 2{

t −3 −2 −1 0 1 2
x
y

8. 
x(t) = 2 + t
y(t) = 3 − 2t{

t − 2 − 1 0 1 2 3
x
y

9. 
x(t) = −2 − 2t
y(t) = 3 + t{

t − 3 − 2 − 1 0 1
x
y

10. 
x(t) = t3

y(t) = t + 2{
t − 2 − 1 0 1 2
x
y

11. 
x(t) = t2

y(t) = t + 3{
t − 2 − 1 0 1 2
x
y

For the following exercises, sketch the curve and include the orientation.

12. 
x(t) = t
y(t) =  √

—
 t  { 13. x(t) = − √

—
 t  

y(t) = t { 14. 
x(t) = 5 −  | t | 
y(t) = t + 2{ 15. 

x(t) = −t + 2
y(t) = 5 −  | t | {

16. 
x(t) = 4sin t
y(t) = 2cos t{ 17. 

x(t) = 2sin t
y(t) = 4cos t{ 18. 

x(t) = 3cos2 t
y(t) = −3sin t{ 19. 

x(t) = 3cos2 t
y(t) = −3sin2 t{

20. 
x(t) = sec t
y(t) = tan t{ 21. 

x(t) = sec t
y(t) = tan2 t{ 22. 

x(t) =   1 ___ 
e2t  

y(t) = e−t{
For the following exercises, graph the equation and include the orientation. Then, write the Cartesian equation.

23. 
x(t) = t − 1
y(t) = −t2{ 24. 

x(t) = t3

y(t) = t + 3{ 25. 
x(t) = 2cos t
y(t) = − sin t{

t x y
−3
−2
−1

0
1
2
3
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26. 
x(t) = 7cos t
y(t) = 7sin t{ 27. 

x(t) = e 2t

y(t) = −e t{
For the following exercises, graph the equation and include the orientation.

28. x = t2, y = 3t, 0 ≤ t ≤ 5 29. x = 2t, y = t2, −5 ≤ t ≤ 5 30. x = t, y =  √
—

 25 − t2  , 0 < t ≤ 5

31. x(t) = −t, y(t) =  √ 
_
 t  , t ≥ 5 32. x(t) = −2cos t, y = 6sin t 0 ≤ t ≤ π 33. x(t) = −sec t, y = tan t, −  

π __ 2   < t <   π __ 2  

For the following exercises, use the parametric equations for integers a and b:

x(t) = acos((a + b)t)    y(t) = acos((a − b)t)

34. Graph on the domain [−π, 0], where a = 2 and 
b = 1, and include the orientation.

35. Graph on the domain [−π, 0], where a = 3 and 
b = 2, and include the orientation.

36. Graph on the domain [−π, 0], where a = 4 and 
b = 3, and include the orientation.

37. Graph on the domain [−π, 0], where a = 5 and b = 4, 
and include the orientation.

38. If a is 1 more than b, describe the effect the values 
of a and b have on the graph of the parametric 
equations.

39. Describe the graph if a = 100 and b = 99.

40. What happens if b is 1 more than a? Describe the 
graph.

41. If the parametric equations x(t) = t 2 and 
y(t) = 6 − 3t have the graph of a horizontal parabola 
opening to the right, what would change the 
direction of the curve?

For the following exercises, describe the graph of the set of parametric equations.

42. x(t) = − t2 and y(t) is linear 43. y(t) = t2 and x(t) is linear
44. y(t) = − t2 and x(t) is linear 45. Write the parametric equations of a circle with 

center (0, 0), radius 5, and a counterclockwise 
orientation.

46. Write the parametric equations of an ellipse with 
center (0, 0), major axis of length 10, minor axis of 
length 6, and a counterclockwise orientation.

For the following exercises, use a graphing utility to graph on the window [−3, 3] by [−3, 3] on the domain [0, 2π) 
for the following values of a and b , and include the orientation.

x(t) = sin(at)
y(t) = sin(bt){

47. a = 1, b = 2 48. a = 2, b = 1 49. a = 3, b = 3
50. a = 5, b = 5 51. a = 2, b = 5 52. a = 5, b = 2

TeCHnOlOGY
For the following exercises, look at the graphs that were created by parametric equations of the form 

x(t) = acos(bt)
y(t) = csin(dt){

Use the parametric mode on the graphing calculator to find the values of a, b, c, and d to achieve  
each graph.

53. 
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For the following exercises, use a graphing utility to graph the given parametric equations.

 a. 
x(t) = cos t − 1
y(t) = sin t + t{  b. 

x(t) = cos t + t
y(t) = sin t − 1{  c. 

x(t) = t − sin t
y(t) = cos t − 1{

57. Graph all three sets of parametric equations on the 
domain [0, 2π].

58. Graph all three sets of parametric equations on the 
domain [0, 4π].

59. Graph all three sets of parametric equations on the 
domain [−4π, 6π].

60. The graph of each set of parametric equations 
appears to “creep” along one of the axes. What 
controls which axis the graph creeps along?

61. Explain the effect on the graph of the parametric 
 equation when we switched sin t and cos t.

62. Explain the effect on the graph of the parametric 
equation when we changed the domain.

exTenSIOnS

63. An object is thrown in the air with vertical velocity 
of 20 ft/s and horizontal velocity of 15 ft/s. The 
object’s height can be described by the equation 
y(t) = − 16t2 + 20t, while the object moves 
horizontally with constant velocity 15 ft/s. Write 
parametric equations for the object’s position, and 
then eliminate time to write height as a function of 
horizontal position.

64. A skateboarder riding on a level surface at a constant 
speed of 9 ft/s throws a ball in the air, the height of 
which can be described by the equation  
y(t) = − 16t2 + 10t + 5.Write parametric equations 
for the ball’s position, and then eliminate time to 
write height as a function of horizontal position.

For the following exercises, use this scenario: A dart is thrown upward with an initial velocity of 65 ft/s at an angle of 
elevation of 52°. Consider the position of the dart at any time t. Neglect air resistance.

65. Find parametric equations that model the problem 
situation.

66. Find all possible values of x that represent the 
situation.

67. When will the dart hit the ground? 68. Find the maximum height of the dart.

69. At what time will the dart reach maximum height?

For the following exercises, look at the graphs of each of the four parametric equations. Although they look unusual 
and beautiful, they are so common that they have names, as indicated in each exercise. Use a graphing utility to graph 
each on the indicated domain.

70. An epicycloid: 
x(t) = 14cos t − cos(14t)
y(t) = 14sin t + sin(14t){   

on the domain [0, 2π].

71. An hypocycloid: 
x(t) = 6sin t + 2sin(6t)
y(t) = 6cos t − 2cos(6t){   

on the domain [0, 2π].

72. An hypotrochoid: 
x(t) = 2sin t + 5cos(6t)
y(t) = 5cos t − 2sin(6t){   

on the domain [0, 2π].

73. A rose: 
x(t) = 5sin(2t) sin t
y(t) = 5sin(2t) cos t{   

on the domain [0, 2π].
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leARnInG OBjeCTIVeS

In this section, you will:
•	 View vectors geometrically.
•	 Find magnitude and direction.
•	 Perform vector addition and scalar multiplication.
•	 Find the component form of a vector.
•	 Find the unit vector in the direction of v.
•	 Perform operations with vectors in terms of i and j.
•	 Find the dot product of two vectors.

8.8 VeCTORS 

An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind (from north to 
south) is blowing at 16.2 miles per hour, as shown in Figure 1. What are the ground speed and actual bearing of the plane?

Figure 1

N

A

O

B
X C

200

140˚

16.2

α

Ground speed refers to the speed of a plane relative to the ground. Airspeed refers to the speed a plane can travel relative 
to its surrounding air mass. These two quantities are not the same because of the effect of wind. In an earlier section, 
we used triangles to solve a similar problem involving the movement of boats. Later in this section, we will find the 
airplane’s groundspeed and bearing, while investigating another approach to problems of this type. First, however, let’s 
examine the basics of vectors.

A Geometric View of Vectors
A vector is a specific quantity drawn as a line segment with an arrowhead at one end. It has an initial point, where 
it begins, and a terminal point, where it ends. A vector is defined by its magnitude, or the length of the line, and its 
direction, indicated by an arrowhead at the terminal point. Thus, a vector is a directed line segment. There are various 
symbols that distinguish vectors from other quantities:

•	 Lower case, boldfaced type, with or without an arrow on top such as v, u, w, v, u, w.

•	 Given initial point P and terminal point Q, a vector can be represented as PQ. The arrowhead on top is what 
indicates that it is not just a line, but a directed line segment.

•	 Given an initial point of (0, 0) and terminal point (a, b), a vector may be represented as 〈a, b〉.

This last symbol 〈a, b〉 has special significance. It is called the standard position. The position vector has an initial point  
(0, 0) and a terminal point 〈a, b〉. To change any vector into the position vector, we think about the change in the 
x-coordinates and the change in the y-coordinates. Thus, if the initial point of a vector CD is C(x1, y1) and the terminal 
point is D(x2, y2), then the position vector is found by calculating 

AB = 〈x2 − x1, y2 − y1〉

 = 〈a, b〉

→→→

→

→

→



CHAPTER 8 Further applications oF trigonometry730

In Figure 2, we see the original vector CD and the position vector AB.

Figure 2
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properties of vectors 
A vector is a directed line segment with an initial point and a terminal point. Vectors are identified by magnitude, 
or the length of the line, and direction, represented by the arrowhead pointing toward the terminal point. The 
position vector has an initial point at (0, 0) and is identified by its terminal point 〈a, b〉.

Example 1 Find the Position Vector

Consider the vector whose initial point is P(2, 3) and terminal point is Q(6, 4). Find the position vector.

Solution The position vector is found by subtracting one x-coordinate from the other x-coordinate, and one 
y-coordinate from the other y-coordinate. Thus
 v = 〈6 −2, 4 −3〉

  = 〈4, 1〉

The position vector begins at (0, 0) and terminates at (4, 1). The graphs of both vectors are shown in Figure 3.

Figure 3
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〈4, 1〉

We see that the position vector is 〈4, 1〉.

Example 2 Drawing a Vector with the Given Criteria and Its Equivalent Position Vector

Find the position vector given that vector v has an initial point at (−3, 2) and a terminal point at (4, 5), then graph both 
vectors in the same plane.

Solution The position vector is found using the following calculation:

 v = 〈4 − ( − 3), 5 − 2〉

 = 〈7, 3〉

Thus, the position vector begins at (0, 0) and terminates at (7, 3). See Figure 4.

→ →
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Figure 4
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Try It #1

Draw a vector v that connects from the origin to the point (3, 5).

Finding Magnitude and Direction
To work with a vector, we need to be able to find its magnitude and its direction. We find its magnitude using the 
Pythagorean Theorem or the distance formula, and we find its direction using the inverse tangent function.

magnitude and direction of a vector 

Given a position vector v = 〈a, b〉, the magnitude is found by  | v |  =  √
—

  a 2  +  b 2   . The direction is equal to the angle 
formed with the x-axis, or with the y-axis, depending on the application. For a position vector, the direction is 

found by tan θ =     b __ a      ⇒ θ =  tan −1     b __ a     , as illustrated in Figure 5.

Figure 5
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Two vectors v and u are considered equal if they have the same magnitude and the same direction. Additionally, if 
both vectors have the same position vector, they are equal.

Example 3 Finding the Magnitude and Direction of a Vector

Find the magnitude and direction of the vector with initial point P(−8, 1) and terminal point Q(−2, −5). Draw the vector.

Solution First, find the position vector.

 u = 〈−2, − (−8), −5−1〉

 = 〈6, − 6〉

We use the Pythagorean Theorem to find the magnitude.

  | u |  = √
—

   (6) 2  +  (−6) 2   

 =  √
—

 72  

 = 6 √
—
 2  
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The direction is given as

 tan θ =   −6 ___ 6   = −1 ⇒ θ =  tan −1 (−1)

 = −45°

However, the angle terminates in the fourth quadrant, so we add 360° to obtain a positive angle. Thus,  
−45° + 360° = 315°. See Figure 6.

Figure 6
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Example 4 Showing That Two Vectors Are Equal

Show that vector v with initial point at (5, −3) and terminal point at (−1, 2) is equal to vector u with initial point at  
(−1, −3) and terminal point at (−7, 2). Draw the position vector on the same grid as v and u. Next, find the magnitude 
and direction of each vector.

Solution As shown in Figure 7, draw the vector v starting at initial (5, −3) and terminal point (−1, 2). Draw the vector 
u with initial point (−1, −3) and terminal point (−7, 2). Find the standard position for each.

Next, find and sketch the position vector for v and u. We have

 v = 〈−1 − 5, 2 − ( − 3)〉

 = 〈−6, 5〉

 u = 〈−7 − (−1), 2 − (−3)〉

 = 〈−6, 5〉

Since the position vectors are the same, v and u are the same.

An alternative way to check for vector equality is to show that the magnitude and direction are the same for both vectors. 
To show that the magnitudes are equal, use the Pythagorean Theorem.

  | v |  =  √
——

    (−1 − 5) 2  +  (2 − (−3)) 2   

 =  √
—

  (−6)2 + (5)2  

 =  √
—

 36 + 25  

 =  √
—

 61   

  | u |  =  √
——

   (−7 − (−1))2 + (2 − (−3))2  

 =  √
—

  (−6)2 + (5)2  

 =  √
—

 36 + 25  

 =  √
—

 61  

As the magnitudes are equal, we now need to verify the direction. Using the tangent function with the position vector 
gives
 tan θ = −  5 _ 

6
   ⇒ θ = tan−1  −  5 _ 

6
    

 = −39.8°

However, we can see that the position vector terminates in the second quadrant, so we add 180°. Thus, the direction  
is −39.8° + 180° = 140.2°.



SECTION 8.8 vectors 733

Figure 7
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Performing Vector Addition and Scalar Multiplication
Now that we understand the properties of vectors, we can perform operations involving them. While it is convenient 
to think of the vector u = 〈x, y〉 as an arrow or directed line segment from the origin to the point (x, y), vectors can be 
situated anywhere in the plane. The sum of two vectors u and v, or vector addition, produces a third vector u+ v, the 
resultant vector.

To find u + v, we first draw the vector u, and from the terminal end of u, we drawn the vector v. In other words, we 
have the initial point of v meet the terminal end of u. This position corresponds to the notion that we move along the 
first vector and then, from its terminal point, we move along the second vector. The sum u + v is the resultant vector 
because it results from addition or subtraction of two vectors. The resultant vector travels directly from the beginning 
of u to the end of v in a straight path, as shown in Figure 8.

Figure 8

−v
vu

uu − v

u + v

Vector subtraction is similar to vector addition. To find u − v, view it as u + (−v). Adding −v is reversing direction of 
v and adding it to the end of u. The new vector begins at the start of u and stops at the end point of −v. See Figure 9 
for a visual that compares vector addition and vector subtraction using parallelograms.

Figure 9
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Example 5 Adding and Subtracting Vectors

Given u = 〈3, − 2〉 and v = 〈−1, 4〉, find two new vectors u + v, and u − v.

Solution To find the sum of two vectors, we add the components. Thus,
 u + v = 〈3, − 2〉 + 〈−1, 4〉
 = 〈3 + ( − 1), − 2 + 4〉
 = 〈2, 2〉

See Figure 10(a).

To find the difference of two vectors, add the negative components of v to u. Thus,
 u + (−v) = 〈3, − 2〉 + 〈1, −4〉
 = 〈3 + 1, − 2 + (−4)〉
 = 〈4, − 6〉
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See Figure 10(b).

Figure 10 (a) Sum of two vectors (b) Difference of two vectors
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Multiplying By a Scalar
While adding and subtracting vectors gives us a new vector with a different magnitude and direction, the process of 
multiplying a vector by a scalar, a constant, changes only the magnitude of the vector or the length of the line. Scalar 
multiplication has no effect on the direction unless the scalar is negative, in which case the direction of the resulting 
vector is opposite the direction of the original vector.

scalar multiplication 
Scalar multiplication involves the product of a vector and a scalar. Each component of the vector is multiplied by 
the scalar. Thus, to multiply v = 〈a, b〉 by k, we have

 kv = 〈ka, kb〉

Only the magnitude changes, unless k is negative, and then the vector reverses direction.

Example 6 Performing Scalar Multiplication

Given vector v = 〈3, 1〉 , find 3v,   1 _ 
2

  v, and −v.

Solution See Figure 11 for a geometric interpretation. If v = 〈3, 1〉, then

 3v = 〈3 ⋅ 3, 3 ⋅ 1〉

 = 〈9, 3〉

   1 _ 
2

  v = 〈  1 _ 
2

   ⋅ 3,   1 _ 
2

   ⋅ 1〉
 = 〈  3 _ 

2
  ,   1 _ 

2
  〉

 −v = 〈−3, −1〉 

Figure 11

3v

v

–v
v1

2

Analysis Notice that the vector 3v is three times the length of v,   1 _ 
2

  v is half the length of v, and −v is the same length of v, 
but in the opposite direction.
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Try It #2

Find the scalar multiple 3u given u = 〈5, 4〉 .

Example 7 Using Vector Addition and Scalar Multiplication to Find a New Vector

Given u = 〈3, − 2〉 and v = 〈−1, 4〉, find a new vector w = 3u + 2v.

Solution First, we must multiply each vector by the scalar.

 3u = 3 〈3, − 2〉

 = 〈9, − 6〉

 2v = 2 〈−1, 4〉

 = 〈−2, 8〉

Then, add the two together.

 w = 3u + 2v

 = 〈9, − 6〉 + 〈−2, 8〉

 = 〈9 − 2, − 6 + 8〉

 = 〈7, 2〉

So, w = 〈7, 2〉.

Finding Component Form
In some applications involving vectors, it is helpful for us to be able to break a vector down into its components. Vectors 
are comprised of two components: the horizontal component is the x direction, and the vertical component is the y 
direction. For example, we can see in the graph in Figure 12 that the position vector 〈2, 3〉 comes from adding the 
vectors v1 and v2. We have v1 with initial point (0, 0) and terminal point (2, 0).

 v1 = 〈2 − 0, 0 − 0〉

 = 〈2, 0〉

We also have v2 with initial point (0, 0) and terminal point (0, 3).

 v2 = 〈0 − 0, 3 − 0〉

 = 〈0, 3〉

Therefore, the position vector is
 v = 〈2 + 0, 3 + 0〉

 = 〈2, 3〉

Using the Pythagorean Theorem, the magnitude of v1 is 2, and the magnitude of v2 is 3. To find the magnitude of v, use 
the formula with the position vector.
  | v |  =  √

__________

   ∣ v1 ∣  2  +   ∣ v2 ∣  2  

  =  √
—

 22 + 32  

 =  √
—

 13  

The magnitude of v is  √
—

 13  . To find the direction, we use the tangent function tan θ =   
y
 _ x  .

 tan θ =   
v2 _ v1

  

 tan θ =   3 _ 
2

  

 θ = tan−1     3 _ 
2

     = 56.3°
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Figure 12

1

x

y

–1

–1

1 2

2

3 4

3

4

56.3° (2, 0)
v1

v2
|v|

Thus, the magnitude of v is  √
—

 13   and the direction is 56.3° off the horizontal.

Example 8 Finding the Components of the Vector

Find the components of the vector v with initial point (3, 2) and terminal point (7, 4).

Solution First find the standard position.

 v = 〈7 − 3, 4 − 2〉

 = 〈4, 2〉

See the illustration in Figure 13.

Figure 13

1

x

y

–1

–1

1 2

2

3 4

3

4

v2 = 〈0, 2〉

v1 = 〈4, 0〉

The horizontal component is v1 = 〈4, 0〉 and the vertical component is v2 = 〈0, 2〉.

Finding the Unit Vector in the Direction of v
In addition to finding a vector’s components, it is also useful in solving problems to find a vector in the same direction 
as the given vector, but of magnitude 1. We call a vector with a magnitude of 1 a unit vector. We can then preserve the 
direction of the original vector while simplifying calculations.

Unit vectors are defined in terms of components. The horizontal unit vector is written as i = 〈1, 0〉 and is directed along 
the positive horizontal axis. The vertical unit vector is written as j = 〈0, 1〉 and is directed along the positive vertical 
axis. See Figure 14.

Figure 14
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j = 〈0, 1〉
i = 〈1, 0〉
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the unit vectors 
If v is a nonzero vector, then   v _ 

 ∣ v ∣ 
   is a unit vector in the direction of v. Any vector divided by its magnitude is a 

unit vector. Notice that magnitude is always a scalar, and dividing by a scalar is the same as multiplying by the 
reciprocal of the scalar.

Example 9 Finding the Unit Vector in the Direction of v

Find a unit vector in the same direction as v = 〈−5, 12〉.

Solution First, we will find the magnitude.
  | v |  =  √

—
  (−5)2 + (12)2  

 =  √
—

 25 + 144  

 =  √
—

 169  

 = 13

Then we divide each component by  | v | , which gives a unit vector in the same direction as v:

   v _  | v |    = −   5 _ 
13

   i +   12 _ 
13

   j

or, in component form
   v _  | v |    = 〈−   5 _ 

13
  ,   12 _ 

13
  〉

See Figure 15.

Figure 15

2

x

y

–1–1–2–3–4–5–6–7–8

1

3

210

4
5
6
7
8
9

10
11
12
13
14

5 12
1313

,−

〈−5, 12〉

Verify that the magnitude of the unit vector equals 1. The magnitude of −  5 _ 
13

  i +   12 _ 
13

  j is given as

  √ 
__________________

      −   5 ___ 13     
2
  +      12 ___ 13     

2
     =  √

_________

      25 ____ 169   +   144 ___ 169     

 =  √
____

   169 _ 
169

    

 = 1

The vector u =   5 ___ 
13

   i +   12 ___ 
13

   j is the unit vector in the same direction as v = 〈−5, 12〉.

Performing Operations with Vectors in Terms of i and j
So far, we have investigated the basics of vectors: magnitude and direction, vector addition and subtraction, scalar 
multiplication, the components of vectors, and the representation of vectors geometrically. Now that we are familiar 
with the general strategies used in working with vectors, we will represent vectors in rectangular coordinates in terms 
of i and j.
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vectors in the rectangular plane 
Given a vector v with initial point P = (x1, y1) and terminal point Q = (x2, y2), v is written as

v = (x2 − x1)i + (y1 − y2) j

The position vector from (0, 0) to (a, b), where (x2 − x1) = a and (y2 − y1) = b, is written as v = ai + bj. This vector 
sum is called a linear combination of the vectors i and j.

The magnitude of v = ai + bj is given as  | v |  =  √
—

 a2 + b2  . See Figure 16.

Figure 16

v = ai + bj
bj

ai

Example 10 Writing a Vector in Terms of i and j

Given a vector v with initial point P = (2, −6) and terminal point Q = (−6, 6), write the vector in terms of i and j.

Solution Begin by writing the general form of the vector. Then replace the coordinates with the given values.

 v = (x2 − x1)i + (y2 − y1) j

 = ( −6 − 2)i + (6 − ( − 6)) j

 = − 8i + 12 j

Example 11 Writing a Vector in Terms of i and j Using Initial and Terminal Points

Given initial point P1 = (−1, 3) and terminal point P2 = (2, 7), write the vector v in terms of i and j.

Solution Begin by writing the general form of the vector. Then replace the coordinates with the given values.

 v = (x2 − x1)i + (y2 − y1) j

 v = (2 − ( − 1))i + (7 − 3) j

 = 3i + 4 j

Try It #3

Write the vector u with initial point P = (−1, 6) and terminal point Q = (7, − 5) in terms of i and j.

Performing Operations on Vectors in Terms of i and j
When vectors are written in terms of i and j, we can carry out addition, subtraction, and scalar multiplication by 
performing operations on corresponding components.

adding and subtracting vectors in rectangular coordinates 
Given v = ai + bj and u = ci + dj, then
 v + u = (a + c)i + (b + d)j
 v − u = (a − c)i + (b − d)j
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Example 12 Finding the Sum of the Vectors

Find the sum of v1 = 2i − 3j and v2 = 4i + 5j.

Solution According to the formula, we have

 v1 + v2 = (2 + 4)i + ( − 3 + 5) j

 = 6i + 2 j

Calculating the Component Form of a Vector: Direction
We have seen how to draw vectors according to their initial and terminal points and how to find the position vector. We 
have also examined notation for vectors drawn specifically in the Cartesian coordinate plane using i and j. For any of  
these vectors, we can calculate the magnitude. Now, we want to combine the key points, and look further at the ideas 
of magnitude and direction.

Calculating direction follows the same straightforward process we used for polar coordinates. We find the direction 
of the vector by finding the angle to the horizontal. We do this by using the basic trigonometric identities, but with |v| 
replacing r.

vector components in terms of magnitude and direction 
Given a position vector v = 〈x, y〉 and a direction angle θ,

 cos θ =    x _  | v |    and sin θ =    
y
 _  | v |   

 x =  | v |  cos θ    y =  | v |  sin θ

Thus, v = xi + yj = |v|cos θi + |v|sin θj, and magnitude is expressed as |v| =  √
—

 x2 + y2  .

Example 13 Writing a Vector in Terms of Magnitude and Direction

Write a vector with length 7 at an angle of 135° to the positive x-axis in terms of magnitude and direction.

Solution Using the conversion formulas x = |v| cos θi and y =|v| sin θ j, we find that

 x = 7cos(135°)i

 = −   7 √
—
 2   _ 

2
   

 y = 7sin(135°) j

 =    7 √
—
 2   _ 

2
   

This vector can be written as v = 7cos(135°)i + 7sin(135°) j or simplified as

 v =  −   7 √
—
 2   _ 

2
  i +    7 √

—
 2   _ 

2
  j 

Try It #4

A vector travels from the origin to the point (3, 5). Write the vector in terms of magnitude and direction.

Finding the Dot Product of Two Vectors
As we discussed earlier in the section, scalar multiplication involves multiplying a vector by a scalar, and the result is 
a vector. As we have seen, multiplying a vector by a number is called scalar multiplication. If we multiply a vector by 
a vector, there are two possibilities: the dot product and the cross product. We will only examine the dot product here; 
you may encounter the cross product in more advanced mathematics courses.

The dot product of two vectors involves multiplying two vectors together, and the result is a scalar.
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dot product 
The dot product of two vectors v = 〈a, b〉 and u = 〈c, d〉 is the sum of the product of the horizontal components 
and the product of the vertical components.

 v ⋅ u = ac + bd

To find the angle between the two vectors, use the formula below.

 cos θ =   v ___  | v |    ⋅   
u ___  | u |   

Example 14 Finding the Dot Product of Two Vectors

Find the dot product of v = 〈5, 12〉 and u = 〈−3, 4〉.

Solution Using the formula, we have
 v ⋅ u = 〈5, 12〉 ⋅ 〈−3, 4〉
 = 5 ⋅ ( −3) + 12 ⋅ 4
 = −15 + 48
 = 33

Example 15 Finding the Dot Product of Two Vectors and the Angle between Them

Find the dot product of v1 = 5i + 2j and v2 = 3i + 7j. Then, find the angle between the two vectors.

Solution  Finding the dot product, we multiply corresponding components.
 v1 ⋅ v2 = 〈5, 2〉 ⋅ 〈3, 7〉

 = 5 ⋅ 3 + 2 ⋅ 7
 = 15 + 14
 = 29

To find the angle between them, we use the formula cos θ =    v _  | v |    ⋅   
u _  | u |    

   v _  | v |    ⋅   
u _  | u |    = 〈  5 ______ 

 √
—

 29  
   +   2 ______ 

 √
—

 29  
  〉 ⋅ 〈  3 ______ 

 √
—

 58  
   +   7 ______ 

 √
—

 58  
  〉 

 =   5 ______ 
 √

—
 29  
   ⋅   3 ______ 

 √
—

 58  
   +   2 ______ 

 √
—

 29  
   ⋅   7 ______ 

 √
—

 58  
  

 =   15 ________ 
 √
—

 1682  
   +   14 ________ 

 √
—

 1682  
   =   29 ________ 

 √
—

 1682  
  

 = 0.707107

 cos−1(0.707107) = 45°

See Figure 17.

Figure 17
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Example 16 Finding the Angle between Two Vectors

Find the angle between u = 〈−3, 4〉 and v = 〈5, 12〉.

Solution Using the formula, we have

 θ = cos−1     u _  | u |    ⋅   
v _  | v |      

     u _ 
 ∣ u ∣ 

   ⋅   v _ 
 ∣ v ∣ 

      =    
−3i + 4j

 _ 5   ⋅   
5i + 12j

 _ 
13

  

 =   −  3 _ 5   ⋅   5 _ 
13

      +     4 _ 5   ⋅   12 _ 
13

     

 = −  15 _ 
65

   +   48 _ 
65

   

 =   33 _ 
65

  

 θ = cos−1    33 _ 
65

     

 = 59.5°

See Figure 18.

Figure 18
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Example 17 Finding Ground Speed and Bearing Using Vectors

We now have the tools to solve the problem we introduced in the opening of the section.

An airplane is flying at an airspeed of 200 miles per hour headed on a SE bearing of 140°. A north wind (from north 
to south) is blowing at 16.2 miles per hour. What are the ground speed and actual bearing of the plane? See Figure 19.

Figure 19

N

A

O

B
X C

200

140˚

16.2

α

Solution The ground speed is represented by x in the diagram, and we need to find the angle α in order to calculate 
the adjusted bearing, which will be 140° + α .
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Notice in Figure 19, that angle BCO must be equal to angle AOC by the rule of alternating interior angles, so angle BCO 
is 140°. We can find x by the Law of Cosines:

 x2 = (16.2)2 + (200)2 − 2(16.2)(200)cos(140°)

 x2 = 45,226.41

 x =  √
—

 45, 226.41  

 x = 212.7

The ground speed is approximately 213 miles per hour. Now we can calculate the bearing using the Law of Sines.

   sin α _ 
16.2

   =   
sin(140°)

 _ 
212.7

  

 sin α =   
16.2sin(140°)

 __ 
212.7

  

 = 0.04896

 sin−1(0.04896) = 2.8°

Therefore, the plane has a SE bearing of 140° + 2.8° = 142.8°. The ground speed is 212.7 miles per hour.

Access these online resources for additional instruction and practice with vectors.

•	 Introduction to Vectors (http://openstaxcollege.org/l/introvectors)

•	 Vector Operations (http://openstaxcollege.org/l/vectoroperation)

•	 The Unit Vector (http://openstaxcollege.org/l/unitvector)

http://openstaxcollege.org/l/introvectors
http://openstaxcollege.org/l/vectoroperation
http://openstaxcollege.org/l/unitvector
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8.8 SeCTIOn exeRCISeS

VeRBAl

1. What are the characteristics of the letters that are 
commonly used to represent vectors?

2. How is a vector more specific than a line segment?

3. What are i and j, and what do they represent? 4. What is component form?
5. When a unit vector is expressed as 〈a, b〉, which 

letter is the coefficient of the i and which the j?

AlGeBRAIC

6. Given a vector with initial point (5, 2) and terminal 
point (−1, − 3), find an equivalent vector whose 
initial point is (0, 0). Write the vector in component 
form 〈a, b〉.

7. Given a vector with initial point (−4, 2) and 
terminal point (3, − 3), find an equivalent vector 
whose initial point is (0, 0). Write the vector in 
component form 〈a, b〉.

8. Given a vector with initial point (7, − 1) and 
terminal point (−1, − 7), find an equivalent vector 
whose initial point is (0, 0). Write the vector in 
component form 〈a, b〉.

For the following exercises, determine whether the two vectors u and v are equal, where u has an initial point P1 and a 
terminal point P2 and v has an initial point P3 and a terminal point P4.

9. P1 = (5, 1), P2 = (3, − 2), P3 = (−1, 3), and  
P4 = (9, − 4)

10. P1 = (2, −3), P2 = (5, 1), P3 = (6, − 1), and  
P4 = (9, 3)

11. P1 = (−1, − 1), P2 = (−4, 5), P3 = (−10, 6), and 
P4 = (−13, 12)

12. P1 = (3, 7), P2 = (2, 1), P3 = (1, 2), and  
P4 = (−1, − 4)

13. P1 = (8, 3), P2 = (6, 5), P3 = (11, 8), and P4 = (9, 10) 14. Given initial point P1 = (−3, 1) and terminal point 
P2 = (5, 2), write the vector v in terms of i and j.

15. Given initial point P1 = (6, 0) and terminal point 
P2 = (−1, − 3), write the vector v in terms of i and j.

For the following exercises, use the vectors u = i + 5j, v = −2i − 3j, and w = 4i − j.

16. Find u + (v − w) 17. Find 4v + 2u

For the following exercises, use the given vectors to compute u + v, u − v, and 2u − 3v.

18. u = 〈2, − 3〉 , v = 〈1, 5〉 19. u = 〈−3, 4〉 , v = 〈−2, 1〉
20. Let v = −4i + 3j. Find a vector that is half the 

length and points in the same direction as v.
21. Let v = 5i + 2j. Find a vector that is twice the length 

and points in the opposite direction as v.

For the following exercises, find a unit vector in the same direction as the given vector.

22. a = 3i + 4j 23. b = −2i + 5j 24. c = 10i − j 25. d = −   1 __ 3  i +   5 __ 2  j
26. u = 100i + 200j 27. u = −14i + 2j

For the following exercises, find the magnitude and direction of the vector, 0 ≤ θ < 2π.

28. 〈0, 4〉 29. 〈6, 5〉 30. 〈2, −5〉 31. 〈−4, −6〉

32. Given u = 3i − 4j and v = −2i + 3j, calculate u ⋅ v. 33. Given u = −i − j and v = i + 5j, calculate u ⋅ v.

34. Given u = 〈−2, 4〉 and v = 〈−3, 1〉, calculate u ⋅ v. 35. Given u = 〈−1, 6〉 and v = 〈6, − 1〉, calculate u ⋅ v.
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GRAPHICAl

For the following exercises, given v, draw v, 3v and   1 __ 2  v.

36. 〈2, −1〉 37. 〈−1, 4〉 38. 〈−3, −2〉

For the following exercises, use the vectors shown to sketch u + v, u − v, and 2u.

39. 

v u

40. 

v

u

41. 

v

u

For the following exercises, use the vectors shown to sketch 2u + v.

42. 

u

v

43. 

uv

For the following exercises, use the vectors shown to sketch u − 3v.

44. u v
45. 

u

v

For the following exercises, write the vector shown in component form.

46. 47. 
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48. Given initial point  P 1  = (2, 1) and terminal point  
P 2  = (−1, 2), write the vector v in terms of i and j, 
then draw the vector on the graph.

49. Given initial point  P 1  = (4, − 1) and terminal point  
P 2  = (−3, 2), write the vector v in terms of i and j. 
Draw the points and the vector on the graph.

50. Given initial point  P 1  = (3, 3) and terminal point  
P 2  = (−3, 3), write the vector v in terms of i and j. 
Draw the points and the vector on the graph.

exTenSIOnS

For the following exercises, use the given magnitude and direction in standard position, write the vector in component 
form.

51.  | v |  = 6, θ = 45 ° 52.  | v |  = 8, θ = 220° 53.  | v |  = 2, θ = 300° 54.  | v |  = 5, θ = 135°

55. A 60-pound box is resting on a ramp that is inclined 
12°. Rounding to the nearest tenth,
a. Find the magnitude of the normal (perpendicular) 

component of the force.
b. Find the magnitude of the component of the force 

that is parallel to the ramp.

56. A 25-pound box is resting on a ramp that is inclined 
8°. Rounding to the nearest tenth,
a. Find the magnitude of the normal (perpendicular) 

component of the force.
b. Find the magnitude of the component of the force 

that is parallel to the ramp.

57. Find the magnitude of the horizontal and vertical 
components of a vector with magnitude 8 pounds 
pointed in a direction of 27° above the horizontal. 
Round to the nearest hundredth.

58. Find the magnitude of the horizontal and vertical 
components of the vector with magnitude 4 pounds 
pointed in a direction of 127° above the horizontal. 
Round to the nearest hundredth.

59. Find the magnitude of the horizontal and vertical 
components of a vector with magnitude 5 pounds 
pointed in a direction of 55° above the horizontal. 
Round to the nearest hundredth.

60. Find the magnitude of the horizontal and vertical 
components of the vector with magnitude 1 pound 
pointed in a direction of 8° above the horizontal. 
Round to the nearest hundredth.

ReAl-WORlD APPlICATIOnS

61. A woman leaves home and walks 3 miles west, then 
2 miles southwest. How far from home is she, and in 
what direction must she walk to head directly home?

62. A boat leaves the marina and sails 6 miles north, 
then 2 miles northeast. How far from the marina is 
the boat, and in what direction must it sail to head 
directly back to the marina?

63. A man starts walking from home and walks 4 
miles east, 2 miles southeast, 5 miles south, 4 miles 
southwest, and 2 miles east. How far has he walked? 
If he walked straight home, how far would he have 
to walk?

64. A woman starts walking from home and walks 4 
miles east, 7 miles southeast, 6 miles south, 5 miles 
southwest, and 3 miles east. How far has she walked? 
If she walked straight home, how far would she have 
to walk?

65. A man starts walking from home and walks 3 miles 
at 20° north of west, then 5 miles at 10° west of 
south, then 4 miles at 15° north of east. If he walked 
straight home, how far would he have to the walk, 
and in what direction?

66. A woman starts walking from home and walks 6 
miles at 40° north of east, then 2 miles at 15° east 
of south, then 5 miles at 30° south of west. If she 
walked straight home, how far would she have to 
walk, and in what direction?
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67. An airplane is heading north at an airspeed of 
600 km/hr, but there is a wind blowing from the 
southwest at 80 km/hr. How many degrees off 
course will the plane end up flying, and what is the 
plane’s speed relative to the ground?

68. An airplane is heading north at an airspeed of 
500 km/hr, but there is a wind blowing from the 
northwest at 50 km/hr. How many degrees off 
course will the plane end up flying, and what is the 
plane’s speed relative to the ground?

69. An airplane needs to head due north, but there is a 
wind blowing from the southwest at 60 km/hr. The 
plane flies with an airspeed of 550 km/hr. To end up 
flying due north, how many degrees west of north 
will the pilot need to fly the plane?

70. An airplane needs to head due north, but there is a 
wind blowing from the northwest at 80 km/hr. The 
plane flies with an airspeed of 500 km/hr. To end up 
flying due north, how many degrees west of north 
will the pilot need to fly the plane?

71. As part of a video game, the point (5, 7) is rotated 
counterclockwise about the origin through an angle 
of 35°. Find the new coordinates of this point.

72. As part of a video game, the point (7, 3) is rotated 
counterclockwise about the origin through an angle 
of 40°. Find the new coordinates of this point.

73. Two children are throwing a ball back and forth 
straight across the back seat of a car. The ball is 
being thrown 10 mph relative to the car, and the 
car is traveling 25 mph down the road. If one child 
doesn't catch the ball, and it flies out the window, 
in what direction does the ball fly (ignoring wind 
resistance)?

74. Two children are throwing a ball back and forth 
straight across the back seat of a car. The ball is 
being thrown 8 mph relative to the car, and the 
car is traveling 45 mph down the road. If one child 
doesn't catch the ball, and it flies out the window, 
in what direction does the ball fly (ignoring wind 
resistance)?

75. A 50-pound object rests on a ramp that is inclined 
19°. Find the magnitude of the components of the 
force parallel to and perpendicular to (normal) the 
ramp to the nearest tenth of a pound.

76. Suppose a body has a force of 10 pounds acting on 
it to the right, 25 pounds acting on it upward, and 
5 pounds acting on it 45° from the horizontal. What 
single force is the resultant force acting on the body?

77. Suppose a body has a force of 10 pounds acting on 
it to the right, 25 pounds acting on it −135° from 
the horizontal, and 5 pounds acting on it directed 
150° from the horizontal. What single force is the 
resultant force acting on the body?

78. The condition of equilibrium is when the sum of the 
forces acting on a body is the zero vector. Suppose 
a body has a force of 2 pounds acting on it to the 
right, 5 pounds acting on it upward, and 3 pounds 
acting on it 45° from the horizontal. What single 
force is needed to produce a state of equilibrium on 
the body?

79. Suppose a body has a force of 3 pounds acting on 
it to the left, 4 pounds acting on it upward, and 
2 pounds acting on it 30° from the horizontal. 
What single force is needed to produce a state of 
equilibrium on the body? Draw the vector.
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CHAPTeR 8 ReVIeW

Key Terms
altitude a perpendicular line from one vertex of a triangle to the opposite side, or in the case of an obtuse triangle, to the 

line containing the opposite side, forming two right triangles

ambiguous case a scenario in which more than one triangle is a valid solution for a given oblique SSA triangle

Archimedes’ spiral a polar curve given by r = θ. When multiplied by a constant, the equation appears as r = aθ. As r = θ,  
the curve continues to widen in a spiral path over the domain.

argument the angle associated with a complex number; the angle between the line from the origin to the point and the 
positive real axis

cardioid a member of the limaçon family of curves, named for its resemblance to a heart; its equation is given as  
r = a ± bcos θ and r = a ± bsin θ, where   a _ 

b
   = 1

convex limaçon a type of one-loop limaçon represented by r = a ± bcos θ and r = a ± bsin θ such that   a _ 
b

   ≥ 2

De Moivre’s Theorem formula used to find the nth power or nth roots of a complex number; states that, for a positive 
integer n, z n is found by raising the modulus to the nth power and multiplying the angles by n

dimpled limaçon a type of one-loop limaçon represented by r = a ± bcos θ and r = a ± bsin θ such that 1 <   a _ 
b

   < 2

dot product given two vectors, the sum of the product of the horizontal components and the product of the vertical 
components

Generalized Pythagorean Theorem an extension of the Law of Cosines; relates the sides of an oblique triangle and is 
used for SAS and SSS triangles

initial point the origin of a vector

inner-loop limaçon a polar curve similar to the cardioid, but with an inner loop; passes through the pole twice; represented 
by r = a ± bcos θ and r = a ± bsin θ where a < b

Law of Cosines states that the square of any side of a triangle is equal to the sum of the squares of the other two sides 
minus twice the product of the other two sides and the cosine of the included angle

Law of Sines states that the ratio of the measurement of one angle of a triangle to the length of its opposite side is equal to 
the remaining two ratios of angle measure to opposite side; any pair of proportions may be used to solve for a missing 
angle or side

lemniscate a polar curve resembling a figure 8 and given by the equation r 2 = a2 cos 2θ and r 2 = a2 sin 2θ, a ≠ 0

magnitude the length of a vector; may represent a quantity such as speed, and is calculated using the Pythagorean Theorem

modulus the absolute value of a complex number, or the distance from the origin to the point (x, y); also called the 
amplitude

oblique triangle any triangle that is not a right triangle

one-loop limaçon a polar curve represented by r = a ± bcos θ and r = a ± bsin θ such that a > 0, b > 0, and   a _ 
b

   > 1; 
may be dimpled or convex; does not pass through the pole

parameter a variable, often representing time, upon which x and y are both dependent

polar axis on the polar grid, the equivalent of the positive x-axis on the rectangular grid

polar coordinates on the polar grid, the coordinates of a point labeled (r, θ), where θ indicates the angle of rotation from 
the polar axis and r represents the radius, or the distance of the point from the pole in the direction of θ

polar equation an equation describing a curve on the polar grid

polar form of a complex number a complex number expressed in terms of an angle θ and its distance from the origin 
r; can be found by using conversion formulas x = rcos θ, y = rsin θ, and r =  √

—
 x2 + y2  

pole the origin of the polar grid
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resultant a vector that results from addition or subtraction of two vectors, or from scalar multiplication

rose curve a polar equation resembling a flower, given by the equations r = acos nθ and r = asin nθ; when n is even there 
are 2n petals, and the curve is highly symmetrical; when n is odd there are n petals.

scalar a quantity associated with magnitude but not direction; a constant

scalar multiplication the product of a constant and each component of a vector

standard position the placement of a vector with the initial point at (0, 0) and the terminal point (a, b), represented by 
the change in the x-coordinates and the change in the y-coordinates of the original vector

terminal point the end point of a vector, usually represented by an arrow indicating its direction

unit vector a vector that begins at the origin and has magnitude of 1; the horizontal unit vector runs along the x-axis and 
is defined as v1 = 〈1, 0〉 the vertical unit vector runs along the y-axis and is defined as v2 = 〈0, 1〉.

vector a quantity associated with both magnitude and direction, represented as a directed line segment with a starting 
point (initial point) and an end point (terminal point)

vector addition the sum of two vectors, found by adding corresponding components

Key equations

Law of Sines   sin α _____ 
a

   =    sin β ____ 
b

   =   sin γ ____ 
c
  

  a _ 
sin α

   =   b _ 
sin β

   =   c _ 
sin γ

  

Area for oblique triangles  Area =   1 _ 
2

  bcsin α

 =   1 _ 
2

  acsin β

 =   1 _ 
2

  absin γ

Law of Cosines a2 = b2 + c2 − 2bccos α

b2 = a2 + c2 − 2accos β

c2 = a2 + b2 − 2abcos γ

Heron’s formula Area =  √
——

  s(s − a)(s − b)(s − c)    where s =   
(a + b + c)

 _ 
2

  

Conversion formulas cos θ =   x _ r   → x = rcos θ

sin θ =   
y
 _ r   → y = rsin θ 

r2 = x2 + y2

tan θ =   
y
 _ x  

Key Concepts

8.1 Non-right Triangles: Law of Sines
•	 The Law of Sines can be used to solve oblique triangles, which are non-right triangles.

•	 According to the Law of Sines, the ratio of the measurement of one of the angles to the length of its opposite side equals 
the other two ratios of angle measure to opposite side.
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•	 There are three possible cases: ASA, AAS, SSA. Depending on the information given, we can choose the appropriate 
equation to find the requested solution. See Example 1.

•	 The ambiguous case arises when an oblique triangle can have different outcomes.

•	 There are three possible cases that arise from SSA arrangement—a single solution, two possible solutions, and no 
solution. See Example 2 and Example 3.

•	 The Law of Sines can be used to solve triangles with given criteria. See Example 4.

•	 The general area formula for triangles translates to oblique triangles by first finding the appropriate height value. See 
Example 5.

•	 There are many trigonometric applications. They can often be solved by first drawing a diagram of the given information 
and then using the appropriate equation. See Example 6.

8.2 Non-right Triangles: Law of Cosines
•	 The Law of Cosines defines the relationship among angle measurements and lengths of sides in oblique triangles.

•	 The Generalized Pythagorean Theorem is the Law of Cosines for two cases of oblique triangles: SAS and SSS. Dropping 
an imaginary perpendicular splits the oblique triangle into two right triangles or forms one right triangle, which allows 
sides to be related and measurements to be calculated. See Example 1 and Example 2.

•	 The Law of Cosines is useful for many types of applied problems. The first step in solving such problems is generally 
to draw a sketch of the problem presented. If the information given fits one of the three models (the three equations), 
then apply the Law of Cosines to find a solution. See Example 3 and Example 4.

•	 Heron’s formula allows the calculation of area in oblique triangles. All three sides must be known to apply Heron’s 
formula. See Example 5 and See Example 6.

8.3 Polar Coordinates
•	 The polar grid is represented as a series of concentric circles radiating out from the pole, or origin.

•	 To plot a point in the form (r, θ), θ > 0, move in a counterclockwise direction from the polar axis by an angle of θ, 
and then extend a directed line segment from the pole the length of r in the direction of θ. If θ is negative, move in a 
clockwise direction, and extend a directed line segment the length of r in the direction of θ. See Example 1.

•	 If r is negative, extend the directed line segment in the opposite direction of θ. See Example 2.

•	 To convert from polar coordinates to rectangular coordinates, use the formulas x = rcos θ and y = rsin θ. See Example 
3 and Example 4.

•	 To convert from rectangular coordinates to polar coordinates, use one or more of the formulas: cos θ =   x _ r  ,  
sin θ =   

y
 _ r  , tan θ =   

y
 _ x  , and r =  √

—
 x2 + y2  . See Example 5.

•	 Transforming equations between polar and rectangular forms means making the appropriate substitutions based on 
the available formulas, together with algebraic manipulations. See Example 6, Example 7, and Example 8.

•	 Using the appropriate substitutions makes it possible to rewrite a polar equation as a rectangular equation, and then 
graph it in the rectangular plane. See Example 9, Example 10, and Example 11.

8.4 Polar Coordinates: Graphs
•	 It is easier to graph polar equations if we can test the equations for symmetry with respect to the line θ =   π _ 

2
  , the polar 

axis, or the pole.

•	 There are three symmetry tests that indicate whether the graph of a polar equation will exhibit symmetry. If an equation 
fails a symmetry test, the graph may or may not exhibit symmetry. See Example 1.

•	 Polar equations may be graphed by making a table of values for θ and r.

•	 The maximum value of a polar equation is found by substituting the value θ that leads to the maximum value of the 
trigonometric expression.

•	 The zeros of a polar equation are found by setting r = 0 and solving for θ. See Example 2.

•	 Some formulas that produce the graph of a circle in polar coordinates are given by r = acos θ and r = asin θ. See 
Example 3.

•	 The formulas that produce the graphs of a cardioid are given by r = a ± bcos θ and r = a ± bsin θ, for a > 0,  
b > 0, and   a _ 

b
   = 1. See Example 4.
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•	 The formulas that produce the graphs of a one-loop limaçon are given by r = a ± bcos θ and r = a ± bsin θ for 
1 <   a _ 

b
   < 2. See Example 5.

•	 The formulas that produce the graphs of an inner-loop limaçon are given by r = a ± bcos θ and r = a ± bsin θ for 
a > 0, b > 0, and a < b. See Example 6.

•	 The formulas that produce the graphs of a lemniscates are given by r2 = a2 cos 2θ and r2 = a2 sin 2θ, where a ≠ 0.  
See Example 7.

•	 The formulas that produce the graphs of rose curves are given by r = acos nθ and r = asin nθ, where a ≠ 0; if n is even, 
there are 2n petals, and if n is odd, there are n petals. See Example 8 and Example 9.

•	 The formula that produces the graph of an Archimedes’ spiral is given by r = θ, θ ≥ 0. See Example 10.

8.5 Polar Form of Complex Numbers
•	 Complex numbers in the form a + bi are plotted in the complex plane similar to the way rectangular coordinates are 

plotted in the rectangular plane. Label the x-axis as the real axis and the y-axis as the imaginary axis. See Example 1.

•	 The absolute value of a complex number is the same as its magnitude. It is the distance from the origin to the point:  
∣ z ∣  =  √

—
 a2 + b2  . See Example 2 and Example 3.

•	 To write complex numbers in polar form, we use the formulas x = rcos θ, y = rsin θ, and r =  √
—

 x2 + y2  . Then,  
z = r(cos θ + isin θ). See Example 4 and Example 5.

•	 To convert from polar form to rectangular form, first evaluate the trigonometric functions. Then, multiply through by 
r. See Example 6 and Example 7.

•	 To find the product of two complex numbers, multiply the two moduli and add the two angles. Evaluate the trigonometric 
functions, and multiply using the distributive property. See Example 8.

•	 To find the quotient of two complex numbers in polar form, find the quotient of the two moduli and the difference of 
the two angles. See Example 9.

•	 To find the power of a complex number zn, raise r to the power n, and multiply θ by n. See Example 10.

•	 Finding the roots of a complex number is the same as raising a complex number to a power, but using a rational 
exponent. See Example 11.

8.6 Parametric Equations
•	 Parameterizing a curve involves translating a rectangular equation in two variables, x and y, into two equations in 

three variables, x, y, and t. Often, more information is obtained from a set of parametric equations. See Example 1, 
Example 2, and Example 3.

•	 Sometimes equations are simpler to graph when written in rectangular form. By eliminating t, an equation in x and 
y is the result.

•	 To eliminate t, solve one of the equations for t, and substitute the expression into the second equation. See  
Example 4, Example 5, Example 6, and Example 7.

•	 Finding the rectangular equation for a curve defined parametrically is basically the same as eliminating the parameter. 
Solve for t in one of the equations, and substitute the expression into the second equation. See Example 8.

•	 There are an infinite number of ways to choose a set of parametric equations for a curve defined as a rectangular 
equation.

•	 Find an expression for x such that the domain of the set of parametric equations remains the same as the original 
rectangular equation. See Example 9.
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8.7 Parametric Equations: Graphs
•	 When there is a third variable, a third parameter on which x and y depend, parametric equations can be used.

•	 To graph parametric equations by plotting points, make a table with three columns labeled t, x(t), and y(t). Choose 
values for t in increasing order. Plot the last two columns for x and y. See Example 1 and Example 2.

•	 When graphing a parametric curve by plotting points, note the associated t-values and show arrows on the graph 
indicating the orientation of the curve. See Example 3 and Example 4.

•	 Parametric equations allow the direction or the orientation of the curve to be shown on the graph. Equations that are 
not functions can be graphed and used in many applications involving motion. See Example 5.

•	 Projectile motion depends on two parametric equations: x = (v0 cos θ)t and y = − 16t2 + (v0 sin θ)t + h. Initial velocity 
is symbolized as v0. θ represents the initial angle of the object when thrown, and h represents the height at which the 
object is propelled.

8.8 Vectors
•	 The position vector has its initial point at the origin. See Example 1.

•	 If the position vector is the same for two vectors, they are equal. See Example 2. Vectors are defined by their magnitude 
and direction. See Example 3.

•	 If two vectors have the same magnitude and direction, they are equal. See Example 4.

•	 Vector addition and subtraction result in a new vector found by adding or subtracting corresponding elements. See 
Example 5.

•	 Scalar multiplication is multiplying a vector by a constant. Only the magnitude changes; the direction stays the same. 
See Example 6 and Example 7.

•	 Vectors are comprised of two components: the horizontal component along the positive x-axis, and the vertical 
component along the positive y-axis. See Example 8.

•	 The unit vector in the same direction of any nonzero vector is found by dividing the vector by its magnitude.

•	 The magnitude of a vector in the rectangular coordinate system is  ∣ v ∣  =  √
—

 a2 + b2  . See Example 9.

•	 In the rectangular coordinate system, unit vectors may be represented in terms of i and j where i represents the 
horizontal component and j represents the vertical component. Then, v = ai + bj is a scalar multiple of v by real 
numbers a and b. See Example 10 and Example 11.

•	 Adding and subtracting vectors in terms of i and j consists of adding or subtracting corresponding coefficients of i and 
corresponding coefficients of j. See Example 12.

•	 A vector v = ai + bj is written in terms of magnitude and direction as v =  ∣ v ∣ cos θi +  ∣ v ∣ sin θj. See Example 13.

•	 The dot product of two vectors is the product of the i terms plus the product of the j terms. See Example 14.

•	 We can use the dot product to find the angle between two vectors. Example 15 and Example 16.

•	 Dot products are useful for many types of physics applications. See Example 17.
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CHAPTeR 8 ReVIeW exeRCISeS

nOn-RIGHT TRIAnGleS: lAW OF SIneS

For the following exercises, assume α is opposite side a, β is opposite side b, and γ is opposite side c. Solve each triangle, 
if possible. Round each answer to the nearest tenth.

1. β = 50°, a = 105, b = 45 2. α = 43.1°, a = 184.2, b = 242.8
3. Solve the triangle.

 

a

c

C24°

36°

16

4. Find the area of the triangle.

 

8
11

75°

5. A pilot is flying over a straight highway. He determines the angles  
of depression to two mileposts, 2.1 km apart, to be 25° and 49°, as 
shown in Figure 1. Find the distance of the plane from point A and 
the elevation of the plane.

 

nOn-RIGHT TRIAnGleS: lAW OF COSIneS

6. Solve the triangle, rounding to the nearest tenth, assuming α is opposite side a, β is opposite side b, and γ is 
opposite side c: a = 4, b = 6, c = 8.

7. Solve the triangle in Figure 2, rounding to the nearest tenth.  

13
15

54°

B C
a

Figure 2 

8. Find the area of a triangle with sides of length 8.3, 6.6, and 9.1.

9. To find the distance between two cities, a satellite calculates the 
distances and angle shown in Figure 3 (not to scale). Find the 
distance between the cities. Round answers to the nearest tenth.

 

250 km
210 km

1.8°

Figure 3 

25° 49°

A B

Figure 1 
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POlAR COORDInATeS

10. Plot the point with polar coordinates   3,   π __ 
6

     . 11. Plot the point with polar coordinates   5, −   2π ___ 
3

     
12. Convert   6, −   3π ___ 

4
      to rectangular coordinates. 13. Convert   −2,   3π ___ 

2
      to rectangular coordinates.

14. Convert (7, −2) to polar coordinates. 15. Convert (−9, −4) to polar coordinates.

For the following exercises, convert the given Cartesian equation to a polar equation.
16. x = − 2 17. x2 + y2 = 64 18. x2 + y2 = − 2y

For the following exercises, convert the given polar equation to a Cartesian equation.
19. r = 7cos θ 20. r =   −2 ____________  

4cos θ + sin θ
  

For the following exercises, convert to rectangular form and graph.
21. θ =   3π ___ 

4
  22. r = 5sec θ

POlAR COORDInATeS: GRAPHS
For the following exercises, test each equation for symmetry.

23. r = 4 + 4sin θ 24. r = 7
25. Sketch a graph of the polar equation r = 1 − 5sin θ. 

Label the axis intercepts.
26. Sketch a graph of the polar equation r = 5sin(7θ).

27. Sketch a graph of the polar equation r = 3 − 3cos θ

POlAR FORM OF COMPlex nUMBeRS
For the following exercises, find the absolute value of each complex number.

28. −2 + 6i 29. 4 − 3i

Write the complex number in polar form.
30. 5 + 9i 31.   1 __ 

2
   −    √

—
 3   ____ 

2
   i

For the following exercises, convert the complex number from polar to rectangular form.

32. z = 5cis     5π ___ 
6

     33. z = 3cis(40°)

For the following exercises, find the product z1z2 in polar form.
34. z1 = 2cis(89°), z2 = 5cis(23°) 35. z1 = 10cis     π __ 

6
     , z2 = 6cis     π __ 

3
     

For the following exercises, find the quotient   
z1 _ z2

   in polar form.
36. z1 = 12cis(55°), z2 = 3cis(18°) 37. z1 = 27cis     5π ___ 

3
     , z2 = 9cis     π __ 

3
     

For the following exercises, find the powers of each complex number in polar form.

38. Find z4 when z = 2cis(70°) 39. Find z2 when z = 5cis     3π ___ 
4

     
For the following exercises, evaluate each root.

40. Evaluate the cube root of z when z = 64cis(210°). 41. Evaluate the square root of z when z = 25cis     3π ___ 
2

     .
For the following exercises, plot the complex number in the complex plane.

42. 6 − 2i 43.  −1 + 3i

PARAMeTRIC eQUATIOnS
For the following exercises, eliminate the parameter t to rewrite the parametric equation as a Cartesian equation.

44.    x(t) = 3t − 1
       

y(t) =  √
—
 t  
        45.    x(t) = − cos t

         
y(t) = 2sin2 t
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46. Parameterize (write a parametric equation for) each 
Cartesian equation by using x(t) = acos t and  
y(t) = bsin t for   x

2

 ___ 
25

   +   y
2

 ___ 
16

   = 1.

47. Parameterize the line from (−2, 3) to (4, 7) so that 
the line is at (−2, 3) at t = 0 and (4, 7) at t = 1.

PARAMeTRIC eQUATIOnS: GRAPHS

For the following exercises, make a table of values for each set of parametric equations, graph the equations, and include 
an orientation; then write the Cartesian equation.

48.    x(t) = 3t2

       
y(t) = 2t − 1

       49.    x(t) = e t
       

y(t) = −2e 5t
      50.    x(t) = 3cos t

       
y(t) = 2sin t

        

51. A ball is launched with an initial velocity of 80 feet per second at an angle of 40° to the horizontal. The ball is 
released at a height of 4 feet above the ground.
a. Find the parametric equations to model the path of the ball.
b. Where is the ball after 3 seconds?
c. How long is the ball in the air?

VeCTORS
For the following exercises, determine whether the two vectors, u and v, are equal, where u has an initial point P1 and 
a terminal point P2, and v has an initial point P3 and a terminal point P4. 

52. P1 = (−1, 4), P2 = (3, 1), P3 = (5, 5) and  
P4 = (9, 2)

53. P1 = (6, 11), P2 = (−2, 8), P3 = (0, − 1) and 
P4 = (−8, 2)

For the following exercises, use the vectors u = 2i − j, v = 4i − 3j, and w = −2i + 5j to evaluate the expression.
54. u − v 55. 2v − u + w

For the following exercises, find a unit vector in the same direction as the given vector.
56. a = 8i − 6j 57. b = −3i − j

For the following exercises, find the magnitude and direction of the vector.
58. 〈6, −2〉 59. 〈−3, −3〉

For the following exercises, calculate u ⋅ v.
60. u = −2i + j and v = 3i + 7j 61. u = i + 4j and v = 4i + 3j
62. Given v = 〈−3, 4〉 draw v, 2v, and   1 _ 

2
  v. 63. Given the vectors shown in Figure 4, sketch  

u + v, u − v and 3v.

u v

Figure 4 

64. Given initial point P1 = (3, 2) and terminal point  
P2 = (−5, −1), write the vector v in terms of i and j. 
Draw the points and the vector on the graph.
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CHAPTeR 8 PRACTICe TeST

1. Assume α is opposite side a, β is opposite side b, and 
γ is opposite side c. Solve the triangle, if possible, and 
round each answer to the nearest tenth, given β = 68°, 
b = 21, c = 16.

2. Find the area of the triangle in Figure 1. Round each 
answer to the nearest tenth.

7

6.25
5

60°

Figure 1  

3. A pilot flies in a straight path for 2 hours. He then 
makes a course correction, heading 15° to the 
right of his original course, and flies 1 hour in the 
new direction. If he maintains a constant speed of 
575 miles per hour, how far is he from his starting 
position?

4. Convert (2, 2) to polar coordinates, and then plot 
the point.

5. Convert   2,   π __ 3     to rectangular coordinates. 6. Convert the polar equation to a Cartesian equation: 
x2 + y2 = 5y.

7. Convert to rectangular form and graph: r = − 3csc θ. 8. Test the equation for symmetry: r = − 4sin (2θ).
9. Graph r = 3 + 3cos θ. 10. Graph r = 3 − 5sin θ.

11. Find the absolute value of the complex number  
5 − 9i.

12. Write the complex number in polar form: 4 + i.

13. Convert the complex number from polar to 
rectangular form: z = 5cis    2π ___ 3     .

Given z1 = 8cis(36°) and z2 = 2cis(15°), evaluate each expression.

14. z1 z2 15.   
z1 _ z2

  16. (z2)
3

17.  √
—

 z1  

18. Plot the complex number −5 − i in the complex 
plane.

19. Eliminate the parameter t to rewrite the following 
parametric equations as a Cartesian equation: 

   x(t) = t + 1
       

y(t) = 2t2
     

20. Parameterize (write a parametric equation for) the 
following Cartesian equation by using x(t) = acos t 

and y(t) = bsin t:   x
2
 ___ 36   +   

y2

 ___ 100   = 1.

21. Graph the set of parametric equations and find the 
Cartesian equation: 

   x(t) = −2sin t
          

y(t) = 5cos t
     

22. A ball is launched with an initial velocity of 95 feet per second at an angle of 52° to the horizontal. The ball is 
released at a height of 3.5 feet above the ground.
a. Find the parametric equations to model the path of the ball.
b. Where is the ball after 2 seconds?
c. How long is the ball in the air?

For the following exercises, use the vectors u = i −3j and v = 2i + 3j.
23. Find 2u − 3v. 24. Calculate u ∙ v.

25. Find a unit vector in the same direction as v. 26. Given vector v has an initial point P1 = (2, 2) and 
terminal point P2 = (−1, 0), write the vector v in 
terms of i and j. On the graph, draw v, and − v.
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Systems of Equations and Inequalities

Figure 1 enigma machines like this one, once owned by Italian dictator Benito Mussolini, were used by government  
and military officials for enciphering and deciphering top-secret communications during World War II. (credit: Dave Addey, Flickr)

Introduction
By 1943, it was obvious to the Nazi regime that defeat was imminent unless it could build a weapon with unlimited 
destructive power, one that had never been seen before in the history of the world. In September, Adolf Hitler ordered 
German scientists to begin building an atomic bomb. Rumors and whispers began to spread from across the ocean. 
Refugees and diplomats told of the experiments happening in Norway. However, Franklin D. Roosevelt wasn’t sold, and 
even doubted British Prime Minister Winston Churchill’s warning. Roosevelt wanted undeniable proof. Fortunately, 
he soon received the proof he wanted when a group of mathematicians cracked the “Enigma” code, proving beyond 
a doubt that Hitler was building an atomic bomb. The next day, Roosevelt gave the order that the United States begin 
work on the same.

The Enigma is perhaps the most famous cryptographic device ever known. It stands as an example of the pivotal role 
cryptography has played in society. Now, technology has moved cryptanalysis to the digital world.

Many ciphers are designed using invertible matrices as the method of message transference, as finding the inverse of 
a matrix is generally part of the process of decoding. In addition to knowing the matrix and its inverse, the receiver 
must also know the key that, when used with the matrix inverse, will allow the message to be read.

In this chapter, we will investigate matrices and their inverses, and various ways to use matrices to solve systems of 
equations. First, however, we will study systems of equations on their own: linear and nonlinear, and then partial 
fractions. We will not be breaking any secret codes here, but we will lay the foundation for future courses.

CHAPTeR OUTlIne

9.1  Systems of linear equations: Two Variables
9.2  Systems of linear equations: Three Variables
9.3  Systems of nonlinear equations and Inequalities: Two Variables
9.4  Partial Fractions
9.5  Matrices and Matrix Operations
9.6  Solving Systems with Gaussian elimination
9.7  Solving Systems with Inverses
9.8  Solving Systems with Cramer's Rule
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9.1 SYSTeMS OF lIneAR eQUATIOnS: TWO VARIABleS

Figure 1 (credit: Thomas Sørenes)

A skateboard manufacturer introduces a new line of boards. The manufacturer tracks its costs, which is the amount 
it spends to produce the boards, and its revenue, which is the amount it earns through sales of its boards. How can 
the company determine if it is making a profit with its new line? How many skateboards must be produced and sold 
before a profit is possible? In this section, we will consider linear equations with two variables to answer these and 
similar questions.

Introduction to Systems of equations
In order to investigate situations such as that of the skateboard manufacturer, we need to recognize that we are dealing 
with more than one variable and likely more than one equation. A system of linear equations consists of two or more 
linear equations made up of two or more variables such that all equations in the system are considered simultaneously. 
To find the unique solution to a system of linear equations, we must find a numerical value for each variable in the 
system that will satisfy all equations in the system at the same time. Some linear systems may not have a solution and 
others may have an infinite number of solutions. In order for a linear system to have a unique solution, there must be 
at least as many equations as there are variables. Even so, this does not guarantee a unique solution.

In this section, we will look at systems of linear equations in two variables, which consist of two equations that contain 
two different variables. For example, consider the following system of linear equations in two variables.

 2x + y = 15

 3x − y = 5

The solution to a system of linear equations in two variables is any ordered pair that satisfies each equation 
independently. In this example, the ordered pair (4, 7) is the solution to the system of linear equations. We can verify 
the solution by substituting the values into each equation to see if the ordered pair satisfies both equations. Shortly 
we will investigate methods of finding such a solution if it exists.

 2(4) + (7) = 15 True

 3(4) − (7) = 5   True

In addition to considering the number of equations and variables, we can categorize systems of linear equations by 
the number of solutions. A consistent system of equations has at least one solution. A consistent system is considered 
to be an independent system if it has a single solution, such as the example we just explored. The two lines have 

leARnInG OBjeCTIVeS

In this section, you will:
•	 Solve systems of equations by graphing.
•	 Solve systems of equations by substitution.
•	 Solve systems of equations by addition.
•	 Identify inconsistent systems of equations containing two variables.
•	 Express the solution of a system of dependent equations containing two variables.
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different slopes and intersect at one point in the plane. A consistent system is considered to be a dependent system 
if the equations have the same slope and the same y-intercepts. In other words, the lines coincide so the equations 
represent the same line. Every point on the line represents a coordinate pair that satisfies the system. Thus, there are 
an infinite number of solutions.

Another type of system of linear equations is an inconsistent system, which is one in which the equations represent 
two parallel lines. The lines have the same slope and different y-intercepts. There are no points common to both lines; 
hence, there is no solution to the system.

types of linear systems 
There are three types of systems of linear equations in two variables, and three types of solutions.

•	 	An	independent system has exactly one solution pair (x, y). The point where the two lines intersect is the only 
solution.

•	 	An	inconsistent system has no solution. Notice that the two lines are parallel and will never intersect.
•	 	A	dependent system has infinitely many solutions. The lines are coincident. They are the same line, so every 

coordinate pair on the line is a solution to both equations.

Figure 2 compares graphical representations of each type of system.
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How To…
Given a system of linear equations and an ordered pair, determine whether the ordered pair is a solution. 

1. Substitute the ordered pair into each equation in the system.
2. Determine whether true statements result from the substitution in both equations; if so, the ordered pair is a 

solution.

Example 1  Determining Whether an Ordered Pair Is a Solution to a System of Equations

Determine whether the ordered pair (5, 1) is a solution to the given system of equations.
 x + 3y = 8
 2x − 9 = y

Solution Substitute the ordered pair (5, 1) into both equations.
 (5) + 3(1) = 8
 8 = 8 True
 2(5) − 9 = (1)
 1 = 1 True
The ordered pair (5, 1) satisfies both equations, so it is the solution to the system.

Analysi s We can see the solution clearly by plotting the graph of each equation. Since the solution is an ordered pair that 
satisfies both equations, it is a point on both of the lines and thus the point of intersection of the two lines. See Figure 3.
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Try It #1

Determine whether the ordered pair (8, 5) is a solution to the following system.

 5x − 4y = 20
 2x + 1 = 3y

Solving Systems of equations by Graphing
There are multiple methods of solving systems of linear equations. For a system of linear equations in two variables, 
we can determine both the type of system and the solution by graphing the system of equations on the same set 
of axes.

Example 2  Solving a System of Equations in Two Variables by Graphing

Solve the following system of equations by graphing. Identify the type of system.

 2x + y = −8
 x − y = −1

Solution Solve the first equation for y.
 2x + y = −8

 y = − 2x −8

Solve the second equation for y.
 x − y = −1

 y = x + 1

Graph both equations on the same set of axes as in Figure 4.
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The lines appear to intersect at the point (−3, −2). We can check to make sure that this is the solution to the system 
by substituting the ordered pair into both equations.

 2(−3) + (−2) = −8
 −8 = −8 True
 (−3) − (−2) = −1
 −1 = −1 True

The solution to the system is the ordered pair (−3, −2), so the system is independent.

Try It #2

Solve the following system of equations by graphing.

 2x − 5y = −25
 −4x + 5y = 35

Q & A…
Can graphing be used if the system is inconsistent or dependent?

Yes, in both cases we can still graph the system to determine the type of system and solution. If the two lines are 
parallel, the system has no solution and is inconsistent. If the two lines are identical, the system has infinite solutions 
and is a dependent system.

Solving Systems of equations by Substitution
Solving a linear system in two variables by graphing works well when the solution consists of integer values, but if 
our solution contains decimals or fractions, it is not the most precise method. We will consider two more methods 
of solving a system of linear equations that are more precise than graphing. One such method is solving a system of 
equations by the substitution method, in which we solve one of the equations for one variable and then substitute 
the result into the second equation to solve for the second variable. Recall that we can solve for only one variable at a 
time, which is the reason the substitution method is both valuable and practical.

How To…
Given a system of two equations in two variables, solve using the substitution method.

1. Solve one of the two equations for one of the variables in terms of the other.
2. Substitute the expression for this variable into the second equation, then solve for the remaining variable.
3.  Substitute that solution into either of the original equations to find the value of the first variable. If possible, write 

the solution as an ordered pair.
4. Check the solution in both equations.

Example 3 Solving a System of Equations in Two Variables by Substitution

Solve the following system of equations by substitution.

 −x + y = −5

 2x − 5y = 1

Solution First, we will solve the first equation for y.

 −x + y = −5

 y = x − 5
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Now we can substitute the expression x − 5 for y in the second equation.

 2x − 5y = 1

 2x − 5(x − 5) = 1

 2x − 5x + 25 = 1

 −3x = −24

 x = 8

Now, we substitute x = 8 into the first equation and solve for y.

 −(8) + y = −5

 y = 3

Our solution is (8, 3).

Check the solution by substituting (8, 3) into both equations.

 −x + y = − 5

 −(8) + (3) = − 5 True

 2x − 5y = 1

 2(8) − 5(3) = 1 True

Try It #3

Solve the following system of equations by substitution.

 x = y + 3

 4 = 3x − 2y

Q & A…
Can the substitution method be used to solve any linear system in two variables?

Yes, but the method works best if one of the equations contains a coefficient of 1 or −1 so that we do not have to deal 
with fractions.

Solving Systems of equations in Two Variables by the Addition Method
A third method of solving systems of linear equations is the addition method. In this method, we add two terms with 
the same variable, but opposite coefficients, so that the sum is zero. Of course, not all systems are set up with the two 
terms of one variable having opposite coefficients. Often we must adjust one or both of the equations by multiplication 
so that one variable will be eliminated by addition.

How To…
Given a system of equations, solve using the addition method.

1. Write both equations with x- and y-variables on the left side of the equal sign and constants on the right. 
2. Write one equation above the other, lining up corresponding variables. If one of the variables in the top equation 

has the opposite coefficient of the same variable in the bottom equation, add the equations together, eliminating 
one variable. If not, use multiplication by a nonzero number so that one of the variables in the top equation has the 
opposite coefficient of the same variable in the bottom equation, then add the equations to eliminate the variable.

3. Solve the resulting equation for the remaining variable.
4. Substitute that value into one of the original equations and solve for the second variable.
5. Check the solution by substituting the values into the other equation.
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Example 4 Solving a System by the Addition Method

Solve the given system of equations by addition.
 x + 2y = −1

 −x + y = 3

Solution Both equations are already set equal to a constant. Notice that the coefficient of x in the second equation, 
−1, is the opposite of the coefficient of x in the first equation, 1. We can add the two equations to eliminate x without 
needing to multiply by a constant.
   x + 2y = − 1

 −x + y = 3 

 3y = 2

Now that we have eliminated x, we can solve the resulting equation for y.

 3y = 2

 y =   2 _ 3  

Then, we substitute this value for y into one of the original equations and solve for x.

 −x + y = 3

 −x +   2 __ 3   = 3

 −x = 3 −   2 _ 3  

 −x =   7 _ 3  

 x = −  7 _ 3  

The solution to this system is   −  7 __ 3  ,   2 __ 3     
Check the solution in the first equation.
 x + 2y = −1

    −  7 __ 3      + 2    2 __ 3     = −1

 −  7 __ 3   +   4 __ 3   = −1

 −  3 __ 3   = −1

 −1 = −1 True

Analysi s We gain an important perspective on systems of equations by looking at the graphical representation. See 
Figure 5 to find that the equations intersect at the solution. We do not need to ask whether there may be a second solution 
because observing the graph confirms that the system has exactly one solution.
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Example 5 Using the Addition Method When Multiplication of One Equation Is Required

Solve the given system of equations by the addition method.
 3x + 5y = −11
 x − 2y = 11

Solution Adding these equations as presented will not eliminate a variable. However, we see that the first equation 
has 3x in it and the second equation has x. So if we multiply the second equation by −3, the x-terms will add to zero.
 x − 2y = 11
 −3(x − 2y) = −3(11)  Multiply both sides by −3.
 −3x + 6y = −33  Use the distributive property.
Now, let’s add them.
 3x + 5y = −11
 −3x + 6y = −33
 11y = −44
 y = −4
For the last step, we substitute y = −4 into one of the original equations and solve for x.
 3x + 5y = − 11
 3x + 5( − 4) = − 11
 3x − 20 = − 11
 3x = 9
 x = 3
Our solution is the ordered pair (3, −4). See Figure 6. Check the solution in the original second equation.
 x − 2y = 11
 (3) − 2( − 4) = 3 + 8
 11 = 11 True
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Try It #4

Solve the system of equations by addition.

 2x − 7y = 2

 3x + y = −20

Example 6 Using the Addition Method When Multiplication of Both Equations Is Required

Solve the given system of equations in two variables by addition.
 2x + 3y = −16
 5x − 10y = 30
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Solution One equation has 2x and the other has 5x. The least common multiple is 10x so we will have to multiply 
both equations by a constant in order to eliminate one variable. Let’s eliminate x by multiplying the first equation by 

−5 and the second equation by 2.
 − 5(2x + 3y) = −5(−16)
 − 10x − 15y = 80
 2(5x − 10y) = 2(30)
 10x − 20y = 60
Then, we add the two equations together.
 −10x − 15y = 80  
 10x − 20y = 60
 −35y = 140
 y = −4
Substitute y = −4 into the original first equation.
 2x + 3(−4) = −16
 2x − 12 = −16
 2x = −4
 x = −2
The solution is (−2, −4). Check it in the other equation.
 5x − 10y = 30
 5(−2) − 10(−4) = 30
 −10 + 40 = 30
 30 = 30
See Figure 7.
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Example 7 Using the Addition Method in Systems of Equations Containing Fractions

Solve the given system of equations in two variables by addition.

   x __ 3    +   y __ 6    = 3

   x __ 2    −   y __ 4    = 1

Solution First clear each equation of fractions by multiplying both sides of the equation by the least common 
denominator.
 6    x __ 3    +   y __ 6       = 6(3)

 2x + y = 18

 4    x __ 2    −   y __ 4       = 4(1)

 2x − y = 4
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Now multiply the second equation by −1 so that we can eliminate the x-variable.

 −1(2x − y) = −1(4)

 −2x + y = −4

Add the two equations to eliminate the x-variable and solve the resulting equation.

 2x + y = 18

 −2x + y = −4

 2y = 14

 y = 7

Substitute y = 7 into the first equation.
 2x + (7) = 18
 2x = 11

 x =   11 ___ 2  

 = 5.5

The solution is     11 ___ 2  , 7   . Check it in the other equation.

   x __ 2    −   y __ 4    = 1

   
  11 _ 2  

 ____ 2    −   7 __ 4     = 1

   11 ___ 4   −   7 __ 4     = 1

   4 __ 4   = 1

Try It #5

Solve the system of equations by addition.
 2x + 3y = 8
 3x + 5y = 10

Identifying Inconsistent Systems of equations Containing Two Variables
Now that we have several methods for solving systems of equations, we can use the methods to identify inconsistent 
systems. Recall that an inconsistent system consists of parallel lines that have the same slope but different y-intercepts. 
They will never intersect. When searching for a solution to an inconsistent system, we will come up with a false 
statement, such as 12 = 0.

Example 8 Solving an Inconsistent System of Equations

Solve the following system of equations.
 x = 9 − 2y

 x + 2y = 13

Solution We can approach this problem in two ways. Because one equation is already solved for x, the most obvious 
step is to use substitution.
 x + 2y = 13
 (9 − 2y) + 2y = 13
 9 + 0y = 13
 9 = 13

Clearly, this statement is a contradiction because 9 ≠ 13. Therefore, the system has no solution.
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The second approach would be to first manipulate the equations so that they are both in slope-intercept form. We 
manipulate the first equation as follows.
 x = 9 − 2y
 2y = − x + 9

 y = −   1 __ 2  x +   9 __ 2  

We then convert the second equation expressed to slope-intercept form.

 x + 2y = 13
 2y = − x + 13

 y = −  1 __ 2  x +   13 ___ 2  

Comparing the equations, we see that they have the same slope but different y-intercepts. Therefore, the lines are 
parallel and do not intersect.

 y = −  1 __ 2  x +   9 __ 2  

 y = −  1 __ 2  x +   13 ___ 2  

Analysi s Writing the equations in slope-intercept form confirms that the system is inconsistent because all lines will 
intersect eventually unless they are parallel. Parallel lines will never intersect; thus, the two lines have no points in 
common. The graphs of the equations in this example are shown in Figure 8.
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Try It #6

Solve the following system of equations in two variables.
 2y − 2x = 2
 2y − 2x = 6

expressing the Solution of a System of Dependent equations Containing Two Variables
Recall that a dependent system of equations in two variables is a system in which the two equations represent the same 
line. Dependent systems have an infinite number of solutions because all of the points on one line are also on the other 
line. After using substitution or addition, the resulting equation will be an identity, such as 0 = 0.

Example 9 Finding a Solution to a Dependent System of Linear Equations

Find a solution to the system of equations using the addition method.
 x + 3y = 2
 3x + 9y = 6

Solution With the addition method, we want to eliminate one of the variables by adding the equations. In this case, 
let’s focus on eliminating x. If we multiply both sides of the first equation by −3, then we will be able to eliminate the 
x-variable.
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 x + 3y = 2
 (−3)(x + 3y) = (−3)(2)
 −3x − 9y = − 6
Now add the equations.
 −3x − 9y = −6
 +    3x + 9y = 6
 0 = 0
We can see that there will be an infinite number of solutions that satisfy both equations.

Analysi s If we rewrote both equations in the slope-intercept form, we might know what the solution would look like 
before adding. Let’s look at what happens when we convert the system to slope-intercept form.
 x + 3y = 2
 3y = − x + 2

 y = −  1 __ 3  x +   2 __ 3  

 3x + 9y = 6
 9y = −3x + 6

 y = −  3 __ 9  x +   6 __ 9  

 y = −  1 __ 3  x +   2 __ 3  

See Figure 9. Notice the results are the same. The general solution to the system is   x, −  1 _ 3  x +   2 _ 3     .
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Try It #7

Solve the following system of equations in two variables.

 y − 2x = 5

 −3y + 6x = −15

Using Systems of equations to Investigate Profits
Using what we have learned about systems of equations, we can return to the skateboard manufacturing problem at 
the beginning of the section. The skateboard manufacturer’s revenue function is the function used to calculate the 
amount of money that comes into the business. It can be represented by the equation R = xp, where x = quantity and 
p = price. The revenue function is shown in orange in Figure 10.

The cost function is the function used to calculate the costs of doing business. It includes fixed costs, such as rent and 
salaries, and variable costs, such as utilities. The cost function is shown in blue in Figure 10. The x-axis represents 
quantity in hundreds of units. The y-axis represents either cost or revenue in hundreds of dollars.
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The point at which the two lines intersect is called the break-even point. We can see from the graph that if 700 units are 
produced, the cost is $3,300 and the revenue is also $3,300. In other words, the company breaks even if they produce 
and sell 700 units. They neither make money nor lose money.

The shaded region to the right of the break-even point represents quantities for which the company makes a profit. 
The shaded region to the left represents quantities for which the company suffers a loss. The profit function is the 
revenue function minus the cost function, written as P(x) = R(x) − C(x). Clearly, knowing the quantity for which the 
cost equals the revenue is of great importance to businesses.

Example 10 Finding the Break-Even Point and the Profit Function Using Substitution

Given the cost function C(x) = 0.85x + 35,000 and the revenue function R(x) = 1.55x, find the break-even point and 
the profit function.

Solution Write the system of equations using y to replace function notation.

 y = 0.85x + 35,000

 y = 1.55x

Substitute the expression 0.85x + 35,000 from the first equation into the second equation and solve for x.

 0.85x + 35,000 = 1.55x

 35,000 = 0.7x

 50,000 = x

Then, we substitute x = 50,000 into either the cost function or the revenue function.

 1.55(50,000) = 77,500

The break-even point is (50,000, 77,500).

The profit function is found using the formula P(x) = R(x) − C(x).

 P(x) = 1.55x − (0.85x + 35, 000)

 = 0.7x − 35, 000

The profit function is P(x) = 0.7x − 35,000.

Analysi s The cost to produce 50,000 units is $77,500, and the revenue from the sales of 50,000 units is also $77,500. To 
make a profit, the business must produce and sell more than 50,000 units. See Figure 11.

We see from the graph in Figure 12 that the profit function has a negative value until x = 50,000, when the graph crosses 
the x-axis. Then, the graph emerges into positive y-values and continues on this path as the profit function is a straight 
line. This illustrates that the break-even point for businesses occurs when the profit function is 0. The area to the left of 
the break-even point represents operating at a loss.
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Example 11 Writing and Solving a System of Equations in Two Variables

The cost of a ticket to the circus is $25.00 for children and $50.00 for adults. On a certain day, attendance at the circus 
is 2,000 and the total gate revenue is $70,000. How many children and how many adults bought tickets?
Solution Let c = the number of children and a = the number of adults in attendance.
The total number of people is 2,000. We can use this to write an equation for the number of people at the circus that day.
 c + a = 2,000
The revenue from all children can be found by multiplying $25.00 by the number of children, 25c. The revenue from 
all adults can be found by multiplying $50.00 by the number of adults, 50a. The total revenue is $70,000.
We can use this to write an equation for the revenue.
 25c + 50a = 70,000
We now have a system of linear equations in two variables.
 c + a = 2,000
 25c + 50a = 70,000
In the first equation, the coefficient of both variables is 1. We can quickly solve the first equation for either c or a. We 
will solve for a.
 c + a = 2,000
 a = 2,000 − c
Substitute the expression 2,000 − c in the second equation for a and solve for c.
 25c + 50(2,000 − c) = 70,000
 25c + 100,000 − 50c = 70,000
 − 25c = −30,000
 c = 1,200
Substitute c = 1,200 into the first equation to solve for a.
 1,200 + a = 2,000
 a = 800
We find that 1,200 children and 800 adults bought tickets to the circus that day.

Try It #8

Meal tickets at the circus cost $4.00 for children and $12.00 for adults. If 1,650 meal tickets were bought for a total of 
$14,200, how many children and how many adults bought meal tickets?

Access these online resources for additional instruction and practice with systems of linear equations.

•	 Solving Systems of equations Using Substitution (http://openstaxcollege.org/l/syssubst)
•	 Solving Systems of equations Using elimination (http://openstaxcollege.org/l/syselim)
•	 Applications of Systems of equations (http://openstaxcollege.org/l/sysapp)

http://openstaxcollege.org/l/syssubst
http://openstaxcollege.org/l/syselim
http://openstaxcollege.org/l/sysapp
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9.1 SeCTIOn exeRCISeS

VeRBAl

1. Can a system of linear equations have exactly two 
solutions? Explain why or why not.

2. If you are performing a break-even analysis for 
a business and their cost and revenue equations 
are dependent, explain what this means for the 
company’s profit margins.

3. If you are solving a break-even analysis and get 
a negative break-even point, explain what this 
signifies for the company?

4. If you are solving a break-even analysis and there 
is no break-even point, explain what this means 
for the company. How should they ensure there is a 
break-even point?

5. Given a system of equations, explain at least two 
different methods of solving that system.

AlGeBRAIC

For the following exercises, determine whether the given ordered pair is a solution to the system of equations.

6. 5x − y = 4 
x + 6y = 2 and (4, 0)

7.  −3x − 5y = 13 
  − x + 4y = 10 and (−6, 1)

8. 3x + 7y = 1 
2x + 4y = 0 and (2, 3)

9.  −2x + 5y = 7 
    2x + 9y = 7 and (−1, 1)

10.   x + 8y = 43 
3x − 2y = −1 and (3, 5)

For the following exercises, solve each system by substitution.

11.   x + 3y = 5 
2x + 3y = 4

12.   3x − 2y = 18 
5x + 10y = −10

13. 4x + 2y = −10 
3x + 9y = 0

14. 2x + 4y = −3.8 
9x − 5y = 1.3

15.  −2x + 3y = 1.2 
 −3x − 6y = 1.8

16.      x − 0.2y = 1 
 −10x + 2y = 5

17. 3    x + 5y = 9 
30x + 50y = −90

18.  −3x + y = 2 
12x − 4y = −8

19.   1 __ 2   x +   1 __ 3  y = 16 

   1 __ 6  x +   1 __ 4  y = 9

20.  −  1 __ 4  x  +    3 __ 2  y = 11 

 −  1 __ 8  x  +    1 __ 3  y = 3

For the following exercises, solve each system by addition.

21.  −2x + 5y = −42 
    7x + 2y = 30

22. 6x − 5y = −34 
2x + 6y = 4

23.       5x − y = −2.6 
 −4x − 6y = 1.4

24. 7x − 2y = 3 
4x + 5y = 3.25

25.  −x + 2y = −1 
5x − 10y = 6

26.         7x + 6y = 2 
 −28x − 24y = −8

27.   5 __ 6  x +   1 __ 4  y  = 0 

   1 __ 8  x −    1 __ 2  y  = −  43 ___ 120  

28.     1 __ 3  x  +    1 __ 9  y =    2 __ 9   

−  1 __ 2  x  +    4 __ 5  y = −  1 __ 3  

29.  −0.2x + 0.4y = 0.6 
             x − 2y = −3

30.  −0.1x + 0.2y = 0.6 
        5x − 10y = 1

For the following exercises, solve each system by any method.

31. 5x + 9y = 16 
  x + 2y = 4

32. 6x − 8y = −0.6 
3x + 2y = 0.9

33. 5x − 2y = 2.25 
7x − 4y = 3

34.     x −    5 ___ 12  y  =  −  55 ___ 12   

 −6x  +    5 __ 2  y =    55 ___ 2  
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35. 7x − 4y  =    7 __ 6   

2x + 4y  =    1 __ 3  

36. 3x + 6y = 11 
2x + 4y = 9

37.       7 __ 3  x  −    1 __ 6  y  = 2 

−  21 ___ 6  x +   3 ___ 12  y  = −3

38.   1 __ 2  x  +    1 __ 3  y =   1 __ 3   

  3 __ 2  x  +    1 __ 4  y =  −  1 __ 8  

39. 2.2x + 1.3y = −0.1 
4.2x + 4.2y = 2.1

40.    0.1x + 0.2y = 2 
0.35x − 0.3y = 0

GRAPHICAl

For the following exercises, graph the system of equations and state whether the system is consistent, inconsistent, or 
dependent and whether the system has one solution, no solution, or infinite solutions.

41. 3x − y = 0.6 
x − 2y = 1.3

42.  −x + 2y = 4 
  2x − 4y = 1

43.   x + 2y = 7 
2x + 6y = 12

44. 3x − 5y = 7 
  x − 2y = 3

45.     3x − 2y = 5 
 −9x + 6y = −15

TeCHnOlOGY

For the following exercises, use the intersect function on a graphing device to solve each system. Round all answers 
to the nearest hundredth.

46.     0.1x + 0.2y = 0.3 
 −0.3x + 0.5y = 1

47.  −0.01x + 0.12y = 0.62 
    0.15x + 0.20y = 0.52

48.    0.5x + 0.3y = 4 
0.25x − 0.9y = 0.46

49.     0.15x + 0.27y = 0.39 
 −0.34x + 0.56y = 1.8

50.  −0.71x + 0.92y = 0.13 
    0.83x + 0.05y = 2.1

exTenSIOnS

For the following exercises, solve each system in terms of A, B, C, D, E, and F where A – F are nonzero numbers. Note 
that A ≠ B and AE ≠ BD.

51. x + y = A 
x − y = B

52. x + Ay = 1 
x + By = 1

53. Ax + y = 0 
Bx + y = 1

54. Ax + By = C 
     x + y = 1

55. Ax + By = C 
Dx + Ey = F

ReAl-WORlD APPlICATIOnS

For the following exercises, solve for the desired quantity.

56. A stuffed animal business has a total cost of 
production C = 12x + 30 and a revenue function 
R = 20x. Find the break-even point.

57. A fast-food restaurant has a cost of production 
C(x) = 11x + 120 and a revenue function R(x) = 5x. 
When does the company start to turn a profit?

58. A cell phone factory has a cost of production 
C(x) = 150x + 10,000 and a revenue function 
R(x) = 200x. What is the break-even point?

59. A musician charges C(x) = 64x + 20,000, where x 
is the total number of attendees at the concert. The 
venue charges $80 per ticket. After how many people 
buy tickets does the venue break even, and what is the 
value of the total tickets sold at that point?

60. A guitar factory has a cost of production 
C(x) = 75x + 50,000. If the company needs to break 
even after 150 units sold, at what price should they 
sell each guitar? Round up to the nearest dollar, and 
write the revenue function.
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For the following exercises, use a system of linear equations with two variables and two equations to solve.

61. Find two numbers whose sum is 28 and difference 
is 13.

62. A number is 9 more than another number. Twice 
the sum of the two numbers is 10. Find the two 
numbers.

63. The startup cost for a restaurant is $120,000, and 
each meal costs $10 for the restaurant to make. If 
each meal is then sold for $15, after how many 
meals does the restaurant break even?

64. A moving company charges a flat rate of $150, 
and an additional $5 for each box. If a taxi 
service would charge $20 for each box, how many 
boxes would you need for it to be cheaper to use 
the moving company, and what would be the 
total cost?

65. A total of 1,595 first- and second-year college 
students gathered at a pep rally. The number of 
freshmen exceeded the number of sophomores by 
15. How many freshmen and sophomores were in 
attendance?

66. 276 students enrolled in a freshman-level chemistry 
class. By the end of the semester, 5 times the number 
of students passed as failed. Find the number of 
students who passed, and the number of students 
who failed.

67. There were 130 faculty at a conference. If there were 
18 more women than men attending, how many of 
each gender attended the conference?

68. A jeep and BMW enter a highway running east-
west at the same exit heading in opposite directions. 
The jeep entered the highway 30 minutes before 
the BMW did, and traveled 7 mph slower than the 
BMW. After 2 hours from the time the BMW 
entered the highway, the cars were 306.5 miles apart. 
Find the speed of each car, assuming they were 
driven on cruise control.

69. If a scientist mixed 10% saline solution with 60% 
saline solution to get 25 gallons of 40% saline 
solution, how many gallons of 10% and 60% 
solutions were mixed?

70. An investor earned triple the profits of what she 
earned last year. If she made $500,000.48 total 
for both years, how much did she earn in profits 
each year?

71. An investor who dabbles in real estate invested 1.1 
million dollars into two land investments. On the 
first investment, Swan Peak, her return was a 110% 
increase on the money she invested. On the second 
investment, Riverside Community, she earned 50% 
over what she invested. If she earned $1 million 
in profits, how much did she invest in each of the 
land deals?

72. If an investor invests a total of $25,000 into two 
bonds, one that pays 3% simple interest, and the 

 other that pays 2  7 __ 8   % interest, and the investor 

 earns $737.50 annual interest, how much was 
invested in each account?

73. If an investor invests $23,000 into two bonds, one 
that pays 4% in simple interest, and the other paying 
2% simple interest, and the investor earns $710.00 
annual interest, how much was invested in each 
account?

74. CDs cost $5.96 more than DVDs at All Bets Are Off 
Electronics. How much would 6 CDs and 2 DVDs 
cost if 5 CDs and 2 DVDs cost $127.73?

75. A store clerk sold 60 pairs of sneakers. The high-tops 
sold for $98.99 and the low-tops sold for $129.99. 
If the receipts for the two types of sales totaled 
$6,404.40, how many of each type of sneaker were 
sold?

76. A concert manager counted 350 ticket receipts the 
day after a concert. The price for a student ticket was 
$12.50, and the price for an adult ticket was $16.00. 
The register confirms that $5,075 was taken in. How 
many student tickets and adult tickets were sold?

77. Admission into an amusement park for 4 children 
and 2 adults is $116.90. For 6 children and 3 adults, 
the admission is $175.35. Assuming a different price 
for children and adults, what is the price of the child’s 
ticket and the price of the adult ticket?
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9.2 SYSTeMS OF lIneAR eQUATIOnS: THRee VARIABleS

Figure 1 (credit: “elembis,” Wikimedia Commons)

John received an inheritance of $12,000 that he divided into three parts and invested in three ways: in a money-market 
fund paying 3% annual interest; in municipal bonds paying 4% annual interest; and in mutual funds paying 7% annual 
interest. John invested $4,000 more in municipal funds than in municipal bonds. He earned $670 in interest the first 
year. How much did John invest in each type of fund?

Understanding the correct approach to setting up problems such as this one makes finding a solution a matter of 
following a pattern. We will solve this and similar problems involving three equations and three variables in this 
section. Doing so uses similar techniques as those used to solve systems of two equations in two variables. However, 
finding solutions to systems of three equations requires a bit more organization and a touch of visual gymnastics.

Solving Systems of Three equations in Three Variables 
In order to solve systems of equations in three variables, known as three-by-three systems, the primary tool we will be 
using is called Gaussian elimination, named after the prolific German mathematician Karl Friedrich Gauss. While there 
is no definitive order in which operations are to be performed, there are specific guidelines as to what type of moves can 
be made. We may number the equations to keep track of the steps we apply. The goal is to eliminate one variable at a 
time to achieve upper triangular form, the ideal form for a three-by-three system because it allows for straightforward 
back-substitution to find a solution (x, y, z), which we call an ordered triple. A system in upper triangular form looks 
like the following:
 Ax + By + Cz = D
 Ey + Fz = G
 Hz = K
The third equation can be solved for z, and then we back-substitute to find y and x. To write the system in upper 
triangular form, we can perform the following operations:

1. Interchange the order of any two equations.

2. Multiply both sides of an equation by a nonzero constant.

3. Add a nonzero multiple of one equation to another equation.

leARnInG OBjeCTIVeS

In this section, you will:
•	 Solve systems of three equations in three variables.
•	 Identify inconsistent systems of equations containing three variables.
•	 Express the solution of a system of dependent equations containing three variables.
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The solution set to a three-by-three system is an ordered triple {(x, y, z)}. Graphically, the ordered triple defines the 
point that is the intersection of three planes in space. You can visualize such an intersection by imagining any corner 
in a rectangular room. A corner is defined by three planes: two adjoining walls and the floor (or ceiling). Any point 
where two walls and the floor meet represents the intersection of three planes.

number of possible solutions 
Figure 2 and Figure 3 illustrate possible solution scenarios for three-by-three systems.
•	 Systems that have a single solution are those which, after elimination, result in a solution set consisting of an ordered 

triple {(x, y, z)}. Graphically, the ordered triple defines a point that is the intersection of three planes in space.

•	 Systems that have an infinite number of solutions are those which, after elimination, result in an expression that is 
always true, such as 0 = 0. Graphically, an infinite number of solutions represents a line or coincident plane that 
serves as the intersection of three planes in space.

•	 Systems that have no solution are those that, after elimination, result in a statement that is a contradiction, such as 
3 = 0. Graphically, a system with no solution is represented by three planes with no point in common.

(a) (b)
Figure 2 ( a)Three planes intersect at a single point, representing a three-by-three system with a single solution.  

( b) Three planes intersect in a line, representing a three-by-three system with infinite solutions.

(a) (b) (c)

Figure 3 All three figures represent three-by-three systems with no solution. ( a) The three planes intersect with each other, but not at a common point.  
(b) Two of the planes are parallel and intersect with the third plane, but not with each other.  

( c) All three planes are parallel, so there is no point of intersection.

Example 1 Determining Whether an Ordered Triple Is a Solution to a System

Determine whether the ordered triple (3, −2, 1) is a solution to the system.
 x + y + z = 2
 6x − 4y + 5z = 31
 5x + 2y + 2z = 13

Solution We will check each equation by substituting in the values of the ordered triple for x, y, and z.
 x + y + z = 2
 (3) + (−2) + (1) = 2
 True

 6x − 4y + 5z = 31
 6(3) − 4(−2) + 5(1) = 31
 18 + 8 + 5 = 31
 True
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 5x + 2y + 2z = 13
 5(3) + 2(−2) + 2(1) = 13
 15 − 4 + 2 = 13
 True

The ordered triple (3, −2, 1) is indeed a solution to the system.

How To…
Given a linear system of three equations, solve for three unknowns.

1. Pick any pair of equations and solve for one variable.
2. Pick another pair of equations and solve for the same variable.
3. You have created a system of two equations in two unknowns. Solve the resulting two-by-two system.
4. Back-substitute known variables into any one of the original equations and solve for the missing variable.

Example 2 Solving a System of Three Equations in Three Variables by Elimination

Find a solution to the following system:
 x − 2y + 3z = 9 (1)
 −x + 3y − z = −6 (2)
 2x − 5y + 5z = 17 (3)

Solution There will always be several choices as to where to begin, but the most obvious first step here is to eliminate 
x by adding equations (1) and (2).
 x − 2y + 3z = 9 (1)
 −x + 3y − z = −6 (2)
 y + 2z = 3 (3)

The second step is multiplying equation (1) by −2 and adding the result to equation (3). These two steps will eliminate 
the variable x.
 −2x + 4y − 6z = −18 (1) multiplied by − 2
 2x − 5y + 5z = 17 (3)
 − y − z = −1 (5)

In equations (4) and (5), we have created a new two-by-two system. We can solve for z by adding the two equations.

 y + 2z = 3 (4)
 −y − z = − 1 (5)
 z = 2 (6)

Choosing one equation from each new system, we obtain the upper triangular form:

 x − 2y + 3z = 9 (1)
 y + 2z = 3 (4)
 z = 2 (6)

Next, we back-substitute z = 2 into equation (4) and solve for y.

 y + 2(2) = 3
 y + 4 = 3
 y = −1

Finally, we can back-substitute z = 2 and y = −1 into equation (1). This will yield the solution for x.
 x − 2(−1) + 3(2) = 9
 x + 2 + 6 = 9
 x = 1
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The solution is the ordered triple (1, −1, 2). See Figure 4.
(1, −1, 2)

x = 1

z = 2

y = −2

Figure 4

Example 3 Solving a Real-World Problem Using a System of Three Equations in Three Variables

In the problem posed at the beginning of the section, John invested his inheritance of $12,000 in three different funds: 
part in a money-market fund paying 3% interest annually; part in municipal bonds paying 4% annually; and the rest 
in mutual funds paying 7% annually. John invested $4,000 more in mutual funds than he invested in municipal bonds. 
The total interest earned in one year was $670. How much did he invest in each type of fund?

Solution To solve this problem, we use all of the information given and set up three equations. First, we assign a 
variable to each of the three investment amounts:
 x = amount invested in money-market fund

 y = amount invested in municipal bonds

 z = amount invested in mutual funds

The first equation indicates that the sum of the three principal amounts is $12,000.

 x + y + z = 12,000

We form the second equation according to the information that John invested $4,000 more in mutual funds than he 
invested in municipal bonds.
 z = y + 4,000

The third equation shows that the total amount of interest earned from each fund equals $670.

 0.03x + 0.04y + 0.07z = 670

Then, we write the three equations as a system.
 x + y + z = 12,000

 − y + z = 4,000

 0.03x + 0.04y + 0.07z = 670

To make the calculations simpler, we can multiply the third equation by 100. Thus,

 x + y + z = 12,000  (1)

 − y + z = 4,000  (2)

 3x + 4y + 7z = 67,000  (3)

Step 1. Interchange equation (2) and equation (3) so that the two equations with three variables will line up.

 x + y + z = 12,000

 3x + 4y + 7z = 67,000

 − y + z = 4,000

Step 2. Multiply equation (1) by −3 and add to equation (2). Write the result as row 2.

 x + y + z = 12,000

 y + 4z = 31,000

 − y + z = 4,000
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Step 3. Add equation (2) to equation (3) and write the result as equation (3).
 x + y + z = 12,000
 y + 4z = 31,000
 5z = 35,000

Step 4. Solve for z in equation (3). Back-substitute that value in equation (2) and solve for y. Then, back-substitute the 
values for z and y into equation (1) and solve for x.
 5z = 35,000
 z = 7,000
 y + 4(7,000) = 31,000
 y = 3,000
 x + 3,000 + 7,000 = 12,000
 x = 2,000

John invested $2,000 in a money-market fund, $3,000 in municipal bonds, and $7,000 in mutual funds.

Try It #1

Solve the system of equations in three variables.
 2x + y − 2z = −1
 3x − 3y − z = 5
 x − 2y + 3z = 6

Identifying Inconsistent Systems of equations Containing Three Variables
Just as with systems of equations in two variables, we may come across an inconsistent system of equations in three 
variables, which means that it does not have a solution that satisfies all three equations. The equations could represent 
three parallel planes, two parallel planes and one intersecting plane, or three planes that intersect the other two 
but not at the same location. The process of elimination will result in a false statement, such as 3 = 7 or some other 
contradiction.

Example 4 Solving an Inconsistent System of Three Equations in Three Variables

Solve the following system.
 x − 3y + z = 4 (1)
 −x + 2y − 5z = 3 (2)
 5x − 13y + 13z = 8 (3)

Solution Looking at the coefficients of x, we can see that we can eliminate x by adding equation (1) to equation (2).
 x − 3y + z = 4 (1)
 −x + 2y − 5z = 3 (2)
 −y − 4z = 7 (4)

Next, we multiply equation (1) by −5 and add it to equation (3).
 −5x + 15y − 5z = −20 (1) multiplied by −5
 5x − 13y + 13z = 8 (3)
 2y + 8z = −12 (5)

Then, we multiply equation (4) by 2 and add it to equation (5).
 −2y − 8z = 14 (4) multiplied by 2
 2y + 8z = −12 (5)
 0 = 2
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The final equation 0 = 2 is a contradiction, so we conclude that the system of equations in inconsistent and, therefore, 
has no solution.

Analysi s In this system, each plane intersects the other two, but not at the same location. Therefore, the system is 
inconsistent.

Try It #2

Solve the system of three equations in three variables.

 x + y + z = 2
 y − 3z = 1
 2x + y + 5z = 0

expressing the Solution of a System of Dependent equations Containing Three Variables
We know from working with systems of equations in two variables that a dependent system of equations has an infinite 
number of solutions. The same is true for dependent systems of equations in three variables. An infinite number of 
solutions can result from several situations. The three planes could be the same, so that a solution to one equation will 
be the solution to the other two equations. All three equations could be different but they intersect on a line, which 
has infinite solutions. Or two of the equations could be the same and intersect the third on a line.

Example 5 Finding the Solution to a Dependent System of Equations

Find the solution to the given system of three equations in three variables.

 2x + y − 3z = 0  (1)

 4x + 2y − 6z = 0  (2)

 x − y + z = 0  (3)

Solution First, we can multiply equation (1) by −2 and add it to equation (2).

 −4x − 2y + 6z = 0 equation (1) multiplied by −2

 4x + 2y − 6z = 0  (2)

 0 = 0

We do not need to proceed any further. The result we get is an identity, 0 = 0, which tells us that this system has an 
infinite number of solutions. There are other ways to begin to solve this system, such as multiplying equation (3) by  −2, 
and adding it to equation (1). We then perform the same steps as above and find the same result, 0 = 0.

When a system is dependent, we can find general expressions for the solutions. Adding equations (1) and (3), we have

 2x + y − 3z = 0

 x − y + z = 0

 3x − 2z = 0

We then solve the resulting equation for z.

 3x − 2z = 0

 z =   3 __ 2  x

We back-substitute the expression for z into one of the equations and solve for y.
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 2x + y − 3    3 __ 2  x   = 0

 2x + y −   9 __ 2  x = 0

 y =   9 __ 2  x − 2x

 y =   5 __ 2  x

So the general solution is   x,   5 __ 2  x,   3 __ 2  x   . In this solution, x can be any real number. The values of y and z are dependent 

on the value selected for x.

Analysi s As shown in Figure 5, two of the planes are the same and they intersect the third plane on a line. The solution 
set is infinite, as all points along the intersection line will satisfy all three equations.

x − y + z = 0

−4x − 2y + 6z = 0
4x + 2y − 6z = 0

Figure 5

Q & A…
Does the generic solution to a dependent system always have to be written in terms of x?

No, you can write the generic solution in terms of any of the variables, but it is common to write it in terms of x and 
if needed x and y.

Try It #3

Solve the following system.
 x + y + z = 7

 3x − 2y − z = 4

 x + 6y + 5z = 24

Access these online resources for additional instruction and practice with systems of equations in three variables.

•	 ex 1: System of Three equations with Three Unknowns Using elimination (http://openstaxcollege.org/l/systhree)

•	 ex. 2: System of Three equations with Three Unknowns Using elimination (http://openstaxcollege.org/l/systhelim)

http://openstaxcollege.org/l/systhree
http://openstaxcollege.org/l/systhelim
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9.2 SeCTIOn exeRCISeS

VeRBAl

1. Can a linear system of three equations have exactly 
two solutions? Explain why or why not

2. If a given ordered triple solves the system of 
equations, is that solution unique? If so, explain why. 
If not, give an example where it is not unique.

3. If a given ordered triple does not solve the system of 
equations, is there no solution? If so, explain why. If 
not, give an example.

4. Using the method of addition, is there only one way 
to solve the system?

5. Can you explain whether there can be only one 
method to solve a linear system of equations?  
If yes, give an example of such a system of equations. 
If not, explain why not.

AlGeBRAIC

For the following exercises, determine whether the ordered triple given is the solution to the system of equations.

6.   2x − 6y + 6z = −12 
    x + 4y + 5z = −1 and (0, 1, −1) 
 −x + 2y + 3z = −1

7.   6x − y + 3z = 6 
3x + 5y + 2z = 0 and (3, −3, −5) 
              x + y = 0

8.   6x − 7y + z = 2 
 −x − y + 3z = 4 and (4, 2, −6) 
    2x + y − z = 1

9.         x − y = 0 
        x − z = 5 and (4, 4, −1) 
x − y + z = −1

10.    −x − y + 2z = 3 
  5x + 8y − 3z = 4 and (4, 1, −7) 
 −x + 3y − 5z = −5

For the following exercises, solve each system by substitution.

11. 3x − 4y + 2z = −15 
  2x + 4y + z = 16 
2x + 3y + 5z = 20

12. 5x − 2y + 3z = 20 
2x − 4y − 3z = −9 
   x + 6y − 8z = 21

13.    5x + 2y + 4z = 9 
 −3x + 2y + z = 10 
  4x − 3y + 5z = −3

14.   4x − 3y + 5z = 31 
 −x + 2y + 4z = 20 
    x + 5y − 2z = −29

15.     5x − 2y + 3z = 4 
 −4x + 6y − 7z = −1 
      3x + 2y − z = 4

16.   4x + 6y + 9z = 0 
−5x + 2y − 6z = 3 
  7x − 4y + 3z = −3

For the following exercises, solve each system by Gaussian elimination.

17.       2x − y + 3z = 17 
 −5x + 4y − 2z = −46 
              2y + 5z = −7

18. 5x − 6y + 3z = 50 
        − x + 4y = 10 
            2x − z = 10

19.     2x + 3y − 6z = 1 
−4x − 6y + 12z = −2 
      x + 2y + 5z = 10

20.   4x + 6y − 2z = 8 
  6x + 9y − 3z = 12 
 −2x − 3y + z = −4

21.   2x + 3y − 4z = 5 
 −3x + 2y + z = 11 
 −x + 5y + 3z = 4

22.  10x + 2y − 14z = 8 
     −x − 2y − 4z = −1 
 −12x − 6y + 6z = −12

23.      x + y + z = 14 
        2y + 3z = −14 
 −16y − 24z = −112

24.   5x − 3y + 4z = −1 
−4x + 2y − 3z = 0 
 −x + 5y + 7z = −11

25.     x + y + z = 0 
2x − y + 3z = 0 
            x − z = 0
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26. 3x + 2y − 5z = 6 
5x − 4y + 3z = −12 
  4x + 5y−2z = 15

27.     x + y + z = 0 
2x − y + 3z = 0 
            x − z = 1

28. 3x −   1 __ 2  y − z = −  1 __ 2   

           4x + z = 3 

       −x +   3 __ 2  y =   5 __ 2  

29.      6x − 5y + 6z = 38 

  1 __ 5  x −   1 __ 2  y +   3 __ 5  z = 1 

  −4x −   3 __ 2  y − z = −74

30.        1 __ 2  x −   1 __ 5  y +   2 __ 5  z = −  13 ___ 10   

       1 __ 4  x −   2 __ 5  y −   1 __ 5  z = −  7 ___ 20   

  −  1 __ 2  x −   3 __ 4  y −   1 __ 2  z = −  5 __ 4  

31.  −  1 __ 3  x −   1 __ 2  y −   1 __ 4  z =   3 __ 4   

 −  1 __ 2  x −   1 __ 4  y −   1 __ 2  z = 2 

 −  1 __ 4  x −   3 __ 4  y −   1 __ 2  z = −  1 __ 2  

32.     1 __ 2  x −   1 __ 4  y +   3 __ 4  z = 0 

  1 __ 4  x −   1 ___ 10  y +   2 __ 5  z = −2 

    1 __ 8  x +   1 __ 5  y −   1 __ 8  z = 2

33.       4 __ 5  x −   7 __ 8  y +   1 __ 2  z = 1 

 −  4 __ 5  x −   3 __ 4  y +   1 __ 3  z = −8 

 −  2 __ 5  x −   7 __ 8  y +   1 __ 2  z = −5

34.  −  1 __ 3  x −   1 __ 8  y +   1 __ 6  z = −  4 __ 3   

 −  2 __ 3  x −   7 __ 8  y +   1 __ 3  z = −  23 ___ 3   

 −  1 __ 3  x −   5 __ 8  y +   5 __ 6  z = 0

35.  −  1 __ 4  x −   5 __ 4  y +   5 __ 2  z = −5 

 −  1 __ 2  x −   5 __ 3  y +   5 __ 4  z =   55 ___ 12   

 −  1 __ 3  x −   1 __ 3  y +   1 __ 3  z =   5 __ 3  

36.   1 ___ 40  x +   1 ___ 60  y +   1 ___ 80  z =   1 ___ 100   

 −  1 __ 2  x −   1 __ 3  y −   1 __ 4  z = −  1 __ 5   

    3 __ 8  x +   3 ___ 12  y +   3 ___ 16  z =   3 ___ 20  

37. 0.1x − 0.2y + 0.3z = 2 
0.5x − 0.1y + 0.4z = 8 
0.7x − 0.2y + 0.3z = 8

38. 0.2x + 0.1y − 0.3z = 0.2 
0.8x + 0.4y − 1.2z = 0.1 
1.6x + 0.8y − 2.4z = 0.2

39. 1.1x + 0.7y − 3.1z = −1.79 
2.1x + 0.5y − 1.6z = −0.13 
0.5x + 0.4y − 0.5z = −0.07

40. 0.5x − 0.5y + 0.5z = 10 
0.2x − 0.2y + 0.2z = 4 
0.1x − 0.1y + 0.1z = 2

41. 0.1x + 0.2y + 0.3z = 0.37 
0.1x − 0.2y − 0.3z = −0.27 
0.5x − 0.1y − 0.3z = −0.03

42. 0.5x − 0.5y − 0.3z = 0.13 
0.4x − 0.1y − 0.3z = 0.11 
0.2x − 0.8y − 0.9z = −0.32

43. 0.5x + 0.2y − 0.3z = 1 
0.4x − 0.6y + 0.7z = 0.8 
0.3x − 0.1y − 0.9z = 0.6

44. 0.3x + 0.3y + 0.5z = 0.6 
0.4x + 0.4y + 0.4z = 1.8 
0.4x + 0.2y + 0.1z = 1.6

45. 0.8x + 0.8y + 0.8z = 2.4 
0.3x − 0.5y + 0.2z = 0 
0.1x + 0.2y + 0.3z = 0.6

exTenSIOnS

For the following exercises, solve the system for x, y, and z.

46.           x + y + z = 3 

  x − 1 _____ 2   +   
y − 3

 _____ 2   +   z + 1 _____ 2   = 0 

  x − 2 _____ 3   +   y + 4 _____ 3   +   z − 3 _____ 3   =   2 __ 3  

47. 5x − 3y −   z + 1 _____ 2   =   1 __ 2   

6x +   
y − 9

 _____ 2   + 2z = −3 

      x + 8 _____ 2   − 4y + z = 4

48.   x + 4 _____ 7   −   
y − 1

 _____ 6   +   z + 2 _____ 3   = 1 

  x − 2 _____ 4   +   
y + 1

 _____ 8   −   z + 8 _____ 12   = 0 

  x + 6 _____ 3   −   
y + 2

 _____ 3   +   z + 4 _____ 2   = 3

49.   x − 3 _____ 6   +   
y + 2

 _____ 2   −   z − 3 _____ 3   = 2 

  x + 2 _____ 4   +   
y − 5

 _____ 2   +   z + 4 _____ 2   = 1 

     x + 6 _____ 2   −   
y − 3

 _____ 2   + z + 1 = 9

50.   x − 1 ____ 3   +   
y + 3

 _____ 4   +   z + 2 _____ 6   = 1 

       4x + 3y − 2z = 11

     0.02x + 0.015y − 0.01z = 0.065
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ReAl-WORlD APPlICATIOnS

51. Three even numbers sum up to 108. The smaller 
is half the larger and the middle number is   3 _ 4   the 
larger. What are the three numbers?

52. Three numbers sum up to 147. The smallest number 
is half the middle number, which is half the largest 
number. What are the three numbers?

53. At a family reunion, there were only blood relatives, 
consisting of children, parents, and grandparents, in 
attendance. There were 400 people total. There were 
twice as many parents as grandparents, and 50 more 
children than parents. How many children, parents, 
and grandparents were in attendance?

54. An animal shelter has a total of 350 animals comprised 
of cats, dogs, and rabbits. If the number of rabbits is 5 
less than one-half the number of cats, and there are 20 
more cats than dogs, how many of each animal are at 
the shelter?

55. Your roommate, Sarah, offered to buy groceries for 
you and your other roommate. The total bill was 
$82. She forgot to save the individual receipts but 
remembered that your groceries were $0.05 cheaper 
than half of her groceries, and that your other 
roommate’s groceries were $2.10 more than your 
groceries. How much was each of your share of the 
groceries?

56. Your roommate, John, offered to buy household 
supplies for you and your other roommate. You live 
near the border of three states, each of which has a 
different sales tax. The total amount of money spent 
was $100.75. Your supplies were bought with 5% 
tax, John’s with 8% tax, and your third roommate’s 
with 9% sales tax. The total amount of money spent 
without taxes is $93.50. If your supplies before tax 
were $1 more than half of what your third roommate’s 
supplies were before tax, how much did each of you 
spend? Give your answer both with and without taxes.

57. Three coworkers work for the same employer. Their 
jobs are warehouse manager, office manager, and 
truck driver. The sum of the annual salaries of the 
warehouse manager and office manager is $82,000. 
The office manager makes $4,000 more than the 
truck driver annually. The annual salaries of the 
warehouse manager and the truck driver total 
$78,000. What is the annual salary of each of the 
co-workers?

58. At a carnival, $2,914.25 in receipts were taken at the 
end of the day. The cost of a child’s ticket was $20.50, 
an adult ticket was $29.75, and a senior citizen ticket 
was $15.25. There were twice as many senior citizens 
as adults in attendance, and 20 more children than 
senior citizens. How many children, adult, and 
senior citizen tickets were sold?

59. A local band sells out for their concert. They sell 
all 1,175 tickets for a total purse of $28,112.50. The 
tickets were priced at $20 for student tickets, $22.50 
for children, and $29 for adult tickets. If the band 
sold twice as many adult as children tickets, how 
many of each type was sold?

60. In a bag, a child has 325 coins worth $19.50. There 
were three types of coins: pennies, nickels, and 
dimes. If the bag contained the same number of 
nickels as dimes, how many of each type of coin was 
in the bag?

61. Last year, at Haven’s Pond Car Dealership, for a 
particular model of BMW, Jeep, and Toyota, one 
could purchase all three cars for a total of $140,000. 
This year, due to inflation, the same cars would cost 
$151,830. The cost of the BMW increased by 8%, the 
Jeep by 5%, and the Toyota by 12%. If the price of 
last year’s Jeep was $7,000 less than the price of last 
year’s BMW, what was the price of each of the three 
cars last year?

62. A recent college graduate took advantage of 
his business education and invested in three 
investments immediately after graduating. He 
invested $80,500 into three accounts, one that paid 
4% simple interest, one that paid 4% simple interest, 
one that paid 3  1 __ 8  % simple interest, and one that 
paid 2  1 __ 2  % simple interest. He earned $2,670 interest 
at the end of one year. If the amount of the money 
invested in the second account was four times the 
amount invested in the third account, how much was 
invested in each account?
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63. You inherit one million dollars. You invest it all in 
three accounts for one year. The first account pays 
3% compounded annually, the second account pays 
4% compounded annually, and the third account 
pays 2% compounded annually. After one year, you 
earn $34,000 in interest. If you invest four times the 
money into the account that pays 3% compared to 
2%, how much did you invest in each account?

64. You inherit one hundred thousand dollars. You invest 
it all in three accounts for one year. The first account 
pays 4% compounded annually, the second account 
pays 3% compounded annually, and the third  
account pays 2% compounded annually. After one year, 
you earn $3,650 in interest. If you invest five times the 
money in the account that pays 4% compared to 3%, 
how much did you invest in each account?

65. The top three countries in oil consumption in 
a certain year are as follows: the United States, 
Japan, and China. In millions of barrels per day, 
the three top countries consumed 39.8% of the 
world’s consumed oil. The United States consumed 
0.7% more than four times China’s consumption. 
The United States consumed 5% more than triple 
Japan’s consumption. What percent of the world 
oil consumption did the United States, Japan, and 
China consume?[28]

66. The top three countries in oil production in the same 
year are Saudi Arabia, the United States, and Russia. 
In millions of barrels per day, the top three countries 
produced 31.4% of the world’s produced oil. Saudi 
Arabia and the United States combined for 22.1% of 
the world’s production, and Saudi Arabia produced 
2% more oil than Russia. What percent of the world 
oil production did Saudi Arabia, the United States, 
and Russia produce?[29]

67. The top three sources of oil imports for the United 
States in the same year were Saudi Arabia, Mexico, 
and Canada. The three top countries accounted for 
47% of oil imports. The United States imported 1.8% 
more from Saudi Arabia than they did from Mexico, 
and 1.7% more from Saudi Arabia than they did 
from Canada. What percent of the United States oil 
imports were from these three countries?[30]

68. The top three oil producers in the United States 
in a certain year are the Gulf of Mexico, Texas, 
and Alaska. The three regions were responsible 
for 64% of the United States oil production. The 
Gulf of Mexico and Texas combined for 47% of oil 
production. Texas produced 3% more than Alaska. 
What percent of United States oil production came 
from these regions?[31]

69. At one time, in the United States, 398 species of 
animals were on the endangered species list. The 
top groups were mammals, birds, and fish, which 
comprised 55% of the endangered species. Birds 
accounted for 0.7% more than fish, and fish 
accounted for 1.5% more than mammals. What 
percent of the endangered species came from 
mammals, birds, and fish?

70. Meat consumption in the United States can be 
broken into three categories: red meat, poultry, and 
fish. If fish makes up 4% less than one-quarter of 
poultry consumption, and red meat consumption is 
18.2% higher than poultry consumption, what are 
the percentages of meat consumption?[32]

28  “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.
29  “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.
30  “Oil reserves, production and consumption in 2001,” accessed April 6, 2014, http://scaruffi.com/politics/oil.html.
31  “USA: The coming global oil crisis,” accessed April 6, 2014, http://www.oilcrisis.com/us/.
32  “The United States Meat Industry at a Glance,” accessed April 6, 2014, http://www.meatami.com/ht/d/sp/i/47465/pid/47465.

http://scaruffi.com/politics/oil.html
http://scaruffi.com/politics/oil.html
http://scaruffi.com/politics/oil.html
http://www.oilcrisis.com/us/
http://www.meatami.com/ht/d/sp/i/47465/pid/47465
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9.3 SYSTeMS OF nOnlIneAR eQUATIOnS AnD IneQUAlITIeS: TWO VARIABleS
Halley’s Comet (Figure 1) orbits the sun about once every 75 years. Its path can be considered to be a very elongated 
ellipse. Other comets follow similar paths in space. These orbital paths can be studied using systems of equations. These 
systems, however, are different from the ones we considered in the previous section because the equations are not linear.

Figure 1 Halley’s Comet (credit: "nASA Blueshift"/Flickr)

In this section, we will consider the intersection of a parabola and a line, a circle and a line, and a circle and an ellipse. 
The methods for solving systems of nonlinear equations are similar to those for linear equations.

Solving a System of nonlinear equations Using Substitution
A system of nonlinear equations is a system of two or more equations in two or more variables containing at least 
one equation that is not linear. Recall that a linear equation can take the form Ax + By + C = 0. Any equation that 
cannot be written in this form in nonlinear. The substitution method we used for linear systems is the same method 
we will use for nonlinear systems. We solve one equation for one variable and then substitute the result into the second 
equation to solve for another variable, and so on. There is, however, a variation in the possible outcomes.

Intersection of a Parabola and a Line

There are three possible types of solutions for a system of nonlinear equations involving a parabola and a line.

possible types of solutions for points of intersection of a parabola and a line 
Figure 2 illustrates possible solution sets for a system of equations involving a parabola and a line.

•	 No solution. The line will never intersect the parabola.
•	 One solution. The line is tangent to the parabola and intersects the parabola at exactly one point.
•	 Two solutions. The line crosses on the inside of the parabola and intersects the parabola at two points.

(a)

No solutions One solutions Two solutions

(b) (c)
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1

3

3

21 4

4
5
6

x

y

–1
–1–2

–2
–3
–4
–5
–6

1

321 4 5

Figure 2 

leARnInG OBjeCTIVeS

In this section, you will:
•	 Solve a system of nonlinear equations using substitution.
•	 Solve a system of nonlinear equations using elimination.
•	 Graph a nonlinear inequality.
•	 Graph a system of nonlinear inequalities.
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How To…
Given a system of equations containing a line and a parabola, find the solution.

1. Solve the linear equation for one of the variables.
2. Substitute the expression obtained in step one into the parabola equation.
3. Solve for the remaining variable.
4. Check your solutions in both equations.

Example 1 Solving a System of Nonlinear Equations Representing a Parabola and a Line

Solve the system of equations.

 x − y = −1

 y =  x 2  + 1

Solution Solve the first equation for x and then substitute the resulting expression into the second equation.

 x − y = −1

 x = y − 1  Solve for x.

 y =  x 2  + 1

 y =  (y − 1) 2  + 1 Substitute expression for x.

Expand the equation and set it equal to zero.

 y =  (y − 1) 2 

 = ( y 2  − 2y + 1) + 1

 =  y 2  − 2y + 2

 0 =  y 2  −3y + 2

 = (y − 2)(y − 1)

Solving for y gives y = 2 and y = 1. Next, substitute each value for y into the first equation to solve for x. Always 
substitute the value into the linear equation to check for extraneous solutions.

 x − y = −1

 x − (2) = −1

 x = 1

 x − (1) = −1

 x = 0

The solutions are (1, 2) and (0, 1), which can be verified by substituting these (x, y) values into both of the original 
equations. See Figure 3.
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–3–4–5–6
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(1, 2)
(0, 1)

1 4

4

5 6

5
6

x − y = −1y = x 
2 + 1

Figure 3
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Q & A…
Could we have substituted values for y into the second equation to solve for x in Example 1?

Yes, but because x is squared in the second equation this could give us extraneous solutions for x.

For y = 1
 y =  x 2  + 1
 1 =  x 2  + 1
  x 2  = 0
 x = ±  √

—
 0   = 0

This gives us the same value as in the solution.

For y = 2
 y =  x 2  + 1

 2 =  x 2  + 1

  x 2  = 1

 x = ±  √
—
 1   = ± 1

Notice that −1 is an extraneous solution.

Try It #1

Solve the given system of equations by substitution.
 3x − y = −2
 2 x 2  − y = 0

Intersection of a Circle and a Line

Just as with a parabola and a line, there are three possible outcomes when solving a system of equations representing 
a circle and a line.

possible types of solutions for the points of intersection of a circle and a line 
Figure 4 illustrates possible solution sets for a system of equations involving a circle and a line.

•	 No solution. The line does not intersect the circle.
•	 One solution. The line is tangent to the circle and intersects the circle at exactly one point.
•	 Two solutions. The line crosses the circle and intersects it at two points.

No solutions One solution Two solutions
Figure 4 

How To…
Given a system of equations containing a line and a circle, find the solution.

1. Solve the linear equation for one of the variables.
2. Substitute the expression obtained in step one into the equation for the circle.
3. Solve for the remaining variable.
4. Check your solutions in both equations.
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Example 2 Finding the Intersection of a Circle and a Line by Substitution

Find the intersection of the given circle and the given line by substitution.
  x 2  +  y 2  = 5
 y = 3x − 5
Solution One of the equations has already been solved for y. We will substitute y = 3x − 5 into the equation for the 
circle.
  x 2  +  (3x − 5) 2  = 5
  x 2  + 9 x 2  −30x + 25 = 5
 10 x 2  −30x + 20 = 0
Now, we factor and solve for x.
 10( x 2  − 3x + 2) = 0
 10(x − 2)(x − 1) = 0
 x = 2
 x = 1
Substitute the two x-values into the original linear equation to solve for y.
 y = 3(2)−5
 = 1
 y = 3(1)−5
 = −2
The line intersects the circle at (2, 1) and (1, −2), which can be verified by substituting these (x, y) values into both of 
the original equations. See Figure 5.
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–4

–4

–5

–5
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3

210 4

4

5

5

y = 3x − 5x2 + y2 = 5 

(1, –2)

(2, 1)

Figure 5

Try It #2

Solve the system of nonlinear equations.
  x 2  +  y 2  = 10
 x − 3y = −10

Solving a System of nonlinear equations Using elimination
We have seen that substitution is often the preferred method when a system of equations includes a linear equation and 
a nonlinear equation. However, when both equations in the system have like variables of the second degree, solving 
them using elimination by addition is often easier than substitution. Generally, elimination is a far simpler method 
when the system involves only two equations in two variables (a two-by-two system), rather than a three-by-three 
system, as there are fewer steps. As an example, we will investigate the possible types of solutions when solving a system 
of equations representing a circle and an ellipse.
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possible types of solutions for the points of intersection of a circle and an ellipse 
Figure 6 illustrates possible solution sets for a system of equations involving a circle and an ellipse.

•	 No solution. The circle and ellipse do not intersect. One shape is inside the other or the circle and the ellipse are 
a distance away from the other.

•	 One solution. The circle and ellipse are tangent to each other, and intersect at exactly one point.
•	 Two solutions. The circle and the ellipse intersect at two points.
•	 Three solutions. The circle and the ellipse intersect at three points.
•	 Four solutions. The circle and the ellipse intersect at four points.

No solution One solution Two solutions �ree solutions Four solutions
Figure 6 

Example 3 Solving a System of Nonlinear Equations Representing a Circle and an Ellipse

Solve the system of nonlinear equations.
  x 2  +  y 2  = 26 (1)
 3 x 2  + 25 y 2  = 100 (2)

Solution Let’s begin by multiplying equation (1) by −3, and adding it to equation (2).

 (−3)( x 2  +  y 2 ) = (−3)(26)

 −3 x 2  − 3 y 2  = − 78

 3 x 2  + 25 y 2  = 100

 22 y 2  = 22

After we add the two equations together, we solve for y.
  y 2  = 1
 y = ±  √

—
 1   = ± 1

Substitute y = ± 1 into one of the equations and solve for x.
  x 2  +  (1) 2  = 26     x 2  +  (−1) 2  = 26

  x 2  + 1 = 26
  x 2  = 25 = ± 5

  x 2  + 1 = 26
  x 2  = 25
 x = ±  √

—
 25   = ± 5

There are four solutions: (5, 1), (−5, 1), (5, −1), and (−5, −1). See Figure 7.
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Figure 7
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Try It #3

Find the solution set for the given system of nonlinear equations.
 4 x 2  +  y 2  = 13
  x 2  +  y 2  = 10

Graphing a nonlinear Inequality
All of the equations in the systems that we have encountered so far have involved equalities, but we may also encounter 
systems that involve inequalities. We have already learned to graph linear inequalities by graphing the corresponding 
equation, and then shading the region represented by the inequality symbol. Now, we will follow similar steps to graph 
a nonlinear inequality so that we can learn to solve systems of nonlinear inequalities. A nonlinear inequality is an 
inequality containing a nonlinear expression. Graphing a nonlinear inequality is much like graphing a linear inequality.

Recall that when the inequality is greater than, y > a, or less than, y < a, the graph is drawn with a dashed line. When 
the inequality is greater than or equal to, y ≥ a, or less than or equal to, y ≤ a, the graph is drawn with a solid line. 
The graphs will create regions in the plane, and we will test each region for a solution. If one point in the region works, 
the whole region works. That is the region we shade. See Figure 8.
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Figure 8 (a) an example of y > a; (b) an example of y ≥ a; (c) an example of y < a; (d) an example of y ≤ a

How To…
Given an inequality bounded by a parabola, sketch a graph.

1. Graph the parabola as if it were an equation. This is the boundary for the region that is the solution set.
2. If the boundary is included in the region (the operator is ≤ or ≥), the parabola is graphed as a solid line.
3. If the boundary is not included in the region (the operator is < or >), the parabola is graphed as a dashed line.
4. Test a point in one of the regions to determine whether it satisfies the inequality statement. If the statement is true, 

the solution set is the region including the point. If the statement is false, the solution set is the region on the other 
side of the boundary line.

5. Shade the region representing the solution set.

Example 4 Graphing an Inequality for a Parabola

Graph the inequality y >  x 2  + 1.

Solution First, graph the corresponding equation y =  x 2  + 1. Since y >  x 2  + 1 has a greater than symbol, we draw 
the graph with a dashed line. Then we choose points to test both inside and outside the parabola. Let’s test the points 
(0, 2) and (2, 0). One point is clearly inside the parabola and the other point is clearly outside.
 y >  x 2  + 1
 2 >  (0) 2  + 1
 2 > 1 True
 0 >  (2) 2  + 1
 0 > 5 False
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The graph is shown in Figure 9. We can see that the solution set consists of all points inside the parabola, but not on 
the graph itself.
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Figure 9

Graphing a System of nonlinear Inequalities
Now that we have learned to graph nonlinear inequalities, we can learn how to graph systems of nonlinear inequalities. 
A system of nonlinear inequalities is a system of two or more inequalities in two or more variables containing at least 
one inequality that is not linear. Graphing a system of nonlinear inequalities is similar to graphing a system of linear 
inequalities. The difference is that our graph may result in more shaded regions that represent a solution than we find 
in a system of linear inequalities. The solution to a nonlinear system of inequalities is the region of the graph where 
the shaded regions of the graph of each inequality overlap, or where the regions intersect, called the feasible region.

How To…
Given a system of nonlinear inequalities, sketch a graph.

1. Find the intersection points by solving the corresponding system of nonlinear equations.
2. Graph the nonlinear equations.
3. Find the shaded regions of each inequality.
4. Identify the feasible region as the intersection of the shaded regions of each inequality or the set of points common 

to each inequality.

Example 5 Graphing a System of Inequalities

Graph the given system of inequalities.
  x 2  − y ≤ 0
 2 x 2  + y ≤   12

Solution These two equations are clearly parabolas. We can find the points of intersection by the elimination process: 
Add both equations and the variable y will be eliminated. Then we solve for x.

  x 2  − y = 0
 2 x 2  + y = 12
 3 x 2  = 12
  x 2  = 4
 x = ± 2

Substitute the x-values into one of the equations and solve for y.
  x 2  − y = 0
  (2) 2  − y = 0
 4 − y = 0
 y = 4
  (−2) 2  − y = 0
 4 − y = 0
 y = 4
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The two points of intersection are (2, 4) and (−2, 4). Notice that the equations can be rewritten as follows.
  x 2  − y ≤ 0
  x 2  ≤ y
 y ≥  x 2 
 2 x 2  + y ≤ 12
 y ≤ − 2 x 2  + 12

Graph each inequality. See Figure 10. The feasible region is the region between the two equations bounded by 2 
x 2  + y ≤ 12 on the top and  x 2  − y ≤ 0 on the bottom.
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Figure 10

Try It #4

Graph the given system of inequalities.
 y ≥  x 2  − 1
 x − y ≥ − 1

Access these online resources for additional instruction and practice with nonlinear equations.

•	 Solve a System of nonlinear equations Using Substitution (http://openstaxcollege.org/l/nonlinsub)

•	 Solve a System of nonlinear equations Using elimination (http://openstaxcollege.org/l/nonlinelim)

http://openstaxcollege.org/l/nonlinsub
http://openstaxcollege.org/l/nonlinelim
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9.3 SeCTIOn exeRCISeS

VeRBAl

1. Explain whether a system of two nonlinear equations 
can have exactly two solutions. What about exactly 
three? If not, explain why not. If so, give an example 
of such a system, in graph form, and explain why your 
choice gives two or three answers.

2. When graphing an inequality, explain why we only 
need to test one point to determine whether an 
entire region is the solution?

3. When you graph a system of inequalities, will there 
always be a feasible region? If so, explain why. If not, 
give an example of a graph of inequalities that does 
not have a feasible region. Why does it not have a 
feasible region?

4. If you graph a revenue and cost function, explain 
how to determine in what regions there is profit.

5. If you perform your break-even analysis and there 
is more than one solution, explain how you would 
determine which x-values are profit and which are not.

AlGeBRAIC

For the following exercises, solve the system of nonlinear equations using substitution.

6.    x + y = 4 
 x 2  +  y 2  = 9

7.            y = x − 3 
 x 2  +  y 2  = 9

8.            y = x 
 x 2  +  y 2  = 9

9.            y = − x 
 x 2  +  y 2  = 9

10.            x = 2 
 x 2  −  y 2  = 9

For the following exercises, solve the system of nonlinear equations using elimination.

11. 4 x 2  − 9 y 2  = 36 
4 x 2  + 9 y 2  = 36

12.  x 2  +  y 2  = 25 
 x 2  −  y 2  = 1

13. 2 x 2  + 4 y 2  = 4 
 2 x 2  −4 y 2  = 25x − 10

14.      y 2  −  x 2  = 9 
3 x 2  + 2 y 2  = 8

15.  x 2  +  y 2  +   1 _ 
16

   = 2500 
                      y = 2 x 2 

For the following exercises, use any method to solve the system of nonlinear equations.

16.  −2 x 2  + y = −5 
      6x − y = 9

17.  − x 2  + y = 2 
   −x + y = 2

18.  x 2  +  y 2  = 1 
           y = 20 x 2  −1

19.  x 2  +  y 2  = 1 
            y = − x 2 

20. 2 x 3  −  x 2  = y 

              y =   1 _ 2   − x

21.      9 x 2  + 25 y 2  = 225 
 (x − 6) 2  +  y 2  = 1

22.  x 4  −  x 2  = y 
   x 2  + y = 0

23. 2 x 3  −  x 2  = y 
      x 2  + y = 0

For the following exercises, use any method to solve the nonlinear system.

24.  x 2  +  y 2  = 9 
           y = 3 −  x 2 

25.  x 2  −  y 2  = 9 
           x = 3

26.  x 2  −  y 2  = 9 
           y = 3

27.  x 2  −  y 2  = 9 
   x − y = 0

28.  − x 2  + y = 2 
 −4x + y = −1

29.  − x 2  + y = 2 
           2y = − x

30.  x 2  +  y 2  = 25 
 x 2  −  y 2  = 36

31.  x 2  +  y 2  = 1 
          y 2  =  x 2 

32. 16 x 2  − 9 y 2  + 144 = 0 
                    y 2  +  x 2  = 16
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33.          3 x 2  −  y 2  = 12 
 (x − 1) 2  +  y 2  = 1

34.          3 x 2  −  y 2  = 12 
 (x − 1) 2  +  y 2  = 4

35. 3 x 2  −  y 2  = 12 
   x 2  +  y 2  = 16

36.  x 2  −  y 2  − 6x − 4y − 11 = 0 
                          − x 2  +  y 2  = 5

37.  x 2  +  y 2  − 6y = 7 
            x 2  + y = 1

38.  x 2  +  y 2  = 6 
         xy = 1

GRAPHICAl
For the following exercises, graph the inequality.

39.  x 2  + y < 9 40.  x 2  +  y 2  < 4

For the following exercises, graph the system of inequalities. Label all points of intersection.

41.  x 2  + y < 1 
         y > 2x

42.  x 2  + y < −5 
          y > 5x + 10

43.    x 2  +  y 2  < 25 
3 x 2  −  y 2  > 12

44.   x 2  −  y 2  > −4 
 x 2  +  y 2  < 12

45.  x 2  + 3 y 2  > 16 
3 x 2  −  y 2  < 1

exTenSIOnS
For the following exercises, graph the inequality.

46. y ≥  e x  
y ≤ ln(x) + 5

47. y ≤ −log(x) 
y ≤  e x 

For the following exercises, find the solutions to the nonlinear equations with two variables.

48.        4 __ 
 x 2 

   +   1 __ 
 y 2 

   = 24 

  5 __ 
 x 2 

   −   2 __ 
 y 2 

   + 4 = 0

49.   6 __ 
 x 2 

   −   1 __ 
 y 2 

   = 8 

  1 __ 
 x 2 

   −   6 __ 
 y 2 

   =   1 __ 8  

50.  x 2  − xy +  y 2  −2 = 0 
       x + 3y = 4

51.  x 2  − xy − 2 y 2  −6 = 0 
      x 2  +  y 2  = 1

52.  x 2  + 4xy − 2 y 2  − 6 = 0 
        x = y + 2

TeCHnOlOGY
For the following exercises, solve the system of inequalities. Use a calculator to graph the system to confirm the answer.

53. xy < 1 
   y >  √

—
 x  

54.  x 2  + y < 3 
          y > 2x

ReAl-WORlD APPlICATIOnS
For the following exercises, construct a system of nonlinear equations to describe the given behavior, then solve for 
the requested solutions.

55. Two numbers add up to 300. One number is twice 
the square of the other number. What are the 
numbers?

56. The squares of two numbers add to 360. The second 
number is half the value of the first number squared. 
What are the numbers?

57. A laptop company has discovered their cost and  
revenue functions for each day: C(x) = 3 x 2  − 10x + 200 
and R(x) = −2 x 2  + 100x + 50. If they want to make 
a profit, what is the range of laptops per day that they 
should produce? Round to the nearest number which 
would generate profit.

58. A cell phone company has the following cost and 
revenue functions: C(x) = 8 x 2  − 600x + 21,500 and 
R(x) = −3 x 2  + 480x. What is the range of cell phones 
they should produce each day so there is profit? 
round to the nearest number that generates profit.
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9.4 PARTIAl FRACTIOnS

Earlier in this chapter, we studied systems of two equations in two variables, systems of three equations in three 
variables, and nonlinear systems. Here we introduce another way that systems of equations can be utilized—the 
decomposition of rational expressions. 

Fractions can be complicated; adding a variable in the denominator makes them even more so. The methods studied 
in this section will help simplify the concept of a rational expression.

Decomposing   
P(x )

 ____ Q(x )   Where Q(x ) Has Only nonrepeated linear Factors

Recall the algebra regarding adding and subtracting rational expressions. These operations depend on finding a 
common denominator so that we can write the sum or difference as a single, simplified rational expression. In this 
section, we will look at partial fraction decomposition, which is the undoing of the procedure to add or subtract 
rational expressions. In other words, it is a return from the single simplified rational expression to the original 
expressions, called the partial fractions. 

For example, suppose we add the following fractions:

  2 _____ x − 3   +   −1 _____ x + 2  

We would first need to find a common denominator, (x + 2)(x − 3).

Next, we would write each expression with this common denominator and find the sum of the terms.

   2 _____ x − 3      x + 2 _____ x + 2      +   −1 _____ x + 2      x − 3 _____ x − 3      =   2x + 4 − x + 3  ____________  
(x + 2)(x − 3)

   =   x + 7 ________ 
 x 2  − x − 6

  

Partial fraction decomposition is the reverse of this procedure. We would start with the solution and rewrite 
(decompose) it as the sum of two fractions.

  
  x + 7 _______ 
 x 2  − x − 6

  
        Simplified sum     

=
     

  2 ____ x − 3   +   −1 _____ x + 2  
                Partial fraction decomposition  

We will investigate rational expressions with linear factors and quadratic factors in the denominator where the degree 
of the numerator is less than the degree of the denominator. Regardless of the type of expression we are decomposing, 
the first and most important thing to do is factor the denominator.

When the denominator of the simplified expression contains distinct linear factors, it is likely that each of the original 
rational expressions, which were added or subtracted, had one of the linear factors as the denominator. In other words, 
using the example above, the factors of  x 2  − x − 6 are (x − 3)(x + 2), the denominators of the decomposed rational 
expression.

So we will rewrite the simplified form as the sum of individual fractions and use a variable for each numerator. Then, 
we will solve for each numerator using one of several methods available for partial fraction decomposition.

leARnInG OBjeCTIVeS

In this section, you will:
•	 Decompose P (x )Q (x ), where Q (x ) has only nonrepeated linear factors.
•	 Decompose P (x )Q (x ), where Q (x ) has repeated linear factors.
•	 Decompose P (x )Q (x ), where Q (x ) has a nonrepeated irreducible quadratic factor.
•	 Decompose P (x )Q (x ), where Q (x ) has a repeated irreducible quadratic factor.
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partial fraction decomposition of    P(x) ____ 
Q(x)

   : Q(x) has nonrepeated linear factors 

The partial fraction decomposition of   P(x) ____ 
Q(x)

   when Q(x) has nonrepeated linear factors and the degree of 
P(x) is less than the degree of Q(x) is

  P(x) ____ 
Q(x)

   =    
 A 1  __ 

    a 1 x +  b 1   
      +    

 A 2  __ 
    a 2  x +  b 2   

      +    
 A 3  __ 

    a 3 x +  b 3   
      + … +    

 A n  __ 
    a n x +  b n   

     .

How To…
Given a rational expression with distinct linear factors in the denominator, decompose it.
1. Use a variable for the original numerators, usually A, B, or C, depending on the number of factors, placing each 

variable over a single factor. For the purpose of this definition, we use  A n  for each numerator

  P(x) ____ 
Q(x)

   =   
 A 1  __ 

    a 1 x +  b 1   
     +    

 A 2  __ 
    a 2  x +  b 2   

      + … +    
 A n  __ 

    a n x +  b n   
     .

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of 

equations to solve for the numerators.

Example 1 Decomposing a Rational Function with Distinct Linear Factors

Decompose the given rational expression with distinct linear factors.

   3x ___________  
(x + 2)(x − 1)

  

Solution We will separate the denominator factors and give each numerator a symbolic label, like A, B, or C.

   3x ___________  
(x + 2)(x − 1)

   =   A ______ 
(x + 2)

   +   B _____ 
(x − 1)

  

Multiply both sides of the equation by the common denominator to eliminate the fractions:

 (x + 2)(x − 1)    3x __________  
(x + 2)(x − 1)

      =   (x + 2) (x − 1)    A ______ 
  (x + 2) 

      + (x + 2)  (x − 1)     B _____ 
  (x − 1) 

     
The resulting equation is
 3x = A(x − 1) + B(x + 2)
Expand the right side of the equation and collect like terms.
 3x = Ax − A + Bx + 2B
 3x = (A + B)x − A + 2B

Set up a system of equations associating corresponding coefficients.
 3 = A + B
 0 = −A + 2B
Add the two equations and solve for B.
 3 = A + B
 0 = −A + 2B
 3 = 0 + 3B
 1 = B
Substitute B = 1 into one of the original equations in the system.
 3 = A + 1
 2 = A
Thus, the partial fraction decomposition is

   3x __________  
(x + 2)(x − 1)

   =   2 ______ 
(x + 2)

   +   1 _____ 
(x − 1)
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Another method to use to solve for A or B is by considering the equation that resulted from eliminating the fractions 
and substituting a value for x that will make either the A- or B-term equal 0. If we let x = 1, the A-term becomes 0 
and we can simply solve for B.
 3x = A(x − 1) + B(x + 2)
 3(1) = A[(1) − 1] + B[(1) + 2]
 3 = 0 + 3B
 1 = B
Next, either substitute B = 1 into the equation and solve for A, or make the B-term 0 by substituting x = −2 into the 
equation.
 3x = A(x − 1) + B(x + 2)
 3(−2) = A[(−2) − 1] + B[(−2) + 2]
 −6 = −3A + 0

   −6 ___ 
−3   = A

 2 = A

We obtain the same values for A and B using either method, so the decompositions are the same using either method.

   3x ___________  
(x + 2)(x − 1)

   =   2 ______ 
(x + 2)

   +   1 _____ 
(x − 1)

  

Although this method is not seen very often in textbooks, we present it here as an alternative that may make some 
partial fraction decompositions easier. It is known as the Heaviside method, named after Charles Heaviside, a pioneer 
in the study of electronics.

Try It #1

Find the partial fraction decomposition of the following expression.

  x ____________  
(x − 3)(x − 2)

  

Decomposing   
P(x )

 ____ Q(x )   Where Q(x ) Has Repeated linear Factors

Some fractions we may come across are special cases that we can decompose into partial fractions with repeated linear 
factors. We must remember that we account for repeated factors by writing each factor in increasing powers.

partial fraction decomposition of    P(x) ____ 
Q(x)

   : Q(x) has repeated linear factors 

The partial fraction decomposition of   P(x) ____ 
Q(x)

   when Q(x) has repeated linear factor occurring n times and the degree of 
P(x) is less than the degree of Q(x), is

  P(x) ____ 
Q(x)

   =   
 A 1  _______ 

(ax + b)
   +   

 A 2  ________ 
 (ax + b) 2 

   +   
 A 3  ________ 

 (ax + b) 3 
   + … +   

 A n  ________ 
 (ax + b) n 

  

Write the denominator powers in increasing order.

How To…
Given a rational expression with repeated linear factors, decompose it.

1. Use a variable like A, B, or C for the numerators and account for increasing powers of the denominators.

  P(x) ____ 
Q(x)

   =   
 A 1  _______ 

(ax + b)
   +   

 A 2  ________ 
 (ax + b) 2 

   + … +   
 A n  ________ 

 (ax + b) n 
  

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of 

equations to solve for the numerators.
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Example 2 Decomposing with Repeated Linear Factors

Decompose the given rational expression with repeated linear factors.

   − x 2  + 2x + 4  ___________  
 x 3  − 4 x 2  + 4x

  

Solution The denominator factors are x (x − 2) 2 . To allow for the repeated factor of (x − 2), the decomposition will 
include three denominators: x, (x − 2), and  (x − 2) 2 . Thus,

   − x 2  + 2x + 4  __________  
 x 3  − 4 x 2  + 4x

   =   A __ x   +   B ______ 
(x − 2)

   +   C _______ 
 (x − 2) 2 

  

Next, we multiply both sides by the common denominator.

 x (x − 2) 2     − x 2  + 2x + 4  __________ 
x (x − 2) 2 

      =     A __ x   +   B ______ 
(x − 2)

   +   C _______ 
 (x − 2) 2 

     x (x − 2) 2 

 − x 2  + 2x + 4 = A (x − 2) 2  + Bx(x−2) + Cx

On the right side of the equation, we expand and collect like terms.

 − x 2  + 2x + 4 = A( x 2  − 4x + 4) + B( x 2  − 2x) + Cx

 = A x 2  − 4Ax + 4A + B x 2  − 2Bx + Cx

 = (A + B) x 2  + ( −4A − 2B + C)x + 4A

Next, we compare the coefficients of both sides. This will give the system of equations in three variables:

 − x 2  + 2x + 4 = (A + B) x 2  + (−4A − 2B + C)x + 4A
 A + B = −1 (1)
 −4A − 2B + C = 2 (2)
 4A = 4 (3)
Solving for A, we have
 4A = 4
 A = 1
Substitute A = 1 into equation (1).
 A + B = −1
 (1) + B = −1
 B = −2
Then, to solve for C, substitute the values for A and B into equation (2).

 −4A − 2B + C = 2
 −4(1) − 2(−2) + C = 2
 −4 + 4 + C = 2
 C = 2
Thus,

   − x 2  + 2x + 4  __________  
 x 3  − 4 x 2  + 4x

   =   1 __ x   −   2 ______ 
(x − 2)

   +   2 _______ 
 (x − 2) 2 

  

Try It #2

Find the partial fraction decomposition of the expression with repeated linear factors.

   6x − 11 _______ 
 (x − 1) 2 
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Decomposing   
P(x )

 ____ Q(x )   Where Q(x ) Has a nonrepeated Irreducible Quadratic Factor

So far, we have performed partial fraction decomposition with expressions that have had linear factors in the 
denominator, and we applied numerators A, B, or C representing constants. Now we will look at an example where 
one of the factors in the denominator is a quadratic expression that does not factor. This is referred to as an irreducible 
quadratic factor. In cases like this, we use a linear numerator such as Ax + B, Bx + C, etc.

decomposition of   P(x) _____ 
Q(x):

   Q(x) has a nonrepeated irreducible quadratic factor 

The partial fraction decomposition of   P(x) ____ 
Q(x)

   such that Q(x) has a nonrepeated irreducible quadratic factor and the

degree of P(x) is less than the degree of Q(x), is written as

  P(x) ____ 
Q(x)

   =   
 A 1  x +  B 1  ______________  

( a 1 
 
 x  2  +  b 1  x +  c 1 )

   +   
 A 2  x +  B 2  ______________  

( a 2   x 2  +  b 2  x +  c 2 )
   + … +   

 A n  x +  B n  ______________  
( a n   x 2  +  b n  x +  c n )

  

The decomposition may contain more rational expressions if there are linear factors. Each linear factor will have a 
different constant numerator: A, B, C, and so on.

How To…
Given a rational expression where the factors of the denominator are distinct, irreducible quadratic factors, decompose it.

1.  Use variables such as A, B, or C for the constant numerators over linear factors, and linear expressions such as  A 1  
x +  B 1 ,  A 2 x +  B 2 , etc., for the numerators of each quadratic factor in the denominator.

  P(x) ____ 
Q(x)

   =   A ______ 
ax + b

   +   
 A 1  x +  B 1  _____________  

( a 1   x 2  +  b 1  x +  c 1 )
   +   

 A 2  x +  B 2  _____________  
( a 2   x 2  +  b 2  x +  c 2 )

   + … +   
 A n  x +  B n  _____________  

( a n   x  2  +  b n  x +  c n )
  

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of 

equations to solve for the numerators.

Example 3 Decomposing   
P(x)

 ____ 
Q(x)

   When Q(x) Contains a Nonrepeated Irreducible Quadratic Factor

Find a partial fraction decomposition of the given expression.

   8 x 2  + 12x − 20  ________________  
(x + 3)( x 2  + x + 2)

  

Solution We have one linear factor and one irreducible quadratic factor in the denominator, so one numerator will 
be a constant and the other numerator will be a linear expression. Thus,

   8 x 2  + 12x−20  ________________  
(x + 3)( x 2  + x + 2)

   =   A ______ 
(x + 3)

   +   Bx + C __________ 
( x 2  + x + 2)

  

We follow the same steps as in previous problems. First, clear the fractions by multiplying both sides of the equation 
by the common denominator.

 (x + 3)( x 2  + x + 2)    8 x 2  + 12x − 20  ________________  
(x + 3)( x 2  + x + 2)

      =     A ______ 
(x + 3)

   +   Bx + C __________ 
( x 2  + x + 2)

     (x + 3)( x 2  + x + 2)

 8 x 2  + 12x − 20 = A( x 2  + x + 2) + (Bx + C)(x + 3)
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Notice we could easily solve for A by choosing a value for x that will make the Bx + C term equal 0. Let x = −3 and 
substitute it into the equation.
 8 x 2  + 12x − 20 = A( x 2  + x + 2) + (Bx + C)(x + 3)

 8 (−3) 2  + 12(−3) − 20 = A( (−3) 2  + (−3) + 2) + (B(−3) + C)((−3) + 3)

 16 = 8A

 A = 2

Now that we know the value of A, substitute it back into the equation. Then expand the right side and collect like terms.

 8 x 2  + 12x − 20 = 2( x 2  + x + 2) + (Bx + C)(x + 3)

 8 x 2  + 12x − 20 = 2 x 2  + 2x + 4 + B x 2  + 3B + Cx + 3C

 8 x 2  + 12x − 20 = (2 + B) x 2  + (2 + 3B + C)x + (4 + 3C)

Setting the coefficients of terms on the right side equal to the coefficients of terms on the left side gives the system of 
equations.

 2 + B = 8 (1)

 2 + 3B + C = 12 (2)

 4 + 3C = −20 (3)

Solve for B using equation (1) and solve for C using equation (3).

 2 + B = 8 (1)

 B = 6

 4 + 3C = −20 (3)

 3C = −24

 C = −8

Thus, the partial fraction decomposition of the expression is

   8 x 2  + 12x − 20  _______________  
(x + 3)( x 2  + x + 2)

   =   2 ______ 
(x + 3)

   +   6x − 8 __________ 
( x 2  + x + 2)

  

Q & A…
Could we have just set up a system of equations to solve Example 3?

Yes, we could have solved it by setting up a system of equations without solving for A first. The expansion on the right 
would be:

 8 x 2  + 12x − 20 = A x 2  + Ax + 2A + B x 2  + 3B + Cx + 3C

 8 x 2  + 12x − 20 = (A + B) x 2  + (A + 3B + C)x + (2A + 3C)

So the system of equations would be:

 A + B = 8

 A + 3B + C = 12

 2A + 3C = −20

Try It #3

Find the partial fraction decomposition of the expression with a nonrepeating irreducible quadratic factor.

  5 x 2  − 6x + 7  ____________  
(x − 1)( x 2  + 1)
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Decomposing   
P(x )

 ____ Q(x )   Where Q(x ) Has a Repeated Irreducible Quadratic Factor

Now that we can decompose a simplified rational expression with an irreducible quadratic factor, we will learn how to 
do partial fraction decomposition when the simplified rational expression has repeated irreducible quadratic factors. 
The decomposition will consist of partial fractions with linear numerators over each irreducible quadratic factor 
represented in increasing powers.

 decomposition of   P(x) ____ 
Q(x)

   : when Q(x) has a repeated irreducible quadratic factor 

The partial fraction decomposition of   P(x) ____ 
Q(x)

  , when Q(x) has a repeated irreducible quadratic factor and the degree

of P(x) is less than the degree of Q(x), is

  P(x) _____________  
 (a x  2  + bx + c) n 

   =   
 A 1  x +  B 1  ____________  

(a x  2  + bx + c)
   +   

 A 2  x +  B 2  _____________  
 (a x  2  + bx + c) 2 

   +   
 A 3  x +  B 3  _____________  

 (a x  2  + bx + c) 3 
   + … +   

 A n  x +  B n  _____________  
 (a x  2  + bx + c) n 

  

Write the denominators in increasing powers.

How To…
Given a rational expression that has a repeated irreducible factor, decompose it.

1.  Use variables like A, B, or C for the constant numerators over linear factors, and linear expressions such as  A 1 x +  B 1 ,  
 A 2 x +  B 2 , etc., for the numerators of each quadratic factor in the denominator written in increasing powers, such as

  P(x) ____ 
Q(x)

   =   A ______ 
ax + b

   +   
 A 1  x +  B 1  ____________  

(a x 2  + bx + c)
   +   

 A 2  x +  B 2  ____________  
 (a x 2  + bx + c) 2 

   + … +   
 A n  x +  B n  ____________  

 (a x  2  + bx + c) n 
  

2. Multiply both sides of the equation by the common denominator to eliminate fractions.
3. Expand the right side of the equation and collect like terms.
4. Set coefficients of like terms from the left side of the equation equal to those on the right side to create a system of 

equations to solve for the numerators.

Example 4  Decomposing a Rational Function with a Repeated Irreducible Quadratic Factor in the Denominator

Decompose the given expression that has a repeated irreducible factor in the denominator.

   x 4  +  x 3  +  x 2  − x + 1  ________________  
x ( x 2  + 1) 2 

  

Solution The factors of the denominator are x, ( x 2  + 1), and  ( x 2  + 1) 2 . Recall that, when a factor in the denominator 
is a quadratic that includes at least two terms, the numerator must be of the linear form Ax + B. So, let’s begin the 
decomposition.

    x 4  +  x 3  +  x 2  − x + 1  ________________  
x ( x 2  + 1) 2 

   =   A __ x   +   Bx + C _______ 
( x 2  + 1)

   +   Dx + E _______ 
 ( x 2  + 1) 2 

  

We eliminate the denominators by multiplying each term by x ( x 2  + 1) 2 . Thus,

  x 4  +  x 3  +  x 2  − x + 1 = A ( x 2  + 1) 2  + (Bx + C)(x)( x 2  + 1) + (Dx + E)(x)

Expand the right side.

x 4  +  x 3  +  x 2  − x + 1 = A( x 4  + 2 x 2  + 1) + B x 4  + B x 2  + C x 3  + Cx + D x 2  + Ex

 = A x 4  + 2A x 2  + A + B x 4  + B x 2  + C x 3  + Cx + D x 2  + Ex

Now we will collect like terms.

x 4  +  x 3  +  x 2  − x + 1 = (A + B) x 4  + (C) x 3  + (2A + B + D) x 2  + (C + E)x + A
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Set up the system of equations matching corresponding coefficients on each side of the equal sign.

 A + B = 1

 C = 1

 2A + B + D = 1

 C + E = −1

 A = 1

We can use substitution from this point. Substitute A = 1 into the first equation.

 1 + B = 1

 B = 0

Substitute A = 1 and B = 0 into the third equation.

 2(1) + 0 + D = 1

 D = −1

Substitute C = 1 into the fourth equation.

 1 + E = −1

 E = −2

Now we have solved for all of the unknowns on the right side of the equal sign. We have A = 1, B = 0, C = 1, D = −1, 
and E = −2. We can write the decomposition as follows:

   x 4  +  x 3  +  x 2  − x + 1  ________________  
x ( x 2  + 1) 2 

   =   1 __ x   +   1 _______ 
( x 2  + 1)

   −   x + 2 _______ 
 ( x 2  + 1) 2 

  

Try It #4

Find the partial fraction decomposition of the expression with a repeated irreducible quadratic factor.

    x 3  − 4 x 2  + 9x−5  ______________  
 ( x 2  −2x + 3) 2 

  

Access these online resources for additional instruction and practice with partial fractions.

•	 Partial Fraction Decomposition (http://openstaxcollege.org/l/partdecomp)

•	 Partial Fraction Decomposition With Repeated linear Factors (http://openstaxcollege.org/l/partdecomprlf)

•	 Partial Fraction Decomposition With linear and Quadratic Factors (http://openstaxcollege.org/l/partdecomlqu)

http://openstaxcollege.org/l/partdecomp
http://openstaxcollege.org/l/partdecomprlf
http://openstaxcollege.org/l/partdecomlqu


SECTION 9.4 section exercises 803

9.4 SeCTIOn exeRCISeS

VeRBAl

1. Can any quotient of polynomials be decomposed into 
at least two partial fractions? If so, explain why, and if 
not, give an example of such a fraction

2. Can you explain why a partial fraction 
decomposition is unique? (Hint: Think about it as a 
system of equations.)

3. Can you explain how to verify a partial fraction 
decomposition graphically?

4. You are unsure if you correctly decomposed the 
partial fraction correctly. Explain how you could 
double check your answer.

5. Once you have a system of equations generated by 
the partial fraction decomposition, can you explain 
another method to solve it? For example if you had 

   7x + 13 ___________  
3 x 2  + 8x + 15

   =   A _____ x + 1   +   B ______ 3x + 5  , we eventually

 simplify to 7x + 13 = A(3x + 5) + B(x + 1). 
Explain how you could intelligently choose an 
x-value that will eliminate either A or B and solve for 
A and B.

AlGeBRAIC

For the following exercises, find the decomposition of the partial fraction for the nonrepeating linear factors.

6.   5x + 16 ___________  
 x 2  + 10x + 24

  7.   3x − 79 __________ 
 x 2  − 5x − 24

  8.   −x − 24 __________ 
 x 2  − 2x − 24

  

9.   10x + 47 __________ 
 x 2  + 7x + 10

  10.   x ____________  
6 x 2  + 25x + 25

  11.   32x − 11 ____________  
20 x 2  − 13x + 2

  

12.   x + 1 __________ 
 x 2  + 7x + 10

  13.   5x _ 
 x 2  − 9

  14.   10x ______ 
 x 2  − 25

  

15.   6x _____ 
 x 2  − 4

  16.   2x − 3 _________ 
 x 2  − 6x + 5

  17.   4x − 1 _ 
 x 2  − x − 6

  

18.   4x + 3 __________ 
 x 2  + 8x + 15

  19.   3x − 1 _________ 
 x 2  −5x + 6

  

For the following exercises, find the decomposition of the partial fraction for the repeating linear factors.

20.   −5x − 19 ________ 
 (x + 4) 2 

  21.   x _______ 
 (x − 2) 2 

  22.   7x + 14 _______ 
 (x + 3) 2 

  

23.   −24x − 27 _________ 
 (4x + 5) 2 

  24.   −24x − 27 _________  (6x − 7) 2   25.   5 − x _______ 
 (x − 7) 2 

  

26.   5x + 14 ____________  
2 x 2  + 12x + 18

  27.   5 x 2  + 20x + 8  ___________ 
2x (x + 1) 2 

  28.   4 x 2  + 55x + 25  ____________  
5x (3x + 5) 2 

  

29.   54 x 3  + 127 x 2  + 80x + 16  ____________________  
2 x 2   (3x + 2) 2 

  30.    x 3  − 5 x 2  + 12x + 144  _________________  
 x 2 ( x 2  + 12x + 36)
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For the following exercises, find the decomposition of the partial fraction for the irreducible non repeating quadratic 
factor.

31.   4 x 2  + 6x + 11  _______________  
(x + 2)( x 2  + x + 3)

  32.   4 x 2  + 9x + 23  _________________  
(x − 1)( x 2  + 6x + 11)

  33.   −2 x 2  + 10x + 4  ________________  
(x − 1)( x 2  + 3x + 8)

  

34.    x 2  + 3x + 1  ________________  
(x + 1)( x 2  + 5x − 2)

  35.   4 x 2  + 17x − 1  ________________  
(x + 3)( x 2  + 6x + 1)

  36.   4 x 2  ________________  
(x + 5)( x 2  + 7x − 5)

  

37.   4 x 2  + 5x + 3 __________ 
 x 3  − 1

  38.   −5 x 2  + 18x − 4  ____________ 
 x 3  + 8

  39.   3 x 2  − 7x + 33  ___________ 
 x 3  + 27

  

40.    x 2  + 2x + 40 __________ 
 x 3  − 125

  41.   4 x 2  + 4x + 12  ___________ 
8 x 3  − 27

  42.   −50 x 2  + 5x − 3  ____________ 
125 x 3  − 1

  

43.   −2 x 3  − 30 x 2  + 36x + 216  ____________________  
 x 4  + 216x

  

For the following exercises, find the decomposition of the partial fraction for the irreducible repeating quadratic factor.

44.   3 x 3  + 2 x 2  + 14x + 15  _________________  
 ( x 2  + 4) 2 

  45.    x 3  + 6 x 2  + 5x + 9  ______________  
 ( x 2  + 1) 2 

  46.    x 3  −  x 2  + x − 1  ___________ 
 ( x 2  − 3) 2 

  

47.    x 2  + 5x + 5 _________ 
 (x + 2) 2 

  48.    x 3  + 2 x 2  + 4x  ___________  
 ( x 2  + 2x + 9) 2 

  49.    x 2  + 25 ____________  
 ( x 2  + 3x + 25) 2 

  

50.   2 x 3  + 11x + 7x + 70  ________________  
 (2 x 2  + x + 14) 2 

  51.   5x + 2 ________ 
 x( x 2  + 4) 2 

  52.    x 4  +  x 3  + 8 x 2  + 6x + 36  ___________________  
 x( x 2  + 6) 2 

  

53.   2x − 9 _______ 
 ( x 2  − x) 2 

  54.   5 x 3  − 2x + 1 __________ 
 ( x 2  + 2x) 2 

  

exTenSIOnS

For the following exercises, find the partial fraction expansion.

55.    x 2  + 4 _______ 
 (x + 1) 3 

  56.    x 3  − 4 x 2  + 5x + 4  ______________ 
 (x − 2) 3 

  

For the following exercises, perform the operation and then find the partial fraction decomposition.

57.   7 _____ x + 8   +   5 _____ x − 2   −   x − 1 __________ 
 x 2  −6x − 16

  58.   1 _____ x − 4   −   3 _____ x + 6   −   2x + 7 __________ 
 x 2  + 2x − 24

  

59.   2x ______ 
 x 2  − 16

   −   1−2x _________ 
 x 2  + 6x + 8

   −   x − 5 ______ 
 x 2  − 4x
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9.5 MATRICeS AnD MATRIx OPeRATIOnS

Figure 1 (credit: “SD Dirk,” Flickr)

Two club soccer teams, the Wildcats and the Mud Cats, are hoping to obtain new equipment for an upcoming season. 
Table 1 shows the needs of both teams.

Wildcats Mud Cats
Goals 6 10
Balls 30 24

Jerseys 14 20
Table 1

A goal costs $300; a ball costs $10; and a jersey costs $30. How can we find the total cost for the equipment needed for 
each team? In this section, we discover a method in which the data in the soccer equipment table can be displayed and 
used for calculating other information. Then, we will be able to calculate the cost of the equipment.

Finding the Sum and Difference of Two Matrices
To solve a problem like the one described for the soccer teams, we can use a matrix, which is a rectangular array of 
numbers. A row in a matrix is a set of numbers that are aligned horizontally. A column in a matrix is a set of numbers 
that are aligned vertically. Each number is an entry, sometimes called an element, of the matrix. Matrices (plural) are 
enclosed in [ ] or ( ), and are usually named with capital letters. For example, three matrices named A, B, and C are 
shown below.

A =    1 2
    

3 4
    , B =    

1 2 7
 

    
 0 −5 6      

7 8 2
     , C =     

 −1 3
 

   
  0 2     

 3 1
    

leARnInG OBjeCTIVeS

In this section, you will:
•	 Find the sum and difference of two matrices.
•	 Find scalar multiples of a matrix.
•	 Find the product of two matrices.



CHAPTER 9 systems oF eQuations and ineQualities806

Describing Matrices

A matrix is often referred to by its size or dimensions: m × n indicating m rows and n columns. Matrix entries are 
defined first by row and then by column. For example, to locate the entry in matrix A identified as  a ij , we look for the 
entry in row i, column j. In matrix A, shown below, the entry in row 2, column 3 is  a 23 .

A =    
 a 11   a 12   a 13 

 
     

  a 21   a 22   a 23        
 a 31   a 32   a 33 

    

A square matrix is a matrix with dimensions n × n, meaning that it has the same number of rows as columns. The 
3 × 3 matrix above is an example of a square matrix.

A row matrix is a matrix consisting of one row with dimensions 1 × n.

[ a 11   a 12   a 13 ]

A column matrix is a matrix consisting of one column with dimensions m × 1.

   
 a 11 

 
 

  a 12    
 a 13 

    

A matrix may be used to represent a system of equations. In these cases, the numbers represent the coefficients of the 
variables in the system. Matrices often make solving systems of equations easier because they are not encumbered 
with variables. We will investigate this idea further in the next section, but first we will look at basic matrix 
operations.

matrices 
A matrix is a rectangular array of numbers that is usually named by a capital letter: A, B, C, and so on. Each entry in 
a matrix is referred to as  a ij , such that i represents the row and j represents the column. Matrices are often referred to 
by their dimensions: m × n indicating m rows and n columns.

Example 1 Finding the Dimensions of the Given Matrix and Locating Entries

Given matrix A:

a.  What are the dimensions of matrix A?

b.  What are the entries at  a 31  and  a 22  ?

 A =    
2 1 0

 
    

 2 4 7      
3 1 −2

     

Solution 

a.  The dimensions are 3 × 3 because there are three rows and three columns.

b.  Entry  a 31  is the number at row 3, column 1, which is 3. The entry  a 22  is the number at row 2, column 2, which 
is 4. Remember, the row comes first, then the column.

Adding and Subtracting Matrices

We use matrices to list data or to represent systems. Because the entries are numbers, we can perform operations on 
matrices. We add or subtract matrices by adding or subtracting corresponding entries. 

In order to do this, the entries must correspond. Therefore, addition and subtraction of matrices is only possible when the 
matrices have the same dimensions. We can add or subtract a 3 × 3 matrix and another 3 × 3 matrix, but we cannot add 
or subtract a 2 × 3 matrix and a 3 × 3 matrix because some entries in one matrix will not have a corresponding entry in 
the other matrix.
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adding and subtracting matrices 
Given matrices A and B of like dimensions, addition and subtraction of A and B will produce matrix C or matrix 
D of the same dimension.

A + B = C such that  a 
ij
  +  b ij  =  c ij 

A − B = D such that  a ij  −  b ij  =  d ij 

Matrix addition is commutative.

 A + B = B + A

It is also associative.

 (A + B) + C = A + (B + C)

Example 2 Finding the Sum of Matrices

Find the sum of A and B, given

 A =    
a b

    
c d

      and B =    
e f

    
g h

    

Solution Add corresponding entries.

 A + B =    
a b

    
c d

      +    
e f

    
g h

    

 =    
a + e b + f

       
c + g d + h

    

Example 3 Adding Matrix A and Matrix B

Find the sum of A and B.

 A =    
4 1

    
3 2

     and B =    
5 9

    
0 7

    

Solution Add corresponding entries. Add the entry in row 1, column 1,  a 11 , of matrix A to the entry in row 1, 
column 1,  b 11 , of B. Continue the pattern until all entries have been added.

 A + B =    
4 1

    
3 2

     +    
5 9

    
0 7

    

 =    
4 + 5 1 + 9

       
3 + 0 2 + 7

    

 =    
9 10

     
3  9

    

Example 4 Finding the Difference of Two Matrices

Find the difference of A and B.

 A =    
−2 3

     
    0 1

     and B =    
8 1

    
5 4

    

Solution We subtract the corresponding entries of each matrix.

 A − B =    
−2 3

     
    0 1

     −    
8 1

    
5 4

    

 =    
−2 − 8 3 − 1

          
    0 − 5 1 − 4

    

 =    −10    2      
−5 −3
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Example 5 Finding the Sum and Difference of Two 3 x 3 Matrices

Given A and B :

a.  Find the sum.

b.  Find the difference.

A =     
2 −10 −2

  
      

  14    12   10          
4   −2     2

     and B =    
    6     10 −2

  
      

      0 −12 −4          
−5      2 −2

     

Solution

a.  Add the corresponding entries.

 A + B =    
 2 −10 −2

  
      

  14    12   10          
 4  −2     2

      +    
    6     10 −2

  
      

      0 −12 −4          
−5       2 −2

     

 =    
2  + 6 −10 + 10 −2 − 2

   
           

   14 + 0    12 − 12   10 − 4                 
4  − 5 −2  + 2       2 − 2

    

 =     
 8 0 −4

 
     

 14 0 −6       
−1 0 −0

    

b.  Subtract the corresponding entries.

 A − B =    
 2 −10 −2

  
      

  14    12   10          
 4  −2     2

      −    
    6     10 −2

  
      

      0 −12 −4          
−5       2 −2

     

 =    
 2 − 6 −10 − 10 −2 + 2

   
           

   14 − 0     12 + 12   10 + 4                 
 4 + 5  −2 −  2     2 + 2

     

 =    
−4 −20  0

  
      

  14   24 14         
9  −4  4

    

Try It #1

Add matrix A and matrix B.

A =     
2

  
6

  1  0  
1

  
−3

      and B =      
3

  
−2

  1  5  
−4

  
3

     

Finding Scalar Multiples of a Matrix
Besides adding and subtracting whole matrices, there are many situations in which we need to multiply a matrix by a 
constant called a scalar. Recall that a scalar is a real number quantity that has magnitude, but not direction. For example, 
time, temperature, and distance are scalar quantities. The process of scalar multiplication involves multiplying each 
entry in a matrix by a scalar. A scalar multiple is any entry of a matrix that results from scalar multiplication.

Consider a real-world scenario in which a university needs to add to its inventory of computers, computer tables, and 
chairs in two of the campus labs due to increased enrollment. They estimate that 15% more equipment is needed in 
both labs. The school’s current inventory is displayed in Table 2.

Lab A Lab B
Computers 15 27

Computer Tables 16 34

Chairs 16 34
Table 2



809SECTION 9.5 matrices and matrix operations

Converting the data to a matrix, we have

  C 2013  =    
15 27

 
   

 16 34     
16 34

    

To calculate how much computer equipment will be needed, we multiply all entries in matrix C by 0.15.

 (0.15) C 2013  =    
(0.15)15 (0.15)27

  
       

  (0.15)16 (0.15)34           
(0.15)16 (0.15)34

     =    
2.25 4.05

 
    

 2.4  5.1       
2.4  5.1 

    

We must round up to the next integer, so the amount of new equipment needed is

    
3 5

 
  

 3 6    
3 6

    

Adding the two matrices as shown below, we see the new inventory amounts.

    
15 27

 
   

 16 34     
16 34

     +    
3 5

 
  

 3 6    
3 6

     =    
18 32

 
   

 19 40     
19 40

    

This means

  C 2014  =    
18 32

 
   

 19 40     
19 40

    

Thus, Lab A will have 18 computers, 19 computer tables, and 19 chairs; Lab B will have 32 computers, 40 computer 
tables, and 40 chairs.

scalar multiplication 
Scalar multiplication involves finding the product of a constant by each entry in the matrix. Given

 A =    
 a 11   a 12      
 a 21   a 22 

    

the scalar multiple cA is

 cA = c   
 a 11   a 12      
 a 21   a 22 

    

 =    
 ca 11   ca 12       
 ca 21   ca 22 

    

Scalar multiplication is distributive. For the matrices A, B, and C with scalars a and b,

 a(A + B) = aA + aB

 (a + b)A = aA + bA

Example 6 Multiplying the Matrix by a Scalar

Multiply matrix A by the scalar 3.

 A =    
8 1

    
5 4

    

Solution Multiply each entry in A by the scalar 3.

 3A = 3   
8 1

    
5 4

    

 =    
3 ⋅ 8 3 ⋅ 1

      
3 ⋅ 5 3 ⋅ 4

    

 =     24   3     
15 12
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Try It #2

Given matrix B, find −2B where
A =    

4 1
    

3 2
    

Example 7 Finding the Sum of Scalar Multiples

Find the sum 3A + 2B.

A =    
1 −2    0

 
     

 0 −1    2       
4    3 −6

     and B =    
−1    2     1

  
      

 0 −3     2         
0     1 −4

    

Solution First, find 3A, then 2B.

 3A =    
3 ⋅ 1 3(−2) 3 ⋅ 0

  
        

  3 ⋅ 0 3(−1) 3 ⋅ 2            
3 ⋅ 4 3 ⋅ 3    3(−6)

    

 =     
3 −6      0

  
      

 0 −3      6          
12    9 −18

    

 2B =    
2(−1) 2 ⋅ 2    2 ⋅ 1

  
         

  2 ⋅ 0    2(−3) 2 ⋅ 2             
2 ⋅ 0    2 ⋅ 1    2(−4)

    

 =    
−2     4     2

  
      

 0 −6     4         
0     2 −8

    

Now, add 3A + 2B.

 3A + 2B =     
3 −6      0

  
      

 0 −3      6          
12    9 −18

     +    
−2     4     2

  
      

 0 −6     4         
0     2 −8

    

 =     
3 − 2 −6 + 4      0 + 2

   
          

  0 + 0 −3 − 6      6 + 4                
12 + 0    9 + 2 −18 − 8

    

 =     
1 −2       2

  
      

  0 −9     10          
12   11 −26

    

Finding the Product of Two Matrices
In addition to multiplying a matrix by a scalar, we can multiply two matrices. Finding the product of two matrices 
is only possible when the inner dimensions are the same, meaning that the number of columns of the first matrix is 
equal to the number of rows of the second matrix. If A is an m × r matrix and B is an r × n matrix, then the product 
matrix AB is an m × n matrix. For example, the product AB is possible because the number of columns in A is the 
same as the number of rows in B. If the inner dimensions do not match, the product is not defined.

A  ⋅  B
 2 × 3   3 × 3

 same

We multiply entries of A with entries of B according to a specific pattern as outlined below. The process of matrix 
multiplication becomes clearer when working a problem with real numbers.

To obtain the entries in row i of AB, we multiply the entries in row i of A by column j in B and add. For example, given 
matrices A and B, where the dimensions of A are 2 × 3 and the dimensions of B are 3 × 3, the product of AB will be 
a 2 × 3 matrix.

 A =    
 a 11   a 12   a 13        
 a 21   a 22   a 23 

     and B =    
 b 11   b 12   b 13 

 
     

  b 21   b 22   b 23        
 b 31   b 32   b 33 
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Multiply and add as follows to obtain the first entry of the product matrix AB.

1. To obtain the entry in row 1, column 1 of AB, multiply the first row in A by the first column in B, and add.

 [ a 11   a 12   a 13 ]   
 b 11 

 
 

  b 21    
 b 31 

     =  a 11  ⋅  b 11  +  a 12  ⋅  b 21  +  a 13  ⋅  b 31 

2. To obtain the entry in row 1, column 2 of AB, multiply the first row of A by the second column in B, and add.

 [ a 11   a 12   a 13 ]   
 b 12 

 
 

  b 22    
 b 32 

     =  a 11  ⋅  b 12  +  a 12  ⋅  b 22  +  a 13  ⋅  b 32 

3. To obtain the entry in row 1, column 3 of AB, multiply the first row of A by the third column in B, and add.

 [ a 11   a 12   a 13 ]   
 b 13 

 
 

  b 23    
 b 33 

     =  a 11  ⋅  b 13  +  a 12  ⋅  b 23  +  a 13  ⋅  b 33 

We proceed the same way to obtain the second row of AB. In other words, row 2 of A times column 1 of B; row 2 of A 
times column 2 of B; row 2 of A times column 3 of B. When complete, the product matrix will be

AB =    
 a 11  ⋅  b 11  +  a 12  ⋅  b 21  +  a 13  ⋅  b 31   a 11  ⋅  b 12  +  a 12  ⋅  b 22  +  a 13  ⋅  b 32   a 11  ⋅  b 13  +  a 12  ⋅  b 23  +  a 13  ⋅  b 33                                               
 a 21  ⋅  b 11  +  a 22  ⋅  b 21  +  a 23  ⋅  b 31   a 21  ⋅  b 12  +  a 22  ⋅  b 22  +  a 23  ⋅  b 32   a 21  ⋅  b 13  +  a 22  ⋅  b 23  +  a 23  ⋅  b 33 

    

properties of matrix multiplication 
For the matrices A, B, and C the following properties hold.

•	 Matrix multiplication is associative: (AB)C = A(BC).
 C(A + B) = CA + CB,

•	 Matrix multiplication is distributive:
 (A + B)C = AC + BC.
Note that matrix multiplication is not commutative.

Example 8 Multiplying Two Matrices

Multiply matrix A and matrix B.

A =    
1 2

    
3 4

     and B =    
5 6

    
7 8

    

Solution First, we check the dimensions of the matrices. Matrix A has dimensions 2 × 2 and matrix B has dimensions 
2 × 2. The inner dimensions are the same so we can perform the multiplication. The product will have the dimensions 2 × 2.

We perform the operations outlined previously.

 AB =    
1 2

    
3 4

       
5 6

    
7 8

    

  =    
1(5) + 2(7) 1(6) + 2(8)

              
3(5) + 4(7) 3(6) + 4(8)

    

  =    
19 22

     
43 50

    

Example 9 Multiplying Two Matrices

Given A and B :

a.  Find AB.   b.  Find BA.

 A =    −1 2 3      
4 0 5

     and B =     
5 −1

 
    

 −4     0      
2     3
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Solution

a.  As the dimensions of A are 2 × 3 and the dimensions of B are 3 × 2, these matrices can be multiplied together 
because the number of columns in A matches the number of rows in B. The resulting product will be a 2 × 2 
matrix, the number of rows in A by the number of columns in B.

 AB =    −1 2 3      
4 0 5

        
5 −1

 
    

 −4     0      
2     3

    

 =    −1(5) + 2(−4) + 3(2) −1(−1) + 2(0) + 3(3)                         
4(5) + 0(−4) + 5(2)     4(−1) + 0(0) + 5(3)

    

 =    −7 10     
30 11

    

b.  The dimensions of B are 3 × 2 and the dimensions of A are 2 × 3. The inner dimensions match so the product 
is defined and will be a 3 × 3 matrix.

 BA =     
5 −1

 
    

 −4     0      
2     3

       −1 2 3      
4 0 5

    

 =    
5(−1) + −1(4) 5(2) + −1(0) 5(3) + −1(5)

    
                 

    −4(−1) + 0(4) −4(2) + 0(0) −4(3) + 0(5)                         
2(−1) + 3(4)     2(2) + 3(0)     2(3) + 3(5)

    

 =    
−9  10     10

  
      

  4 −8 −12          
10     4     21

    

Analysi s Notice that the products AB and BA are not equal.

AB =    −7 10     
30 11

     ≠    
−9  10     10

  
      

  4 −8 −12          
10     4     21

     = BA

This illustrates the fact that matrix multiplication is not commutative.

Q & A…
Is it possible for AB to be defined but not BA?

Yes, consider a matrix A with dimension 3 × 4 and matrix B with dimension 4 × 2. For the product AB the inner 
dimensions are 4 and the product is defined, but for the product BA the inner dimensions are 2 and 3 so the product 
is undefined.

Example 10 Using Matrices in Real-World Problems

Let’s return to the problem presented at the opening of this section. We have Table 3, representing the equipment 
needs of two soccer teams.

Wildcats Mud Cats
Goals 6 10
Balls 30 24

Jerseys 14 20
Table 3

We are also given the prices of the equipment, as shown in Table 4.

Goals $300
Balls $10

Jerseys $30
Table 4
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We will convert the data to matrices. Thus, the equipment need matrix is written as

 E =     
6 10

 
   

 30 24     
14 20

    

The cost matrix is written as

 C = [300 10 30]

We perform matrix multiplication to obtain costs for the equipment.

 CE = [300 10 30]    
6 10

 
   

 30 24     
14 20

    

= [300(6) + 10(30) + 30(14) 300(10) + 10(24) + 30(20)]

 = [2,520 3,840]

The total cost for equipment for the Wildcats is $2,520, and the total cost for equipment for the Mud Cats is $3,840.

How To…
Given a matrix operation, evaluate using a calculator.

1. Save each matrix as a matrix variable [A], [B], [C], ...
2. Enter the operation into the calculator, calling up each matrix variable as needed.
3. If the operation is defined, the calculator will present the solution matrix; if the operation is undefined, it will 

display an error message.

Example 11 Using a Calculator to Perform Matrix Operations

Find AB − C given

A =    
−15   25    32

  
      

  41 −7 −28          
10  34    −2

    , B =     
45    21 −37

  
       

  −24    52     19           
6 −48 −31

    , and C =    
−100 −89 −98

  
       

  25 −56     74           
−67     42 −75

    .

Solution On the matrix page of the calculator, we enter matrix A above as the matrix variable [A], matrix B above 
as the matrix variable [B], and matrix C above as the matrix variable [C].

On the home screen of the calculator, we type in the problem and call up each matrix variable as needed.

[A]×[B] − [C]

The calculator gives us the following matrix.

    
 −983 −462     136

  
        

  1,820 1,897 −856            
 −311 2,032     413

    

Access these online resources for additional instruction and practice with matrices and matrix operations.

•	 Dimensions of a Matrix (http://openstaxcollege.org/l/matrixdimen)

•	 Matrix Addition and Subtraction (http://openstaxcollege.org/l/matrixaddsub)

•	 Matrix Operations (http://openstaxcollege.org/l/matrixoper)

•	 Matrix Multiplication (http://openstaxcollege.org/l/matrixmult)

http://openstaxcollege.org/l/matrixdimen
http://openstaxcollege.org/l/matrixaddsub
http://openstaxcollege.org/l/matrixoper
http://openstaxcollege.org/l/matrixmult
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9.5 SeCTIOn exeRCISeS

VeRBAl

1. Can we add any two matrices together? If so, explain 
why; if not, explain why not and give an example of 
two matrices that cannot be added together.

2. Can we multiply any column matrix by any row 
matrix? Explain why or why not.

3. Can both the products AB and BA be defined? If so, 
explain how; if not, explain why.

4. Can any two matrices of the same size be multiplied? 
If so, explain why, and if not, explain why not and 
give an example of two matrices of the same size that 
cannot be multiplied together.

5. Does matrix multiplication commute? That is, does 
AB = BA? If so, prove why it does. If not, explain 
why it does not.

AlGeBRAIC

For the following exercises, use the matrices below and perform the matrix addition or subtraction. Indicate if the 
operation is undefined.

A =    1 3    
0 7

    , B =     2 14     
22   6

    , C =     
1   5

 
   

 8 92     
12   6

    , D =    
10 14

 
   

 7   2     
5 61

    , E =     6 12     
14   5

    , F =     
0    9

 
   

 78 17     
15   4

    

6. A + B 7. C + D 8. A + C 9. B − E 10. C + F 11. D − B

For the following exercises, use the matrices below to perform scalar multiplication.

A =     4   6     
13 12

    , B =     
3   9

 
   

 21 12     
0 64

    , C =    16 3 7 18          
90 5 3 29

    , D =    
18 12 13

 
     

 8 14   6       
7   4 21

    

12. 5A 13. 3B 14. −2B 15. −4C 16.   1 __ 2  C 17. 100D

For the following exercises, use the matrices below to perform matrix multiplication.

A =    −1 5     
3 2

    , B =     3 6   4       
−8 0 12

    , C =     
4 10

 
   

 −2   6     
5   9

    , D =     
2 −3     12

  
      

  9     3       1          
0     8 −10

    

18. AB 19. BC 20. CA 21. BD 22. DC 23. CB

For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, 
explain why the operation cannot be performed.

A =    2 −5     
6    7

    , B =    
−9 6

     
−4 2

    , C =    0 9    
7 1

    , D =    
−8 7 −5

 
     

 4 3    2       
0 9    2

    , E =    
4     5     3

 
     

 7 −6 −5       
1     0     9

    

24. A + B − C 25. 4A + 5D 26. 2C + B 27. 3D + 4E 28. C − 0.5D 29. 100D − 10E
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For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, 
explain why the operation cannot be performed. (Hint:  A 2  = A ⋅ A)

A =    −10 20      
5 25

    , B =     40 10      
−20 30

    , C =    
−1     0

 
    

 0 −1      
1     0

    

30. AB 31. BA 32. CA 33. BC 34.  A 2 35.  B 2 

36.  C 2 37.  B 2  A 2 38.  A 2   B 2 39.  (AB) 2 40.  (BA) 2 

For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, 
explain why the operation cannot be performed. (Hint:  A 2  = A ⋅ A)

A =    1 0    
2 3

    , B =    −2 3     4       
−1 1 −5

    , C =     
0.5 0.1

 
    

 1 0.2      
−0.5 0.3

    , D =     
1 0 −1

 
     

 −6 7    5       
4 2    1

    

41. AB 42. BA 43. BD 44. DC 45.  D 2 46.  A 2 

47.  D 3 48. (AB)C 49. A(BC)

TeCHnOlOGY

For the following exercises, use the matrices below to perform the indicated operation if possible. If not possible, 
explain why the operation cannot be performed. Use a calculator to verify your solution.

A =    
−2 0     9

 
     

 1 8 −3       
0.5 4     5

    , B =     
0.5 3 0

 
    

 −4 1 6      
8 7 2

    , C =    
1 0 1

 
    

 0 1 0      
1 0 1

    

50. AB 51. BA 52. CA 53. BC 54. ABC

exTenSIOnS

For the following exercises, use the matrix below to perform the indicated operation on the given matrix.

B =     1  
0

  
0

  0  0  1  
0

  
1

  
0

     
55. B2 56. B3 57. B4 58. B5

59. Using the above questions, find a formula for Bn. Test the formula for B201 and B202, using a calculator.
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9.6 SOlVInG SYSTeMS WITH GAUSSIAn elIMInATIOn

Figure 1 German mathematician Carl Friedrich Gauss (1777–1855).

Carl Friedrich Gauss lived during the late 18th century and early 19th century, but he is still considered one of the 
most prolific mathematicians in history. His contributions to the science of mathematics and physics span fields such 
as algebra, number theory, analysis, differential geometry, astronomy, and optics, among others. His discoveries 
regarding matrix theory changed the way mathematicians have worked for the last two centuries.

We first encountered Gaussian elimination in Systems of Linear Equations: Two Variables. In this section, we will 
revisit this technique for solving systems, this time using matrices.

Writing the Augmented Matrix of a System of equations
A matrix can serve as a device for representing and solving a system of equations. To express a system in matrix form, 
we extract the coefficients of the variables and the constants, and these become the entries of the matrix. We use a 
vertical line to separate the coefficient entries from the constants, essentially replacing the equal signs. When a system 
is written in this form, we call it an augmented matrix.

For example, consider the following 2 × 2 system of equations.

 3x + 4y = 7
 4x − 2y = 5
We can write this system as an augmented matrix:

    3    4     
4 −2

  ∣      7   
5

    

We can also write a matrix containing just the coefficients. This is called the coefficient matrix.

    3    4     
4 −2

    

leARnInG OBjeCTIVeS

In this section, you will:
•	 Write the augmented matrix of a system of equations.
•	 Write the system of equations from an augmented matrix.
•	 Perform row operations on a matrix.
•	 Solve a system of linear equations using matrices.
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A three-by-three system of equations such as

 3x − y − z = 0
 x + y = 5
 2x − 3z = 2
has a coefficient matrix

    
3 −1 −1

 
     

 1     1     0       
2     0 −3

    

and is represented by the augmented matrix

    
3 −1 −1

 
     

 1     1     0       
2     0 −3

  ∣      0 
 

 5   
2

    

Notice that the matrix is written so that the variables line up in their own columns: x-terms go in the first column, 
y-terms in the second column, and z-terms in the third column. It is very important that each equation is written in 
standard form ax + by + cz = d so that the variables line up. When there is a missing variable term in an equation, 
the coefficient is 0.

How To…
Given a system of equations, write an augmented matrix.

1. Write the coefficients of the x-terms as the numbers down the first column.
2. Write the coefficients of the y-terms as the numbers down the second column.
3. If there are z-terms, write the coefficients as the numbers down the third column.
4. Draw a vertical line and write the constants to the right of the line.

Example 1 Writing the Augmented Matrix for a System of Equations

Write the augmented matrix for the given system of equations.

 x + 2y − z = 3
 2x − y + 2z = 6
 x − 3y + 3z = 4

Solution The augmented matrix displays the coefficients of the variables, and an additional column for the constants.

   
1    2 −1

 
     

 2 −1    2       
1 −3    3

  ∣      3 
 

 6   
4

    

Try It #1

Write the augmented matrix of the given system of equations.

 4x − 3y = 11
 3x + 2y = 4

Writing a System of equations from an Augmented Matrix
We can use augmented matrices to help us solve systems of equations because they simplify operations when the 
systems are not encumbered by the variables. However, it is important to understand how to move back and forth 
between formats in order to make finding solutions smoother and more intuitive. Here, we will use the information 
in an augmented matrix to write the system of equations in standard form.
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Example 2 Writing a System of Equations from an Augmented Matrix Form

Find the system of equations from the augmented matrix.

    
1 −3 −5

  
      

 2 −5 −4          
−3    5     4

  ∣      −2
 

  
 5    

6
    

Solution When the columns represent the variables x, y, and z,

    
1 −3 −5

  
      

 2 −5 −4          
−3    5     4

  ∣      −2
 

  
 5    

6
     →   

x − 3y − 5z = − 2
  

       
  2x − 5y − 4z = 5            

−3x + 5y + 4z = 6 
 

Try It #2

Write the system of equations from the augmented matrix.

    
1 −1 1

 
    

 2 −1 3      
0     1 1

  ∣       5
 

  
 1    

−9
    

Performing Row Operations on a Matrix
Now that we can write systems of equations in augmented matrix form, we will examine the various row operations 
that can be performed on a matrix, such as addition, multiplication by a constant, and interchanging rows.

Performing row operations on a matrix is the method we use for solving a system of equations. In order to solve the system 
of equations, we want to convert the matrix to row-echelon form, in which there are ones down the main diagonal from 
the upper left corner to the lower right corner, and zeros in every position below the main diagonal as shown.

Row-echelon form 

    
1 a b

 
    

 0 1 d      
0 0 1

    

We use row operations corresponding to equation operations to obtain a new matrix that is row-equivalent in a simpler 
form. Here are the guidelines to obtaining row-echelon form.

1. In any nonzero row, the first nonzero number is a 1. It is called a leading 1.

2. Any all-zero rows are placed at the bottom on the matrix.

3. Any leading 1 is below and to the right of a previous leading 1.

4. Any column containing a leading 1 has zeros in all other positions in the column.

To solve a system of equations we can perform the following row operations to convert the coefficient matrix to row-
echelon form and do back-substitution to find the solution.

1. Interchange rows. (Notation:  R i  ↔  R j  )

2. Multiply a row by a constant. (Notation: c R i  )

3. Add the product of a row multiplied by a constant to another row. (Notation:  R i  + c R j )

Each of the row operations corresponds to the operations we have already learned to solve systems of equations in 
three variables. With these operations, there are some key moves that will quickly achieve the goal of writing a matrix 
in row-echelon form. To obtain a matrix in row-echelon form for finding solutions, we use Gaussian elimination, a 
method that uses row operations to obtain a 1 as the first entry so that row 1 can be used to convert the remaining rows.
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Gaussian elimination 
The Gaussian elimination method refers to a strategy used to obtain the row-echelon form of a matrix. The goal 
is to write matrix A with the number 1 as the entry down the main diagonal and have all zeros below.

A =    
 a 11   a 12   a 13 

 
     

  a 21   a 22   a 23        
 a 31   a 32   a 33 

     After Gaussian elimination A =     
1  b 12   b 13 

 
     

 0    1  b 23        
0   0    1

    

The first step of the Gaussian strategy includes obtaining a 1 as the first entry, so that row 1 may be used to alter 
the rows below.

How To…
Given an augmented matrix, perform row operations to achieve row-echelon form.

1. The first equation should have a leading coefficient of 1. Interchange rows or multiply by a constant, if necessary.
2. Use row operations to obtain zeros down the first column below the first entry of 1.
3. Use row operations to obtain a 1 in row 2, column 2.
4. Use row operations to obtain zeros down column 2, below the entry of 1.
5. Use row operations to obtain a 1 in row 3, column 3.
6. Continue this process for all rows until there is a 1 in every entry down the main diagonal and there are only zeros 

below.
7. If any rows contain all zeros, place them at the bottom.

Example 3 Solving a 2 × 2 System by Gaussian Elimination

Solve the given system by Gaussian elimination.

 2x + 3y = 6

 x − y =   1 __ 2  

Solution First, we write this as an augmented matrix.

     2    3     
1 −1

  ∣       6   
  1 _ 2  

    

We want a 1 in row 1, column 1. This can be accomplished by interchanging row 1 and row 2.

  R 1  ↔  R 2  →    
1 −1

     
2    3

  ∣        1 _ 2     
6

    
We now have a 1 as the first entry in row 1, column 1. Now let’s obtain a 0 in row 2, column 1. This can be accomplished 
by multiplying row 1 by −2, and then adding the result to row 2.

 −2 R 1  +  R 2  =  R 2  →     
1 −1

     
0     5

  ∣        1 _ 2     
5

    
We only have one more step, to multiply row 2 by   1 __ 5  .

   1 __ 5    R 2  =  R 2  →     
1 −1

     
0     1

  ∣        1 _ 2     
1

    
Use back-substitution. The second row of the matrix represents y = 1. Back-substitute y = 1 into the first equation.

 x − (1) =   1 __ 2  

 x =   3 __ 2  

The solution is the point     3 __ 2  , 1   .
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Try It #3

Solve the given system by Gaussian elimination.
 4x + 3y = 11
 x − 3y = −1

Example 4 Using Gaussian Elimination to Solve a System of Equations

Use Gaussian elimination to solve the given 2 × 2 system of equations.

 2x + y = 1
 4x + 2y = 6

Solution Write the system as an augmented matrix.

    2 1    
4 2

  ∣      1   
6

    

Obtain a 1 in row 1, column 1. This can be accomplished by multiplying the first row by   1 __ 2  .

   1 __ 2   R 1  =  R 1  →    1   1 _ 2      
4 2

  ∣        1 _ 2     
6

    
Next, we want a 0 in row 2, column 1. Multiply row 1 by −4 and add row 1 to row 2.

 −4 R 1  +  R 2  =  R 2  →    1   1 _ 2      
0 0

  ∣        1 _ 2     
4

    
The second row represents the equation 0 = 4. Therefore, the system is inconsistent and has no solution.

Example 5 Solving a Dependent System

Solve the system of equations.
 3x + 4y = 12

 6x + 8y = 24

Solution Perform row operations on the augmented matrix to try and achieve row-echelon form.

 A =    3 4    
6 8

  ∣      12   
24

    

 −  1 __ 2   R 2  +  R 1  =  R 1  →    0 0    
6 8

  ∣       0   
24

    

  R 1  ↔  R 2  →    6 8    
0 0

  ∣      24   
0

    

The matrix ends up with all zeros in the last row: 0y = 0. Thus, there are an infinite number of solutions and the 
system is classified as dependent. To find the generic solution, return to one of the original equations and solve for y.

 3x + 4y = 12

 4y = 12 − 3x

 y = 3 −   3 __ 4  x

So the solution to this system is   x, 3 −   3 __ 4  x   .

Example 6 Performing Row Operations on a 3 × 3 Augmented Matrix to Obtain Row-Echelon Form

Perform row operations on the given matrix to obtain row-echelon form.

    
1 −3 4

 
     

 2 −5 6       
−3     3 4

  ∣      3 
 

 6   
6

    

Solution The first row already has a 1 in row 1, column 1. The next step is to multiply row 1 by −2 and add it to row 2.
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Then replace row 2 with the result.

−2 R 1  +  R 2  =  R 2  →     
1 −3     4

  
      

 0     1 −2          
−3     3     4

  ∣      3 
 

 0   
6

    

Next, obtain a zero in row 3, column 1.

 3 R 1  +  R 3  =  R 3  →    
1 −3     4

 
     

 0     1 −2       
0 −6   16

  ∣       3
 
 

 0   
15

    

Next, obtain a zero in row 3, column 2.

 6 R 2  +  R 3  =  R 3  →     
1 −3     4

 
     

 0     1 −2       
0     0     4

  ∣       3
 
 

 0   
15

    

The last step is to obtain a 1 in row 3, column 3.

   1 __ 2   R 3  =  R 3  →     
1 −3     4

 
     

 0     1 −2       
0     0     1

  ∣       3
 

  
 −6    

  21 __ 2  
    

Try It #4

Write the system of equations in row-echelon form.
 x − 2y + 3z = 9
 −x + 3y = − 4
 2x − 5y + 5z = 17

Solving a System of linear equations Using Matrices
We have seen how to write a system of equations with an augmented matrix, and then how to use row operations and 
back-substitution to obtain row-echelon form. Now, we will take row-echelon form a step farther to solve a 3 by 3 
system of linear equations. The general idea is to eliminate all but one variable using row operations and then back-
substitute to solve for the other variables.

Example 7 Solving a System of Linear Equations Using Matrices

Solve the system of linear equations using matrices.

 x − y + z = 8

 2x + 3y − z = −2

 3x − 2y − 9z = 9

Solution First, we write the augmented matrix.

    
1 −1    1

 
     

 2     3 −1       
3 −2 −9

  ∣       8
 

  
 −2    

9
    

Next, we perform row operations to obtain row-echelon form.

−2 R 1  +  R 2  =  R 2  →     
1 −1    1

 
     

 0     5 −3       
3 −2 −9

  ∣       8
 

  
 −18    

9
       −3 R 1  +  R 3  =  R 3  →     

1 −1       1
  

      
  0     5   −3          

0     1 −12
  ∣       8

 
  

 −18    
−15

    

The easiest way to obtain a 1 in row 2 of column 1 is to interchange  R 2  and  R 3 .

 Interchange  R 2  and  R 3  →    
1 −1       1       8

  
        

  0     1 −12 −15            
0     5   −3 −18
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Then

−5 R 2  +  R 3  =  R 3  →     
1 −1       1

  
      

  0     1 −12          
0     0     57

  ∣       8
 

  
 −15    

57
       −   1 ___ 57    R 3  =  R 3  →     

1 −1       1
  

      
  0     1 −12          

0     0       1
  ∣       8

 
  

 −15    
1

    

The last matrix represents the equivalent system.

 x − y + z = 8

 y − 12z = −15

 z = 1

Using back-substitution, we obtain the solution as (4, −3, 1).

Example 8 Solving a Dependent System of Linear Equations Using Matrices

Solve the following system of linear equations using matrices.

 −x − 2y + z = −1

 2x + 3y = 2

 y − 2z = 0

Solution Write the augmented matrix.

   
−1 −2    1

  
      

 2     3    0         
0     1 −2

  ∣      −1
 

  
 2    

0
     

First, multiply row 1 by −1 to get a 1 in row 1, column 1. Then, perform row operations to obtain row-echelon form.

 − R 1  →    
−1 −2    1

  
      

 2     3    0         
0      1 −2

  ∣      −1
 

  
 2    

0
      

  R 2  ↔  R 3  →    
1 2 −1

 
    

 0 1 −2      
 2 3    0

  ∣      1 
 

 0   
2

    

 −2 R 1  +  R 3  =  R 3  →    
1    2 −1

 
     

 0    1 −2       
0 −1    2

  ∣      1 
 

 0   
0

    

  R 2  +  R 3  =  R 3  →     
1 2 −1

 
    

 0 1 −2      
0  0    0

  ∣      2 
 

 1   
0

    

The last matrix represents the following system.

 x + 2y − z = 1

 y − 2z = 0

 0 = 0

We see by the identity 0 = 0 that this is a dependent system with an infinite number of solutions. We then find the 
generic solution. By solving the second equation for y and substituting it into the first equation we can solve for z in 
terms of x.

 x + 2y − z = 1

 y = 2z

 x + 2(2z) − z = 1

 x + 3z = 1

 z =   1 − x _____ 3  
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Now we substitute the expression for z into the second equation to solve for y in terms of x.

 y − 2z = 0

 z =   1 − x _____ 3  

 y − 2    1 − x _____ 3      = 0

 y =   2 − 2x ______ 3  
The generic solution is   x,   2 − 2x ______ 3  ,   1 − x _____ 3     .

Try It #5

Solve the system using matrices.
 x + 4y − z = 4
 2x + 5y + 8z = 15
 x + 3y − 3z = 1

Q & A…
Can any system of linear equations be solved by Gaussian elimination?

Yes, a system of linear equations of any size can be solved by Gaussian elimination.

How To…
Given a system of equations, solve with matrices using a calculator.

1. Save the augmented matrix as a matrix variable [A], [B], [C], … .
2. Use the ref( function in the calculator, calling up each matrix variable as needed.

Example 9 Solving Systems of Equations with Matrices Using a Calculator

Solve the system of equations.
 5x + 3y + 9z = −1
 −2x + 3y − z = −2
 −x − 4y + 5z = 1

Solution Write the augmented matrix for the system of equations.

     
5     3    9

  
      

  −2     3 −1          
−1 −4     5

  ∣      −1
 

  
 −2    

−1
    

On the matrix page of the calculator, enter the augmented matrix above as the matrix variable [A].

[A] =     
5     3     9 −1

  
        

  −2     3 −1 −2            
−1 −4     5     1

    

Use the ref( function in the calculator, calling up the matrix variable [A].

 ref([A])
Evaluate.

    1  

  3 _ 5  

  

  9 _ 5   

  

   1 _ 5    

   0  1    13 __ 21    −  4 _ 7       

0

  

0

  

1 

  

−  24 ___ 187  

      →   

x +   3 _ 5  y +   9 _ 5  z = −  1 _ 5     

   y +   13 __ 21  z = −  4 _ 7       

z = −  24 ___ 187  

  

Using back-substitution, the solution is     61 ___ 187  , −  92 ___ 187  , −  24 ___ 187     .
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Example 10 Applying 2 × 2 Matrices to Finance

Carolyn invests a total of $12,000 in two municipal bonds, one paying 10.5% interest and the other paying 12% interest. 
The annual interest earned on the two investments last year was $1,335. How much was invested at each rate?

Solution We have a system of two equations in two variables. Let x = the amount invested at 10.5% interest, and 
y = the amount invested at 12% interest.
 x + y = 12,000
 0.105x + 0.12y = 1,335

As a matrix, we have

    1      1       
0.105 0.12

  ∣      12,000     
1,335

    

Multiply row 1 by −0.105 and add the result to row 2.

    1        1      
0 0.015

  ∣      12,000     
75

    

Then,
 0.015y = 75
 y = 5,000
So 12,000 − 5,000 = 7,000.

Thus, $5,000 was invested at 12% interest and $7,000 at 10.5% interest.

Example 11 Applying 3 × 3 Matrices to Finance

Ava invests a total of $10,000 in three accounts, one paying 5% interest, another paying 8% interest, and the third 
paying 9% interest. The annual interest earned on the three investments last year was $770. The amount invested at 
9% was twice the amount invested at 5%. How much was invested at each rate?

Solution We have a system of three equations in three variables. Let x be the amount invested at 5% interest, let y be 
the amount invested at 8% interest, and let z be the amount invested at 9% interest. Thus,

 x + y + z = 10,000

 0.05x + 0.08y + 0.09z = 770

 2x − z = 0

As a matrix, we have

    
1       1       1

  
       

  0.05 0.08   0.09           
2      0    −1

  ∣      10, 000
 

   
 770     

0
    

Now, we perform Gaussian elimination to achieve row-echelon form.

 −0.05 R 1  +  R 2  =  R 2  →    
1       1      1

  
      

  0 0.03 0.04          
2      0   −1

  ∣      10,000
 

   
 270     

0
    

 −2 R 1  +  R 3  =  R 3  →    
1       1       1

  
      

  0 0.03  0.04          
0   −2    −3

  ∣       10,000
 

    
 270      

−20,000
    

   1 ____ 0.03   R 2  =  R 2  →     0     1     1
 

     
 0     1       4 _ 3         

0 −2 −3
  ∣       10,000

 
    

 9,000      
−20,000

    

 2 R 2  +  R 3  =  R 3  →     1 1     1
 

    
 0 1       4 _ 3        

0 0 −  1 _ 3  
  ∣       10,000

 
   

 9,000     
−2,000

    

The third row tells us −  1 __ 3  z = −2,000; thus z = 6,000.
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The second row tells us y +   4 __ 3  z = 9,000. Substituting z = 6,000, we get

 y +   4 __ 3  (6,000) = 9,000

 y + 8,000 = 9,000

 y = 1,000

The first row tells us x + y + z = 10, 000. Substituting y = 1,000 and z = 6,000, we get

 x + 1,000 + 6,000 = 10,000

 x = 3,000

The answer is $3,000 invested at 5% interest, $1,000 invested at 8%, and $6,000 invested at 9% interest.

Try It #6

A small shoe company took out a loan of $1,500,000 to expand their inventory. Part of the money was borrowed 
at 7%, part was borrowed at 8%, and part was borrowed at 10%. The amount borrowed at 10% was four times the 
amount borrowed at 7%, and the annual interest on all three loans was $130,500. Use matrices to find the amount 
borrowed at each rate.

Access these online resources for additional instruction and practice with solving systems of linear equations using 
Gaussian elimination.

•	 Solve a System of Two equations Using an Augmented Matrix (http://openstaxcollege.org/l/system2augmat)

•	 Solve a System of Three equations Using an Augmented Matrix (http://openstaxcollege.org/l/system3augmat)

•	 Augmented Matrices on the Calculator (http://openstaxcollege.org/l/augmatcalc)

http://openstaxcollege.org/l/system2augmat
http://openstaxcollege.org/l/system3augmat
http://openstaxcollege.org/l/augmatcalc
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9.6 SeCTIOn exeRCISeS

VeRBAl

1. Can any system of linear equations be written as an 
augmented matrix? Explain why or why not. Explain 
how to write that augmented matrix.

2. Can any matrix be written as a system of linear 
equations? Explain why or why not. Explain how to 
write that system of equations.

3. Is there only one correct method of using row 
operations on a matrix? Try to explain two different 
row operations possible to solve the augmented matrix

    9     3     
1 −2

  ∣      0   
6

    .

4. Can a matrix whose entry is 0 on the diagonal be 
solved? Explain why or why not. What would you 
do to remedy the situation?

5. Can a matrix that has 0 entries for an entire row 
have one solution? Explain why or why not.

AlGeBRAIC

For the following exercises, write the augmented matrix for the linear system.

6. 8x − 37y = 8 
2x + 12y = 3

7.   16y = 4 
9x − y = 2

8. 3x + 2y + 10z = 3 
−6x + 2y + 5z = 13 
              4x + z = 18

9.   x + 5y + 8z = 19 
        12x + 3y = 4 
3x + 4y + 9z = −7

10. 6x + 12y + 16z = 4 
  19x − 5y + 3z = −9 
                x + 2y = −8

For the following exercises, write the linear system from the augmented matrix.

11.    −2      5      
6 −18

  ∣       5   
26

    12.     3   4     
10 17

  ∣       10    
439

    13.     
3     2 0

 
     

 −1 −9 4       
8     5 7

  ∣       3
 

  
 −1    

8
    

14.     
8 29 1

 
     

 −1    7 5       
0    0 3

  ∣      43
 
 

 38   
10

    15.     
4 5 −2

 
    

 0 1   58      
8 7 −3

  ∣       12
 

  
 2    

−5
    

For the following exercises, solve the system by Gaussian elimination.

16.     1 0    
0 0

  ∣      3   
0

    17.     1 0    
1 0

  ∣      1   
2

    18.     1 2    
4 5

  ∣      3   
6

    19.     −1    2      
4 −5

  ∣      −3    
6

    

20.     −2 0     
0 2

  ∣       1    
−1

    21. 2x − 3y = − 9 
5x + 4y = 58

22. 6x + 2y = −4 
3x + 4y = −17

23. 2x + 3y = 12 
  4x + y = 14

24.  −4x − 3y = −2 
    3x − 5y = −13

25.  −5x + 8y = 3 
  10x + 6y = 5

26.     3x + 4y = 12 
 −6x − 8y = −24

27.  −60x + 45y = 12 
    20x − 15y = −4

28. 11x + 10y = 43 
15x + 20y = 65

29.   2x − y = 2 
3x + 2y = 17

30.    −1.06x−2.25y = 5.51 
 −5.03x − 1.08y = 5.40

31.   3 __ 4  x −   3 __ 5  y = 4 

   1 __ 4  x +   2 __ 3  y = 1

32.   1 __ 4  x −   2 __ 3  y = −1 

  1 __ 2  x +   1 __ 3  y = 3

33.  
   

1 0 0
 

    
 0 1 1      

0 0 1
  ∣      31

 
 

 45   
87

    
34.  

   
1 0 1

 
    

 1 1 0      
0 1 1

  ∣       50
 

  
 20    

−90
    

35.  
   

1 2 3
 

    
 0 5 6      

0 0 8
  ∣      4 
 

 7   
9
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36.  
    

−0.1 0.3 −0.1
  

       
  −0.4 0.2     0.1           

0.6 0.1     0.7
  ∣       0.2

 
  

 0.8    
−0.8

    
37.  −2x + 3y − 2z = 3 

      4x + 2y − z = 9 
    4x − 8y + 2z = −6

38.      x + y − 4z = −4 
5x − 3y − 2z = 0 
2x + 6y + 7z = 30

39.       2x + 3y + 2z = 1 
   −4x − 6y − 4z = −2 
10x + 15y + 10z = 5

40.     x + 2y − z = 1 
−x − 2y + 2z = −2 
3x + 6y − 3z = 5

41.     x + 2y − z = 1 
−x − 2y + 2z = −2 
3x + 6y − 3z = 3

42.   x + y = 2 
  x + z = 1 
−y − z = −3

43. x + y + z = 100 
      x + 2z = 125 
   −y + 2z = 25

44.   1 __ 4  x −   2 __ 3  z = −  1 __ 2   

  1 __ 5  x +   1 __ 3  y =   4 __ 7   

    1 __ 5  y −  1 __ 3  z =   2 __ 9  

45.  −  1 __ 2  x +   1 __ 2  y +   1 __ 7  z = −  53 ___ 14   

      1 __ 2  x −   1 __ 2  y +   1 __ 4  z = 3 

      1 __ 4  x +   1 __ 5  y +   1 __ 3  z =   23 ___ 15  

46.  −  1 __ 2  x −   1 __ 3  y +   1 __ 4  z = −  29 ___ 6   

       1 __ 5  x +   1 __ 6  y −   1 __ 7  z =   431 ___ 210   

 −  1 __ 8  x +   1 __ 9  y +   1 ___ 10  z = −  49 ___ 45  

exTenSIOnS

For the following exercises, use Gaussian elimination to solve the system.

47.   x − 1 _____ 7   +   
y − 2

 _____ 8   +   z − 3 _____ 4   = 0 

          x + y + z = 6 

     x + 2 _____ 3   + 2y +   z−3 ____ 3   = 5

48.   x − 1 _____ 4   −   
y + 1

 _____ 4   + 3z = −1 

    x + 5 _____ 2   +   
y + 7

 _____ 4   − z = 4 

    x + y −   z−2 ____ 2   = 1

49.           x − 3 _____ 4   −   
y − 1

 _____ 3   + 2z = −1 

  x + 5 _____ 2   +   
y + 5

 _____ 2   +   z + 5 _____ 2   = 8 

          x + y + z = 1

50.    x − 3 _____ 10   +   
y + 3

 _____ 2   −2z = 3 

    x + 5 _____ 4   −   
y − 1

 _____ 8   + z =   3 __ 2   

  x − 1 _____ 4   +   
y + 4

 _____ 2   + 3z =   3 __ 2  

51.        x − 3 _____ 4   −   
y − 1

 _____ 3   + 2z = −1 

  x + 5 _____ 2   +   
y + 5

 _____ 2   +   z + 5 _____ 2   = 7 

          x + y + z = 1

ReAl-WORlD APPlICATIOnS

For the following exercises, set up the augmented matrix that describes the situation, and solve for the desired solution.

52. Every day, a cupcake store sells 5,000 cupcakes in 
chocolate and vanilla flavors. If the chocolate flavor is 
3 times as popular as the vanilla flavor, how many of 
each cupcake sell per day?

53. At a competing cupcake store, $4,520 worth of 
cupcakes are sold daily. The chocolate cupcakes cost 
$2.25 and the red velvet cupcakes cost $1.75. If the 
total number of cupcakes sold per day is 2,200, how 
many of each flavor are sold each day?

54. You invested $10,000 into two accounts: one that has 
simple 3% interest, the other with 2.5% interest. If 
your total interest payment after one year was $283.50, 
how much was in each account after the year passed?

55. You invested $2,300 into account 1, and $2,700 
into account 2. If the total amount of interest after 
one year is $254, and account 2 has 1.5 times the 
interest rate of account 1, what are the interest rates? 
Assume simple interest rates.
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56. Bikes’R’Us manufactures bikes, which sell for $250. 
It costs the manufacturer $180 per bike, plus a 
startup fee of $3,500. After how many bikes sold will 
the manufacturer break even?

57. A major appliance store is considering purchasing 
vacuums from a small manufacturer. The store 
would be able to purchase the vacuums for $86 each, 
with a delivery fee of $9,200, regardless of how many 
vacuums are sold. If the store needs to start seeing a 
profit after 230 units are sold, how much should they 
charge for the vacuums?

58. The three most popular ice cream flavors are 
chocolate, strawberry, and vanilla, comprising 83% 
of the flavors sold at an ice cream shop. If vanilla 
sells 1% more than twice strawberry, and chocolate 
sells 11% more than vanilla, how much of the total 
ice cream consumption are the vanilla, chocolate, 
and strawberry flavors?

59. At an ice cream shop, three flavors are increasing 
in demand. Last year, banana, pumpkin, and rocky 
road ice cream made up 12% of total ice cream sales. 
This year, the same three ice creams made up 16.9% 
of ice cream sales. The rocky road sales doubled, the 
banana sales increased by 50%, and the pumpkin 
sales increased by 20%. If the rocky road ice cream 
had one less percent of sales than the banana ice 
cream, find out the percentage of ice cream sales 
each individual ice cream made last year.

60. A bag of mixed nuts contains cashews, pistachios, 
and almonds. There are 1,000 total nuts in the bag, 
and there are 100 less almonds than pistachios. 
The cashews weigh 3 g, pistachios weigh 4 g, and 
almonds weigh 5 g. If the bag weighs 3.7 kg, find out 
how many of each type of nut is in the bag.

61. A bag of mixed nuts contains cashews, pistachios, 
and almonds. Originally there were 900 nuts in the 
bag. 30% of the almonds, 20% of the cashews, and 
10% of the pistachios were eaten, and now there are 
770 nuts left in the bag. Originally, there were 100 
more cashews than almonds. Figure out how many 
of each type of nut was in the bag to begin with.
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9.7 SOlVInG SYSTeMS WITH InVeRSeS

Nancy plans to invest $10,500 into two different bonds to spread out her risk. The first bond has an annual return of 
10%, and the second bond has an annual return of 6%. In order to receive an 8.5% return from the two bonds, how 
much should Nancy invest in each bond? What is the best method to solve this problem?

There are several ways we can solve this problem. As we have seen in previous sections, systems of equations and 
matrices are useful in solving real-world problems involving finance. After studying this section, we will have the 
tools to solve the bond problem using the inverse of a matrix.

Finding the Inverse of a Matrix
We know that the multiplicative inverse of a real number a is  a −1 , and a a −1  =  a −1  a =     1 __ a     a = 1. For example,  2 −1  =   1 __ 2  

and     1 __ 2     2 = 1. The multiplicative inverse of a matrix is similar in concept, except that the product of matrix A and its 

inverse  A −1  equals the identity matrix. The identity matrix is a square matrix containing ones down the main diagonal 
and zeros everywhere else. We identify identity matrices by  I n  where n represents the dimension of the matrix. The 
following equations are the identity matrices for a 2 × 2 matrix and a 3 × 3 matrix, respectively.

  I 2  =    1 0    
0 1

    

  I 3  =    
1 0 0

 
    

 0 1 0      
0 0 1

    

The identity matrix acts as a 1 in matrix algebra. For example, AI = IA = A.

A matrix that has a multiplicative inverse has the properties

  AA −1  = I

  A −1  A = I

A matrix that has a multiplicative inverse is called an invertible matrix. Only a square matrix may have a multiplicative 
inverse, as the reversibility,  AA −1  =  A −1  A = I, is a requirement. Not all square matrices have an inverse, but if A is 
invertible, then  A −1  is unique. We will look at two methods for finding the inverse of a 2 × 2 matrix and a third method 
that can be used on both 2 × 2 and 3 × 3 matrices.

the identity matrix and multiplicative inverse 
The identity matrix,  I n , is a square matrix containing ones down the main diagonal and zeros everywhere else.

 I 2  =    1 0    
0 1

       I 3  =    
1 0 0

 
    

 0 1 0      
0 0 1

    

 2 × 2 3 × 3

If A is an n × n matrix and B is an n × n matrix such that AB = BA =  I n , then B =  A −1 , the multiplicative inverse 
of a matrix A.

leARnInG OBjeCTIVeS

In this section, you will:
•	 Find the inverse of a matrix.
•	 Solve a system of linear equations using an inverse matrix.
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Example 1 Showing That the Identity Matrix Acts as a 1

Given matrix A, show that AI = IA = A.

 A =     3 4     
−2 5

    

Solution Use matrix multiplication to show that the product of A and the identity is equal to the product of the 
identity and A.

AI =     3 4     
−2 5

        1 0    
0 1

     =     3 ⋅ 1 + 4 ⋅ 0     3 ⋅ 0 + 4 ⋅ 1                 
−2 ⋅ 1 + 5 ⋅ 0 −2 ⋅ 0 + 5 ⋅ 1

     =     3 4     
−2 5

    

 AI =    1 0    
0 1

          3 4     
−2 5

     =    1 ⋅ 3 + 0 ⋅ (−2) 1 ⋅ 4 + 0 ⋅ 5                 
0 ⋅ 3 + 1 ⋅ (−2) 0 ⋅ 4 + 1 ⋅ 5

     =     3 4     
−2 5

    

How To…
Given two matrices, show that one is the multiplicative inverse of the other.

1. Given matrix A of order n × n and matrix B of order n × n multiply AB.
2. If AB = I, then find the product BA. If BA = I, then B =  A −1  and A =  B −1 .

Example 2 Showing That Matrix A Is the Multiplicative Inverse of Matrix B

Show that the given matrices are multiplicative inverses of each other.

 A =     1     5      
−2 −9

    , B =    −9 −5      
2     1

    

Solution Multiply AB and BA. If both products equal the identity, then the two matrices are inverses of each other.

 AB =     1     5      
−2 −9

       −9 −5      
2     1

    

 =     1(−9) + 5(2)    1(−5) + 5(1)                  
−2(−9) − 9(2) −2(−5) − 9(1)

    

 =    1 0    
0 1

    

 BA =    −9 −5      
2     1

        1     5      
−2 −9

    

 =    −9(1) − 5(−2) −9(5) − 5(−9)                  
2(1) + 1(−2)  2(−5) + 1(−9)

    

 =    1 0    
0 1

    

A and B are inverses of each other.

Try It #1

Show that the following two matrices are inverses of each other.

A =     1 4     
−1 −3

    , B =    −3 −4      
1     1

    

Finding the Multiplicative Inverse Using Matrix Multiplication

We can now determine whether two matrices are inverses, but how would we find the inverse of a given matrix? Since 
we know that the product of a matrix and its inverse is the identity matrix, we can find the inverse of a matrix by 
setting up an equation using matrix multiplication.
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Example 3 Finding the Multiplicative Inverse Using Matrix Multiplication

Use matrix multiplication to find the inverse of the given matrix.

 A =    1 −2     
2 −3

    

Solution For this method, we multiply A by a matrix containing unknown constants and set it equal to the identity.

    1 −2     
2 −3

        a b    
c d

     =    1 0    
0 1

    

Find the product of the two matrices on the left side of the equal sign.

    1 −2     
2 −3

        a b    
c d

     =    1a − 2c 1b − 2d           
2a − 3c 2b − 3d

    

Next, set up a system of equations with the entry in row 1, column 1 of the new matrix equal to the first entry of the 
identity, 1. Set the entry in row 2, column 1 of the new matrix equal to the corresponding entry of the identity, which is 0.

 1a − 2c = 1  R 1 

 2a − 3c = 0  R 2 

Using row operations, multiply and add as follows: (−2) R 1  +  R 2  →  R 2 . Add the equations, and solve for c.

 1a − 2c = 1

 0 + 1c = −2

 c = −2
Back-substitute to solve for a.
 a − 2(−2) = 1

 a + 4 = 1

 a = −3

Write another system of equations setting the entry in row 1, column 2 of the new matrix equal to the corresponding 
entry of the identity, 0. Set the entry in row 2, column 2 equal to the corresponding entry of the identity.

 1b − 2d = 0  R 1 

 2b − 3d = 1  R 2 

Using row operations, multiply and add as follows: (−2) R 1  +  R 2  =  R 2 . Add the two equations and solve for d.

 1b − 2d = 0

 0 + 1d = 1

 d = 1

Once more, back-substitute and solve for b.

 b − 2(1) = 0

 b − 2 = 0

 b = 2

  A −1  =    −3 2     
−2 1

    

Finding the Multiplicative Inverse by Augmenting with the Identity

Another way to find the multiplicative inverse is by augmenting with the identity. When matrix A is transformed into 
I, the augmented matrix I transforms into  A −1 .

For example, given
 A =     2 1    

5 3
    

augment A with the identity
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   2 1    
5 3

  ∣      1 0    
0 1

    

Perform row operations with the goal of turning A into the identity.

1. Switch row 1 and row 2.

   5 3    
2 1

  ∣      0 1    
1 0

    

2. Multiply row 2 by −2 and add to row 1.

   1 1    
2 1

  ∣      −2 1     
1 0

    

3. Multiply row 1 by −2 and add to row 2.

   1     1     
0 −1

  ∣      −2     1      
5 −2

    

4. Add row 2 to row 1.

   1     0     
0 −1

  ∣      3 −1     
5 −2

    

5. Multiply row 2 by −1.

   1 0    
0 1

  ∣       3 −1      
−5     2

    

The matrix we have found is  A −1 .

  A −1  =     3 −1      
−5     2

    

Finding the Multiplicative Inverse of 2 × 2 Matrices Using a Formula

When we need to find the multiplicative inverse of a 2 × 2 matrix, we can use a special formula instead of using matrix 
multiplication or augmenting with the identity.

If A is a 2 × 2 matrix, such as

 A =    a b    
c d

    

the multiplicative inverse of A is given by the formula

  A −1  =   1 _______ 
ad − bc

     d −b     
−c a

     

where ad − bc ≠ 0. If ad − bc = 0, then A has no inverse.

Example 4 Using the Formula to Find the Multiplicative Inverse of Matrix A

Use the formula to find the multiplicative inverse of

 A =    1 −2     
2 −3

    

Solution Using the formula, we have

  A −1  =   1 ________________  
(1)(−3) − (−2)(2)

     −3 2     
−2 1

    

 =   1 _______ 
−3 + 4     −3 2     

−2 1
    

 =    −3 2     
−2 1

    

Analysi s We can check that our formula works by using one of the other methods to calculate the inverse. Let’s augment 
A with the identity.

   1 −2     
2 −3

  ∣      1 0    
0 1

    

Perform row operations with the goal of turning A into the identity.
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1. Multiply row 1 by −2 and add to row 2.

    1 −2     
0     1

  ∣       1 0     
−2 1

    

2. Multiply row 1 by 2 and add to row 1.

   1 0    
0 1

  ∣      −3 2     
−2 1

    

So, we have verified our original solution.

  A −1  =    −3 2     
−2 1

    

Try It #2
Use the formula to find the inverse of matrix A. Verify your answer by augmenting with the identity matrix.

  A −1  =     1 −1     
2     3

    

Example 5 Finding the Inverse of the Matrix, If It Exists

Find the inverse, if it exists, of the given matrix.
 A =    3 6    

1 2
    

Solution We will use the method of augmenting with the identity.

   3 6    
1 3

  ∣      1 0    
0 1

    

1. Switch row 1 and row 2.

   1 3    
3 6

  ∣      0 1    
1 0

    

2. Multiply row 1 by −3 and add it to row 2.

   1 2    
0 0

  ∣       1 0     
−3 1

    

3. There is nothing further we can do. The zeros in row 2 indicate that this matrix has no inverse.

Finding the Multiplicative Inverse of 3 × 3 Matrices

Unfortunately, we do not have a formula similar to the one for a 2 × 2 matrix to find the inverse of a 3 × 3 matrix. 
Instead, we will augment the original matrix with the identity matrix and use row operations to obtain the inverse.

Given a 3 × 3 matrix

 A =    
2 3 1

 
    

 3 3 1      
2 4 1

    

augment A with the identity matrix

   
A

 
 

 A    
A

  I =    
2 3 1

 
    

 3 3 1      
2 4 1

  ∣      1 0 0
 

    
 0 1 0      

0 0 1
    

To begin, we write the augmented matrix with the identity on the right and A on the left. Performing elementary row 
operations so that the identity matrix appears on the left, we will obtain the inverse matrix on the right. We will find 
the inverse of this matrix in the next example.

How To…
Given a 3 × 3 matrix, find the inverse

1. Write the original matrix augmented with the identity matrix on the right.
2. Use elementary row operations so that the identity appears on the left.
3. What is obtained on the right is the inverse of the original matrix.
4. Use matrix multiplication to show that A A −1  = I and  A −1  A = I.
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Example 6 Finding the Inverse of a 3 × 3 Matrix

Given the 3 × 3 matrix A, find the inverse.

 A =    
2 3 1

 
    

 3 3 1      
2 4 1

    

Solution Augment A with the identity matrix, and then begin row operations until the identity matrix replaces A. 
The matrix on the right will be the inverse of A.

   
2 3 1

 
    

 3 3 1      
2 4 1

  ∣      1 0 0
 

    
 0 1 0      

0 0 1
         

3 3 1
 

    
 2 3 1      

2 4 1
  ∣      0 1 0

 
    

 1 0 0      
0 0 1

    

 − R 2  +  R 1  =  R 1  →    
1 0 0

 
    

 2 3 1      
2 4 1

  ∣      −1 1 0
 

    
 1 0 0      

0 0 1
    

 − R 2  +  R 3  =  R 3  →    
1 0 0

 
    

 2 3 1      
0 1 0

  ∣      −1 1 0
 

    
 1 0 0      

−1 0 1
    

  R 3  ↔  R 2  →     
1 0 0

 
    

 0 1 0      
2 3 1

  ∣      −1 1 0
 

    
 −1 0 1      

1 0 0
    

 −2 R 1  +  R 3  =  R 3  →      
1 0 0

 
    

 0 1 0      
0 3 1

  ∣      −1     1 0
 

     
 −1     0 1       

3 −2 0
    

 −3 R 2  +  R 3  =  R 3  →    
1 0 0

 
    

 0 1 0      
0 0 1

  ∣      −1     1     0
  

      
  −1     0     1         

6 −2 −3
    

Thus,

  A −1  = B =    
−1     1     0

  
      

  −1     0     1         
6 −2 −3

    

Analysis To prove that B =  A −1 , let’s multiply the two matrices together to see if the product equals the identity, if  
A A −1  = I and  A −1  A = I.

 A A −1  =    
2 3 1

 
    

 3 3 1      
2 4 1

        
−1     1     0

  
      

  −1     0     1         
6 −2 −3

    

 =     
2(−1) + 3(−1) + 1(6) 2(1) + 3(0) + 1(−2) 2(0) + 3(1) + 1(−3)

      
                         

      3(−1) + 3(−1) + 1(6) 3(1) + 3(0) + 1(−2) 3(0) + 3(1) + 1(−3)                                     
2(−1) + 4(−1) + 1(6) 2(1) + 4(0) + 1(−2) 2(0) + 4(1) + 1(−3)

    

 =    
1 0 0

 
    

 0 1 0      
0 0 1

    

  A −1 A =    
−1     1     0

  
      

  −1     0     1         
6 −2 −3

        
2 3 1

 
    

 3 3 1      
2 4 1

    

 =     
−1(2) + 1(3) + 0(2)     −1(3) + 1(3) + 0(4)     −1(1) + 1(1) + 0(1)

      
                           

      −1(2) + 0(3) + 1(2)     −1(3) + 0(3) + 1(4)     −1(1) + 0(1) + 1(1)                                       
6(2) + −2(3) + −3(2) 6(3) + −2(3) + −3(4) 6(1) + −2(1) + −3(1)

    

 =    
1 0 0

 
    

 0 1 0      
0 0 1

    

Interchange  R 
2
  and  R 

1
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Try It #3

Find the inverse of the 3 × 3 matrix.

 A =     
2 −17   11

  
      

  −1     11 −7          
0       3 −2

    

Solving a System of linear equations Using the Inverse of a Matrix
Solving a system of linear equations using the inverse of a matrix requires the definition of two new matrices: X is 
the matrix representing the variables of the system, and B is the matrix representing the constants. Using matrix 
multiplication, we may define a system of equations with the same number of equations as variables as

 AX = B

To solve a system of linear equations using an inverse matrix, let A be the coefficient matrix, let X be the variable 
matrix, and let B be the constant matrix. Thus, we want to solve a system AX = B. For example, look at the following 
system of equations.
  a 1 x +  b 1 y =  c 1 

  a 2 x +  b 2 y =  c 2 

From this system, the coefficient matrix is

 A =     a 1   b 1      
 a 2   b 2 

    

The variable matrix is

 X =    x   
y
    

And the constant matrix is

 B =     c 1    
 c 2 

    

Then AX = B looks like

     a 1   b 1      
 a 2   b 2 

        x   
y
     =     c 1    

 c 2 
    

Recall the discussion earlier in this section regarding multiplying a real number by its inverse, ( 2 −1 ) 2 =     1 __ 2     2 = 1. To

solve a single linear equation ax = b for x, we would simply multiply both sides of the equation by the multiplicative 
inverse (reciprocal) of a. Thus,
 ax = b

     1 __ a     ax =     1 __ a     b
 ( a −1 )ax = ( a −1 )b

 [( a −1 )a]x = ( a −1 )b

 1x = ( a −1 )b

 x = ( a −1 )b

The only difference between a solving a linear equation and a system of equations written in matrix form is that finding 
the inverse of a matrix is more complicated, and matrix multiplication is a longer process. However, the goal is the 
same—to isolate the variable.

We will investigate this idea in detail, but it is helpful to begin with a 2 × 2 system and then move on to a 3 × 3 system.
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solving a system of equations using the inverse of a matrix 
Given a system of equations, write the coefficient matrix A, the variable matrix X, and the constant matrix B. Then

 AX = B

Multiply both sides by the inverse of A to obtain the solution.

 ( A −1 )AX = ( A −1 )B

 [( A −1 )A]X = ( A −1 )B

 IX = ( A −1 )B

 X = ( A −1 )B

Q & A…
If the coefficient matrix does not have an inverse, does that mean the system has no solution?

No, if the coefficient matrix is not invertible, the system could be inconsistent and have no solution, or be dependent 
and have infinitely many solutions.

Example 7 Solving a 2 × 2 System Using the Inverse of a Matrix

Solve the given system of equations using the inverse of a matrix.

 3x + 8y = 5

 4x + 11y = 7

Solution Write the system in terms of a coefficient matrix, a variable matrix, and a constant matrix.

A =     3   8     
4 11

    , X =    x   
y
    , B =    5   

7
    

Then

     3   8     
4 11

         x   
y
     =    5   

7
    

First, we need to calculate  A −1 . Using the formula to calculate the inverse of a 2 by 2 matrix, we have:

  A −1  =   1 _______ 
ad − bc

      d −b      
−c     a

    

 =   1 ___________ 
3(11) − 8(4)

       11 −8      
−4     3

    

 =   1 __ 1       11 −8      
−4     3

    

So,

  A −1  =      11 −8      
−4     3

    

Now we are ready to solve. Multiply both sides of the equation by  A −1 .

 ( A −1 )AX = ( A −1 )B

      11 −8      
−4     3

         3   8     
4 11

         x   
y
     =      11 −8      

−4     3
        5   

7
    

    1 0    
0 1

        x   
y
     =     11(5) + (−8)7          

−4(5) +     3(7)
    

    x   
y
     =    −1    

1
    

The solution is (−1, 1).
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Q & A…
Can we solve for X by finding the product B A −1 ?

No, recall that matrix multiplication is not commutative, so  A −1  B ≠ B A −1 . Consider our steps for solving the matrix 
equation.
 ( A −1 )AX = ( A −1 )B

 [( A −1 )A]X = ( A −1 )B

 IX = ( A −1 )B

 X = ( A −1 )B

Notice in the first step we multiplied both sides of the equation by  A −1 , but the  A −1  was to the left of A on the left side 
and to the left of B on the right side. Because matrix multiplication is not commutative, order matters.

Example 8 Solving a 3 × 3 System Using the Inverse of a Matrix

Solve the following system using the inverse of a matrix.
 5x + 15y + 56z = 35
 −4x − 11y − 41z = −26
 −x − 3y − 11z = −7

Solution Write the equation AX = B.

    
5     15     56

  
      

  −4 −11 −41           
−1    −3 −11

        
x

 
 

 y   
z
     =     

35
 

  
 −26    

−7
    

First, we will find the inverse of A by augmenting with the identity.

     
5

  
15

  
56

   −4  −11  −41   
−1

  
−3

  
−11

  ∣         1  
0

  
0

   0  1  0  
0

  
0

  
1

      

Multiply row 1 by   1 __ 5  .

     1
  

3
  

  56 __ 5  
   −4  −11  −41   

−1
  

−3
  

−11
  ∣           1 _ 5  

  
0

  
0

   0  1  0  
0

  
0

  
1

      

Multiply row 1 by 4 and add to row 2.

     1
  

3
  

  56 __ 5  
  0  1    19 __ 5     

−1

  

−3

  

−11

  ∣          1 _ 5  
  

0
  

0
    4 _ 5    1  0  

0

  

0

  

1

      
Add row 1 to row 3.

    
 

  

1

  

3

  

  56 __ 5  

  0  1    19 __ 5    

0

  

0

  

  1 _ 5  

  ∣      1 _ 5  

  

0

  

0

    4 _ 5    1  0  

  1 _ 5  

  

0

  

1

      
Multiply row 2 by −3 and add to row 1.

     

 

  

1

  

0

  

−  1 __ 5  

  0  1    19 __ 5    

0

  

0

  

  1 _ 5  

  ∣   −  11 _ 5  

  

−3

  

0

    4 _ 5    1  0  

  1 _ 5  

  

0

  

1

      

Multiply row 3 by 5.

     
 

  
1

  
0

  
−  1 __ 5  

  0  1    19 __ 5    

0

  

0

  

1

  ∣   −  11 _ 5  
  

−3
  

0
    4 _ 5    1  0  

1

  

0

  

5
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Multiply row 3 by   1 __ 5   and add to row 1.

    
 
  
1

  
0

  
0

  0  1    19 __ 5    
0

  
0

  
1

  ∣   −2
  

−3
  

1
    4 _ 5    1  0  

1
  

0
  

5
     

Multiply row 3 by −  19 ___ 5   and add to row 2.

    
 
  
1

  
0

  
0

  0  1  0  
0

  
0

  
1

  ∣   −2
  

−3
  

1
   −3  1  −19  

1
  

0
  

5
     

So,

 A −1  =     
−2 −3       1

  
      

  −3     1 −19          
1     0       5

    

Multiply both sides of the equation by  A −1 . We want  A −1 AX =  A −1 B:

     
−2 −3       1

  
      

  −3     1 −19          
1     0       5

         
5     15     56

  
       

  −4 −11 −41           
−1   −3 −11

        
x

 
 

 y   
z
     =     

−2 −3       1
  

      
  −3     1 −19          

1     0       5
         

35
 

  
 −26    

−7
    

Thus,

  A −1 B =     
−70 + 78−7

  
       

  −105 − 26 + 133          
35 + 0 − 35

     =    
1

 
 

 2   
0

    

The solution is (1, 2, 0).

Try It #4

Solve the system using the inverse of the coefficient matrix.

 2x − 17y + 11z = 0

 −x + 11y − 7z = 8

 3y − 2z = −2

How To…
Given a system of equations, solve with matrix inverses using a calculator.

1. Save the coefficient matrix and the constant matrix as matrix variables [A] and [B].
2. Enter the multiplication into the calculator, calling up each matrix variable as needed.
3. If the coefficient matrix is invertible, the calculator will present the solution matrix; if the coefficient matrix is not 

invertible, the calculator will present an error message.

Example 9 Using a Calculator to Solve a System of Equations with Matrix Inverses

Solve the system of equations with matrix inverses using a calculator

 2x + 3y + z = 32

 3x + 3y + z = −27

 2x + 4y + z = −2

Solution On the matrix page of the calculator, enter the coefficient matrix as the matrix variable [A], and enter the 
constant matrix as the matrix variable [B].

[A] =    
2 3 1

 
    

 3 3 1      
2 4 1

    , [B] =     
32
 

  
 −27    

−2
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On the home screen of the calculator, type in the multiplication to solve for X, calling up each matrix variable as 
needed.

  [A] −1  × [B]

Evaluate the expression.

    
−59

 
  

 −34    
252

    

Access these online resources for additional instruction and practice with solving systems with inverses.

•	 The Identity Matrix (http://openstaxcollege.org/l/identmatrix)

•	 Determining Inverse Matrices (http://openstaxcollege.org/l/inversematrix)

•	 Using a Matrix equation to Solve a System of equations (http://openstaxcollege.org/l/matrixsystem)

http://openstaxcollege.org/l/identmatrix
http://openstaxcollege.org/l/inversematrix
http://openstaxcollege.org/l/matrixsystem
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9.7 SeCTIOn exeRCISeS

VeRBAl

1. In a previous section, we showed that matrix 
multiplication is not commutative, that is, AB ≠ BA 
in most cases. Can you explain why matrix 
multiplication is commutative for matrix inverses, 
that is,  A −1  A = A A −1  ?

2. Does every 2 × 2 matrix have an inverse? Explain 
why or why not. Explain what condition is necessary 
for an inverse to exist.

3. Can you explain whether a 2 × 2 matrix with an 
entire row of zeros can have an inverse?

4. Can a matrix with an entire column of zeros have an 
inverse? Explain why or why not.

5. Can a matrix with zeros on the diagonal have an 
inverse? If so, find an example. If not, prove why not. 
For simplicity, assume a 2 × 2 matrix.

AlGeBRAIC

In the following exercises, show that matrix A is the inverse of matrix B.

6. A =     1 0     
−1 1

    , B =    1 0    
1 1

    7. A =    1 2    
3 4

    , B =    −2    1      
  3 _ 2   −  1 _ 2  

    

8. A =    4 5    
7 0

    , B =    0     1 _ 7       
  1 _ 5   −  4 __ 35  

    9. A =    −2       1 _ 2        
3 −1

    , B =    −2 −1      
−6 −4

    

10. A =    
1 0     1

 
    

 0 1 −1      
0 1     1

    , B =   1 __ 2      
2     1 −1

 
     

 0     1     1       
0 −1     1

    11. A =    
1 2 3

 
    

 4 0 2      
1 6 9

    , B =  1 __ 4      
6     0 −2

  
      

  17 −3 −5          
−12     2     4

    

12. A =     
3 8   2

 
    

 1 1   1      
5 6 12

    , B =   1 ___ 36      
−6    84 −6

  
      

  7 −26     1          
−1 −22     5

    

For the following exercises, find the multiplicative inverse of each matrix, if it exists.

13.     3 −2     
1     9

    14.    −2 2     
3 1

    15.    −3 7     
9 2

    16.    −4 −3      
−5    8

    

17.    1 1    
2 2

    18.    0 1    
1 0

    19.    0.5     1.5      
1 −0.5

    20.     
1 0 6

 
    

 −2 1 7      
3 0 2

    

21.     
0 1 −3

 
    

 4 1     0      
1 0     5

    22.     
1     2 −1

  
      

  −3     4     1          
−2 −4 −5

    23.     
1     9 −3

 
     

 2     5     6       
4 −2     7

    24.     
1 −2       3

  
      

  −4     8 −12          
1     4       2

    

25.        1 _ 2  

  

  1 _ 2  

  

  1 _ 2  

    1 _ 3      1 _ 4      1 _ 5    

  1 _ 6  

  

  1 _ 7  

  

  1 _ 8  

     26.    
1 2 3

 
    

 4 5 6      
7 8 9
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For the following exercises, solve the system using the inverse of a 2 × 2 matrix.

27. 5x − 6y = −61 
4x + 3y = −2

28. 8x + 4y = −100 
3x − 4y = 1

29.    3x − 2y = 6 
 −x + 5y = −2

30. 5x−4y = −5 
4x + y = 2.3

31.  −3x − 4y = 9 
  12x + 4y = −6

32.  −2x + 3y =   3 ___ 10   

  − x + 5y =  1 __ 2  

33.       8 __ 5  x −   4 __ 5  y =   2 __ 5   

 −  8 __ 5  x +   1 __ 5  y =   7 ___ 10  

34.   1 __ 2  x +   1 __ 5   y = −  1 __ 4   

   1 __ 2  x −   3 __ 5  y = −  9 __ 4  

For the following exercises, solve a system using the inverse of a 3 × 3 matrix.

35. 3x − 2y + 5z = 21 
          5x + 4y = 37 
   x − 2y − 5z = 5

36.   4x + 4y + 4z = 40 
  2x − 3y + 4z = −12 
 −x + 3y + 4z = 9

37.    6x − 5y − z = 31 
 −x + 2y + z = −6 
 3x + 3y + 2z = 13

38. 6x − 5y + 2z = −4 
  2x + 5y − z = 12 
  2x + 5y + z = 12

39. 4x − 2y + 3z = −12 
2x + 2y − 9z = 33 
          6y − 4z = 1

40.    1 ___ 10  x −   1 __ 5  y + 4z = −  41 ___ 2   

  1 __ 5  x − 20y +   2 __ 5  z = −101 

  3 ___ 10  x + 4y −   3 ___ 10  z = 23

41.       1 __ 2  x −   1 __ 5  y +   1 __ 5  z =   31 ___ 100   

 −  3 __ 4  x −   1 __ 4  y +   1 __ 2  z =   7 ___ 40   

  −  4 __ 5  x −   1 __ 2  y +   3 __ 2  z = 14

42. 0.1x + 0.2y + 0.3z = −1.4 
0.1x − 0.2y + 0.3z = 0.6 
             0.4y + 0.9z = −2

TeCHnOlOGY
For the following exercises, use a calculator to solve the system of equations with matrix inverses.

43.     2x − y = −3 
 −x + 2y = 2.3

44.  −  1 __ 2  x −   3 __ 2  y = −  43 ___ 20   

    5 __ 2  x +   11 ___ 5  y =   31 ___ 4  

45. 12.3x − 2y − 2.5z = 2 
36.9x + 7y − 7.5z = −7 
                  8y − 5z = −10

46. 0.5x − 3y + 6z = −0.8 
          0.7x − 2y = −0.06 
0.5x + 4y + 5z = 0

exTenSIOnS
For the following exercises, find the inverse of the given matrix.

47.    
 
1 0 1 0

 
    

 0 1 0 1      
0 1 1 0

 
      

0 0 1 1
    

48. 49.     
  
1 −2     3 0

  
      

  0     1     0 2          
1     4 −2 3

 
           

−5     0     1 1
    50. 

    
  
 
1 2 0 2 3

  
      

  0 2 1 0 0          
0 0 3 0 1

 
          

0 2 0 0 1
 
          

0 0 1 2 0
    

51. 

    
  
  
 
1 0 0 0 0 0

  
       

  0 1 0 0 0 0           
0 0 1 0 0 0

 
           

0 0 0 1 0 0
 
           

0 0 0 0 1 0
 
           

1 1 1 1 1 1
    

    −1
  

0
  

2
  

5
   0  0  0  2   0  2  −1  0   

1

  

−3

  

0

  

1
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ReAl-WORlD APPlICATIOnS
For the following exercises, write a system of equations that represents the situation. Then, solve the system using the inverse 
of a matrix.

52. 2,400 tickets were sold for a basketball game. If the 
prices for floor 1 and floor 2 were different, and the 
total amount of money brought in is $64,000, how 
much was the price of each ticket?

53. In the previous exercise, if you were told there were 
400 more tickets sold for floor 2 than floor 1, how 
much was the price of each ticket?

54. A food drive collected two different types of canned 
goods, green beans and kidney beans. The total 
number of collected cans was 350 and the total 
weight of all donated food was 348 lb, 12 oz. If the 
green bean cans weigh 2 oz less than the kidney 
bean cans, how many of each can was donated?

55. Students were asked to bring their favorite fruit to 
class. 95% of the fruits consisted of banana, apple, 
and oranges. If oranges were twice as popular as 
bananas, and apples were 5% less popular than 
bananas, what are the percentages of each individual 
fruit?

56. A sorority held a bake sale to raise money and sold 
brownies and chocolate chip cookies. They priced 
the brownies at $1 and the chocolate chip cookies 
at $0.75. They raised $700 and sold 850 items. How 
many brownies and how many cookies were sold?

57. A clothing store needs to order new inventory. It 
has three different types of hats for sale: straw hats, 
beanies, and cowboy hats. The straw hat is priced at 
$13.99, the beanie at $7.99, and the cowboy hat at 
$14.49. If 100 hats were sold this past quarter, $1,119 
was taken in by sales, and the amount of beanies 
sold was 10 more than cowboy hats, how many of 
each should the clothing store order to replace those 
already sold?

58. Anna, Ashley, and Andrea weigh a combined 370 lb. 
If Andrea weighs 20 lb more than Ashley, and Anna 
weighs 1.5 times as much as Ashley, how much does 
each girl weigh?

59. Three roommates shared a package of 12 ice cream 
bars, but no one remembers who ate how many. If 
Tom ate twice as many ice cream bars as Joe, and 
Albert ate three less than Tom, how many ice cream 
bars did each roommate eat?

60. A farmer constructed a chicken coop out of chicken 
wire, wood, and plywood. The chicken wire cost $2 
per square foot, the wood $10 per square foot, and 
the plywood $5 per square foot. The farmer spent a 
total of $51, and the total amount of materials used 
was 14  ft 2 . He used 3  ft 2  more chicken wire than 
plywood. How much of each material in did the 
farmer use?

61. Jay has lemon, orange, and pomegranate trees in his 
backyard. An orange weighs 8 oz, a lemon 5 oz, and 
a pomegranate 11 oz. Jay picked 142 pieces of fruit 
weighing a total of 70 lb, 10 oz. He picked 15.5 times 
more oranges than pomegranates. How many of 
each fruit did Jay pick?
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9.8 SOlVInG SYSTeMS WITH CRAMeR'S RUle

We have learned how to solve systems of equations in two variables and three variables, and by multiple methods: 
substitution, addition, Gaussian elimination, using the inverse of a matrix, and graphing. Some of these methods are 
easier to apply than others and are more appropriate in certain situations. In this section, we will study two more 
strategies for solving systems of equations.

evaluating the Determinant of a 2 × 2 Matrix
A determinant is a real number that can be very useful in mathematics because it has multiple applications, such as 
calculating area, volume, and other quantities. Here, we will use determinants to reveal whether a matrix is invertible 
by using the entries of a square matrix to determine whether there is a solution to the system of equations. Perhaps one 
of the more interesting applications, however, is their use in cryptography. Secure signals or messages are sometimes 
sent encoded in a matrix. The data can only be decrypted with an invertible matrix and the determinant. For our 
purposes, we focus on the determinant as an indication of the invertibility of the matrix. Calculating the determinant 
of a matrix involves following the specific patterns that are outlined in this section.

find the determinant of a 2 × 2 matrix 
The determinant of a 2 × 2 matrix, given
 A =    a b    

c d
    

is defined as

 det(A) =  ∣  a b    
c d

  ∣  = ad − cb

Notice the change in notation. There are several ways to indicate the determinant, including det(A) and replacing 
the brackets in a matrix with straight lines,  ∣ A ∣ .

Example 1 Finding the Determinant of a 2 × 2 Matrix

Find the determinant of the given matrix.

A =     5 2     
−6 3

    

Solution det(A) =  ∣   5 2     
−6 3

  ∣ 
 = 5(3) − (−6)(2)

 = 27

Using Cramer’s Rule to Solve a System of Two equations in Two Variables
We will now introduce a final method for solving systems of equations that uses determinants. Known as Cramer’s Rule, 
this technique dates back to the middle of the 18th century and is named for its innovator, the Swiss mathematician 
Gabriel Cramer (1704-1752), who introduced it in 1750 in Introduction à l'Analyse des lignes Courbes algébriques. 
Cramer’s Rule is a viable and efficient method for finding solutions to systems with an arbitrary number of unknowns, 
provided that we have the same number of equations as unknowns.

leARnInG OBjeCTIVeS

In this section, you will:
•	 Evaluate 2 × 2 determinants.
•	 Use Cramer’s Rule to solve a system of equations in two variables.
•	 Evaluate 3 × 3 determinants.
•	 Use Cramer’s Rule to solve a system of three equations in three variables.
•	 Know the properties of determinants.
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Cramer’s Rule will give us the unique solution to a system of equations, if it exists. However, if the system has no 
solution or an infinite number of solutions, this will be indicated by a determinant of zero. To find out if the system 
is inconsistent or dependent, another method, such as elimination, will have to be used.
To understand Cramer’s Rule, let’s look closely at how we solve systems of linear equations using basic row operations. 
Consider a system of two equations in two variables.
  a 1 x +  b 1  y =  c 1  (1)
  a 2 x +  b 2  y =  c 2  (2)
We eliminate one variable using row operations and solve for the other. Say that we wish to solve for x. If equation (2) 
is multiplied by the opposite of the coefficient of y in equation (1), equation (1) is multiplied by the coefficient of y in 
equation (2), and we add the two equations, the variable y will be eliminated.

  b 2   a 1 x +  b 2   b 1  y =  b 2  c 1  Multiply  R 1  by  b 2 

 − b 1   a 2 x −  b 1  b 2  y = − b 1  c 2  Multiply  R 2  by − b 1 

  b 2   a 1 x −  b 1   a 2 x =  b 2  c 1  −  b 1  c 2 

Now, solve for x.

  b 2   a 1 x −  b 1   a 2 x =  b 2  c 1  −  b 1  c 2  

 x( b 2   a 1  −  b 1   a 2 ) =  b 2  c 1  −  b 1  c 2 

 x =    
 b 2  c 1  −  b 1  c 2  _ 
 b 2  a 1  −  b 1  a 2 

    =      
    c 1   b 1      

 c 2   b 2 
     
 _ 

       a 1   b 1      
 a 2   b 2 

    
     

Similarly, to solve for y, we will eliminate x.

  a 2  a 1 x +  a 2  b 1  y =  a 2  c 1  Multiply  R 1  by  a 2 

 − a 1  a 2 x − a 1  b 2 y = − a 1  c 2  Multiply  R 2  by − a 1 

  a 2  b 1  y −  a 1  b 2  y =  a 2  c 1  −  a 1  c 2 

Solving for y gives

  a 2  b 1  y −  a 1  b 2  y =  a 2  c 1  −  a 1  c 2 

 y( a 2  b 1  −  a 1  b 2 ) =  a 2  c 1  −  a 1  c 2 

 y =   
 a 2  c 1  −  a 1  c 2  _ 
 a 2  b 1  −  a 1  b 2 

   =    
 a 1  c 2  −  a 2  c 1  _ 
 a 1  b 2  −  a 2  b 1 

    =      
    a 1   c 1      

 a 2   c 2 
     
 _ 

       a 1   b 1      
 a 2   b 2 

    
     

Notice that the denominator for both x and y is the determinant of the coefficient matrix.
We can use these formulas to solve for x and y, but Cramer’s Rule also introduces new notation:

•	 D : determinant of the coefficient matrix

•	  D x  : determinant of the numerator in the solution of x

 x =   
 D x  _ 
D

  

•	  D y  : determinant of the numerator in the solution of y

 y =   
 D y 

 _ 
D

  

The key to Cramer’s Rule is replacing the variable column of interest with the constant column and calculating the 
determinants. We can then express x and y as a quotient of two determinants.
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Cramer’s Rule for 2 × 2 systems 
Cramer’s Rule is a method that uses determinants to solve systems of equations that have the same number of 
equations as variables.

Consider a system of two linear equations in two variables.
  a 1 x +  b 1  y =  c 1 
  a 2 x +  b 2  y =  c 2 

The solution using Cramer’s Rule is given as

x =   
 D x  _ 
D

   =   

    c 1   b 1      
 c 2   b 2 

    
 _ 

    a 1   b 1      
 a 2   b 2 

    
  , D ≠ 0; y =   

 D y 
 _ 

D
   =   

    a 1   c 1      
 a 2   c 2 

    
 _ 

    a 1   b 1      
 a 2   b 2 

    
  , D ≠ 0. 

If we are solving for x, the x column is replaced with the constant column. If we are solving for y, the y column is 
replaced with the constant column.

Example 2 Using Cramer’s Rule to Solve a 2 × 2 System

Solve the following 2 × 2 system using Cramer’s Rule.

 12x + 3y = 15

 2x − 3y = 13

Solution Solve for x.

x =    
 D x  _ 
D

    =   
 ∣  15     3     
13 −3

  ∣  _ 
 ∣  12     3     

2 −3
  ∣ 
   =   −45 − 39 ________ 

−36 − 6   =   −84 ____ 
−42   = 2

Solve for y.

 y =    
 D y 

 _ 
D

    =   
 ∣  12 15     

2 13
  ∣  _ 

 ∣  12     3     
2 −3

  ∣ 
   =   156 − 30 ________ 

−36 − 6   = −  126 ___ 42   = −3

The solution is (2, −3).

Try It #1

Use Cramer’s Rule to solve the 2 × 2 system of equations.
 x + 2y = −11
 −2x + y = −13

evaluating the Determinant of a 3 × 3 Matrix
Finding the determinant of a 2 × 2 matrix is straightforward, but finding the determinant of a 3 × 3 matrix is more 
complicated. One method is to augment the 3 × 3 matrix with a repetition of the first two columns, giving a 3 × 5 
matrix. Then we calculate the sum of the products of entries down each of the three diagonals (upper left to lower 
right), and subtract the products of entries up each of the three diagonals (lower left to upper right). This is more easily 
understood with a visual and an example.

Find the determinant of the 3 × 3 matrix.

 A =    
 a 1   b 1   c 1 

 
    

  a 2   b 2   c 2       
 a 3   b 3   c 3 
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1. Augment A with the first two columns.

 det(A) =  ∣   a 1   b 1   c 1 
 

    
  a 2   b 2   c 2       

 a 3   b 3   c 3 
  ∣       a 1   b 1 

 
   

  a 2   b 2      
 a 3   b 3 

  ∣ 
2.  From upper left to lower right: Multiply the entries down the first diagonal. Add the result to the product of 

entries down the second diagonal. Add this result to the product of the entries down the third diagonal.

3. From lower left to upper right: Subtract the product of entries up the first diagonal. From this result subtract the 
product of entries up the second diagonal. From this result, subtract the product of entries up the third diagonal.

 det(A) =  ∣   a 1   b 1   c 1 
 

    
  a 2   b 2   c 2       

 a 3   b 3   c 3 
  ∣       a 1   b 1 

 
   

  a 2   b 2      
 a 3   b 3 

  ∣  
The algebra is as follows:

  ∣ A ∣  =  a 1   b 2   c 3  +  b 1   c 2   a 3  +  c 1   a 2   b 3  −  a 3   b 2   c 1  −  b 3   c 2   a 1  −  c 3   a 2   b 1 

Example 3 Finding the Determinant of a 3 × 3 Matrix

Find the determinant of the 3 × 3 matrix given

 A =    
0     2 1

 
    

 3 −1 1      
4     0 1

    

Solution Augment the matrix with the first two columns and then follow the formula. Thus,

  ∣ A ∣  =  ∣  0     2 1
 

    
 3 −1 1      

4     0 1
  ∣      0     2

 
   

 3 −1     
4     2

  ∣ 
= 0(−1)(1) + 2(1)(4) + 1(3)(0) − 4(−1)(1) − 0(1)(0) − 1(3)(2)

 = 0 + 8 + 0 + 4 − 0 − 6

 = 6

Try It #2

Find the determinant of the 3 × 3 matrix.

det(A) =  ∣   1 −3 7
 

    
 1     1 1      

1 −2 3
  ∣ 

Q & A…
Can we use the same method to find the determinant of a larger matrix?

No, this method only works for 2 × 2 and 3 × 3 matrices. For larger matrices it is best to use a graphing utility or 
computer software.

Using Cramer’s Rule to Solve a System of Three equations in Three Variables
Now that we can find the determinant of a 3 × 3 matrix, we can apply Cramer’s Rule to solve a system of three 
equations in three variables. Cramer’s Rule is straightforward, following a pattern consistent with Cramer’s Rule for 
2 × 2 matrices. As the order of the matrix increases to 3 × 3, however, there are many more calculations required.

When we calculate the determinant to be zero, Cramer’s Rule gives no indication as to whether the system has no 
solution or an infinite number of solutions. To find out, we have to perform elimination on the system.
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Consider a 3 × 3 system of equations.

  a 1 x +  b 1  y +  c 1 z =  d 1 

  a 2 x +  b 2  y +  c 2 z =  d 2 

  a 3 x +  b 3  y +  c 3 z =  d 3 

x =   
 D x  _ 
D

  , y =   
 D y 

 _ 
D

  , z =   
 D z  _ 
D

  , D ≠ 0

where

D =  ∣   a 1   b 1   c 1 
 

    
  a 2   b 2   c 2       

 a 3   b 3   c 3 
  ∣ ,  D x  =  ∣   d 1   b 1   c 1 

 
    

  d 2   b 2   c 2       
 d 3   b 3   c 3 

  ∣ ,  D y  =  ∣   a 1   d 1   c 1 
 

    
  a 2   d 2   c 2       

 a 3   d 3   c 3 
  ∣ ,  D z  =  ∣   a 1   b 1   d 1 

 
    

  a 2   b 2   d 2       
 a 3   b 3   d 3 

  ∣ 
If we are writing the determinant  D x , we replace the x column with the constant column. If we are writing the 
determinant  D y , we replace the y column with the constant column. If we are writing the determinant  D z , we replace 
the z column with the constant column. Always check the answer.

Example 4 Solving a 3 × 3 System Using Cramer’s Rule

Find the solution to the given 3 × 3 system using Cramer’s Rule.

 x + y − z = 6

 3x − 2y + z = −5

 x + 3y − 2z = 14

Solution Use Cramer’s Rule.

D =  ∣  1     1 −1
 

     
 3 −2     1       

1     3 −2
  ∣ ,  D x  =  ∣   6     1 −1

  
      

  −5 −2     1          
14     3 −2

  ∣ ,  D y  =  ∣   1     6 −1
 

     
 3 −5     1       

1   14 −2
  ∣ ,  D z  =  ∣   1     1     6

 
     

 3 −2 −5       
1     3   14

  ∣ 
Then,

x =   
 D x  _ 
D

   =   −3 ___ 
−3   = 1

 y =   
 D y 

 _ 
D

   =   −9 ___ 
−3   = 3

 z =   
 D z  _ 
D

   =   6 ___ 
−3   = − 2

The solution is (1, 3, −2).

Try It #3

Use Cramer’s Rule to solve the 3 × 3 matrix.

 x − 3y + 7z = 13 

 x + y + z = 1

 x − 2y + 3z = 4

Example 5 Using Cramer’s Rule to Solve an Inconsistent System

Solve the system of equations using Cramer’s Rule.

 3x − 2y = 4 (1)

 6x − 4y = 0 (2)

Solution We begin by finding the determinants D,  D x , and  D y .

 D =  ∣  3 −2     
6 −4

  ∣  = 3(−4) − 6(−2) = 0
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We know that a determinant of zero means that either the system has no solution or it has an infinite number of 
solutions. To see which one, we use the process of elimination. Our goal is to eliminate one of the variables.

1. Multiply equation (1) by −2.

2. Add the result to equation (2).

 −6x + 4y = −8 

 6x − 4y = 0

 0 = −8

We obtain the equation 0 = −8, which is false. Therefore, the system has no solution. Graphing the system reveals 
two parallel lines. See Figure 1.

2

x

y

–1
–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5

y = 3
2 x − 2

y = 3
2 x

Figure 1

Example 6 Use Cramer’s Rule to Solve a Dependent System

Solve the system with an infinite number of solutions.

 x − 2y + 3z = 0  (1)

 3x + y − 2z = 0  (2)

 2x − 4y + 6z = 0  (3)

Solution Let’s find the determinant first. Set up a matrix augmented by the first two columns.

 ∣  1 −2     3
 

     
 3     1 −2       

2 −4     6
  ∣       1 −2

 
   

 3     1     
2 −4

  ∣ 
Then,

1(1)(6) + (−2)(−2)(2) + 3(3)(−4) − 2(1)(3) − (−4)(−2)(1) − 6(3)(−2) = 0

As the determinant equals zero, there is either no solution or an infinite number of solutions. We have to perform 
elimination to find out.

1. Multiply equation (1) by −2 and add the result to equation (3):

 −2x + 4y − 6x = 0

 2x − 4y + 6z = 0

 0 = 0

2. Obtaining an answer of 0 = 0, a statement that is always true, means that the system has an infinite number of 
solutions. Graphing the system, we can see that two of the planes are the same and they both intersect the third 
plane on a line. See Figure 2.
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x − 2y + 3z = 0
2x − 4y + 6z = 0

3x + y + 2z = 0

Figure 2

Understanding Properties of Determinants
There are many properties of determinants. Listed here are some properties that may be helpful in calculating the 
determinant of a matrix.

properties of determinants 

1. If the matrix is in upper triangular form, the determinant equals the product of entries down the main diagonal.

2. When two rows are interchanged, the determinant changes sign.

3. If either two rows or two columns are identical, the determinant equals zero.

4. If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.

5. The determinant of an inverse matrix  A −1  is the reciprocal of the determinant of the matrix A.

6. If any row or column is multiplied by a constant, the determinant is multiplied by the same factor.

Example 7 Illustrating Properties of Determinants

Illustrate each of the properties of determinants.

Solution Property 1 states that if the matrix is in upper triangular form, the determinant is the product of the entries 
down the main diagonal.

 A =    
1 2     3

 
    

 0 2     1      
0 0 −1

    

Augment A with the first two columns.

 A =    
1 2     3

 
    

 0 2     1      
0 0 −1

  ∣      1 2
 

  
 0 2    

0 0
    

Then

det(A) = 1(2)(−1) + 2(1)(0) + 3(0)(0) − 0(2)(3) − 0(1)(1) + 1(0)(2)

 = −2

Property 2 states that interchanging rows changes the sign. Given

 A =    −1     5      
4 −3

    , det(A) = (−1)(−3) − (4)(5) = 3 − 20 = −17

 B =     4 −3      
−1     5

    , det(B) = (4)(5) − (−1)(−3) = 20 − 3 = 17
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Property 3 states that if two rows or two columns are identical, the determinant equals zero.

 A =  ∣   1 2 2
 

    
 2 2 2      

−1 2 2
  ∣       1 2

 
   

 2 2     
−1 2

    

 det(A) = 1(2)(2) + 2(2)(−1) + 2(2)(2) + 1(2)(2) − 2(2)(1) − 2(2)(2)

 = 4 − 4 + 8 + 4 − 4 − 8 = 0

Property 4 states that if a row or column equals zero, the determinant equals zero. Thus,

 A =    1 2    
0 0

    , det(A) = 1(0) − 2(0) = 0

Property 5 states that the determinant of an inverse matrix  A −1  is the reciprocal of the determinant A. Thus,

 A =    1 2    
3 4

    , det(A) = 1(4) − 3(2) = −2

  A −1  =     −2
  

1
    3 _ 2    −  1 _ 2       , det( A −1 ) = −2  −  1 __ 2      −     3 __ 2     (1) = −  1 __ 2  

Property 6 states that if any row or column of a matrix is multiplied by a constant, the determinant is multiplied by 
the same factor. Thus,

 A =    1 2    
3 4

    , det(A) = 1(4) − 2(3) = −2

 B =     2(1)  2(2)  
3

  
4

     , det(B) = 2(4) − 3(4) = −4

Example 8 Using Cramer’s Rule and Determinant Properties to Solve a System

Find the solution to the given 3 × 3 system.

 2x + 4y + 4z = 2  (1)

 3x + 7y + 7z = −5 (2)

 x + 2y + 2z = 4 (3)

Solution Using Cramer’s Rule, we have

D =  ∣  2 4 4
 

    
 3 7 7      

1 2 2
  ∣ 

Notice that the second and third columns are identical. According to Property 3, the determinant will be zero, so there 
is either no solution or an infinite number of solutions. We have to perform elimination to find out.

1.  Multiply equation (3) by −2 and add the result to equation (1).

 −2x − 4y − 4x = −8

 2x + 4y + 4z = 2

 0 = −6

Obtaining a statement that is a contradiction means that the system has no solution.

Access these online resources for additional instruction and practice with Cramer’s Rule.

•	 Solve a System of Two equations Using Cramer's Rule (http://openstaxcollege.org/l/system2cramer)

•	 Solve a Systems of Three equations using Cramer's Rule (http://openstaxcollege.org/l/system3cramer)

http://openstaxcollege.org/l/system2cramer
http://openstaxcollege.org/l/system3cramer
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9.8 SeCTIOn exeRCISeS

VeRBAl

1. Explain why we can always evaluate the determinant 
of a square matrix.

2. Examining Cramer’s Rule, explain why there is no 
unique solution to the system when the determinant 
of your matrix is 0. For simplicity, use a 2 × 2 
matrix.

3. Explain what it means in terms of an inverse for a 
matrix to have a 0 determinant.

4. The determinant of 2 × 2 matrix A is 3. If you 
switch the rows and multiply the first row by 6 
and the second row by 2, explain how to find the 
determinant and provide the answer.

AlGeBRAIC

For the following exercises, find the determinant.

5.  ∣  1 2    
3 4

  ∣ 6.  ∣  −1     2      
3 −4

  ∣ 7.  ∣   2 −5      
−1     6

  ∣ 8.  ∣  −8 4     
−1 5

  ∣ 
9.  ∣  1     0     

3 −4
  ∣ 10.  ∣  10    20      

0 −10
  ∣ 11.  ∣  10 0.2     

5 0.1
  ∣ 12.  ∣   6 −3     

8     4
  ∣ 

13.   ∣  −2  −3  3.1  4,000  ∣  14.  ∣  −1.1     0.6       
7.2 −0.5

  ∣ 15.  ∣  −1 0     0
 

     
 0 1     0       

0 0 −3
  ∣ 16.  ∣  −1 4     0

 
     

 0 2     3       
0 0 −3

  ∣ 
17.  ∣  1 0 1

 
    

 0 1 0      
1 0 0

  ∣ 18.  ∣   2 −3 1
 

     
 3 −4 1       

−5     6 1
  ∣ 19.  ∣  −2     1     4

  
      

  −4     2 −8         
2 −8 −3

  ∣ 20.  ∣   6 −1     2
  

      
  −4 −3     5         

1     9 −1
  ∣ 

21.  ∣   5     1 −1
 

     
 2     3     1       

3 −6 −3
  ∣ 22.   ∣   1.1

  
2   

  
−1   

   −4     0     0      
4.1

  
−0.4

  
2.5

  ∣  23.   ∣   2   
  

−1.6
  

3.1
   1.1  3     −8      

−9.3
  

0   
  

2   
  ∣  24.   ∣  −  1 _ 2  

  

  1 _ 3  

  

  1 _ 4  

    1 _ 5    −  1 _ 6      1 _ 7    

0

  

0

  

  1 _ 8  

  ∣  
For the following exercises, solve the system of linear equations using Cramer’s Rule.

25. 2x − 3y = −1 
4x + 5y = 9

26.     5x − 4y = 2 
 −4x + 7y = 6

27.     6x − 3y = 2 
 −8x + 9y = −1

28. 2x + 6y = 12 
5x − 2y = 13

29. 4x + 3y = 23 
  2x − y = −1

30.   10x − 6y = 2 
 −5x + 8y = −1

31. 4x − 3y = −3 
2x + 6y = −4

32.     4x − 5y = 7 
 −3x + 9y = 0

33.   4x + 10y = 180 
 −3x − 5y = −105

34.     8x − 2y = −3 
 −4x + 6y = 4

For the following exercises, solve the system of linear equations using Cramer’s Rule.

35.       x + 2y − 4z = − 1 
    7x + 3y + 5z = 26 
 −2x − 6y + 7z = − 6

36.  −5x + 2y − 4z = − 47 
      4x − 3y − z = − 94 
    3x − 3y + 2z = 94

37.     4x + 5y − z = −7 
−2x − 9y + 2z = 8 
            5y + 7z = 21

38. 4x − 3y + 4z = 10 
          5x − 2z = − 2 
3x + 2y − 5z = − 9

39. 4x − 2y + 3z = 6 
       − 6x + y = − 2 
2x + 7y + 8z = 24

40.       5x + 2y − z = 1 
 −7x − 8y + 3z = 1.5 
    6x − 12y + z = 7

41.   13x − 17y + 16z = 73 
−11x + 15y + 17z = 61 
  46x + 10y − 30z = − 18

42.  −4x − 3y − 8z = − 7 
    2x − 9y + 5z = 0.5 
    5x − 6y − 5z = − 2
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43.   4x − 6y + 8z = 10 
−2x + 3y − 4z = − 5 
         x + y + z = 1

44.       4x − 6y + 8z = 10 
   −2x + 3y − 4z = − 5 
12x + 18y − 24z = − 30

TeCHnOlOGY

For the following exercises, use the determinant function on a graphing utility.

45.  ∣    1 0 8 9
 

     
 0 2 1 0       

1 0 3 0
 
       

0 2 4 3
  ∣ 46. 47. 

 ∣       1 _ 2   1     7         4
  

       
  0    1 _ 2   100         5           

0  0     2 2,000
 
           

0   0     0         2
  ∣ 48.  ∣    1 0 0 0

 
     

 2 3 0 0       
4 5 6 0

 
       

7 8 9 0
  ∣ 

ReAl-WORlD APPlICATIOnS

For the following exercises, create a system of linear equations to describe the behavior. Then, calculate the determinant. 
Will there be a unique solution? If so, find the unique solution.

49. Two numbers add up to 56. One number is 20 less 
than the other.

50. Two numbers add up to 104. If you add two times 
the first number plus two times the second number, 
your total is 208

51. Three numbers add up to 106. The first number is 3 
less than the second number. The third number is 4 
more than the first number.

52. Three numbers add to 216. The sum of the first two 
numbers is 112. The third number is 8 less than the 
first two numbers combined.

For the following exercises, create a system of linear equations to describe the behavior. Then, solve the system for all 
solutions using Cramer’s Rule.

53. You invest $10,000 into two accounts, which receive 
8% interest and 5% interest. At the end of a year, you 
had $10,710 in your combined accounts. How much 
was invested in each account?

54. You invest $80,000 into two accounts, $22,000 in 
one account, and $58,000 in the other account. At 
the end of one year, assuming simple interest, you 
have earned $2,470 in interest. The second account 
receives half a percent less than twice the interest on 
the first account. What are the interest rates for your 
accounts?

55. A movie theater needs to know how many adult 
tickets and children tickets were sold out of the 
1,200 total tickets. If children’s tickets are $5.95, 
adult tickets are $11.15, and the total amount of 
revenue was $12,756, how many children’s tickets 
and adult tickets were sold?

56. A concert venue sells single tickets for $40 each 
and couple’s tickets for $65. If the total revenue was 
$18,090 and the 321 tickets were sold, how many 
single tickets and how many couple’s tickets were 
sold?

57. You decide to paint your kitchen green. You create 
the color of paint by mixing yellow and blue paints. 
You cannot remember how many gallons of each 
color went into your mix, but you know there were 
10 gal total. Additionally, you kept your receipt, and 
know the total amount spent was $29.50. If each 
gallon of yellow costs $2.59, and each gallon of blue 
costs $3.19, how many gallons of each color go into 
your green mix?

58. You sold two types of scarves at a farmers’ market 
and would like to know which one was more 
popular. The total number of scarves sold was 56, 
the yellow scarf cost $10, and the purple scarf cost 
$11. If you had total revenue of $583, how many 
yellow scarves and how many purple scarves were 
sold?

  ∣  1  
0

  
2

  
1 

   0  −9  1  3    3  0  
−2  

−1   

0

  

1

  

1

  

−2

  ∣  
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59. Your garden produced two types of tomatoes, one 
green and one red. The red weigh 10 oz, and the 
green weigh 4 oz. You have 30 tomatoes, and a total 
weight of 13 lb, 14 oz. How many of each type of 
tomato do you have?

60. At a market, the three most popular vegetables make 
up 53% of vegetable sales. Corn has 4% higher sales 
than broccoli, which has 5% more sales than onions. 
What percentage does each vegetable have in the 
market share?

61. At the same market, the three most popular fruits 
make up 37% of the total fruit sold. Strawberries sell 
twice as much as oranges, and kiwis sell one more 
percentage point than oranges. For each fruit, find 
the percentage of total fruit sold.

62. Three bands performed at a concert venue. The 
first band charged $15 per ticket, the second band 
charged $45 per ticket, and the final band charged 
$22 per ticket. There were 510 tickets sold, for a total 
of $12,700. If the first band had 40 more audience 
members than the second band, how many tickets 
were sold for each band?

63. A movie theatre sold tickets to three movies. The 
tickets to the first movie were $5, the tickets to the 
second movie were $11, and the third movie was 
$12. 100 tickets were sold to the first movie. The 
total number of tickets sold was 642, for a total 
revenue of $6,774. How many tickets for each movie 
were sold?

64. Men aged 20–29, 30–39, and 40–49 made up 78% 
of the population at a prison last year. This year, the 
same age groups made up 82.08% of the population. 
The 20–29 age group increased by 20%, the 30–39 
age group increased by 2%, and the 40–49 age group 

 decreased to   3 __ 4   of their previous population. 
 Originally, the 30–39 age group had 2% more 

prisoners than the 20–29 age group. Determine the 
prison population percentage for each age group 
last year.

65. At a women’s prison down the road, the total 
number of inmates aged 20–49 totaled 5,525. This 
year, the 20–29 age group increased by 10%, the 
30–39 age group decreased by 20%, and the 40–49 
age group doubled. There are now 6,040 prisoners. 
Originally, there were 500 more in the 30–39 age 
group than the 20–29 age group. Determine the 
prison population for each age group last year.

For the following exercises, use this scenario: A health-conscious company decides to make a trail mix out of almonds, 
dried cranberries, and chocolate-covered cashews. The nutritional information for these items is shown in Table 1.

Fat (g) Protein (g) Carbohydrates (g)
Almonds (10) 6 2 3

Cranberries (10) 0.02 0 8
Cashews (10) 7 3.5 5.5

Table 1

66. For the special “low-carb” trail mix, there are 1,000 
pieces of mix. The total number of carbohydrates is 
425 g, and the total amount of fat is 570.2 g. If there 
are 200 more pieces of cashews than cranberries, how 
many of each item is in the trail mix?

67. For the “hiking” mix, there are 1,000 pieces in the 
mix, containing 390.8 g of fat, and 165 g of protein. 
If there is the same amount of almonds as cashews, 
how many of each item is in the trail mix?

68. For the “energy-booster” mix, there are 1,000 
pieces in the mix, containing 145 g of protein and 
625 g of carbohydrates. If the number of almonds 
and cashews summed together is equivalent to the 
amount of cranberries, how many of each item is in 
the trail mix?
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CHAPTeR 9 ReVIeW

Key Terms
addition method an algebraic technique used to solve systems of linear equations in which the equations are added in a 

way that eliminates one variable, allowing the resulting equation to be solved for the remaining variable; substitution is 
then used to solve for the first variable

augmented matrix a coefficient matrix adjoined with the constant column separated by a vertical line within the matrix brackets
break-even point the point at which a cost function intersects a revenue function; where profit is zero
coefficient matrix a matrix that contains only the coefficients from a system of equations
column a set of numbers aligned vertically in a matrix
consistent system a system for which there is a single solution to all equations in the system and it is an independent system, 

or if there are an infinite number of solutions and it is a dependent system
cost function the function used to calculate the costs of doing business; it usually has two parts, fixed costs and variable costs
Cramer’s Rule a method for solving systems of equations that have the same number of equations as variables using determinants
dependent system a system of linear equations in which the two equations represent the same line; there are an infinite 

number of solutions to a dependent system
determinant a number calculated using the entries of a square matrix that determines such information as whether there 

is a solution to a system of equations
entry an element, coefficient, or constant in a matrix
feasible region the solution to a system of nonlinear inequalities that is the region of the graph where the shaded regions 

of each inequality intersect
Gaussian elimination using elementary row operations to obtain a matrix in row-echelon form
identity matrix a square matrix containing ones down the main diagonal and zeros everywhere else; it acts as a 1 in matrix 

algebra
inconsistent system a system of linear equations with no common solution because they represent parallel lines, which have 

no point or line in common
independent system a system of linear equations with exactly one solution pair (x, y)
main diagonal entries from the upper left corner diagonally to the lower right corner of a square matrix

matrix a rectangular array of numbers
multiplicative inverse of a matrix a matrix that, when multiplied by the original, equals the identity matrix

nonlinear inequality an inequality containing a nonlinear expression
partial fraction decomposition the process of returning a simplified rational expression to its original form, a sum or 

difference of simpler rational expressions
partial fractions the individual fractions that make up the sum or difference of a rational expression before combining them 

into a simplified rational expression
profit function the profit function is written as P(x) = R(x) − C(x), revenue minus cost
revenue function the function that is used to calculate revenue, simply written as R = xp, where x = quantity and p = price
row a set of numbers aligned horizontally in a matrix
row operations adding one row to another row, multiplying a row by a constant, interchanging rows, and so on, with the 

goal of achieving row-echelon form
row-echelon form after performing row operations, the matrix form that contains ones down the main diagonal and zeros 

at every space below the diagonal
row-equivalent two matrices A and B are row-equivalent if one can be obtained from the other by performing basic row 

operations
scalar multiple an entry of a matrix that has been multiplied by a scalar
solution set the set of all ordered pairs or triples that satisfy all equations in a system of equations
substitution method an algebraic technique used to solve systems of linear equations in which one of the two equations is 

solved for one variable and then substituted into the second equation to solve for the second variable
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system of linear equations a set of two or more equations in two or more variables that must be considered simultaneously.
system of nonlinear equations a system of equations containing at least one equation that is of degree larger than one
system of nonlinear inequalities a system of two or more inequalities in two or more variables containing at least one 

inequality that is not linear

Key equations
Identity matrix for a 2 × 2 matrix   I 2  =    1 0    

0 1
    

Identity matrix for a 3 × 3 matrix   I 3  =    
1 0 0

 
    

 0 1 0      
0 0 1

    

Multiplicative inverse of a 2 × 2 matrix  A −1  =   1 _______ 
ad − bc

       d −b      
−c     a

    , where ad − bc ≠ 0

Key Concepts

9.1 Systems of Linear Equations: Two Variables
•	 A system of linear equations consists of two or more equations made up of two or more variables such that all equations 

in the system are considered simultaneously.
•	 The solution to a system of linear equations in two variables is any ordered pair that satisfies each equation independently. 

See Example 1.
•	 Systems of equations are classified as independent with one solution, dependent with an infinite number of solutions, 

or inconsistent with no solution.
•	 One method of solving a system of linear equations in two variables is by graphing. In this method, we graph the 

equations on the same set of axes. See Example 2.
•	 Another method of solving a system of linear equations is by substitution. In this method, we solve for one variable in 

one equation and substitute the result into the second equation. See Example 3.
•	 A third method of solving a system of linear equations is by addition, in which we can eliminate a variable by adding 

opposite coefficients of corresponding variables. See Example 4.
•	 It is often necessary to multiply one or both equations by a constant to facilitate elimination of a variable when adding 

the two equations together. See Example 5, Example 6, and Example 7.
•	 Either method of solving a system of equations results in a false statement for inconsistent systems because they are 

made up of parallel lines that never intersect. See Example 8.
•	 The solution to a system of dependent equations will always be true because both equations describe the same line. 

See Example 9.
•	 Systems of equations can be used to solve real-world problems that involve more than one variable, such as those 

relating to revenue, cost, and profit. See Example 10 and Example 11.

9.2 Systems of Linear Equations: Three Variables
•	 A solution set is an ordered triple {(x, y, z)} that represents the intersection of three planes in space. See Example 1.
•	 A system of three equations in three variables can be solved by using a series of steps that forces a variable to be 

eliminated. The steps include interchanging the order of equations, multiplying both sides of an equation by a nonzero 
constant, and adding a nonzero multiple of one equation to another equation. See Example 2.

•	 Systems of three equations in three variables are useful for solving many different types of real-world problems. See 
Example 3.

•	 A system of equations in three variables is inconsistent if no solution exists. After performing elimination operations, 
the result is a contradiction. See Example 4.

•	 Systems of equations in three variables that are inconsistent could result from three parallel planes, two parallel planes 
and one intersecting plane, or three planes that intersect the other two but not at the same location.
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•	 A system of equations in three variables is dependent if it has an infinite number of solutions. After performing 
elimination operations, the result is an identity. See Example 5.

•	 Systems of equations in three variables that are dependent could result from three identical planes, three planes 
intersecting at a line, or two identical planes that intersect the third on a line.

9.3 Systems of Nonlinear Equations and Inequalities: Two Variables
•	 There are three possible types of solutions to a system of equations representing a line and a parabola: (1) no solution, 

the line does not intersect the parabola; (2) one solution, the line is tangent to the parabola; and (3) two solutions, the 
line intersects the parabola in two points. See Example 1.

•	 There are three possible types of solutions to a system of equations representing a circle and a line: (1) no solution, 
the line does not intersect the circle; (2) one solution, the line is tangent to the parabola; (3) two solutions, the line 
intersects the circle in two points. See Example 2.

•	 There are five possible types of solutions to the system of nonlinear equations representing an ellipse and a circle: (1) no 
solution, the circle and the ellipse do not intersect; (2) one solution, the circle and the ellipse are tangent to each other; 
(3) two solutions, the circle and the ellipse intersect in two points; (4) three solutions, the circle and ellipse intersect in 
three places; (5) four solutions, the circle and the ellipse intersect in four points. See Example 3.

•	 An inequality is graphed in much the same way as an equation, except for > or <, we draw a dashed line and shade 
the region containing the solution set. See Example 4.

•	 Inequalities are solved the same way as equalities, but solutions to systems of inequalities must satisfy both inequalities. 
See Example 5.

9.4 Partial Fractions

•	 Decompose   P(x) ____ 
Q(x)

   by writing the partial fractions as   A ________ 
 a 1  x +  b 1 

   +   B ________ 
 a 2  x +  b 2 

  . Solve by clearing the fractions, expanding 

  the right side, collecting like terms, and setting corresponding coefficients equal to each other, then setting up and 
solving a system of equations. See Example 1.

•	  The decomposition of   P(x) ____ 
Q(x)

   with repeated linear factors must account for the factors of the denominator in 

 increasing powers. See Example 2.

•	 The decomposition of    P(x) ____ 
Q(x)

   with a nonrepeated irreducible quadratic factor needs a linear numerator over the 

 quadratic factor, as in   A __ x   +   Bx + C ____________  
(a x 2  + bx + c)

  . See Example 3.

•	 In the decomposition of    P(x) ____ 
Q(x)

   , where Q(x) has a repeated irreducible quadratic factor, when the irreducible 

quadratic factors are repeated, powers of the denominator factors must be represented in increasing powers as 

  
Ax + B

 __  
(a x 2  + bx + c)

   +   
 A 2  x +  B 2  __  

 (a x 2  + bx + c) 2 
   + … +   

 A n  x +  B n  __  
 (a x 2  + bx + c) n 

  .  See Example 4.

9.5 Matrices and Matrix Operations
•	 A matrix is a rectangular array of numbers. Entries are arranged in rows and columns.
•	 The dimensions of a matrix refer to the number of rows and the number of columns. A 3 × 2 matrix has three rows 

and two columns. See Example 1.
•	 We add and subtract matrices of equal dimensions by adding and subtracting corresponding entries of each matrix. 

See Example 2, Example 3, Example 4, and Example 5.
•	 Scalar multiplication involves multiplying each entry in a matrix by a constant. See Example 6.
•	 Scalar multiplication is often required before addition or subtraction can occur. See Example 7.
•	 Multiplying matrices is possible when inner dimensions are the same—the number of columns in the first matrix must 

match the number of rows in the second.
•	 The product of two matrices, A and B, is obtained by multiplying each entry in row 1 of A by each entry in column 1 

of B; then multiply each entry of row 1 of A by each entry in columns 2 of B, and so on. See Example 8 and Example 9.
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•	 Many real-world problems can often be solved using matrices. See Example 10.
•	 We can use a calculator to perform matrix operations after saving each matrix as a matrix variable. See Example 11.

9.6 Solving Systems with Gaussian Elimination
•	 An augmented matrix is one that contains the coefficients and constants of a system of equations. See Example 1.
•	 A matrix augmented with the constant column can be represented as the original system of equations. See Example 2.
•	 Row operations include multiplying a row by a constant, adding one row to another row, and interchanging rows.
•	 We can use Gaussian elimination to solve a system of equations. See Example 3, Example 4, and Example 5.
•	 Row operations are performed on matrices to obtain row-echelon form. See Example 6.
•	 To solve a system of equations, write it in augmented matrix form. Perform row operations to obtain row-echelon form. 

Back-substitute to find the solutions. See Example 7 and Example 8.
•	 A calculator can be used to solve systems of equations using matrices. See Example 9.
•	 Many real-world problems can be solved using augmented matrices. See Example 10 and Example 11.

9.7 Solving Systems with Inverses
•	 An identity matrix has the property AI = IA = A. See Example 1.
•	 An invertible matrix has the property A A −1  =  A −1  A = I. See Example 2.
•	 Use matrix multiplication and the identity to find the inverse of a 2 × 2 matrix. See Example 3.
•	 The multiplicative inverse can be found using a formula. See Example 4.
•	 Another method of finding the inverse is by augmenting with the identity. See Example 5.
•	 We can augment a 3 × 3 matrix with the identity on the right and use row operations to turn the original matrix into 

the identity, and the matrix on the right becomes the inverse. See Example 6.
•	 Write the system of equations as AX = B, and multiply both sides by the inverse of A:  A −1  AX =  A −1  B. See Example 7 

and Example 8.
•	 We can also use a calculator to solve a system of equations with matrix inverses. See Example 9.

9.8 Solving Systems with Cramer's Rule

•	 The determinant for    a b    
c d

      is ad − bc. See Example 1.

•	 Cramer’s Rule replaces a variable column with the constant column. Solutions are x =   
 D x  _ 
D

  , y =   
 D y 

 _ 
D

  . See Example 2.

•	 To find the determinant of a 3 × 3 matrix, augment with the first two columns. Add the three diagonal entries (upper 
left to lower right) and subtract the three diagonal entries (lower left to upper right). See Example 3.

•	 To solve a system of three equations in three variables using Cramer’s Rule, replace a variable column with the constant 

column for each desired solution: x =   
 D x  _ 
D

  , y =   
 D y 

 _ 
D

  , z =   
 D z  _ 
D

  . See Example 4.

•	 Cramer’s Rule is also useful for finding the solution of a system of equations with no solution or infinite solutions. See 
Example 5 and Example 6.

•	 Certain properties of determinants are useful for solving problems. For example:

 ○  If the matrix is in upper triangular form, the determinant equals the product of entries down the main 
diagonal.

 ○  When two rows are interchanged, the determinant changes sign.
 ○  If either two rows or two columns are identical, the determinant equals zero.
 ○  If a matrix contains either a row of zeros or a column of zeros, the determinant equals zero.
 ○  The determinant of an inverse matrix  A −1  is the reciprocal of the determinant of the matrix A.
 ○  If any row or column is multiplied by a constant, the determinant is multiplied by the same factor. See 

Example 7 and Example 8.
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SYSTeMS OF lIneAR eQUATIOnS: TWO VARIABleS

For the following exercises, determine whether the ordered pair is a solution to the system of equations.

1. 3x − y = 4 
x + 4y = − 3 and ( − 1, 1)

2.   6x − 2y = 24 
−3x + 3y = 18 and (9, 15)

For the following exercises, use substitution to solve the system of equations.

3. 10x + 5y = −5 
  3x − 2y = −12

4.   4 __ 7  x +   1 __ 5  y =   43 ___ 70   

  5 __ 6  x −   1 __ 3  y = −  2 __ 3  

5. 5x + 6y = 14 
4x + 8y = 8

For the following exercises, use addition to solve the system of equations.

6. 3x + 2y = −7 
2x + 4y = 6

7.   3x + 4y = 2 
9x + 12y = 3

8. 8x + 4y = 2 
6x − 5y = 0.7

For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

9. A factory has a cost of production 
C(x) = 150x + 15,000 and a revenue function 
R(x) = 200x. What is the break-even point?

10. A performer charges C(x) = 50x + 10,000, where x 
is the total number of attendees at a show. The venue 
charges $75 per ticket. After how many people buy 
tickets does the venue break even, and what is the 
value of the total tickets sold at that point?

SYSTeMS OF lIneAR eQUATIOnS: THRee VARIABleS

For the following exercises, solve the system of three equations using substitution or addition.

11.    0.5x − 0.5y = 10 
− 0.2y + 0.2x = 4 
   0.1x + 0.1z = 2

12.   5x + 3y − z = 5 
3x − 2y + 4z = 13 
4x + 3y + 5z = 22

13.       x + y + z = 1 
2x + 2y + 2z = 1 
         3x + 3y = 2

14.   2x − 3y + z = −1 
      x + y + z = −4 
4x + 2y − 3z = 33

15. 3x + 2y − z = −10 
  x − y + 2z = 7 
−x + 3y + z = −2

16. 3x + 4z = −11 
  x − 2y = 5 
   4y − z = −10

17.   2x − 3y + z = 0 
2x + 4y − 3z = 0 
  6x − 2y − z = 0

18. 6x − 4y − 2z = 2 
3x + 2y − 5z = 4 
          6y − 7z = 5

For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

19. Three odd numbers sum up to 61. The smaller is  
one-third the larger and the middle number is 16 less 
than the larger. What are the three numbers?

20. A local theatre sells out for their show. They sell all 
500 tickets for a total purse of $8,070.00. The tickets 
were priced at $15 for students, $12 for children, and 
$18 for adults. If the band sold three times as many 
adult tickets as children’s tickets, how many of each 
type was sold?
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SYSTeMS OF nOnlIneAR eQUATIOnS AnD IneQUAlITIeS: TWO VARIABleS

For the following exercises, solve the system of nonlinear equations.

21. y =  x 2  − 7 
y = 5x − 13

22. y =  x 2  − 4 
y = 5x + 10

23.  x 2  +  y 2  = 16 
           y = x − 8

24.  x 2  +  y 2  = 25 
           y =  x 2  + 5

25.  x 2  +  y 2  = 4 
  y −  x 2  = 3

For the following exercises, graph the inequality.

26. y >  x 2  − 1 27.   1 __ 4   x 2  +  y 2  < 4

For the following exercises, graph the system of inequalities.

28.  x 2  +  y 2  + 2x < 3 
y > −  x 2  − 3

29.  x 2  − 2x +  y 2  − 4x < 4 
y < − x + 4

30.  x 2  +  y 2  < 1 
 y 2  < x

PARTIAl FRACTIOnS

For the following exercises, decompose into partial fractions.

31.   −2x + 6 __________ 
 x 2  + 3x + 2

  32.   10x + 2 ___________ 
4 x 2  + 4x + 1

  33.   7x + 20 ____________  
 x 2  + 10x + 25

  

34.   x − 18 ____________  
 x 2  − 12x + 36

  35.   − x 2  + 36x + 70  _____________ 
 x 3  − 125

  36.   −5 x 2  + 6x − 2  ____________ 
 x 3  + 27

  

37.    x 3  − 4 x 2  + 3x + 11  ________________  
 ( x 2  − 2) 2 

  38.   4 x 4  − 2 x 3  + 22 x 2  − 6x + 48   _______________________  
 x( x 2  + 4) 2 

  

MATRICeS AnD MATRIx OPeRATIOnS

For the following exercises, perform the requested operations on the given matrices.

A =     4 −2     
1     3

    , B =     6     7 −3         
11 −2     4

    , C =     
6     7

 
   

 11 −2     
14     0

    , D =     
1 −4     9

  
     

  10     5 −7        
2     8     5

    , E =     
7 −14 3

 
     

 2    −1 3       
0       1 9

    

39.  −4A 40. 10D − 6E 41. B + C 42. AB 43. BA 44. BC
45. CB 46. DE 47. ED 48. EC 49. CE 50.  A 3 

SOlVInG SYSTeMS WITH GAUSSIAn elIMInATIOn

For the following exercises, write the system of linear equations from the augmented matrix. Indicate whether there 
will be a unique solution.

51.     
1 0 −3

 
    

 0 1    2      
0 0    0

  ∣      7
 
 

 −5   
0

    52.    
1 0     5

 
    

 0 1 −2      
0 0     0

  ∣     −9
 

  
 4    

3
    

For the following exercises, write the augmented matrix from the system of linear equations.

53.      −2x + 2y + z = 7 
      2x − 8y + 5z = 0 
19x − 10y + 22z = 3

54.     4x + 2y − 3z = 14 
 −12x + 3y + z = 100 
    9x − 6y + 2z = 31

55.     x + 3z = 12 
 −x + 4y = 0 
     y + 2z = − 7
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For the following exercises, solve the system of linear equations using Gaussian elimination.

56.     3x − 4y = − 7 
 −6x + 8y = 14

57.     3x − 4y = 1 
 −6x + 8y = 6

58.  −1.1x − 2.3y = 6.2 
 −5.2x − 4.1y = 4.3

59.       2x + 3y + 2z = 1 
   −4x − 6y − 4z = − 2 
10x + 15y + 10z = 0

60.  −x + 2y − 4z = 8 
            3y + 8z = − 4 
 −7x + y + 2z = 1

SOlVInG SYSTeMS WITH InVeRSeS

For the following exercises, find the inverse of the matrix.

61.    −0.2    1.4       
1.2 −0.4

    62.     
  1 __ 2   −  1 __ 2  

      
−  1 __ 4         3 __ 4  

    63.     
12     9 −6

  
      

  −1     3     2          
−4 −3     2

    64.    
2 1 3

 
    

 1 2 3      
3 2 1

    

For the following exercises, find the solutions by computing the inverse of the matrix.

65.     0.3x − 0.1y = −10 
 −0.1x + 0.3y = 14

66.       0.4x − 0.2y = −0.6 
 −0.1x + 0.05y = 0.3

67. 4x + 3y − 3z = −4.3 
  5x − 4y − z = −6.1 
              x + z = −0.7

68.  −2x − 3y + 2z = 3 
   −x + 2y + 4z = −5 
           −2y + 5z = −3

For the following exercises, write a system of equations to solve each problem. Solve the system of equations.

69. Students were asked to bring their favorite fruit to 
class. 90% of the fruits consisted of banana, apple, and 
oranges. If oranges were half as popular as bananas 
and apples were 5% more popular than bananas, what 
are the percentages of each individual fruit?

70. A sorority held a bake sale to raise money and sold 
brownies and chocolate chip cookies. They priced 
the brownies at $2 and the chocolate chip cookies at 
$1. They raised $250 and sold 175 items. How many 
brownies and how many cookies were sold?

SOlVInG SYSTeMS WITH CRAMeR'S RUle

For the following exercises, find the determinant.

71.    100 0     
0 0

    72.    0.2 −0.6      
0.7 −1.1

    73.    
−1 4     3

 
     

 0 2     3       
0 0 −3

    74.    
 √

—
 2        0      0

  
      

  0  √
—
 2        0          

0      0     √
—
 2  
    

For the following exercises, use Cramer’s Rule to solve the linear systems of equations.

75.       4x − 2y = 23 
 −5x − 10y = −35

76.     0.2x − 0.1y = 0 
 −0.3x + 0.3y = 2.5

77.      −0.5x + 0.1y = 0.3 
 −0.25x + 0.05y = 0.15

78. x + 6y + 3z = 4 
2x + y + 2z = 3 
3x − 2y + z = 0

79. 4x − 3y + 5z = −  5 __ 2   

7x − 9y − 3z =   3 __ 2   

  x − 5y − 5z =   5 __ 2  

80.   3 ___ 10  x −   1 __ 5  y −   3 ___ 10  z = −  1 ___ 50   

  1 ___ 10  x −   1 ___ 10  y −   1 __ 2  z = −   9 ___ 50   

     2 __ 5  x −   1 __ 2  y −   3 __ 5  z = −  1 __ 5  
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Is the following ordered pair a solution to the system of equations?

1.  −5x − y = 12 
    x + 4y = 9 with ( − 3, 3)

For the following exercises, solve the systems of linear and nonlinear equations using substitution or elimination. 
Indicate if no solution exists.

2.   1 __ 2  x −   1 __ 3  y = 4 

       3 __ 2  x − y = 0

3.  −  1 __ 2  x − 4y = 4 

     2x + 16y = 2

4.         5x − y = 1 
 −10x + 2y = − 2

5. 4x − 6y − 2z =   1 ___ 10   

  x − 7y + 5z = −  1 __ 4   

3x + 6y − 9z =   6 __ 5  

6.           x + z = 20 
   x + y + z = 20 
x + 2y + z = 10

7. 5x − 4y − 3z = 0 
  2x + y + 2z = 0 
  x − 6y − 7z = 0

8. y =  x 2  + 2x − 3 
y = x − 1

9.     y 2  +  x 2  = 25 
 y 2  − 2 x 2  = 1

For the following exercises, graph the following inequalities.

10. y <  x 2  + 9 11.  x  2  +  y  2  > 4 
     y <  x 2  + 1

For the following exercises, write the partial fraction decomposition.

12.   −8x − 30 ____________  
 x 2  + 10x + 25

  13.   13x + 2 ________ 
 (3x + 1) 2 

  14.    x 4  −  x 3  + 2x − 1  ______________  
x ( x 2  + 1) 2 

  

For the following exercises, perform the given matrix operations.

15. 5    4 9     
−2 3

     +   1 __ 2     −6   12      
4 −8

    16.     
1 4 −7

 
     

 −2 9     5       
12 0 −4

         
3 −4

 
   

 1     3     
5   10

    17.     
  1 __ 2     1 __ 3  

    
  1 __ 4     1 __ 5  

     

−1

 

18. det ∣   0        0       
400 4,000

  ∣ 19. det   ∣     1 __ 2  

  

−  1 __ 2  

  

0 

   −  1 __ 2    0     1 __ 2    

0 

  

  1 __ 2  

  

0 

  ∣  
20. If det(A) = −6, what would be the determinant if 

you switched rows 1 and 3, multiplied the second 
row by 12, and took the inverse?

21. Rewrite the system of linear equations as an 
augmented matrix. 
14x − 2y + 13z = 140 
 −2x + 3y − 6z = −1 
    x − 5y + 12z = 11

22. Rewrite the augmented matrix as a system of linear 
equations.

    
1 0 3

 
    

 −2 4 9      
−6 1 2

  ∣       12
 

  
 −5    

8
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For the following exercises, use Gaussian elimination to solve the systems of equations.

23.     x − 6y = 4 
2x − 12y = 0

24.    2x + y + z = −3 
 x − 2y + 3z = 6 
     x − y − z = 6

For the following exercises, use the inverse of a matrix to solve the systems of equations.

25. 4x − 5y = −50 
−x + 2y = 80

26.     1 ___ 100  x −   3 ___ 100  y +   1 ___ 20  z = −49 

  3 ___ 100  x −   7 ___ 100  y −   1 ___ 100  z = 13 

  9 ___ 100  x −   9 ___ 100  y −   9 ___ 100  z = 99

For the following exercises, use Cramer’s Rule to solve the systems of equations.

27. 200x − 300y = 2 
400x + 715y = 4

28. 0.1x + 0.1y − 0.1z = −1.2 
0.1x − 0.2y + 0.4z = −1.2 
0.5x − 0.3y + 0.8z = −5.9

For the following exercises, solve using a system of linear equations.

29. A factory producing cell phones has the following 
cost and revenue functions:  
C(x) =  x  2  + 75x + 2,688 and R(x) =  x  2  + 160x. 
What is the range of cell phones they should 
produce each day so there is profit? Round to the 
nearest number that generates profit.

30. A small fair charges $1.50 for students, $1 for 
children, and $2 for adults. In one day, three times 
as many children as adults attended. A total of 800 
tickets were sold for a total revenue of $1,050. How 
many of each type of ticket was sold?
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10.1 The ellipse
10.2 The Hyperbola
10.3 The Parabola
10.4 Rotation of Axes
10.5 Conic Sections in Polar Coordinates

Introduction
 The Greek mathematician Menaechmus (c. 380–c. 320 BCE) is generally credited with discovering the shapes formed 
by the intersection of a plane and a right circular cone. Depending on how he tilted the plane when it intersected the 
cone, he formed different shapes at the intersection—beautiful shapes with near-perfect symmetry.

It was also said that Aristotle may have had an intuitive understanding of these shapes, as he observed the orbit of the 
planet to be circular. He presumed that the planets moved in circular orbits around Earth, and for nearly 2,000 years 
this was the commonly held belief.

It was not until the Renaissance movement that Johannes Kepler noticed that the orbits of the planet were not circular 
in nature. His published law of planetary motion in the 1600s changed our view of the solar system forever. He claimed 
that the sun was at one end of the orbits, and the planets revolved around the sun in an oval-shaped path.

In this chapter, we will investigate the two-dimensional figures that are formed when a right circular cone is intersected 
by a plane. We will begin by studying each of three figures created in this manner. We will develop defining equations 
for each figure and then learn how to use these equations to solve a variety of problems.

Figure 1 (a) Greek philosopher Aristotle (384–322 BCe) (b) German mathematician and astronomer johannes Kepler (1571–1630)
a                b
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Write equations of ellipses in standard form.

•	 Graph ellipses centered at the origin.

•	 Graph ellipses not centered at the origin.

•	 Solve applied problems involving ellipses.

10.1 THe ellIPSe

Figure 1  The national Statuary Hall in Washington, D.C. (credit: Greg Palmer, Flickr)

Can you imagine standing at one end of a large room and still being able to hear a whisper from a person standing 
at the other end? The National Statuary Hall in Washington, D.C., shown in Figure 1, is such a room.[33] It is an oval-
shaped room called a whispering chamber because the shape makes it possible for sound to travel along the walls. In 
this section, we will investigate the shape of this room and its real-world applications, including how far apart two 
people in Statuary Hall can stand and still hear each other whisper.

Writing equations of ellipses in Standard Form
A conic section, or conic, is a shape resulting from intersecting a right circular cone with a plane. The angle at which 
the plane intersects the cone determines the shape, as shown in Figure 2.

Figure 2

Ellipse Hyperbola Parabola

Conic sections can also be described by a set of points in the coordinate plane. Later in this chapter, we will see that 
the graph of any quadratic equation in two variables is a conic section. The signs of the equations and the coefficients 
of the variable terms determine the shape. This section focuses on the four variations of the standard form of the 

33. Architect of the Capitol. http://www.aoc.gov. Accessed April 15, 2014.

http://www.aoc.gov
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equation for the ellipse. An ellipse is the set of all points (x, y) in a plane such that the sum of their distances from 
two fixed points is a constant. Each fixed point is called a focus (plural: foci).

We can draw an ellipse using a piece of cardboard, two thumbtacks, a pencil, and string. Place the thumbtacks in the 
cardboard to form the foci of the ellipse. Cut a piece of string longer than the distance between the two thumbtacks 
(the length of the string represents the constant in the definition). Tack each end of the string to the cardboard, and 
trace a curve with a pencil held taut against the string. The result is an ellipse. See Figure 3.

Figure 3

Foci

Every ellipse has two axes of symmetry. The longer axis is called the major axis, and the shorter axis is called the 
minor axis. Each endpoint of the major axis is the vertex of the ellipse (plural: vertices), and each endpoint of the 
minor axis is a co-vertex of the ellipse. The center of an ellipse is the midpoint of both the major and minor axes. The 
axes are perpendicular at the center. The foci always lie on the major axis, and the sum of the distances from the foci 
to any point on the ellipse (the constant sum) is greater than the distance between the foci. See Figure 4. 

Figure 4

Co-vertex

Vertex

Co-vertex

Minor Axis

Major Axis Center
FocusFocus

x

y

Vertex

In this section, we restrict ellipses to those that are positioned vertically or horizontally in the coordinate plane. That 
is, the axes will either lie on or be parallel to the x- and y-axes. Later in the chapter, we will see ellipses that are rotated 
in the coordinate plane.

To work with horizontal and vertical ellipses in the coordinate plane, we consider two cases: those that are centered 
at the origin and those that are centered at a point other than the origin. First we will learn to derive the equations 
of ellipses, and then we will learn how to write the equations of ellipses in standard form. Later we will use what we 
learn to draw the graphs.
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Deriving the Equation of an Ellipse Centered at the Origin

To derive the equation of an ellipse centered at the origin, we begin with the foci (−c, 0) and (c, 0). The ellipse is the set 
of all points (x, y) such that the sum of the distances from (x, y) to the foci is constant, as shown in Figure 5.

Figure 5

y

x

(x, y)

(a, 0)

(c, 0)(–c, 0)

(–a, 0)
d1 d2

If (a, 0) is a vertex of the ellipse, the distance from (−c, 0) to (a, 0) is a − ( −c) = a + c. The distance from (c, 0) to  
(a, 0) is a − c . The sum of the distances from the foci to the vertex is
 (a + c) + (a − c) = 2a
If (x, y) is a point on the ellipse, then we can define the following variables:
 d1 = the distance from (−c, 0) to (x, y)
 d2 = the distance from (c, 0) to (x, y)

By the definition of an ellipse, d1 + d2 is constant for any point (x, y) on the ellipse. We know that the sum of these 
distances is 2a for the vertex (a, 0). It follows that d1 + d2 = 2a for any point on the ellipse. We will begin the derivation 
by applying the distance formula. The rest of the derivation is algebraic.

 d1 + d2 =  √
——

  (x − ( − c))2 + (y − 0)2   +  √
—

  (x − c)2 + (y − 0)2   = 2a  Distance formula

  √
—

  (x + c)2 + y 2   +  √
—

  (x − c)2 + y 2   = 2a Simplify expressions.

  √
—

  (x + c)2 + y 2   = 2a −  √
—

  (x − c)2 + y 2    Move radical to 
opposite side.

 (x + c)2 + y 2 =  [2a − √
—

  (x − c)2 + y 2  ] 
2
  Square both sides.

 x 2 + 2cx + c2 + y 2 = 4a2 − 4a √
—

  (x − c)2 + y 2   + (x − c)2 + y 2 Expand the squares.

 x 2 + 2cx + c2 + y 2 = 4a2 − 4a √
—

  (x − c)2 + y 2   + x 2 − 2cx + c2 + y 2  Expand remaining 
squares.

 2cx = 4a2 − 4a √
—

  (x − c)2 + y 2   − 2cx Combine like terms.

 4cx − 4a2 = −4a √
—

  (x − c)2 + y 2   Isolate the radical.

 cx − a2 = − a  √
—

  (x − c)2 + y 2   Divide by 4.

    cx − a2    
2
  = a2     √

—
  (x − c)2 + y 2      

2

  Square both sides.

 c2 x 2 − 2a2 cx + a4 = a2   x 2 − 2cx + c2 + y 2    Expand the squares.

 c2 x 2 − 2a2 cx + a4 = a2 x 2 − 2a2 cx + a2 c2 + a2 y 2 Distribute a2.

 a2 x 2 − c2 x 2 + a2 y 2 = a4 − a2 c2 Rewrite.

 x 2(a2 − c2) + a2 y 2 = a2(a2 − c2)  Factor common terms.

 x 2 b2 + a2 y 2 = a2 b2 Set b2 = a2 − c2.

   x
 2b2

 ____ a2b2   +   a
2y 2

 ____ a2b2   =   a
2b2

 ____ a2b2    Divide both sides by a2b2.

   x
 2
 __ a2   +   y

 2
 __ b2   = 1 Simplify.

Thus, the standard equation of an ellipse is   x
 2
 __ a2   +   

y 2

 _ 
b2

   = 1. This equation defines an ellipse centered at the origin.  

If a > b, the ellipse is stretched further in the horizontal direction, and if b > a, the ellipse is stretched further in the 
vertical direction.
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Writing Equations of Ellipses Centered at the Origin in Standard Form

Standard forms of equations tell us about key features of graphs. Take a moment to recall some of the standard 
forms of equations we’ve worked with in the past: linear, quadratic, cubic, exponential, logarithmic, and so on. By 
learning to interpret standard forms of equations, we are bridging the relationship between algebraic and geometric 
representations of mathematical phenomena.

The key features of the ellipse are its center, vertices, co-vertices, foci, and lengths and positions of the major and 
minor axes. Just as with other equations, we can identify all of these features just by looking at the standard form of 
the equation. There are four variations of the standard form of the ellipse. These variations are categorized first by the 
location of the center (the origin or not the origin), and then by the position (horizontal or vertical). Each is presented 
along with a description of how the parts of the equation relate to the graph. Interpreting these parts allows us to 
form a mental picture of the ellipse.

standard forms of the equation of an ellipse with center (0, 0) 
The standard form of the equation of an ellipse with center (0, 0) and major axis on the x-axis is

  x 2 _ 
a2

   +   
y 2

 _ 
b2

   = 1
where

•	 a > b
•	 the length of the major axis is 2a
•	 the coordinates of the vertices are (±a, 0)
•	 the length of the minor axis is 2b
•	 the coordinates of the co-vertices are (0, ±b)
•	 the coordinates of the foci are (±c, 0) , where c2 = a2 − b2. See Figure 6a.

The standard form of the equation of an ellipse with center (0, 0) and major axis on the y-axis is

  x 2 _ 
b2

   +   
y 2

 _ 
a2

   = 1
where

•	 a > b
•	 the length of the major axis is 2a
•	 the coordinates of the vertices are (0, ± a)
•	 the length of the minor axis is 2b
•	 the coordinates of the co-vertices are (±b, 0)
•	 the coordinates of the foci are (0, ± c) , where c2 = a2 − b2. See Figure 6b.

Note that the vertices, co-vertices, and foci are related by the equation c2 = a2 − b2. When we are given the 
coordinates of the foci and vertices of an ellipse, we can use this relationship to find the equation of the ellipse 
in standard form.

Figure 6 (a) Horizontal ellipse with center (0, 0) (b) Vertical ellipse with center (0, 0) 

(0, b)

(c, 0)(−a, 0) (−c, 0)
(0, 0) (0, 0)

(0, a)

(0, −a)(0, −b)
(a) (b)

(0, −c)

(0, c)

(−b, 0) (b, 0)(a, 0)

Major Axis Minor 
Axis

Minor Axis
Major 
Axis

xx

y y
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How To…
Given the vertices and foci of an ellipse centered at the origin, write its equation in standard form.

1. Determine whether the major axis lies on the x- or y-axis.

 a.  If the given coordinates of the vertices and foci have the form (±a, 0) and ( ±c, 0) respectively, then the major 

axis is the x-axis. Use the standard form   x 2 _ 
a2

   +   
y 2

 _ 
b2

   = 1.

 b.  If the given coordinates of the vertices and foci have the form (0, ±a) and ( ±c, 0), respectively, then the major 

axis is the y-axis. Use the standard form   x 2 _ 
b2

   +   
y 2

 _ 
a2

   = 1.

2. Use the equation c2 = a2 − b2, along with the given coordinates of the vertices and foci, to solve for b2.

3. Substitute the values for a2 and b2 into the standard form of the equation determined in Step 1. 

Example 1 Writing the Equation of an Ellipse Centered at the Origin in Standard Form

What is the standard form equation of the ellipse that has vertices (±8, 0) and foci (±5, 0)?

Solution The foci are on the x-axis, so the major axis is the x-axis. Thus, the equation will have the form

   x 2 __ a2   +   
y 2

 _ 
b2

   = 1

The vertices are (±8, 0), so a = 8 and a2 = 64.

The foci are (±5, 0), so c = 5 and c2 = 25.

We know that the vertices and foci are related by the equation c 2 = a 2 − b 2. Solving for b 2, we have:

 c 2 = a 2 − b2

 25 = 64 − b2 Substitute for c 2 and a 2.

 b 2 = 39 Solve for b2.

Now we need only substitute a2 = 64 and b2 = 39 into the standard form of the equation. The equation of the  
ellipse is   x 2 _ 

64
   +   

y 2
 _ 

39
   = 1.

Try It #1

What is the standard form equation of the ellipse that has vertices (0, ± 4) and foci (0, ±  √
—

 15  )?

Q & A…
Can we write the equation of an ellipse centered at the origin given coordinates of just one focus and vertex?

Yes. Ellipses are symmetrical, so the coordinates of the vertices of an ellipse centered around the origin will always 
have the form (±a, 0) or (0, ± a). Similarly, the coordinates of the foci will always have the form (±c, 0) or (0, ± c). 
Knowing this, we can use a and c from the given points, along with the equation c2 = a2 − b2, to find b2.

Writing Equations of Ellipses Not Centered at the Origin

Like the graphs of other equations, the graph of an ellipse can be translated. If an ellipse is translated h units 
horizontally and k units vertically, the center of the ellipse will be (h, k). This translation results in the standard form 
of the equation we saw previously, with x replaced by (x − h) and y replaced by (y − k).
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standard forms of the equation of an ellipse with center (h, k)
The standard form of the equation of an ellipse with center (h, k) and major axis parallel to the x-axis is

  
(x − h)2

 _ 
a2

   +   
(y − k)2

 _ 
b2

   = 1
where

•	 a > b
•	 the	length	of	the	major axis is 2a
•	 the	coordinates	of	the	vertices	are	(h ± a, k)
•	 the	length	of	the	minor axis is 2b
•	 the	coordinates	of	the	co-vertices	are	(h, k ± b)
•	 the	coordinates	of	the	foci	are	(h ± c, k), where c2 = a2 − b2. See Figure 7a.

The standard form of the equation of an ellipse with center (h, k) and major axis parallel to the y-axis is

  
(x − h)2

 _ 
b2

   +   
(y − k)2

 _ 
a2

   = 1
where

•	 a > b
•	 the	length	of	the	major	axis	is	2a
•	 the	coordinates	of	the	vertices	are		(h, k ± a)
•	 the	length	of	the	minor	axis	is	2b
•	 the	coordinates	of	the	co-vertices	are	(h ± b, k)
•	 the	coordinates	of	the	foci	are	(h, k ± c), where c2 = a2 − b2. See Figure 7b.

Just as with ellipses centered at the origin, ellipses that are centered at a point (h, k) have vertices, co-vertices, 
and foci that are related by the equation c2 = a2 − b2. We can use this relationship along with the midpoint and 
distance formulas to find the equation of the ellipse in standard form when the vertices and foci are given.

Figure 7 (a) Horizontal ellipse with center (h, k) (b) Vertical ellipse with center (h, k) 

y
y

x

x

(h + c1, k)

(h, k − a)

(h, k − c)

(h, k − b)

(h, k)
(h, k)

(h, k + b)

(h + a, k)
(h + b, k)

(h, k + a)

(h, k + c)

(h − a, k)

(h − b, k)(h − c1, k) Major Axis

Major
Axis

Minor 
Axis

Minor 
Axis

(a) (b)

How To…
Given the vertices and foci of an ellipse not centered at the origin, write its equation in standard form.

1. Determine whether the major axis is parallel to the x- or y-axis.
 a.  If the y-coordinates of the given vertices and foci are the same, then the major axis is parallel to the x-axis. Use 

the standard form   
(x − h)2

 _ 
a2

   +   
(y − k)2

 _ 
b2

   = 1.

 b.  If the x-coordinates of the given vertices and foci are the same, then the major axis is parallel to the y-axis. Use 

the standard form   
(x − h)2

 _ 
b2

   +   
(y − k)2

 _ 
a2

   = 1.
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2. Identify the center of the ellipse (h, k) using the midpoint formula and the given coordinates for the vertices.
3. Find a2 by solving for the length of the major axis, 2a, which is the distance between the given vertices.
4. Find c2 using h and k, found in Step 2, along with the given coordinates for the foci.
5. Solve for b2 using the equation c2 = a2 − b2.
6. Substitute the values for h, k, a2, and b2 into the standard form of the equation determined in Step 1.

Example 2 Writing the Equation of an Ellipse Centered at a Point Other Than the Origin

What is the standard form equation of the ellipse that has vertices (−2, −8) and (−2, 2) and foci (−2, −7) and (−2, 1)?

Solution The x-coordinates of the vertices and foci are the same, so the major axis is parallel to the y-axis. Thus, the 
equation of the ellipse will have the form

   
(x − h)2

 _ 
b2

   +   
(y − k)2

 _ 
a2

   = 1

First, we identify the center, (h, k). The center is halfway between the vertices, (−2, − 8) and (−2, 2).

Applying the midpoint formula, we have:

 (h, k) =     −2 + (−2) _________ 2   ,   −8 + 2 _______ 2     
 = (−2, −3)

Next, we find a2. The length of the major axis, 2a, is bounded by the vertices. We solve for a by finding the distance 
between the y-coordinates of the vertices.
 2a = 2 − (−8)

 2a = 10

 a = 5
So a2 = 25.

Now we find c2. The foci are given by (h, k ± c). So, (h, k − c) = (−2, −7) and (h, k + c) = (−2, 1). We substitute k = −3  
using either of these points to solve for c.
 k + c = 1

 −3 + c = 1

 c = 4
So c2 = 16.

Next, we solve for b2 using the equation c2 = a2 − b2.

 c2 = a2 − b2

 16 = 25 − b2

 b2 = 9

Finally, we substitute the values found for h, k, a2, and b2 into the standard form equation for an ellipse:

   
(x + 2)2

 _ 
9

   +   
(y + 3)2

 _ 
25

   = 1

Try It #2

What is the standard form equation of the ellipse that has vertices (−3, 3) and (5, 3) and foci (1 − 2 √
—
 3  , 3) and  

(1 + 2 √
—
 3  , 3)?

Graphing ellipses Centered at the Origin
Just as we can write the equation for an ellipse given its graph, we can graph an ellipse given its equation. To graph 

ellipses  centered at the origin, we use the standard form    x
 2
 _ 

a2
   +   

y 2

 _ 
b2

   = 1, a > b for horizontal ellipses and    x
 2
 _ 

b2
   +   

y 2

 _ 
a2

   = 1, 
a > b for vertical ellipses.
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How To…
Given the standard form of an equation for an ellipse centered at (0, 0), sketch the graph.

1. Use the standard forms of the equations of an ellipse to determine the major axis, vertices, co-vertices, and foci.

 a.  If the equation is in the form    x
 2
 _ 

a2
   +   

y 2

 _ 
b2

   = 1, where a > b, then

•	 the major axis is the x-axis
•	 the coordinates of the vertices are (±a, 0)
•	 the coordinates of the co-vertices are (0, ± b)
•	 the coordinates of the foci are (±c, 0)

 b.  If the equation is in the form    x
 2
 _ 

b2
   +   

y 2

 _ 
a2

   = 1, where a > b, then

•	 the major axis is the y-axis
•	 the coordinates of the vertices are (0, ± a)
•	 the coordinates of the co-vertices are (±b, 0)
•	 the coordinates of the foci are (0, ± c)

2. Solve for c using the equation c2 = a2 − b2.
3. Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to form the ellipse.

Example 3 Graphing an Ellipse Centered at the Origin

Graph the ellipse given by the equation,   x 2 _ 
9

   +   
y 2

 _ 
25

   = 1. Identify and label the center, vertices, co-vertices, and foci.

Solution First, we determine the position of the major axis. Because 25 > 9, the major axis is on the y-axis. Therefore, 

the equation is in the form   x 2 _ 
b 2

   +   
y 2

 _ 
a 2

   = 1, where b 2 = 9 and a2 = 25. It follows that:

•	 the center of the ellipse is (0, 0)
•	 the coordinates of the vertices are (0, ± a) = (0, ±  √

—
 25  ) = (0, ± 5)

•	 the coordinates of the co-vertices are (±b, 0) = (±  √
—
 9  , 0) = (±3, 0)

•	 the coordinates of the foci are (0, ± c), where c 2 = a 2 − b 2 Solving for c, we have:
 c = ±  √

—
 a2 − b2  

 = ±  √
—

 25 − 9  
 = ±  √

—
 16  

 = ± 4
Therefore, the coordinates of the foci are (0, ± 4).
Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse. See 
Figure 8.

(0, 5)

(0, 4)

(0, 0)

(0, –4)

(0, –5)

(–3, 0) (3, 0)

y

x

Figure 8
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Try It #3
Graph the ellipse given by the equation   x

 2
 __ 36   +   

y 2

 _ 4   = 1. Identify and label the center, vertices, co-vertices, and foci.

Example 4 Graphing an Ellipse Centered at the Origin from an Equation Not in Standard Form

Graph the ellipse given by the equation 4x 2 + 25y 2 = 100. Rewrite the equation in standard form. Then identify and 
label the center, vertices, co-vertices, and foci.

Solution First, use algebra to rewrite the equation in standard form.
 4x 2 + 25y 2 = 100

   4x 2

 ____ 100   +   
25y 2

 _ 
100

   =   100 ___ 100  

   x
 2
 _ 

25
   +   

y 2

 _ 4   = 1

Next, we determine the position of the major axis. Because 25 > 4, the major axis is on the x-axis. Therefore, the 

equation is in the form    x
 2
 _ 

a2
   +   

y 2

 _ 
b2

   = 1, where a2 = 25 and b2 = 4. It follows that:

•	 the center of the ellipse is (0, 0)
•	 the coordinates of the vertices are (±a, 0) = (± √

—
 25  , 0) = (±5, 0)

•	 the coordinates of the co-vertices are (0, ± b) = (0, ±  √
—
 4  ) = (0, ± 2)

•	 the coordinates of the foci are (±c, 0), where c 2 = a 2 − b 2. Solving for c, we have:

 c = ±  √
—

 a2 − b2  

 = ±  √
—

 25 − 4  

 = ±  √
—

 21  

Therefore the coordinates of the foci are (±  √
—

 21  , 0).
Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse. See 
Figure 9.

(–5, 0) (5, 0)(0, 0)

(0, 2)

(0, −2)

y

x

Figure 9

Try It #4

Graph the ellipse given by the equation 49x 2 + 16y 2 = 784. Rewrite the equation in standard form. Then identify and 
label the center, vertices, co-vertices, and foci.

Graphing ellipses not Centered at the Origin
When an ellipse is not centered at the origin, we can still use the standard forms to find the key features of the graph. 

When the ellipse is centered at some point, (h, k), we use the standard forms   
 (x − h)2

 _ 
a 2

   +   
 (y − k)2

 _ 
b 2

   = 1, a > b for 

horizontal ellipses and   
 (x − h)2

 _ 
b 2

   +   
 (y − k)2

 _ 
a2

   = 1, a > b for vertical ellipses. From these standard equations, we can 

easily determine the center, vertices, co-vertices, foci, and positions of the major and minor axes.
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How To…
Given the standard form of an equation for an ellipse centered at (h, k), sketch the graph.
1. Use the standard forms of the equations of an ellipse to determine the center, position of the major axis, vertices, 

co-vertices, and foci.
 a.  If the equation is in the form   

(x − h)2

 _ 
a2

   +   
(y − k)2

 _ 
b2

   = 1, where a > b, then
•	 the center is (h, k)
•	 the major axis is parallel to the x-axis
•	 the coordinates of the vertices are (h ± a, k)
•	 the coordinates of the co-vertices are (h, k ± b)
•	 the coordinates of the foci are (h ± c, k)

 b.  If the equation is in the form   
(x − h)2

 _ 
b2

   +   
(y − k)2

 _ 
a2

   = 1, where a > b, then
•	 the center is (h, k)
•	 the major axis is parallel to the y-axis
•	 the coordinates of the vertices are (h, k ± a)
•	 the coordinates of the co-vertices are (h ± b, k)
•	 the coordinates of the foci are (h, k ± c)

2. Solve for c using the equation c 2 = a2 − b2.
3. Plot the center, vertices, co-vertices, and foci in the coordinate plane, and draw a smooth curve to form the ellipse.

Example 5 Graphing an Ellipse Centered at (h, k)

Graph the ellipse given by the equation,   
(x + 2)2

 _ 4   +   
(y − 5)2

 _ 
9

   = 1. Identify and label the center, vertices, co-vertices, 
and foci.

Solution First, we determine the position of the major axis. Because 9 > 4, the major axis is parallel to the y-axis.

Therefore, the equation is in the form   
(x − h)2

 _ 
b2

   +   
(y − k)2

 _ 
a2

   = 1, where b2 = 4 and a2 = 9. It follows that:

•	 the center of the ellipse is (h, k) = (−2, 5)
•	 the coordinates of the vertices are (h, k ± a) = (−2, 5 ±  √

—
 9  ) = (−2, 5 ± 3), or (−2, 2) and (−2, 8)

•	 the coordinates of the co-vertices are (h ± b, k) = (−2 ±  √
—
 4  , 5) = (−2 ± 2, 5), or (−4, 5) and (0, 5)

•	 the coordinates of the foci are (h, k ± c), where c 2 = a 2 − b 2. Solving for c, we have:

 c = ±  √
—

 a2 − b2  

 = ±  √
—

 9 − 4  

 = ±  √
—
 5  

Therefore, the coordinates of the foci are (−2, 5 − √
—
 5  ) and (−2, 5 +  √

—
 5  ).

Next, we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse.

(−2, 8)

(0, 5)(−4, 5)
(−2, 5)

(−2, 2)

(−2, 5 + √5)

(−2, 5 −√5)

y

x

Figure 10



CHAPTER 10 analytic geometry874

Try It #5

Graph the ellipse given by the equation   
(x − 4)2

 _ 
36

   +   
(y − 2)2

 _ 
20

   = 1. Identify and label the center, vertices, co-vertices, 
and foci.

How To…
Given the general form of an equation for an ellipse centered at (h, k), express the equation in standard form.

1. Recognize that an ellipse described by an equation in the form ax 2 + by 2 + cx + dy + e = 0 is in general form.
2.  Rearrange the equation by grouping terms that contain the same variable. Move the constant term to the opposite 

side of the equation.
3. Factor out the coefficients of the x 2 and y 2 terms in preparation for completing the square.
4.  Complete the square for each variable to rewrite the equation in the form of the sum of multiples of two binomials 

squared set equal to a constant, m1 (x − h)2 + m2(y − k)2 = m3, where m1, m2, and m3 are constants.
5. Divide both sides of the equation by the constant term to express the equation in standard form.

Example 6 Graphing an Ellipse Centered at ( h, k) by First Writing It in Standard Form

Graph the ellipse given by the equation 4x 2 + 9y 2 − 40x + 36y + 100 = 0. Identify and label the center, vertices, 
co-vertices, and foci.

Solution We must begin by rewriting the equation in standard form.

 4x 2 + 9y 2 − 40x + 36y + 100 = 0

Group terms that contain the same variable, and move the constant to the opposite side of the equation.

 (4x 2 − 40x) + (9y 2 + 36y) = −100

Factor out the coefficients of the squared terms.

 4(x 2 − 10x)+ 9(y 2 + 4y) = −100

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

 4(x 2 − 10x + 25)+ 9(y 2 + 4y + 4) = −100 + 100 + 36

Rewrite as perfect squares.

 4(x − 5)2 + 9(y + 2)2 = 36

Divide both sides by the constant term to place the equation in standard form.

   
(x − 5)2

 _ 
9

   +   
(y + 2)2

 _ 4   = 1

Now that the equation is in standard form, we can determine the position of the major axis. Because 9 > 4, the major 

axis is parallel to the x-axis. Therefore, the equation is in the form   
(x − h)2

 _ 
a2

   +   
(y − k)2

 _ 
b2

   = 1, where a2 = 9 and b2 = 4. 

It follows that:
•	 the center of the ellipse is (h, k) = (5, −2)
•	 the coordinates of the vertices are (h ± a, k) = (5 ±  √

—
 9  , −2) = (5 ± 3, −2), or (2, −2) and (8, −2)

•	 the coordinates of the co-vertices are (h, k ± b) = (5, −2 ±  √
—
 4  )= (5, −2 ± 2), or (5, −4) and (5, 0)

•	 the coordinates of the foci are (h ± c, k), where c2 = a2 − b2. Solving for c, we have:

 c = ±  √
—

 a2 − b2  

 = ±  √
—

 9 − 4  

 = ±  √
—
 5  

Therefore, the coordinates of the foci are (5 −  √
—
 5  , −2) and (5 +  √

—
 5  , −2).

Next we plot and label the center, vertices, co-vertices, and foci, and draw a smooth curve to form the ellipse as shown 
in Figure 11.
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532

1

–1
–1

10

–2

–3

–4

4 6 7 8 9
x

(5, −2) (8, −2)

(5, −4)

(5, 0)

(2, −2)

(5 −√5, −2) (5 +√5, −2)

Figure 11

Try It #6

Express the equation of the ellipse given in standard form. Identify the center, vertices, co-vertices, and foci of the 
ellipse.

4x 2 + y 2 − 24x + 2y + 21 = 0

Solving Applied Problems Involving ellipses
Many real-world situations can be represented by ellipses, including orbits of planets, satellites, moons and comets, and 
shapes of boat keels, rudders, and some airplane wings. A medical device called a lithotripter uses elliptical reflectors 
to break up kidney stones by generating sound waves. Some buildings, called whispering chambers, are designed with 
elliptical domes so that a person whispering at one focus can easily be heard by someone standing at the other focus. 
This occurs because of the acoustic properties of an ellipse. When a sound wave originates at one focus of a whispering 
chamber, the sound wave will be reflected off the elliptical dome and back to the other focus. See Figure 12. In the 
whisper chamber at the Museum of Science and Industry in Chicago, two people standing at the foci—about 43 feet 
apart—can hear each other whisper.

Figure 12 Sound waves are reflected between foci in an elliptical room, called a whispering chamber.

Example 7 Locating the Foci of a Whispering Chamber

The Statuary Hall in the Capitol Building in Washington, D.C. is a whispering chamber. Its dimensions are 46 feet 
wide by 96 feet long as shown in Figure 13.

a.  What is the standard form of the equation of the ellipse representing the outline of the room? Hint: assume a 
horizontal ellipse, and let the center of the room be the point (0, 0).

b.  If two senators standing at the foci of this room can hear each other whisper, how far apart are the senators? 
Round to the nearest foot.

Figure 13 

96 feet

46 feet
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Solution

a.  We are assuming a horizontal ellipse with center (0, 0), so we need to find an equation of the form  

   x
 2
 _ 

a2
   +   

y 2

 _ 
b2

   = 1, where a > b. We know that the length of the major axis, 2a, is longer than the length of the 

minor axis, 2b. So the length of the room, 96, is represented by the major axis, and the width of the room, 46, 
is represented by the minor axis.

•	 Solving for a, we have 2a = 96, so a = 48, and a2 = 2304.

•	 Solving for b, we have 2b = 46, so b = 23, and b2 = 529.

Therefore, the equation of the ellipse is   x 2
 _ 

2304
   +   

y 2

 _ 
529

   = 1.

b.  To find the distance between the senators, we must find the distance between the foci, (±c, 0), where  
c2 = a2 − b2. Solving for c, we have:

 c2 = a2 − b2

 c2 = 2304 − 529 Substitute using the values found in part (a).

 c = ±  √
—

 2304 − 529   Take the square root of both sides.

 c = ±  √
—

 1775   Subtract.

 c ≈ ± 42 Round to the nearest foot.

The points (±42, 0) represent the foci. Thus, the distance between the senators is 2(42) = 84 feet.

Try It #7

Suppose a whispering chamber is 480 feet long and 320 feet wide.

a.  What is the standard form of the equation of the ellipse representing the room? Hint: assume a horizontal ellipse, 
and let the center of the room be the point (0, 0).

b.  If two people are standing at the foci of this room and can hear each other whisper, how far apart are the people? 
Round to the nearest foot.

Access these online resources for additional instruction and practice with ellipses.

•	 Conic Sections: The ellipse (http://openstaxcollege.org/l/conicellipse)

•	 Graph an ellipse with Center at the Origin (http://openstaxcollege.org/l/grphellorigin)

•	 Graph an ellipse with Center not at the Origin (http://openstaxcollege.org/l/grphellnot)

http://openstaxcollege.org/l/conicellipse
http://openstaxcollege.org/l/grphellorigin
http://openstaxcollege.org/l/grphellnot
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10.1 SeCTIOn exeRCISeS

VeRBAl
1. Define an ellipse in terms of its foci. 2. Where must the foci of an ellipse lie?
3. What special case of the ellipse do we have when the 

major and minor axis are of the same length?
4. For the special case mentioned in the previous 

question, what would be true about the foci of that 
ellipse?

5. What can be said about the symmetry of the graph 
of an ellipse with center at the origin and foci along 
the y-axis?

AlGeBRAIC
For the following exercises, determine whether the given equations represent ellipses. If yes, write in standard form.

6. 2x 2 + y = 4 7. 4x 2 + 9y 2 = 36 8. 4x 2 − y 2 = 4

9. 4x 2 + 9y 2 = 1 10. 4x 2 − 8x + 9y 2 − 72y + 112 = 0

For the following exercises, write the equation of an ellipse in standard form, and identify the end points of the major 
and minor axes as well as the foci.

11.   x
 2
 _ 4    +    

y 2

 _ 
49

   = 1 12.   x 2
 _ 

100
    +    

y 2

 _ 
64

   = 1 13. x 2 + 9y 2 = 1

14. 4x 2 + 16y 2 = 1 15.   (x − 2)2
 _______ 49    +   (y − 4)2

 _______ 25   = 1 16.   
(x − 2)2

 _ 
81

    +   
(y + 1)2

 _ 
16

   = 1

17.   
(x + 5)2

 _ 4    +   
(y − 7)2

 _ 
9

   = 1 18.   (x − 7)2

 _______ 49    +   (y − 7)2

 _______ 49   = 1 19. 4x 2 − 8x + 9y 2 − 72y + 112 = 0

20. 9x 2 − 54x + 9y 2 − 54y + 81 = 0 21. 4x 2 − 24x + 36y 2 − 360y + 864 = 0
22. 4x 2 + 24x + 16y 2 − 128y + 228 = 0 23. 4x 2 + 40x + 25y 2 − 100y + 100 = 0
24. x 2 + 2x + 100y 2 − 1000y + 2401 = 0 25. 4x 2 + 24x + 25y 2 + 200y + 336 = 0
26. 9x 2 + 72x + 16y 2 + 16y + 4 = 0

For the following exercises, find the foci for the given ellipses.

27.   
(x + 3)2

 _ 
25

    +    
(y + 1)2

 _ 
36

   = 1 28.   
(x + 1)2

 _ 
100

    +    
(y − 2)2

 _ 4   = 1 29. x 2 + y 2 = 1

30. x 2 + 4y 2 + 4x + 8y = 1 31. 10x 2 + y 2 + 200x = 0

GRAPHICAl
For the following exercises, graph the given ellipses, noting center, vertices, and foci.

32.   x
 2
 _ 

25
   +   

y 2

 _ 
36

   = 1 33.   x
 2
 _ 

16
   +   

y 2

 _ 
9

   = 1 34. 4x 2 + 9y 2 = 1

35. 81x 2 + 49y 2 = 1 36.   
(x − 2)2

 _ 
64

   +   
(y − 4)2

 _ 
16

   = 1 37.   
(x + 3)2

 _ 
9

   +   
(y − 3)2

 _ 
9

   = 1

38.   x
 2
 _ 

2
    +   

(y + 1)2

 _ 5   = 1 39. 4x 2 − 8x + 16y 2 − 32y − 44 = 0

40. x 2 − 8x + 25y 2 − 100y + 91 = 0 41. x 2 + 8x + 4y 2 − 40y + 112 = 0
42. 64x 2 + 128x + 9y 2 − 72y − 368 = 0 43. 16x 2 + 64x + 4y 2 − 8y + 4 = 0
44. 100x 2 + 1000x + y 2 − 10y + 2425 = 0 45. 4x 2 + 16x + 4y 2 + 16y + 16 = 0

For the following exercises, use the given information about the graph of each ellipse to determine its equation.

46. Center at the origin, symmetric with respect to the x- 
and y-axes, focus at (4, 0), and point on graph (0, 3).

47. Center at the origin, symmetric with respect to the 
x- and y-axes, focus at (0, −2), and point on graph 
(5, 0).
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48. Center at the origin, symmetric with respect to the 
x- and y-axes, focus at (3, 0), and major axis is twice 
as long as minor axis.

49. Center (4, 2); vertex (9, 2); one focus: (4 + 2  √
—
 6  , 2).

50. Center (3, 5); vertex (3, 11); one focus: (3, 5 + 4 √
—
 2  ) 51. Center (−3, 4); vertex (1, 4); one focus: (−3 + 2 √

—
 3  , 4)

For the following exercises, given the graph of the ellipse, determine its equation.

52. 

6420
–2

–2

–2

–4

–4

–4

–6

–6

y

x

–6
–8

–5

53. 54. 

6420
–2

–2

–2

–4

–4

–4

–6

–6

y

x

–6
–8

–5
55. 

1

0
–1

–1–2–3–4–5 1
x

y

2
3
4
5

56. 

5

5

4

4

3

32

2

1

10–1
–1

–2–3

y

x

exTenSIOnS
For the following exercises, find the area of the ellipse. The area of an ellipse is given by the formula Area = a ⋅ b ⋅ π.

57.   
(x − 3)2

 _ 
9

   +   
(y − 3)2

 _ 
16

   = 1 58.   
(x + 6)2

 _ 
16

   +   
(y − 6)2

 _ 
36

   = 1 59.   
(x + 1)2

 _ 4   +   
(y − 2)2

 _ 5   = 1

60. 4x 2 − 8x + 9y 2 − 72y + 112 = 0 61. 9x 2 − 54x + 9y 2 − 54y + 81 = 0

ReAl-WORlD APPlICATIOnS
62. Find the equation of the ellipse that will just fit 

inside a box that is 8 units wide and 4 units high.
63. Find the equation of the ellipse that will just fit 

inside a box that is four times as wide as it is high. 
Express in terms of h, the height.

64. An arch has the shape of a semi-ellipse (the top half 
of an ellipse). The arch has a height of 8 feet and a 
span of 20 feet. Find an equation for the ellipse, and 
use that to find the height to the nearest 0.01 foot of 
the arch at a distance of 4 feet from the center.

65. An arch has the shape of a semi-ellipse. The arch 
has a height of 12 feet and a span of 40 feet. Find 
an equation for the ellipse, and use that to find the 
distance from the center to a point at which the 
height is 6 feet. Round to the nearest hundredth.

66. A bridge is to be built in the shape of a semi-
elliptical arch and is to have a span of 120 feet. The 
height of the arch at a distance of 40 feet from the 
center is to be 8 feet. Find the height of the arch at 
its center.

67. A person in a whispering gallery standing at one 
focus of the ellipse can whisper and be heard by a 
person standing at the other focus because all the 
sound waves that reach the ceiling are reflected to 
the other person. If a whispering gallery has a length 
of 120 feet, and the foci are located 30 feet from the 
center, find the height of the ceiling at the center.

68. A person is standing 8 feet from the nearest wall in a 
whispering gallery. If that person is at one focus, and 
the other focus is 80 feet away, what is the length 
and height at the center of the gallery?

0 2

2

4

4

6

6

8 10
–2

–2

–4

–4

–6

–6–8–10

y

x
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Locate a hyperbola’s vertices and foci.

•	 Write equations of hyperbolas in standard form.

•	 Graph hyperbolas centered at the origin.

•	 Graph hyperbolas not centered at the origin.

•	 Solve applied problems involving hyperbolas.

10. 2 THe HYPeRBOlA

What do paths of comets, supersonic booms, ancient Grecian pillars, and natural draft cooling towers have in common? 
They can all be modeled by the same type of conic. For instance, when something moves faster than the speed of sound, 
a shock wave in the form of a cone is created. A portion of a conic is formed when the wave intersects the ground, 
resulting in a sonic boom. See Figure 1.

Figure 1 

Wake created from
shock wave

Portion of
a hyperbola

 A shock wave intersecting the ground forms a portion of a conic and results in a sonic boom.

Most people are familiar with the sonic boom created by supersonic aircraft, but humans were breaking the sound 
barrier long before the first supersonic flight. The crack of a whip occurs because the tip is exceeding the speed of sound. 
The bullets shot from many firearms also break the sound barrier, although the bang of the gun usually supersedes 
the sound of the sonic boom.

locating the Vertices and Foci of a Hyperbola
In analytic geometry, a hyperbola is a conic section formed by intersecting a right circular cone with a plane at an 
angle such that both halves of the cone are intersected. This intersection produces two separate unbounded curves 
that are mirror images of each other. See Figure 2.

Figure 2  A hyperbola

Like the ellipse, the hyperbola can also be defined as a set of points in the coordinate plane. A hyperbola is the set of 
all points (x, y) in a plane such that the difference of the distances between (x, y) and the foci is a positive constant.
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Notice that the definition of a hyperbola is very similar to that of an ellipse. The distinction is that the hyperbola is 
defined in terms of the difference of two distances, whereas the ellipse is defined in terms of the sum of two distances.

As with the ellipse, every hyperbola has two axes of symmetry. The transverse axis is a line segment that passes through 
the center of the hyperbola and has vertices as its endpoints. The foci lie on the line that contains the transverse axis. 
The conjugate axis is perpendicular to the transverse axis and has the co-vertices as its endpoints. The center of a 
hyperbola is the midpoint of both the transverse and conjugate axes, where they intersect. Every hyperbola also has 
two asymptotes that pass through its center. As a hyperbola recedes from the center, its branches approach these 
asymptotes. The central rectangle of the hyperbola is centered at the origin with sides that pass through each vertex 
and co-vertex; it is a useful tool for graphing the hyperbola and its asymptotes. To sketch the asymptotes of the 
hyperbola, simply sketch and extend the diagonals of the central rectangle. See Figure 3.

Figure 3 

Conjugate axis Transverse axis

Co-vertex

y

x

Co-vertex

Vertex

Vertex

Focus

Focus

Center

AsymptoteAsymptote

 Key features of the hyperbola

In this section, we will limit our discussion to hyperbolas that are positioned vertically or horizontally in the coordinate 
plane; the axes will either lie on or be parallel to the x- and y-axes. We will consider two cases: those that are centered 
at the origin, and those that are centered at a point other than the origin.

Deriving the Equation of an Ellipse Centered at the Origin

Let (−c, 0) and (c, 0) be the foci of a hyperbola centered at the origin. The hyperbola is the set of all points (x, y) such 
that the difference of the distances from (x, y) to the foci is constant. See Figure 4.

Figure 4

(–c, 0)

(–a, 0) (a, 0)

(c, 0)

(x, y)

y

d2

d1

x

If (a, 0) is a vertex of the hyperbola, the distance from (−c, 0) to (a, 0) is a − (−c) = a + c. The distance from (c, 0) to 
(a, 0) is c − a. The sum of the distances from the foci to the vertex is

 (a + c) − (c − a) = 2a
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If (x, y) is a point on the hyperbola, we can define the following variables:
d2 = the distance from (−c, 0) to (x, y)

 d1 = the distance from (c, 0) to (x, y)
By definition of a hyperbola, d2 − d1 is constant for any point (x, y) on the hyperbola. We know that the difference 
of these distances is 2a for the vertex (a, 0). It follows that d2 − d1 = 2a for any point on the hyperbola. As with the 
derivation of the equation of an ellipse, we will begin by applying the distance formula. The rest of the derivation is 
algebraic. Compare this derivation with the one from the previous section for ellipses.

 d2 − d1 =  √
——

  (x − ( − c))2 + (y − 0)2   −  √
—

  (x − c)2 + (y − 0)2   = 2a Distance formula

  √
—

  (x + c)2 + y 2   −  √
—

  (x − c)2 + y 2   = 2a Simplify expressions.

  √
—

  (x + c)2 + y 2   = 2a +  √
—

  (x − c)2 + y 2    Move radical to 
opposite side.

 (x + c)2 + y 2 = (2a +  √
—

  (x − c)2 + y 2   )2 Square both sides.

 x 2 + 2cx + c2 + y 2 = 4a2 + 4a  √
—

  (x − c)2 + y 2   + (x − c)2 + y 2 Expand the squares.

 x 2 + 2cx + c2 + y 2 = 4a2 + 4a  √
—

  (x − c)2 + y 2   + x 2 − 2cx + c2 + y 2  Expand remaining 
square.

 2cx = 4a2 + 4a  √
—

  (x − c)2 + y 2   − 2cx Combine like terms.

 4cx − 4a2 = 4a  √
—

  (x − c)2 + y 2   Isolate the radical.

 cx − a2 = a  √
—

  (x − c)2 + y 2   Divide by 4.

  (cx − a2) 2  = a2     √
—

  (x − c)2 + y 2     
2

  Square both sides.

 c2 x 2 − 2a2 cx + a4 = a2(x 2 − 2cx + c2 + y 2) Expand the squares.

 c2 x 2 − 2a2 cx + a4 = a2 x 2 − 2a2 cx + a2 c2 + a2 y 2 Distribute a2.

 a4 + c2 x 2 = a2 x 2 + a2 c2 + a2 y 2 Combine like terms.

 c2 x 2 − a2 x 2 − a2 y 2 = a2 c2 − a4 Rearrange terms.

 x 2 (c2 − a2) − a2 y 2 = a2 (c2 − a2) Factor common terms

 x 2 b2 − a2 y 2 = a2 b2 Set b2 = c2 − a2.

   x
 2b2

 ____ a2b2   −   a
2y 2

 ____ a2b2   =   a
2b2

 ____ a2b2     Divide both sides by a2b2.

   x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1 

This equation defines a hyperbola centered at the origin with vertices (±a, 0) and co-vertices (0 ± b).

standard forms of the equation of a hyperbola with center (0, 0)
The standard form of the equation of a hyperbola with center (0, 0) and major axis on the x-axis is

  x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1

where
•	 the	length	of	the	transverse	axis	is	2a
•	 the	coordinates	of	the	vertices	are	(±a, 0)
•	 the	length	of	the	conjugate	axis	is	2b
•	 the	coordinates	of	the	co-vertices	are	(0,	±b)
•	 the	distance	between	the	foci	is	2c, where c2 = a2 + b2

•	 the	coordinates	of	the	foci	are	(±c, 0)
•	 the	equations	of	the	asymptotes	are	y = ±   b __ a   x
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See Figure 5a.

The standard form of the equation of a hyperbola with center (0, 0) and transverse axis on the y-axis is

  
y 2

 _ 
a2

   −   x
 2
 _ 

b2
   = 1

where
•	 the	length	of	the	transverse	axis	is	2a
•	 the	coordinates	of	the	vertices	are	(0,	± a)
•	 the	length	of	the	conjugate	axis	is	2b
•	 the	coordinates	of	the	co-vertices	are	(±b, 0)
•	 the	distance	between	the	foci	is	2c, where c2 = a2 + b2

•	 the	coordinates	of	the	foci	are	(0,	± c)
•	 the	equations	of	the	asymptotes	are	y = ±  a _ 

b
  x

See Figure 5b.

Note that the vertices, co-vertices, and foci are related by the equation c2 = a2 + b2. When we are given the equation 
of a hyperbola, we can use this relationship to identify its vertices and foci.

Figure 5 

(−c, 0)

(0, 0)
(0, 0)

(a, 0)(−a, 0)

(0, b)

(0, −b)
(0, −c)

(0, a)

(0, −a)

(0, c )

(b, 0)(−b, 0)

y

x

y

(c, 0)

y =  a  
b xy = − a  

b x

y =  b  
a xy = − b  

a x

x

(a) (b)

 (a) Horizontal hyperbola with center (0, 0) (b) Vertical hyperbola with center (0, 0)

How To…
Given the equation of a hyperbola in standard form, locate its vertices and foci.

1. Determine whether the transverse axis lies on the x- or y-axis. Notice that a2 is always under the variable with the 
positive coefficient. So, if you set the other variable equal to zero, you can easily find the intercepts. In the case 
where the hyperbola is centered at the origin, the intercepts coincide with the vertices.

 a.  If the equation has the form   x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1, then the transverse axis lies on the x-axis. The vertices are located at 

( ± a, 0), and the foci are located at (± c, 0).

 b.  If the equation has the form   
y 2

 _ 
a2

   −   x
 2
 _ 

b2
   = 1, then the transverse axis lies on the y-axis. The vertices are located at 

(0, ± a), and the foci are located at (0, ± c).

2. Solve for a using the equation a =  √
—

 a2  .

3. Solve for c using the equation c =  √
—

 a2 + b2.  
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Example 1 Locating a Hyperbola’s Vertices and Foci

Identify the vertices and foci of the hyperbola with equation   
y 2

 _ 
49

   −   x
 2
 _ 

32
   = 1.

Solution The equation has the form   
y 2

 _ 
a2

   −   x
 2
 _ 

b2
   = 1, so the transverse axis lies on the y-axis. The hyperbola is centered 

at the origin, so the vertices serve as the y-intercepts of the graph. To find the vertices, set x = 0, and solve for y.

 1 =   
y 2

 _ 
49

   −   x
 2
 _ 

32
   

 1 =   
y 2

 _ 
49

   −   0
2
 _ 

32
   

 1 =   
y 2

 _ 
49

   

 y 2 = 49

 y = ±  √
—

 49   = ± 7

The foci are located at (0, ± c). Solving for c,
 c =  √

—
 a2 + b2   =  √
—

 49 + 32   =  √
—

 81   = 9

Therefore, the vertices are located at (0, ± 7), and the foci are located at (0, 9).

Try It #1

Identify the vertices and foci of the hyperbola with equation   x
 2
 _ 

9
   −   

y 2

 _ 
25

   = 1.

Writing equations of Hyperbolas in Standard Form
Just as with ellipses, writing the equation for a hyperbola in standard form allows us to calculate the key features: 
its center, vertices, co-vertices, foci, asymptotes, and the lengths and positions of the transverse and conjugate axes. 
Conversely, an equation for a hyperbola can be found given its key features. We begin by finding standard equations 
for hyperbolas centered at the origin. Then we will turn our attention to finding standard equations for hyperbolas 
centered at some point other than the origin.

Hyperbolas Centered at the Origin

Reviewing the standard forms given for hyperbolas centered at (0, 0), we see that the vertices, co-vertices, and foci are 
related by the equation c2 = a2 + b2. Note that this equation can also be rewritten as b2 = c2 − a2. This relationship is 
used to write the equation for a hyperbola when given the coordinates of its foci and vertices.

How To…
Given the vertices and foci of a hyperbola centered at (0, 0), write its equation in standard form.

1. Determine whether the transverse axis lies on the x- or y-axis.
a.  If the given coordinates of the vertices and foci have the form (± a, 0) and (± c, 0), respectively, then the 

transverse axis is the x-axis. Use the standard form   x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1.

b.  If the given coordinates of the vertices and foci have the form (0, ± a) and (0, ± c), respectively, then the 

transverse axis is the y-axis. Use the standard form   
y 2

 _ 
a2

   −   x
 2
 _ 

b2
   = 1.

2. Find b2 using the equation b2 = c2 − a2.

3. Substitute the values for a2 and b2 into the standard form of the equation determined in Step 1.
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Example 2 Finding the Equation of a Hyperbola Centered at (0, 0) Given its Foci and Vertices

What is the standard form equation of the hyperbola that has vertices (±6, 0) and foci (±2 √
—

 10  , 0)?
Solution The vertices and foci are on the x-axis. Thus, the equation for the hyperbola will have the form   x

 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1.

The vertices are (±6, 0), so a = 6 and a2 = 36.

The foci are (±2 √
—

 10  , 0), so c = 2 √
—

 10   and c2 = 40.

Solving for b2, we have

 b2 = c2 − a2

 b2 = 40 − 36 Substitute for c2 and a2.

 b2 = 4 Subtract.

Finally, we substitute a2 = 36 and b2 = 4 into the standard form of the equation,    x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1. The equation of the 

hyperbola is   x
 2
 _ 

36
   −   

y 2

 _ 4   = 1, as shown in Figure 6.

Figure 6

Try It #2

What is the standard form equation of the hyperbola that has vertices (0, ± 2) and foci (0, ± 2 √
—
 5   )?

Hyperbolas Not Centered at the Origin

Like the graphs for other equations, the graph of a hyperbola can be translated. If a hyperbola is translated h units 
horizontally and k units vertically, the center of the hyperbola will be (h, k). This translation results in the standard 
form of the equation we saw previously, with x replaced by (x − h) and y replaced by (y − k).

standard forms of the equation of a hyperbola with center (h, k)
The standard form of the equation of a hyperbola with center (h, k) and transverse axis parallel to the x-axis is

  
(x − h)2

 _ 
a2

   −   
(y − k)2

 _ 
b2

   = 1
where

•	 the length of the transverse axis is 2a
•	 the coordinates of the vertices are (h ± a, k)
•	 the length of the conjugate axis is 2b
•	 the coordinates of the co-vertices are (h, k ± b)
•	 the distance between the foci is 2c, where c 2 = a 2 + b 2

•	 the coordinates of the foci are (h ± c, k)

6

6

4

4

2

2

0 8 10
–2

–2

–4

–4

–6

–6–8–10

y

x
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The asymptotes of the hyperbola coincide with the diagonals of the central rectangle. The length of the rectangle 
is 2a and its width is 2b. The slopes of the diagonals are ±   b __ a  , and each diagonal passes through the center (h, k). 

Using the point-slope formula, it is simple to show that the equations of the asymptotes are y = ±   b __ a  (x − h) + k. 
See Figure 7a.

The standard form of the equation of a hyperbola with center (h, k) and transverse axis parallel to the y-axis is

  
(y − k)2

 _ 
a2

   −   
(x − h)2

 _ 
b2

   = 1
where

•	 the length of the transverse axis is 2a
•	 the coordinates of the vertices are (h, k ± a)
•	 the length of the conjugate axis is 2b
•	 the coordinates of the co-vertices are (h ± b, k)
•	 the distance between the foci is 2c, where c 2 = a 2 + b 2

•	 the coordinates of the foci are (h, k ± c)
Using the reasoning above, the equations of the asymptotes are y = ±  a __ b  (x − h) + k. See Figure 7b.

Figure 7  (a) Horizontal hyperbola with center (h, k) (b) Vertical hyperbola with center (h, k)

y =  a (x − h) + kb

y = − a (x − h) + kb

y = − b (x − h) + ka

y =  b (x − h) + ka

(h, k − b)

(h, k + b)

(h, k − c)

(h, k + c)

(h − b, k) (h + b, k)

(h − a, k) (h + a, k)
(h, k − a)

(h, k + a)

(h − c, k) (h + c, k)

(h, k)
(h, k)

y y

x x

(a) (b)

Like hyperbolas centered at the origin, hyperbolas centered at a point (h, k) have vertices, co-vertices, and foci that 
are related by the equation c2 = a2 + b2. We can use this relationship along with the midpoint and distance formulas 
to find the standard equation of a hyperbola when the vertices and foci are given.

How To…
Given the vertices and foci of a hyperbola centered at (h, k), write its equation in standard form.

1. Determine whether the transverse axis is parallel to the x- or y-axis.

a.  If the y-coordinates of the given vertices and foci are the same, then the transverse axis is parallel to the x-axis. 

Use the standard form   
(x − h)2

 _ 
a2

   −   
(y − k)2

 _ 
b2

   = 1.

b.  If the x-coordinates of the given vertices and foci are the same, then the transverse axis is parallel to the y-axis. 

Use the standard form   
(y − k)2

 _ 
a2

   −   
(x − h)2

 _ 
b2

   = 1.

2. Identify the center of the hyperbola, (h, k), using the midpoint formula and the given coordinates for the vertices.
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3. Find a2 by solving for the length of the transverse axis, 2a, which is the distance between the given vertices.
4. Find c2 using h and k found in Step 2 along with the given coordinates for the foci.
5. Solve for b2 using the equation b2 = c2 − a2.
6. Substitute the values for h, k, a2, and b2 into the standard form of the equation determined in Step 1.

Example 3 Finding the Equation of a Hyperbola Centered at (h, k) Given its Foci and Vertices

What is the standard form equation of the hyperbola that has vertices at (0, −2) and (6, −2) and foci at (−2, −2) and 
(8, −2)?

Solution The y-coordinates of the vertices and foci are the same, so the transverse axis is parallel to the x-axis. Thus, 
the equation of the hyperbola will have the form

   
(x − h)2

 _ 
a2

   −   
(y − k)2

 _ 
b2

   = 1

First, we identify the center, (h, k). The center is halfway between the vertices (0, −2) and (6, −2). Applying the midpoint 
formula, we have

 (h, k) =     0 + 6 _____ 2  ,   −2 + (−2) _________ 2      = (3, −2)

Next, we find a2. The length of the transverse axis, 2a, is bounded by the vertices. So, we can find a2 by finding the 
distance between the x-coordinates of the vertices.
 2a =  | 0 − 6 | 

 2a = 6

 a = 3

 a2 = 9

Now we need to find c2. The coordinates of the foci are (h ± c, k). So (h − c, k) = (−2, −2) and (h + c, k) = (8, −2). 
We can use the x-coordinate from either of these points to solve for c. Using the point (8, −2), and substituting h = 3,

 h + c = 8

 3 + c = 8

 c = 5

 c2 = 25

Next, solve for b2 using the equation b2 = c2 − a2 :
 b2 = c2 − a2

 = 25 − 9

 = 16

Finally, substitute the values found for h, k, a2, and b2 into the standard form of the equation.

   
(x − 3)2

 _ 
9

   −   
(y + 2)2

 _ 
16

   = 1

Try It #3

What is the standard form equation of the hyperbola that has vertices (1, −2) and (1, 8) and foci (1, −10) and (1, 16)?

Graphing Hyperbolas Centered at the Origin
When we have an equation in standard form for a hyperbola centered at the origin, we can interpret its parts to identify
the key features of its graph: the center, vertices, co-vertices, asymptotes, foci, and lengths and positions of the 

transverse and conjugate axes. To graph hyperbolas centered at the origin, we use the standard form   x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1 for 

horizontal hyperbolas and the standard form   
y 2

 _ 
a2

   −   x
 2
 _ 

b2
   = 1 for vertical hyperbolas.
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How To…
Given a standard form equation for a hyperbola centered at (0, 0), sketch the graph.

1. Determine which of the standard forms applies to the given equation.
2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the 

vertices, co-vertices, and foci; and the equations for the asymptotes.

a.  If the equation is in the form   x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1, then

•	 the transverse axis is on the x-axis
•	 the coordinates of the vertices are (±a, 0)
•	 the coordinates of the co-vertices are (0, ± b)
•	 the coordinates of the foci are (±c, 0)
•	 the equations of the asymptotes are y = ±   b _ a  x

b.  If the equation is in the form   
y 2

 _ 
a2

   −   x
 2
 _ 

b2
   = 1, then

•	 the transverse axis is on the y-axis
•	 the coordinates of the vertices are (0, ± a)
•	 the coordinates of the co-vertices are (±b, 0)
•	 the coordinates of the foci are (0, ± c)
•	 the equations of the asymptotes are y = ±  a __ b  x

3. Solve for the coordinates of the foci using the equation c = ±  √
—

 a2 + b2  .

4. Plot the vertices, co-vertices, foci, and asymptotes in the coordinate plane, and draw a smooth curve to form the 
hyperbola.

Example 4 Graphing a Hyperbola Centered at (0, 0) Given an Equation in Standard Form

Graph the hyperbola given by the equation   
y 2

 _ 
64

   −   x
 2
 _ 

36
   = 1. Identify and label the vertices, co-vertices, foci, and 

asymptotes.

Solution The standard form that applies to the given equation is   
y 2

 _ 
a2

   −   x
 2
 _ 

b2
   = 1. Thus, the transverse axis is on the 

y-axis 

The coordinates of the vertices are (0, ± a) = (0, ±  √
—

 64  ) = (0, ± 8)

The coordinates of the co-vertices are (±b, 0) = (±  √
—

 36  , 0) = (±6, 0)

The coordinates of the foci are (0, ± c), where c = ±  √
—

 a2 + b2  . Solving for c, we have

c = ±  √
—

 a2 + b2   = ±  √
—

 64 + 36   = ±  √
—

 100   = ± 10

Therefore, the coordinates of the foci are (0, ± 10)

The equations of the asymptotes are y = ±  a __ b  x = ±  8 __ 6  x = ±  4 __ 3  x

Plot and label the vertices and co-vertices, and then sketch the central rectangle. Sides of the rectangle are parallel to 
the axes and pass through the vertices and co-vertices. Sketch and extend the diagonals of the central rectangle to show 
the asymptotes. The central rectangle and asymptotes provide the framework needed to sketch an accurate graph of 
the hyperbola. Label the foci and asymptotes, and draw a smooth curve to form the hyperbola, as shown in Figure 8.
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(0, 0)
(6, 0)(–6, 0)

(0, –8)

(0, – 10)

(0, 10)

(0, 8) y =  4 x3y = − 4 x3

y

y

x x

(−6, 8)

(0, 8)
(6, 8)

(−6, 0)

(6, −8)(−6, −8)

(0, −8)

(0, 0)

(6, 0)

Figure 8

Try It #4

Graph the hyperbola given by the equation   x 2
 _ 

144
   −   

y 2

 _ 
81

   = 1. Identify and label the vertices, co-vertices, foci, and 
asymptotes.

Graphing Hyperbolas not Centered at the Origin
Graphing hyperbolas centered at a point (h, k) other than the origin is similar to graphing ellipses centered at a 

point other than the origin. We use the standard forms   
(x − h)2

 _ 
a2

   −   
(y − k)2

 _ 
b2

   = 1 for horizontal hyperbolas, and  

   
(y − k)2

 _ 
a2

   −   
(x − h)2

 _ 
b2

   = 1 for vertical hyperbolas. From these standard form equations we can easily calculate and plot 

key features of the graph: the coordinates of its center, vertices, co-vertices, and foci; the equations of its asymptotes; 
and the positions of the transverse and conjugate axes.

How To…
Given a general form for a hyperbola centered at (h, k), sketch the graph.

1. Determine which of the standard forms applies to the given equation. Convert the general form to that standard 
form. 

2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the center, 
vertices, co-vertices, foci; and equations for the asymptotes.

a.  If the equation is in the form   
(x − h)2

 _ 
a2

   −   
(y − k)2

 _ 
b2

   = 1, then

•	 the transverse axis is parallel to the x-axis

•	 the center is (h, k)

•	 the coordinates of the vertices are (h ± a, k)

•	 the coordinates of the co-vertices are (h, k ± b)

•	 the coordinates of the foci are (h ± c, k)

•	 the equations of the asymptotes are y = ±   b __ a  (x − h) + k
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b.  If the equation is in the form    (y − k)2
 _______ a2   −   (x − h)2

 _______ b2   = 1, then

•	 the transverse axis is parallel to the y-axis

•	 the center is (h, k)

•	 the coordinates of the vertices are (h, k ± a)

•	 the coordinates of the co-vertices are (h ± b, k)

•	 the coordinates of the foci are (h, k ± c)

•	 the equations of the asymptotes are y = ±  a  _ 
b

  (x − h) + k

3. Solve for the coordinates of the foci using the equation c = ±  √
—

 a2 + b2  .

4. Plot the center, vertices, co-vertices, foci, and asymptotes in the coordinate plane and draw a smooth curve to form 
the hyperbola.

Example 5 Graphing a Hyperbola Centered at (h, k) Given an Equation in General Form

Graph the hyperbola given by the equation 9x 2 − 4y 2 − 36x − 40y − 388 = 0. Identify and label the center, vertices, 
co-vertices, foci, and asymptotes.

Solution Start by expressing the equation in standard form. Group terms that contain the same variable, and move 
the constant to the opposite side of the equation.

 (9x 2 − 36x) − (4y 2 + 40y) = 388

Factor the leading coefficient of each expression.

 9(x 2 − 4x) − 4(y 2 + 10y) = 388

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

 9(x 2 − 4x + 4) −4(y 2 + 10y + 25) = 388 + 36 − 100

Rewrite as perfect squares.

 9(x − 2)2 − 4(y + 5)2 = 324

Divide both sides by the constant term to place the equation in standard form.

   
(x − 2)2

 _ 
36

   −   
(y + 5)2

 _ 
81

   = 1

The standard form that applies to the given equation is   
(x − h)2

 _ 
a2

   −   
(y − k)2

 _ 
b2

   = 1, where a2 = 36 and b2 = 81, or a = 6 

and b = 9. Thus, the transverse axis is parallel to the x-axis. It follows that:

•	 the center of the ellipse is (h, k) = (2, −5)

•	 the coordinates of the vertices are (h ± a, k) = (2 ± 6, −5), or (−4, −5) and (8, −5)

•	 the coordinates of the co-vertices are (h, k ± b) = (2, − 5 ± 9), or (2, − 14) and (2, 4)

•	 the coordinates of the foci are (h ± c, k), where c = ±  √
—

 a2 + b 2  . Solving for c, we have

c = ±  √
—

 36 + 81   = ±  √
—

 117   = ± 3 √
—

 13  

Therefore, the coordinates of the foci are (2 − 3 √
—

 13  , −5) and (2 + 3 √
—

 13  , −5).

The equations of the asymptotes are y = ±   b __ a  (x − h) + k = ±   3 __ 2  (x − 2) − 5.

Next, we plot and label the center, vertices, co-vertices, foci, and asymptotes and draw smooth curves to form the 
hyperbola, as shown in Figure 9.
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Figure 9

Try It #5

Graph the hyperbola given by the standard form of an equation   
(y + 4)2

 _ 
100

   −   
(x − 3)2

 _ 
64

   = 1. Identify and label the center, 
vertices, co-vertices, foci, and asymptotes.

Solving Applied Problems Involving Hyperbolas
As we discussed at the beginning of this section, hyperbolas have real-world applications in many fields, such as 
astronomy, physics, engineering, and architecture. The design efficiency of hyperbolic cooling towers is particularly 
interesting. Cooling towers are used to transfer waste heat to the atmosphere and are often touted for their ability to 
generate power efficiently. Because of their hyperbolic form, these structures are able to withstand extreme winds 
while requiring less material than any other forms of their size and strength. See Figure 10. For example, a 500-foot 
tower can be made of a reinforced concrete shell only 6 or 8 inches wide!

Figure 10 Cooling towers at the Drax power station in north Yorkshire, United Kingdom (credit: les Haines, Flickr)

The first hyperbolic towers were designed in 1914 and were 35 meters high. Today, the tallest cooling towers are in 
France, standing a remarkable 170 meters tall. In Example 6 we will use the design layout of a cooling tower to find a 
hyperbolic equation that models its sides.

(2, −5)

y

x

(2, −14)

(−4, −5) (8, −5)

(2, 4)
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Example 6 Solving Applied Problems Involving Hyperbolas

The design layout of a cooling tower is shown in Figure 11. The tower stands 179.6 meters tall. The diameter of the top 
is 72 meters. At their closest, the sides of the tower are 60 meters apart.

Figure 11 Project design for a natural draft cooling tower

Find the equation of the hyperbola that models the sides of the cooling tower. Assume that the center of the hyperbola—
indicated by the intersection of dashed perpendicular lines in the figure—is the origin of the coordinate plane. Round 
final values to four decimal places.

Solution We are assuming the center of the tower is at the origin, so we can use the standard form of a horizontal 

hyperbola centered at the origin:   x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1, where the branches of the hyperbola form the sides of the cooling tower.

We must find the values of a2 and b2 to complete the model.

First, we find a2. Recall that the length of the transverse axis of a hyperbola is 2a. This length is represented by the 
distance where the sides are closest, which is given as 65.3 meters. So, 2a = 60. Therefore, a = 30 and a2 = 900.

To solve for b2, we need to substitute for x and y in our equation using a known point. To do this, we can use the 
dimensions of the tower to find some point (x, y) that lies on the hyperbola. We will use the top right corner of the tower 
to represent that point. Since the y-axis bisects the tower, our x-value can be represented by the radius of the top, or 36 
meters. The y-value is represented by the distance from the origin to the top, which is given as 79.6 meters. Therefore,

   x
 2
 _ 

a2
   −   

y 2

 _ 
b2

   = 1 Standard form of horizontal hyperbola.

 b2 =   
y 2

 _ 

  x
 2
 _ 

a2
   − 1

   Isolate b2

 =   
(79.6)2

 _ 

  (36)2
 ____ 900   − 1

   Substitute for a2, x, and y

 ≈ 14400.3636 Round to four decimal places

The sides of the tower can be modeled by the hyperbolic equation

   x 2
 _ 

900
   −   

y 2

 _ 
14400.3636

   = 1, or   x
 2
 _ 

302
   −   

y 2

 _ 
120.00152

   = 1

179.6 m

72 m

60 m

79.6 m



CHAPTER 10 analytic geometry892

Try It #6

A design for a cooling tower project is shown in Figure 12. Find the equation of the hyperbola that models the sides 
of the cooling tower. Assume that the center of the hyperbola—indicated by the intersection of dashed perpendicular 
lines in the figure—is the origin of the coordinate plane. Round final values to four decimal places.

Figure 12

Access these online resources for additional instruction and practice with hyperbolas.

•	 Conic Sections: The Hyperbola Part 1 of 2 (http://openstaxcollege.org/l/hyperbola1)

•	 Conic Sections: The Hyperbola Part 2 of 2 (http://openstaxcollege.org/l/hyperbola2)

•	 Graph a Hyperbola with Center at Origin (http://openstaxcollege.org/l/hyperbolaorigin)

•	 Graph a Hyperbola with Center not at Origin (http://openstaxcollege.org/l/hbnotorigin)

167.082 m

60 m

40 m

67.082 m

http://openstaxcollege.org/l/hyperbola1
http://openstaxcollege.org/l/hyperbola2
http://openstaxcollege.org/l/hyperbolaorigin
http://openstaxcollege.org/l/hbnotorigin
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10.2 SeCTIOn exeRCISeS

VeRBAl
1. Define a hyperbola in terms of its foci. 2. What can we conclude about a hyperbola if its 

asymptotes intersect at the origin?
3. What must be true of the foci of a hyperbola? 4. If the transverse axis of a hyperbola is vertical, what 

do we know about the graph?
5. Where must the center of hyperbola be relative to its 

foci?

AlGeBRAIC
For the following exercises, determine whether the following equations represent hyperbolas. If so, write in standard 
form.

6. 3y 2 + 2x = 6 7.   x
 2
 ___ 36   −   y

 2
 __ 9   = 1

8. 5y 2 + 4x 2 = 6x 9. 25x 2 − 16y 2 = 400
10.  −9x 2 + 18x + y 2 + 4y − 14 = 0

For the following exercises, write the equation for the hyperbola in standard form if it is not already, and identify the 
vertices and foci, and write equations of asymptotes.

11.   x
 2
 ___ 25   −   y

 2

 ___ 36   = 1 12.   x 2
 ___ 100   −   y

 2

 __ 9   = 1

13.   y
 2

 __ 4   −   x
 2

 ___ 81   = 1 14. 9y 2 − 4x 2 = 1

15.   (x − 1)2
 _______ 9   −   (y − 2)2

 _______ 16   = 1 16.   (y − 6)2
 _______ 36   −   (x + 1)2

 _______ 16   = 1

17.   (x − 2)2
 _______ 49   −   (y + 7)2

 _______ 49   = 1 18. 4x 2 − 8x − 9y 2 − 72y + 112 = 0

19.  −9x 2 − 54x + 9y 2 − 54y + 81 = 0 20. 4x 2 − 24x − 36y 2 − 360y + 864 = 0
21.  −4x 2 + 24x + 16y 2 − 128y + 156 = 0 22.  −4x 2 + 40x + 25y 2 − 100y + 100 = 0
23. x 2 + 2x − 100y 2 − 1000y + 2401 = 0 24.  −9x 2 + 72x + 16y 2 + 16y + 4 = 0
25. 4x 2 + 24x − 25y 2 + 200y − 464 = 0

For the following exercises, find the equations of the asymptotes for each hyperbola.

26.   y
 2
 __ 32   −   x

 2
 __ 32   = 1 27.   (x − 3)2

 _______ 52   −   (y + 4)2
 _______ 22   = 1

28.   (y − 3)2
 _______ 32   −   (x + 5)2

 _______ 62   = 1 29. 9x 2 − 18x − 16y 2 + 32y − 151 = 0

30. 16y 2 + 96y − 4x 2 + 16x + 112 = 0

GRAPHICAl
For the following exercises, sketch a graph of the hyperbola, labeling vertices and foci.

31.   x
 2

 ___ 49   −   y
 2
 ___ 16   = 1 32.   x

 2

 ___ 64   −   y
 2
 __ 4   = 1

33.   y
 2
 __ 9   −   x

 2
 ___ 25   = 1 34. 81x 2 − 9y 2 = 1

35.   (y + 5)2
 _______ 9   −   (x − 4)2

 _______ 25   = 1 36.   (x − 2)2
 _______ 8   −   (y + 3)2

 _______ 27   = 1

37.   (y − 3)2
 _______ 9   −   (x − 3)2

 _______ 9   = 1 38.  −4x 2 − 8x + 16y 2 − 32y − 52 = 0
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39. x 2 − 8x − 25y 2 − 100y − 109 = 0 40.  −x 2 + 8x + 4y 2 − 40y + 88 = 0

41. 64x 2 + 128x − 9y 2 − 72y − 656 = 0 42. 16x 2 + 64x − 4y 2 − 8y − 4 = 0

43.  −100x 2 + 1000x + y 2 − 10y − 2575 = 0 44. 4x 2 + 16x − 4y 2 + 16y + 16 = 0

For the following exercises, given information about the graph of the hyperbola, find its equation.

45. Vertices at (3, 0) and (−3, 0) and one focus at (5, 0). 46. Vertices at (0, 6) and (0, −6) and one focus at  
(0, −8).

47. Vertices at (1, 1) and (11, 1) and one focus at (12, 1). 48. Center: (0, 0); vertex: (0, −13); one focus: (0,  √
—

 313  ).

49. Center: (4, 2); vertex: (9, 2); one focus: (4 +  √
—

 26  , 2). 50. Center: (3, 5); vertex: (3, 11); one focus: (3, 5 + 2 √
—

 10  ).

For the following exercises, given the graph of the hyperbola, find its equation.
51. 

4

x

y

–2
–2

0–4

–4

–6

–6

–8

–8

–10

–10

2

6

6

42 8

8
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52. 

Vertices

Center
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Foci Foci

y

x

53. 

Foci

Vertices

Foci

y

x

(−1, 3)

(−1, −3)

Center
(−1, 0)

54. 

Foci

Foci
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Center
(3, 1)

y

55. 

Vertices

Foci Foci

(–8, –3) (2, –3)
(–3, –3)
Center
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exTenSIOnS

For the following exercises, express the equation for the hyperbola as two functions, with y as a function of x. Express 
as simply as possible. Use a graphing calculator to sketch the graph of the two functions on the same axes.

56.   x
 2
 _ 4   −   

y 2

 _ 
9

   = 1 57.   
y 2

 _ 
9

   −   x
 2
 _ 

1
   = 1 58.   

(x − 2)2

 _ 
16

   −   
(y + 3)2

 _ 
25

   = 1

59.  −4x 2 − 16x + y 2 − 2y − 19 = 0 60. 4x 2 − 24x − y 2 − 4y + 16 = 0

ReAl-WORlD APPlICATIOnS

For the following exercises, a hedge is to be constructed in the shape of a hyperbola near a fountain at the center of 
the yard. Find the equation of the hyperbola and sketch the graph.

61. The hedge will follow the asymptotes y = x and  
y = −x, and its closest distance to the center 
fountain is 5 yards.

62. The hedge will follow the asymptotes y = 2x and  
y = −2x, and its closest distance to the center 
fountain is 6 yards.

63. The hedge will follow the asymptotes y =   1 __ 2  x and 

y = −  1 __ 2  x, and its closest distance to the center 

fountain is 10 yards.

64. The hedge will follow the asymptotes y =   2 __ 3  x and  

y = −  2 __ 3  x, and its closest distance to the center 

fountain is 12 yards.

65. The hedge will follow the asymptotes y =   3 __ 4  x and  

y = −  3 __ 4  x, and its closest distance to the center 

fountain is 20 yards.

For the following exercises, assume an object enters our solar system and we want to graph its path on a coordinate 
system with the sun at the origin and the x-axis as the axis of symmetry for the object's path. Give the equation of the 
flight path of each object using the given information. 

66. The object enters along a path approximated by the 
line y = x − 2 and passes within 1 au (astronomical 
unit) of the sun at its closest approach, so that the 
sun is one focus of the hyperbola. It then departs the 
solar system along a path approximated by the line 
y = −x + 2.

67. The object enters along a path approximated by the 
line y = 2x − 2 and passes within 0.5 au of the sun 
at its closest approach, so the sun is one focus of the 
hyperbola. It then departs the solar system along a 
path approximated by the line y = −2x + 2.

68. The object enters along a path approximated by the 
line y = 0.5x + 2 and passes within 1 au of the sun 
at its closest approach, so the sun is one focus of the 
hyperbola. It then departs the solar system along a 
path approximated by the line y = −0.5x − 2.

69. The object enters along a path approximated by the 
line y =   1 __ 3  x − 1 and passes within 1 au of the sun 

at its closest approach, so the sun is one focus of the 
hyperbola. It then departs the solar system along a 

path approximated by the line y = −  1 __ 3  x + 1.

70. The object enters along a path approximated by the 
line y = 3x − 9 and passes within 1 au of the sun at 
its closest approach, so the sun is one focus of the 
hyperbola. It then departs the solar system along a 
path approximated by the line y = −3x + 9.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Graph parabolas with vertices at the origin.

•	 Write equations of parabolas in standard form.

•	 Graph parabolas with vertices not at the origin.

•	 Solve applied problems involving parabolas.

10. 3 THe PARABOlA

Figure 1 The Olympic torch concludes its journey around the world when it is used to light the  
Olympic cauldron during the opening ceremony. (credit: Ken Hackman, U.S. Air Force)

Did you know that the Olympic torch is lit several months before the start of the games? The ceremonial method for 
lighting the flame is the same as in ancient times. The ceremony takes place at the Temple of Hera in Olympia, Greece, 
and is rooted in Greek mythology, paying tribute to Prometheus, who stole fire from Zeus to give to all humans. One 
of eleven acting priestesses places the torch at the focus of a parabolic mirror (see Figure 1), which focuses light rays 
from the sun to ignite the flame.

Parabolic mirrors (or reflectors) are able to capture energy and focus it to a single point. The advantages of this 
property are evidenced by the vast list of parabolic objects we use every day: satellite dishes, suspension bridges, 
telescopes, microphones, spotlights, and car headlights, to name a few. Parabolic reflectors are also used in alternative 
energy devices, such as solar cookers and water heaters, because they are inexpensive to manufacture and need little 
maintenance. In this section we will explore the parabola and its uses, including low-cost, energy-efficient solar designs.

Graphing Parabolas with Vertices at the Origin
In The Ellipse, we saw that an ellipse is formed when a plane cuts through a right circular cone. If the plane is parallel 
to the edge of the cone, an unbounded curve is formed. This curve is a parabola. See Figure 2.

Figure 2 Parabola
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Like the ellipse and hyperbola, the parabola can also be defined by a set of points in the coordinate plane. A parabola 
is the set of all points (x, y) in a plane that are the same distance from a fixed line, called the directrix, and a fixed 
point (the focus) not on the directrix.

In Quadratic Functions, we learned about a parabola’s vertex and axis of symmetry. Now we extend the discussion 
to include other key features of the parabola. See Figure 3. Notice that the axis of symmetry passes through the focus 
and vertex and is perpendicular to the directrix. The vertex is the midpoint between the directrix and the focus.

The line segment that passes through the focus and is parallel to the directrix is called the latus rectum. The endpoints 
of the latus rectum lie on the curve. By definition, the distance d from the focus to any point P on the parabola is equal 
to the distance from P to the directrix.

Latus
rectum

Axis of
symmetry

Focus

Directrix
x

y

Vertex

Figure 3 Key features of the parabola

To work with parabolas in the coordinate plane, we consider two cases: those with a vertex at the origin and those 
with a vertex at a point other than the origin. We begin with the former.

Figure 4

Let (x, y) be a point on the parabola with vertex (0, 0), focus (0, p), and directrix y = −p as shown in Figure 4. The 
distance d from point (x, y) to point (x, −p) on the directrix is the difference of the y-values: d = y + p. The distance 
from the focus (0, p) to the point (x, y) is also equal to d and can be expressed using the distance formula.

 d =  √
—

  (x − 0)2 + (y − p)2  

 =  √
—

  x 2 + (y − p)2  

Set the two expressions for d equal to each other and solve for y to derive the equation of the parabola. We do this 
because the distance from (x, y) to (0, p) equals the distance from (x, y) to (x, −p).

  √
—

  x 2 + (y − p)2   = y + p

We then square both sides of the equation, expand the squared terms, and simplify by combining like terms.

 x 2 + (y − p)2 = (y + p)2

 x 2 + y 2 − 2py + p2 = y 2 + 2py + p2

 x 2 − 2py = 2py

 x 2 = 4py

The equations of parabolas with vertex (0, 0) are y 2 = 4px when the x-axis is the axis of symmetry and x 2 = 4py when 
the y-axis is the axis of symmetry. These standard forms are given below, along with their general graphs and key 
features.

(0, 0)

(0, p)
d

d

(x, y)

(x, −p)
y = −p

x

y
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standard forms of parabolas with vertex (0, 0) 
Table 1 and Figure 5 summarize the standard features of parabolas with a vertex at the origin.

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

x-axis y 2 = 4px (p, 0) x = −p (p, ± 2p)

y-axis x 2 = 4py (0, p) y = −p (± 2p, p)

Table 1

Figure 5 (a) When p > 0 and the axis of symmetry is the x-axis, the parabola opens right. (b) When p < 0 and the axis of symmetry is  
the x-axis, the parabola opens left. (c) When p < 0 and the axis of symmetry is the y-axis, the parabola opens up.  

(d) When p < 0 and the axis of symmetry is the y-axis, the parabola opens down.

(0, 0) (0, 0)
(p, 0) (p, 0)
(p, −|2p|) (p, −|2p|)

(p, |2p|) (p, |2p|)

y y

xx

(a)

(c) (d)

(b)x = −p x = −p

y 2 = 4px y 2 = 4px
p > 0 p < 0

(0, 0)

(0, 0)

(0, p) (0, p)
(−|2p|, p)

(−|2p|, p)

(|2p|, p)

(|2p|, p)

y y

x

x

y = −p

y = −px2 = 4py
p > 0

x2 = 4py
p < 0

The key features of a parabola are its vertex, axis of symmetry, focus, directrix, and latus rectum. See Figure 5. When 
given a standard equation for a parabola centered at the origin, we can easily identify the key features to graph the 
parabola.

A line is said to be tangent to a curve if it intersects the curve at exactly one point. If we sketch lines tangent to the 
parabola at the endpoints of the latus rectum, these lines intersect on the axis of symmetry, as shown in Figure 6.

Figure 6

(0, 0) (6, 0)

(6, 12)

(6, −12)

x = −6

y 2 = 24x

y

x
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How To…
Given a standard form equation for a parabola centered at (0, 0), sketch the graph.

1. Determine which of the standard forms applies to the given equation: y 2 = 4px or x 2 = 4py.
2. Use the standard form identified in Step 1 to determine the axis of symmetry, focus, equation of the directrix, and 

endpoints of the latus rectum.

 a.  If the equation is in the form y 2 = 4px, then
•	 the axis of symmetry is the x-axis, y = 0
•	 set 4p equal to the coefficient of x in the given equation to solve for p. If p > 0, the parabola opens right. If p < 0, 

the parabola opens left.
•	 use p to find the coordinates of the focus, (p, 0)
•	 use p to find the equation of the directrix, x = − p
•	 use p to find the endpoints of the latus rectum, (p, ± 2p). Alternately, substitute x = p into the original equation.

 b.  If the equation is in the form x 2 = 4py, then
•	 the axis of symmetry is the y-axis, x = 0
•	 set 4p equal to the coefficient of y in the given equation to solve for p. If p > 0, the parabola opens up. If p < 0, 

the parabola opens down.
•	 use p to find the coordinates of the focus, (0, p)
•	 use p to find equation of the directrix, y = − p
•	 use p to find the endpoints of the latus rectum, (±2p, p)

3. Plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.

Example 1 Graphing a Parabola with Vertex (0, 0) and the x-axis as the Axis of Symmetry

Graph y 2 = 24x. Identify and label the focus, directrix, and endpoints of the latus rectum.

Solution The standard form that applies to the given equation is y 2 = 4px. Thus, the axis of symmetry is the x-axis. 
It follows that:

•	 24 = 4p, so p = 6. Since p > 0, the parabola opens right

•	 the coordinates of the focus are (p, 0) = (6, 0)

•	 the equation of the directrix is x = −p = − 6

•	 the endpoints of the latus rectum have the same x-coordinate at the focus. To find the endpoints, substitute x = 6 
into the original equation: (6, ± 12)

Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola. See Figure 7.

Figure 7 

y

x
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(0, 0)

(6, 12)

(6, –12)

x = −6

–4
–4

–8

–6–8–10

–12
–16
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Try It #1
Graph y 2 = −16x. Identify and label the focus, directrix, and endpoints of the latus rectum.

Example 2 Graphing a Parabola with Vertex (0, 0) and the y-axis as the Axis of Symmetry

Graph x 2 = −6y. Identify and label the focus, directrix, and endpoints of the latus rectum.

Solution The standard form that applies to the given equation is x 2 = 4py. Thus, the axis of symmetry is the y-axis. 
It follows that:

•	  −6 = 4p, so p = −  3 __ 2   Since p < 0, the parabola opens down.

•	 the coordinates of the focus are (0, p) =   0, −   3 __ 2     
•	 the equation of the directrix is y = − p =   3 __ 2  

•	 the endpoints of the latus rectum can be found by substituting y =   3 __ 2   into the original equation,   ±3, −   3 __ 2      
Next we plot the focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.

Figure 8 

Try It #2

Graph x 2 = 8y. Identify and label the focus, directrix, and endpoints of the latus rectum.

Writing equations of Parabolas in Standard Form
In the previous examples, we used the standard form equation of a parabola to calculate the locations of its key features. 
We can also use the calculations in reverse to write an equation for a parabola when given its key features.

How To…
Given its focus and directrix, write the equation for a parabola in standard form.
1. Determine whether the axis of symmetry is the x- or y-axis.
 a.  If the given coordinates of the focus have the form (p, 0), then the axis of symmetry is the x-axis.
 Use the standard form y 2 = 4px.
 b.  If the given coordinates of the focus have the form (0, p), then the axis of symmetry is the y-axis.
 Use the standard form x 2 = 4py.
2. Multiply 4p.
3. Substitute the value from Step 2 into the equation determined in Step 1.

Example 3 Writing the Equation of a Parabola in Standard Form Given its Focus and Directrix

What is the equation for the parabola with focus   −  1 __ 2  , 0    and directrix x =   1 __ 2  ?

Solution The focus has the form (p, 0), so the equation will have the form y 2 = 4px.

•	 Multiplying 4p, we have 4p = 4(−   1 _ 
2

  ) = −2.

•	 Substituting for 4p, we have y 2 = 4px = −2x.

Therefore, the equation for the parabola is y 2 = −2x.

(0, 0)

x2 = −6y

y

x

y = 3
2

−3, −3
2

0, −3
2

3, −3
2
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Try It #3

What is the equation for the parabola with focus   0,   7 __ 2      and directrix y = −  7 __ 2  ?

Graphing Parabolas with Vertices not at the Origin
Like other graphs we’ve worked with, the graph of a parabola can be translated. If a parabola is translated h units 
horizontally and k units vertically, the vertex will be (h, k). This translation results in the standard form of the equation 
we saw previously with x replaced by (x − h) and y replaced by (y − k).

To graph parabolas with a vertex (h, k) other than the origin, we use the standard form (y − k)2 = 4p(x − h) for 
parabolas that have an axis of symmetry parallel to the x-axis, and (x − h)2 = 4p(y − k) for parabolas that have an 
axis of symmetry parallel to the y-axis. These standard forms are given below, along with their general graphs and 
key features.

standard forms of parabolas with vertex (h, k) 
Table 2 and Figure 9 summarize the standard features of parabolas with a vertex at a point (h, k).

Axis of Symmetry Equation Focus Directrix Endpoints of Latus Rectum

y = k (y − k)2 = 4p(x − h) (h + p, k) x = h −p (h + p, k ± 2p)

x = h (x − h)2 = 4p(y − k) (h, k + p) y = k −p (h ± 2p, k + p)

Table 2 

Figure 9 (a) When p > 0, the parabola opens right. (b) When p < 0, the parabola opens left.  
(c) When p > 0, the parabola opens up. (d) When p < 0, the parabola opens down.

(y − k)2 = 4p(x − h)

(x − h)2 = 4p(y − h) (x − h)2 = 4p(y − k)

(h + p, k + 2p)

y = k y = k

x

y

(a) (b)

(c) (d)

y

y y

x

x

(h, k)

(h, k)

(h, k)

x = h − p

y = k − p

y = k − p

x = h − p

(h + p, k)

(h, k + p)

(h, k + p)

(h + p, k − 2p)

(h + 2p, k + p)

p > 0

p > 0

x

(y − k)2 = 4p(x − h)

(h + p, k + |2p|)

(h, k)
(h + p, k)

(h + p, k − |2p|)

(h − 2p, k + p) (h − |2p|, k + p) (h + |2p|, k + p)

p < 0

x = h x = h

p < 0
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How To…
Given a standard form equation for a parabola centered at (h, k), sketch the graph.

1. Determine which of the standard forms applies to the given equation: (y − k)2 = 4p(x − h) or (x − h)2 = 4p(y − k).
2. Use the standard form identified in Step 1 to determine the vertex, axis of symmetry, focus, equation of the directrix, 

and endpoints of the latus rectum.
 a.  If the equation is in the form (y − k)2 = 4p(x − h), then:

•	 use the given equation to identify h and k for the vertex, (h, k)
•	 use the value of k to determine the axis of symmetry, y = k
•	 set 4p equal to the coefficient of (x − h) in the given equation to solve for p. If p > 0, the parabola opens right.  

If p < 0, the parabola opens left.
•	 use h, k, and p to find the coordinates of the focus, (h + p, k)
•	 use h and p to find the equation of the directrix, x = h − p
•	 use h, k, and p to find the endpoints of the latus rectum, (h + p, k ± 2p)

 b. If the equation is in the form (x − h)2 = 4p(y − k), then:
•	 use the given equation to identify h and k for the vertex, (h, k)
•	 use the value of h to determine the axis of symmetry, x = h
•	 set 4p equal to the coefficient of (y − k) in the given equation to solve for p. If p > 0, the parabola opens up.  

If p < 0, the parabola opens down.
•	 use h, k, and p to find the coordinates of the focus, (h, k + p)
•	 use k and p to find the equation of the directrix, y = k − p
•	 use h, k, and p to find the endpoints of the latus rectum, (h ± 2p, k + p)

3. Plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the parabola.

Example 4 Graphing a Parabola with Vertex ( h, k) and Axis of Symmetry Parallel to the x-axis

Graph (y − 1)2 = −16(x + 3). Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the 
latus rectum.

Solution The standard form that applies to the given equation is (y − k)2 = 4p(x − h). Thus, the axis of symmetry is 
parallel to the x-axis. It follows that:

•	 the vertex is (h, k) = (−3, 1)
•	 the axis of symmetry is y = k = 1
•	  −16 = 4p, so p = −4. Since p < 0, the parabola opens left.
•	 the coordinates of the focus are (h + p, k) = (−3 + (−4), 1) = (−7, 1)
•	 the equation of the directrix is x = h − p = −3 − (−4) = 1
•	 the endpoints of the latus rectum are (h + p, k ± 2p) = (−3 + (−4), 1 ± 2(−4)), or (−7, −7) and (−7, 9)

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the 
parabola. See Figure 10.

Figure 10

(−3, 1)

(y − 1)2 = −16(x + 3)

(−7 , −7 )

(−7 , 9)

(−7 , 1) y = 1

x = 1

x

y
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Try It #4

Graph (y + 1)2 = 4(x − 8). Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the latus 
rectum.

Example 5 Graphing a Parabola from an Equation Given in General Form

Graph x 2 − 8x − 28y − 208 = 0. Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of 
the latus rectum.

Solution Start by writing the equation of the parabola in standard form. The standard form that applies to the given 
equation is (x − h)2 = 4p (y − k). Thus, the axis of symmetry is parallel to the y-axis. To express the equation of the 
parabola in this form, we begin by isolating the terms that contain the variable x in order to complete the square.

 x 2 − 8x − 28y − 208 = 0
 x 2 − 8x = 28y + 208
 x 2 − 8x + 16 = 28y + 208 + 16
 (x − 4)2 = 28y + 224
 (x − 4)2 = 28(y + 8)
 (x − 4)2 = 4 ⋅ 7 ⋅ (y + 8)

It follows that:

•	 the vertex is (h, k) = (4, −8)
•	 the axis of symmetry is x = h = 4
•	 since p = 7, p > 0 and so the parabola opens up
•	 the coordinates of the focus are (h, k + p) = (4, −8 + 7) = (4, −1)
•	 the equation of the directrix is y = k − p = −8 − 7 = −15
•	 the endpoints of the latus rectum are (h ± 2p, k + p) = (4 ± 2(7), −8 + 7), or (−10, −1) and (18, −1)

Next we plot the vertex, axis of symmetry, focus, directrix, and latus rectum, and draw a smooth curve to form the 
parabola. See Figure 11.

Figure 11

Try It #5

Graph (x + 2)2 = −20 (y − 3). Identify and label the vertex, axis of symmetry, focus, directrix, and endpoints of the 
latus rectum.

Solving Applied Problems Involving Parabolas
As we mentioned at the beginning of the section, parabolas are used to design many objects we use every day, such as 
telescopes, suspension bridges, microphones, and radar equipment. Parabolic mirrors, such as the one used to light the 
Olympic torch, have a very unique reflecting property. When rays of light parallel to the parabola’s axis of symmetry 
are directed toward any surface of the mirror, the light is reflected directly to the focus. See Figure 12. This is why the 
Olympic torch is ignited when it is held at the focus of the parabolic mirror.

(x − 4)2 = 28(y + 8)

(4, −1) (18, −1)

(4, −8)

(−10, −1)

y = −15

x = 4

y

x
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Figure 12

Parabolic mirrors have the ability to focus the sun’s energy to a single point, raising the temperature hundreds of 
degrees in a matter of seconds. Thus, parabolic mirrors are featured in many low-cost, energy efficient solar products, 
such as solar cookers, solar heaters, and even travel-sized fire starters.

Example 6 Solving Applied Problems Involving Parabolas

A cross-section of a design for a travel-sized solar fire starter is shown in Figure 13. The sun’s rays reflect off the 
parabolic mirror toward an object attached to the igniter. Because the igniter is located at the focus of the parabola, 
the reflected rays cause the object to burn in just seconds.

a.  Find the equation of the parabola that models the fire starter. Assume that the vertex of the parabolic mirror is 
the origin of the coordinate plane.

b.  Use the equation found in part ( a) to find the depth of the fire starter.

Figure 13 Cross-section of a travel-sized solar fire starter

Solution

a.  The vertex of the dish is the origin of the coordinate plane, so the parabola will take the standard form x 2 = 4py, 
where p > 0. The igniter, which is the focus, is 1.7 inches above the vertex of the dish. Thus we have p = 1.7.

 x 2 = 4py Standard form of upward-facing parabola with vertex (0, 0)

 x 2 = 4(1.7)y Substitute 1.7 for p.

 x 2 = 6.8y Multiply.

b.  The dish extends   4.5 ___ 2   = 2.25 inches on either side of the origin. We can substitute 2.25 for x in the equation 

from part ( a) to find the depth of the dish.

 x 2 = 6.8y Equation found in part ( a).

 (2.25)2 = 6.8y Substitute 2.25 for x.

 y ≈ 0.74 Solve for y.

The dish is about 0.74 inches deep.

Parallel rays
of sunlight

Parabolic
reector

Focus

Igniter

1.7 in Depth

4.5 in
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Try It #6

Balcony-sized solar cookers have been designed for families living in India. The top of a dish has a diameter of  
1,600 mm. The sun’s rays reflect off the parabolic mirror toward the “cooker,” which is placed 320 mm from the base.

a.  Find an equation that models a cross-section of the solar cooker. Assume that the vertex of the parabolic mirror 
is the origin of the coordinate plane, and that the parabola opens to the right (i.e., has the x-axis as its axis of 
symmetry).

b.  Use the equation found in part (a) to find the depth of the cooker.

Access these online resources for additional instruction and practice with parabolas.

•	 Conic Sections: The Parabola Part 1 of 2 (http://openstaxcollege.org/l/parabola1)

•	 Conic Sections: The Parabola Part 2 of 2 (http://openstaxcollege.org/l/parabola2)

•	 Parabola with Vertical Axis (http://openstaxcollege.org/l/parabolavertcal)

•	 Parabola with Horizontal Axis (http://openstaxcollege.org/l/parabolahoriz)

http://openstaxcollege.org/l/parabola1
http://openstaxcollege.org/l/parabola2
http://openstaxcollege.org/l/parabolavertcal
http://openstaxcollege.org/l/parabolahoriz
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10.3 SeCTIOn exeRCISeS

VeRBAl

1. Define a parabola in terms of its focus and directrix. 2. If the equation of a parabola is written in standard 
form and p is positive and the directrix is a vertical 
line, then what can we conclude about its graph?

3. If the equation of a parabola is written in standard 
form and p is negative and the directrix is a 
horizontal line, then what can we conclude about its 
graph?

4. What is the effect on the graph of a parabola if its 
equation in standard form has increasing values 
of p?

5. As the graph of a parabola becomes wider, what 
will happen to the distance between the focus and 
directrix?

AlGeBRAIC

For the following exercises, determine whether the given equation is a parabola. If so, rewrite the equation in standard 
form.

6. y 2 = 4 − x 2 7. y = 4x 2 8. 3x 2 − 6y 2 = 12

9. (y − 3)2 = 8(x − 2) 10. y 2 + 12x − 6y − 51 = 0

For the following exercises, rewrite the given equation in standard form, and then determine the vertex (V), focus (F), 
and directrix (d) of the parabola.

11. x = 8y 2 12. y =   1 __ 4  x 2 13. y = −4x 2 14. x =   1 __ 8  y 2 15. x = 36y 2 16. x =   1 ___ 36  y 2

17. (x − 1)2 = 4(y − 1) 18. (y − 2)2 =   4 __ 5  (x + 4) 19. (y − 4)2 = 2(x + 3)

20. (x + 1)2 = 2(y + 4) 21. (x + 4)2 = 24(y + 1) 22. (y + 4)2 = 16(x + 4)
23. y 2 + 12x − 6y + 21 = 0 24. x 2 − 4x − 24y + 28 = 0 25. 5x 2 − 50x − 4y + 113 = 0
26. y 2 − 24x + 4y − 68 = 0 27. x 2 − 4x + 2y − 6 = 0 28. y 2 − 6y + 12x − 3 = 0
29. 3y 2 − 4x − 6y + 23 = 0 30. x 2 + 4x + 8y − 4 = 0

GRAPHICAl

For the following exercises, graph the parabola, labeling the focus and the directrix.
31. x =   1 __ 8  y 2 32. y = 36x 2 33. y =   1 ___ 36  x 2

34. y = −9x 2 35. (y − 2)2 = −  4 __ 3  (x + 2) 36.  −5(x + 5)2 = 4(y + 5)

37.  −6(y + 5)2 = 4(x − 4) 38. y 2 − 6y − 8x + 1 = 0 39. x 2 + 8x + 4y + 20 = 0

40. 3x 2 + 30x − 4y + 95 = 0 41. y 2 − 8x + 10y + 9 = 0 42. x 2 + 4x + 2y + 2 = 0

43. y 2 + 2y − 12x + 61 = 0 44.  −2x 2 + 8x − 4y − 24 = 0

For the following exercises, find the equation of the parabola given information about its graph.

45. Vertex is (0, 0); directrix is y = 4, focus is (0, −4). 46. Vertex is (0, 0); directrix is x = 4, focus is (−4, 0).

47. Vertex is (2, 2); directrix is x = 2 −  √
—
 2  , focus is  

(2 +  √
—
 2  , 2).

48. Vertex is (−2, 3); directrix is x = −  7 __ 2  , focus is   −   1 __ 2  , 3   .

49. Vertex is ( √
—
 2  , −  √

—
 3  ); directrix is x = 2 √

—
 2  , focus 

is (0, − √
—
 3  ).

50. Vertex is (1, 2); directrix is y =   11 ___ 3   , focus is   1,   1 __ 3     .
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For the following exercises, determine the equation for the parabola from its graph.

51. 

x

Axis of
symmetry

Focus

Vertex
(0, 0)

y

0, 1
4

52. 
y

x

Axis of
symmetry

Vertex
(3, 2)

Focus
(−1, 2)

53. 
y

x

Axis of
symmetryFocus

Vertex
(−2, 2)

− 
31
16

, 2

54. 

Vertex
(−3, 5)

Axis of
symmetry

Focus
−3, 319

64

y

x

55. y

x

Axis of
symmetry

Vertex Focus
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exTenSIOnS

For the following exercises, the vertex and endpoints of the latus rectum of a parabola are given. Find the equation.

56. V(0, 0), Endpoints (2, 1), (−2, 1) 57. V(0, 0), Endpoints (−2, 4), (−2, −4)

58. V(1, 2), Endpoints (−5, 5), (7, 5) 59. V(−3, −1), Endpoints (0, 5), (0, −7)

60. V(4, −3), Endpoints   5, −  7 __ 2     ,   3, −  7 __ 2     

ReAl-WORlD APPlICATIOnS

61. The mirror in an automobile headlight has a 
parabolic cross-section with the light bulb at the 
focus. On a schematic, the equation of the parabola 
is given as x 2 = 4y. At what coordinates should you 
place the light bulb?

62. If we want to construct the mirror from the previous 
exercise such that the focus is located at (0, 0.25), 
what should the equation of the parabola be?

63. A satellite dish is shaped like a paraboloid of 
revolution. This means that it can be formed by 
rotating a parabola around its axis of symmetry. The 
receiver is to be located at the focus. If the dish is 
12 feet across at its opening and 4 feet deep at its 
center, where should the receiver be placed?

64. Consider the satellite dish from the previous 
exercise. If the dish is 8 feet across at the opening 
and 2 feet deep, where should we place the receiver?

65. A searchlight is shaped like a paraboloid of 
revolution. A light source is located 1 foot from the 
base along the axis of symmetry. If the opening of 
the searchlight is 3 feet across, find the depth.

66. If the searchlight from the previous exercise has the 
light source located 6 inches from the base along the 
axis of symmetry and the opening is 4 feet, find the 
depth.

67. An arch is in the shape of a parabola. It has a span of 
100 feet and a maximum height of 20 feet. Find the 
equation of the parabola, and determine the height 
of the arch 40 feet from the center.

68. If the arch from the previous exercise has a span 
of 160 feet and a maximum height of 40 feet, find 
the equation of the parabola, and determine the 
distance from the center at which the height is 
20 feet.

69. An object is projected so as to follow a parabolic 
path given by y = −x 2 + 96x, where x is the 
horizontal distance traveled in feet and y is the 
height. Determine the maximum height the object 
reaches.

70. For the object from the previous exercise, assume 
the path followed is given by y = −0.5x 2 + 80x. 
Determine how far along the horizontal the object 
traveled to reach maximum height.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Identify nondegenerate conic sections given their general form equations.

•	 Use rotation of axes formulas.

•	 Write equations of rotated conics in standard form.

•	 Identify conics without rotating axes.

10. 4 ROTATIOn OF AxIS

As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and 
extending infinitely far in opposite directions, which we also call a cone. The way in which we slice the cone will 
determine the type of conic section formed at the intersection. A circle is formed by slicing a cone with a plane 
perpendicular to the axis of symmetry of the cone. An ellipse is formed by slicing a single cone with a slanted plane 
not perpendicular to the axis of symmetry. A parabola is formed by slicing the plane through the top or bottom of the 
double-cone, whereas a hyperbola is formed when the plane slices both the top and bottom of the cone. See Figure 1.

Figure 1 The nondegenerate conic sections

Ellipses, circles, hyperbolas, and parabolas are sometimes called the nondegenerate conic sections, in contrast to the 
degenerate conic sections, which are shown in Figure 2. A degenerate conic results when a plane intersects the double 
cone and passes through the apex. Depending on the angle of the plane, three types of degenerate conic sections are 
possible: a point, a line, or two intersecting lines.

Figure 2 Degenerate conic sections

Circle Hyperbola ParabolaEllipse

Diagonal Slice Horizontal Slice Deep Vertical Slice Vertical Slice

Intersecting Lines Single Line Single Point
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Identifying nondegenerate Conics in General Form
In previous sections of this chapter, we have focused on the standard form equations for nondegenerate conic sections. 
In this section, we will shift our focus to the general form equation, which can be used for any conic. The general form 
is set equal to zero, and the terms and coefficients are given in a particular order, as shown below.

 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0

where A, B, and C are not all zero. We can use the values of the coefficients to identify which type conic is represented 
by a given equation.

You may notice that the general form equation has an xy term that we have not seen in any of the standard form 
equations. As we will discuss later, the xy term rotates the conic whenever B is not equal to zero.

Conic Sections Example

ellipse 4x 2 + 9y 2 = 1

circle 4x 2 + 4y 2 = 1

hyperbola 4x 2 − 9y 2 = 1

parabola 4x 2 = 9y or 4y 2 = 9x

one line 4x + 9y = 1

intersecting lines (x − 4) (y + 4)= 0

parallel lines (x − 4)(x − 9) = 0

a point 4x 2 + 4y 2 = 0

no graph 4x 2 + 4y 2 = − 1
Table 1

general form of conic sections
A conic section has the general form

Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0

where A, B, and C are not all zero.

Table 2 summarizes the different conic sections where B = 0, and A and C are nonzero real numbers. This 
indicates that the conic has not been rotated.

Conic Sections Example

ellipse Ax 2 + Cy 2 + Dx + Ey + F = 0, A ≠ C and AC > 0

circle Ax 2 + Cy 2 + Dx + Ey + F = 0, A = C

hyperbola
Ax 2 − Cy 2 + Dx + Ey + F = 0 or − Ax 2 + Cy 2 + Dx + Ey + F = 0,

where A and C are positive
parabola Ax 2 + Dx + Ey + F = 0 or Cy 2 + Dx + Ey + F = 0

Table 2 

How To…
Given the equation of a conic, identify the type of conic.

1. Rewrite the equation in the general form, Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0.
2. Identify the values of A and C from the general form.
 a.  If A and C are nonzero, have the same sign, and are not equal to each other, then the graph may be an ellipse.
 b.  If A and C are equal and nonzero and have the same sign, then the graph may be a circle.
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 c.  If A and C are nonzero and have opposite signs, then the graph may be a hyperbola.
 d.  If either A or C is zero, then the graph may be a parabola.

If B = 0, the conic section will have a vertical and/or horizontal axes. If B does not equal 0, as shown below, the conic 
section is rotated. Notice the phrase “may be” in the definitions. That is because the equation may not represent a 
conic section at all, depending on the values of A, B, C, D, E, and F. For example, the degenerate case of a circle or an 
ellipse is a point: 

Ax 2 +By 2=0, when A and B have the same sign. 

The degenerate case of a hyperbola is two intersecting straight lines: Ax 2 +By 2=0, when A and B have opposite signs.

On the other hand, the equation Ax 2 +By 2+1=0, when A and B are positive does not represent a graph at all, since 
there are no real ordered pairs which satisfy it.

Example 1 Identifying a Conic from Its General Form

Identify the graph of each of the following nondegenerate conic sections.

a. 4x 2 − 9y 2 + 36x + 36y − 125 = 0

b. 9y 2 + 16x + 36y − 10 = 0

c. 3x 2 + 3y 2 − 2x − 6y − 4 = 0

d. −25x 2 − 4y 2 + 100x + 16y + 20 = 0

Solution

a. Rewriting the general form, we have

 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0

 4x 2 + 0xy + (−9)y 2 + 36x + 36y + (−125) = 0

A = 4 and C = −9, so we observe that A and C have opposite signs. The graph of this equation is a hyperbola.

b. Rewriting the general form, we have

 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0

 0x 2 + 0xy + 9y 2 + 16x + 36y + (−10) = 0

A = 0 and C = 9. We can determine that the equation is a parabola, since A is zero.

c. Rewriting the general form, we have

 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0

 3x 2 + 0xy + 3y 2 + (−2)x + (−6)y + (−4) = 0

A = 3 and C = 3. Because A = C, the graph of this equation is a circle.

d. Rewriting the general form, we have

 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0

 (−25)x 2 + 0xy + (−4)y 2 + 100x + 16y + 20 = 0

A = −25 and C = −4. Because AC > 0 and A ≠ C, the graph of this equation is an ellipse.

Try It #1

Identify the graph of each of the following nondegenerate conic sections.

a.  16y 2 − x 2 + x − 4y − 9 = 0       b.  16x 2 + 4y 2 + 16x + 49y − 81 = 0



CHAPTER 10 analytic geometry912

Finding a New Representation of the Given Equation after Rotating through a Given Angle

Until now, we have looked at equations of conic sections without an xy term, which aligns the graphs with the x- and 
y- axes. When we add an xy term, we are rotating the conic about the origin. If the x- and y-axes are rotated through 
an angle, say θ, then every point on the plane may be thought of as having two representations: (x, y) on the Cartesian 
plane with the original x-axis and y-axis, and (x′, y′) on the new plane defined by the new, rotated axes, called the 
x′-axis and y′-axis. See Figure 3.

Figure 3 The graph of the rotated ellipse

 x 2 + y 2 − xy − 15 = 0

We will find the relationships between x and y on the Cartesian plane with x′ and y′ on the new rotated plane. See Figure 4.

Figure 4 The Cartesian plane with x- and y-axes and the resulting x′− and y′−axes formed by a rotation by an angle θ.

The original coordinate x- and y-axes have unit vectors i and j. The rotated coordinate axes have unit vectors i′ and j′. The 
angle θ is known as the angle of rotation. See Figure 5. We may write the new unit vectors in terms of the original ones.

 i′ = cos θi + sin θ j

 j′ = −sin θi + cos θ j

Figure 5 Relationship between the old and new coordinate planes.

xθ

y
x’y’

θ
cos θ

cos θ

sin θ

−sin θ

θ

x'

x

y

y'

x

y

θ

x'

y'
j'

i'

i

j

sin θ

−sin θ

cos θ

cos θ
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Consider a vector u in the new coordinate plane. It may be represented in terms of its coordinate axes.

 u = x′ i′ + y′ j′

 u = x′(i cos θ + j sin θ) + y′( − i sin θ + j cos θ) Substitute.

 u = ix ' cos θ + jx ' sin θ − iy' sin θ + jy' cos θ Distribute.

 u = ix ' cos θ − iy' sin θ + jx ' sin θ + jy' cos θ Apply commutative property.

 u = (x ' cos θ − y' sin θ)i + (x' sin θ + y' cos θ) j Factor by grouping.

Because u = x′ i′ + y′ j′, we have representations of x and y in terms of the new coordinate system.

x = x′ cos θ − y′ sin θ   and   y = x′ sin θ + y′ cos θ

equations of rotation
If a point (x, y) on the Cartesian plane is represented on a new coordinate plane where the axes of rotation are formed 
by rotating an angle θ from the positive x-axis, then the coordinates of the point with respect to the new axes are  
(x′, y′). We can use the following equations of rotation to define the relationship between (x, y) and (x′, y′):

x = x′ cos θ − y′ sin θ   and   y = x′ sin θ + y′ cos θ

How To…
Given the equation of a conic, find a new representation after rotating through an angle.

1. Find x and y where x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ.
2. Substitute the expression for x and y into in the given equation, then simplify.
3. Write the equations with x′ and y′ in standard form.

Example 2 Finding a New Representation of an Equation after Rotating through a Given Angle

Find a new representation of the equation 2x 2 − xy + 2y 2 − 30 = 0 after rotating through an angle of θ = 45°.

Solution Find x and y, where x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ.

Because θ = 45°,

 x = x′ cos(45°) − y′ sin(45°)

 x = x′     1 _ 
 √

—
 2  
      − y′     1 _ 

 √
—
 2  
     

 x =   
x′ − y′

 _ 
 √

—
 2  
  

and

 y = x′ sin(45°) + y′ cos(45°)

 y = x′     1 _ 
 √

—
 2  
      + y′     1 _ 

 √
—
 2  
     

 y =   
x′ + y′

 _ 
 √

—
 2  
  

Substitute x = x′ cosθ − y′ sinθ and y = x′ sin θ + y′ cos θ into 2x 2 − xy + 2y 2 − 30 = 0.

 2      x′ − y′
 _ 

 √
—
 2  
      

2
  −     x′ − y′

 _ 
 √

—
 2  
          x′ + y′

 _ 
 √

—
 2  
      + 2      x′ + y′

 _ 
 √

—
 2  
      

2
  − 30 = 0
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Simplify.

  /  / 2     
(x′ − y′)(x′ − y′)

  __ 
 / 2 

   −   
(x′ − y′)(x′ + y′)

  __ 
2

   +  / 2    
(x′ + y′)(x′ + y′)

  __ 
 / 2 

   − 30 = 0 FOIL method

 x′ 2   −2x′ y′  + y′ 2 −   
(x′ 2 − y′ 2)

 _ 
2

   + x′ 2   + 2x′ y′  + y′ 2 − 30 = 0 Combine like terms.

 2x′ 2 + 2y′ 2 −   
(x′ 2 − y′ 2)

 _ 
2

   = 30 Combine like terms.

 2  2x′ 2 + 2y′ 2 −   
(x′ 2 − y′ 2)

 _ 
2

      = 2(30) Multiply both sides by 2.

 4x′ 2 + 4y′ 2 − (x′ 2 − y′ 2) = 60 Simplify.

 4x′ 2 + 4y′ 2 − x′ 2 + y′ 2 = 60 Distribute.

   3x′ 2 _ 
60

   +   
5y′ 2

 _ 
60

   =   60 _ 
60

    Set equal to 1.

Write the equations with x′ and y′ in the standard form.

   x′ 
2
 _ 

20
   +   

y′ 2
 _ 

12
   = 1

This equation is an ellipse. Figure 6 shows the graph.

Figure 6

Writing equations of Rotated Conics in Standard Form
Now that we can find the standard form of a conic when we are given an angle of rotation, we will learn how to 
transform the equation of a conic given in the form Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0. into standard form by 
rotating the axes. To do so, we will rewrite the general form as an equation in the x′ and y′ coordinate system without 
the x′y′ term, by rotating the axes by a measure of θ that satisfies

cot(2θ) =   A − C ______ B  

We have learned already that any conic may be represented by the second degree equation

 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0.

where A, B, and C are not all zero. However, if B ≠ 0, then we have an xy term that prevents us from rewriting the 
equation in standard form. To eliminate it, we can rotate the axes by an acute angle θ where cot(2θ) =   A − C ______ B  .

•	 If cot(2θ) > 0, then 2θ is in the first quadrant, and θ is between (0°, 45°).
•	 If cot(2θ) < 0, then 2θ is in the second quadrant, and θ is between (45°, 90°).
•	 If A = C, then θ = 45°.

How To…
Given an equation for a conic in the x′ y′ system, rewrite the equation without the x′ y′ term in terms of x′ and y′, where 
the x′ and y′ axes are rotations of the standard axes by θ degrees.

0 1

–4

–3

–2

–1
–1–2–3–4

1

2

3

4

2
θ = 45°

3 4
x

x’y’
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1. Find cot(2θ).
2. Find sin θ and cos θ.
3. Substitute sin θ and cos θ into x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ.
4. Substitute the expression for x and y into in the given equation, and then simplify.
5. Write the equations with x′ and y′ in the standard form with respect to the rotated axes.

Example 3 Rewriting an Equation with respect to the x´ and y´ axes without the x´y´ Term

Rewrite the equation 8x 2 − 12xy + 17y 2 = 20 in the x′ y′ system without an x′ y′ term.

Solution First, we find cot(2θ). See Figure 7.

 8x 2 − 12xy + 17y 2 = 20 ⇒ A = 8, B = − 12 and C = 17

 cot(2θ) =   A − C ______ B   =   8 − 17 ______ 
−12  

 cot(2θ) =   −9 ____ 
−12   =   3 __ 4  

Figure 7

 cot(2θ) =   3 __ 4   =   
adjacent

 _ 
opposite

  

So the hypotenuse is
 32 + 42 = h2

 9 + 16 = h2

 25 = h2

 h = 5

Next, we find sin θ and cos θ.

 sin θ =   √
___________

   1 − cos(2θ) __________ 2      =   √ 

————

   
1 −   3 __ 5  

 _ 
2

      =   √ 

—————

   
  5 __ 5   −   3 __ 5  

 _ 
2 

     =   √
_________

   5 − 3 _____ 5   ⋅  1 __ 2      =   √
___

   2 __ 10      =   √
__

   1 __ 5     

 sin θ =   1 _ 
 √

—
 5  
  

 cos θ =   √
___________

   1 + cos(2θ) __________ 2      =   √ 

————

   
1 +   3 __ 5  

 _ 
2

      =   √ 

—————

   
  5 __ 5   +   3 __ 5  

 _ 
2 

     =   √
_________

   5 + 3 _____ 5   ⋅  1 __ 2      =   √
___

   8 _ 
10

      =   √
__

   4 __ 5     

 cos θ =   2 _ 
 √

—
 5  
  

Substitute the values of sin θ and cos θ into x = x′ cos θ − y′ sin θ and y = x′ sin θ + y′ cos θ.

 x = x′ cos θ − y′ sin θ

 x = x′     2 _ 
 √

—
 5  
      − y′     1 _ 

 √
—
 5  
     

 x =   
2x′ − y′

 _ 
 √

—
 5  
  

and

 y = x′ sin θ + y′ cos θ

4

3

2θ

h

x

y
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 y = x′     1 _ 
 √

—
 5  
      + y′     2 _ 

 √
—
 5  
     

 y =   
x′ + 2y′

 _ 

 √
—
 5  
  

Substitute the expressions for x and y into in the given equation, and then simplify.

 8     2x′ − y′
 _ 

 √
—
 5  
      

2
  − 12     2x′ − y′

 _ 
 √

—
 5  
          x′ + 2y′

 _ 
 √

—
 5  
      + 17     x′ + 2y′

 _ 
 √

—
 5  
      

2
  = 20

 8    (2x′ − y′)(2x′ − y′)
  __ 5      − 12    (2x′ − y′)(x′ + 2y′)

  __ 5      + 17    (x′ + 2y′)(x′ + 2y′)
  __ 5      = 20

 8 (4x′ 2 − 4x′ y′ + y′ 2) − 12(2x′ 2 + 3x′ y′ − 2y′ 2) + 17(x′ 2 + 4x′ y′ + 4y′ 2) = 100

 32x′ 2 − 32x′ y′ + 8y′ 2 − 24x′ 2 − 36x′ y′ + 24y′ 2 + 17x′ 2 + 68x′ y′ + 68y′ 2 = 100

 25x′ 2 + 100y′ 2 = 100

   25 ____ 100  x′ 2 +   100 ___ 100  y′ 2 =   100 ___ 100  

Write the equations with x′ and y′ in the standard form with respect to the new coordinate system.

  x′ 
2
 _ 4   +   

y′ 2
 _ 

1
   = 1

Figure 8 shows the graph of the ellipse.

Figure 8

Try It #2
Rewrite the 13x 2 − 6 √

—
 3  xy + 7y 2 = 16 in the x′ y′ system without the x′ y′ term.

Example 4 Graphing an Equation That Has No x´y´ Terms

Graph the following equation relative to the x′ y′ system:

 x 2 + 12xy − 4y 2 = 30
Solution First, we find cot(2θ).
 x 2 + 12xy − 4y 2 = 20 ⇒ A = 1, B = 12, and C = −4

 cot(2θ) =   A − C ______ B  

 cot(2θ) =   1 − (−4) ________ 12  

 cot(2θ) =   5 ___ 12  

1

–1
1

–2

–1–2–3

2

2 3
x

y
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Because cot(2θ) =   5 __ 12  , we can draw a reference triangle as in Figure 9.

Figure 9

 cot(2θ) =   5 ___ 12   =   
adjacent

 _ 
opposite

  

Thus, the hypotenuse is

 52 + 122 = h2

 25 + 144 = h2

 169 = h2

 h = 13

Next, we find sin θ and cos θ. We will use half-angle identities.

 sin θ =   √ 
___________

   1 − cos(2θ) __________ 2      =   √ 

————

   
1 −   5 __ 13  

 _ 
2

      =   √ 

—————

   
  13 _ 
13

   −   5 _ 
13

  
 _ 

2 
      =   √ 

______

   8 _____ 13   ⋅  1 __ 2      =    2 _ 
 √

—
 13  
   

 cos θ =   √ 
___________

   1 + cos(2θ) __________ 2      =   √ 

————

   
1 +   5 __ 13  

 _ 
2

      =   √ 

—————

   
  13 _ 
13

   +   5 _ 
13

  
 _ 

2 
      =   √ 

______

   18 ___ 13   ⋅  1 __ 2      =    3 _ 
 √

—
 13  
   

Now we find x and y.
 x = x′ cos θ − y′ sin θ

 x = x′     3 _ 
 √

—
 13  
      − y′     2 _ 

 √
—

 13  
     

 x =   
3x′ − 2y′

 _ 
 √

—
 13  
  

and

 y = x′ sin θ + y′ cos θ

 y = x′     2 _ 
 √

—
 13  
      + y′     3 _ 

 √
—

 13  
     

 y =   
2x′ + 3y′

 _ 
 √

—
 13  
  

Now we substitute x =   
3x′ − 2y′

 _ 
 √

—
 13  
   and y =   

2x′ + 3y′
 _ 

 √
—

 13  
   into x 2 + 12xy − 4y 2 = 30.

      3x′ − 2y′
 _ 

 √
—

 13  
       

2
  + 12     

3x′ − 2y′
 _ 

 √
—

 13  
        2x′ + 3y′

 _ 
 √

—
 13  
     − 4     2x′ + 3y′

 _ 
 √

—
 13  
       

2
  = 30

cot(2θ) = 12
512

5
x

y

2θ
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     1 ___ 13     [(3x′ − 2y′ )2 + 12(3x′ − 2y′ )(2x′ + 3y′ ) − 4 (2x′ + 3y′ )2] = 30 Factor.

     1 ___ 13     [9x′ 2 − 12x′ y′ + 4y′ 2 + 12 (6x′ 2 + 5x′ y′ − 6y′ 2) − 4 (4x′ 2 + 12x′ y′ + 9y′ 2)] = 30 Multiply.

     1 ___ 13     [9x′ 2 − 12x′ y′ + 4y′ 2 + 72x′ 2 + 60x′ y′ − 72y′ 2 − 16x′ 2 − 48x′ y′ − 36y′ 2] = 30 Distribute.

     1 ___ 13     [65x′ 2 − 104y′ 2] = 30 Combine like terms.

 65x′ 2 − 104y′ 2 = 390 Multiply.

   x′ 
2
 _ 

6
   −   

4y′ 2
 _ 

15
   = 1 Divide by 390.

Figure 10 shows the graph of the hyperbola   x′ 
2
 _ 

6
   −   

4y′ 2
 _ 

15
   = 1.

Figure 10

Identifying Conics without Rotating Axes
Now we have come full circle. How do we identify the type of conic described by an equation? What happens when 
the axes are rotated? Recall, the general form of a conic is

 Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0

If we apply the rotation formulas to this equation we get the form

 A′ x′ 2 + B′x′y′ + C′y′ 2 + D′x′ + E′y′ + F′ = 0

It may be shown that B2 − 4AC = B′ 2 − 4A′ C′. The expression does not vary after rotation, so we call the expression 
invariant. The discriminant, B2 − 4AC, is invariant and remains unchanged after rotation. Because the discriminant 
remains unchanged, observing the discriminant enables us to identify the conic section.

using the discriminant to identify a conic
If the equation Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 is transformed by rotating axes into the equation  
A′x′ 2 + B′x′y′ + C′y′ 2 + D′x′ + E′y′ + F′ = 0, then B2 − 4AC = B′ 2 − 4A′C′.

The equation Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 is an ellipse, a parabola, or a hyperbola, or a degenerate case 
of one of these.

If the discriminant, B2 − 4AC, is
•	< 0, the conic section is an ellipse
•	= 0, the conic section is a parabola
•	> 0, the conic section is a hyperbola

–4 10
–1
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–5

2
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Example 5 Identifying the Conic without Rotating Axes

Identify the conic for each of the following without rotating axes.

a. 5x 2 + 2 √
—
 3  xy + 2y 2 − 5 = 0

b.  5x 2 + 2 √
—
 3  xy + 12y 2 − 5 = 0

Solution

a. Let’s begin by determining A, B, and C.

   5   
A

  x 2 +   2 √
—
 3      

B
  xy +   2   

C
  y 2 − 5 = 0

Now, we find the discriminant.
 B2 − 4AC =    2 √

—
 3     2  − 4(5)(2)

 = 4(3) − 40
 = 12 − 40
 = − 28 < 0

Therefore, 5x 2 + 2 √
—
 3  xy + 2y 2 − 5 = 0 represents an ellipse.

b. Again, let’s begin by determining A, B, and .

   5   
A

  x 2 +   2 √
—
 3      

B
  xy +   12   

C
  y 2 − 5 = 0

Now, we find the discriminant.
 B2 − 4AC =    2 √

—
 3     2  − 4(5)(12)

 = 4(3) − 240
 = 12 − 240
 = − 228 < 0

Therefore, 5x 2 + 2 √
—
 3  xy + 12y 2 − 5 = 0 represents an ellipse.

Try It #3

Identify the conic for each of the following without rotating axes.

a.  x 2 − 9xy + 3y 2 − 12 = 0
b.  10x 2 − 9xy + 4y 2 − 4 = 0

Access this online resource for additional instruction and practice with conic sections and rotation of axes.

•	 Introduction to Conic Sections (http://openstaxcollege.org/l/introconic)

{ {

{ {

http://openstaxcollege.org/l/introconic
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10.4 SeCTIOn exeRCISeS

VeRBAl

1. What effect does the xy term have on the graph of a 
conic section?

2. If the equation of a conic section is written in the 
form Ax 2 + By 2 + Cx + Dy + E = 0 and AB = 0, 
what can we conclude?

3. If the equation of a conic section is written in the 
form Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0, and  
B2 − 4AC > 0, what can we conclude?

4. Given the equation ax 2 + 4x + 3y 2 − 12 = 0, what 
can we conclude if a > 0?

5. For the equation Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0, the value of θ that satisfies cot(2θ) =   A − C ______ B   gives us 
what information?

AlGeBRAIC

For the following exercises, determine which conic section is represented based on the given equation.
6. 9x 2 + 4y 2 + 72x + 36y − 500 = 0 7. x 2 − 10x + 4y − 10 = 0

8. 2x 2 − 2y 2 + 4x − 6y − 2 = 0 9. 4x 2 − y 2 + 8x − 1 = 0

10. 4y 2 − 5x + 9y + 1 = 0 11. 2x 2 + 3y 2 − 8x − 12y + 2 = 0

12. 4x 2 + 9xy + 4y 2 − 36y − 125 = 0 13. 3x 2 + 6xy + 3y 2 − 36y − 125 = 0

14.  −3x 2 + 3 √
—
 3  xy − 4y 2 + 9 = 0 15. 2x 2 + 4 √

—
 3  xy + 6y 2 − 6x − 3 = 0

16.  −x 2 + 4 √
—
 2  xy + 2y 2 − 2y + 1 = 0 17. 8x 2 + 4 √

—
 2  xy + 4y 2 − 10x + 1 = 0

For the following exercises, find a new representation of the given equation after rotating through the given angle.

18. 3x 2 + xy + 3y 2 − 5 = 0, θ = 45° 19. 4x 2 − xy + 4y 2 − 2 = 0, θ = 45°
20. 2x 2 + 8xy − 1 = 0, θ = 30° 21.  −2x 2 + 8xy + 1 = 0, θ = 45°
22. 4x 2 +  √

—
 2  xy + 4y 2 + y + 2 = 0, θ = 45°

For the following exercises, determine the angle θ that will eliminate the xy term and write the corresponding equation 
without the xy term.

23. x 2 + 3 √
—
 3  xy + 4y 2 + y − 2 = 0 24. 4x 2 + 2 √

—
 3  xy + 6y 2 + y − 2 = 0

25. 9x 2 − 3 √
—
 3  xy + 6y 2 + 4y − 3 = 0 26.  −3x 2 −  √

—
 3  xy − 2y 2 − x = 0

27. 16x 2 + 24xy + 9y 2 + 6x − 6y + 2 = 0 28. x 2 + 4xy + 4y 2 + 3x − 2 = 0

29. x 2 + 4xy + y 2 − 2x + 1 = 0 30. 4x 2 − 2 √
—
 3  xy + 6y 2 − 1 = 0

GRAPHICAl

For the following exercises, rotate through the given angle based on the given equation. Give the new equation and 
graph the original and rotated equation.

31. y = − x 2, θ = − 45° 32. x = y 2, θ = 45° 33.   x
 2
 _ 4   +   

y 2

 _ 
1

   = 1, θ = 45°

34.   
y 2

 _ 
16

   +   x
 2
 _ 

9
   = 1, θ = 45° 35. y 2 − x 2 = 1, θ = 45° 36. y =   x

 2
 _ 

2
   , θ = 30°

37. x = (y − 1)2, θ = 30° 38.   x
 2
 _ 

9
   +   

y 2

 _ 4   = 1, θ = 30°
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For the following exercises, graph the equation relative to the x′ y′ system in which the equation has no x′ y′ term.

39. xy = 9 40. x 2 + 10xy + y 2 − 6 = 0

41. x 2 − 10xy + y 2 − 24 = 0 42. 4x 2 − 3 √
—
 3  xy + y 2 − 22 = 0

43. 6x 2 + 2 √
—
 3  xy + 4y 2 − 21 = 0 44. 11x 2 + 10 √

—
 3  xy + y 2 − 64 = 0

45. 21x 2 + 2 √
—
 3  xy + 19y 2 − 18 = 0 46. 16x 2 + 24xy + 9y 2 − 130x + 90y = 0

47. 16x 2 + 24xy + 9y 2 − 60x + 80y = 0 48. 13x 2 − 6 √
—
 3  xy + 7y 2 − 16 = 0

49. 4x 2 − 4xy + y 2 − 8 √
—
 5  x − 16 √

—
 5  y = 0

For the following exercises, determine the angle of rotation in order to eliminate the xy term. Then graph the new set 
of axes.

50. 6x 2 − 5 √
—
 3  xy + y 2 + 10x − 12y = 0 51. 6x 2 − 5xy + 6y 2 + 20x − y = 0

52. 6x 2 − 8 √
—
 3  xy + 14y 2 + 10x − 3y = 0 53. 4x 2 + 6 √

—
 3  xy + 10y 2 + 20x − 40y = 0

54. 8x 2 + 3xy + 4y 2 + 2x − 4 = 0 55. 16x 2 + 24xy + 9y 2 + 20x − 44y = 0

For the following exercises, determine the value of k based on the given equation.

56. Given 4x 2 + kxy + 16y 2 + 8x + 24y − 48 = 0,  
find k for the graph to be a parabola.

57. Given 2x 2 + kxy + 12y 2 + 10x − 16y + 28 = 0, 
find k for the graph to be an ellipse.

58. Given 3x 2 + kxy + 4y 2 − 6x + 20y + 128 = 0, 
find k for the graph to be a hyperbola.

59. Given kx 2 + 8xy + 8y 2 − 12x + 16y + 18 = 0, 
find k for the graph to be a parabola.

60. Given 6x 2 + 12xy + ky 2 + 16x + 10y + 4 = 0, 
find k for the graph to be an ellipse.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Identify a conic in polar form.

•	 Graph the polar equations of conics.

•	 Define conics in terms of a focus and a directrix.

10. 5 COnIC SeCTIOnS In POlAR COORDInATeS

Figure 1  Planets orbiting the sun follow elliptical paths. (credit: nASA Blueshift, Flickr)

Most of us are familiar with orbital motion, such as the motion of a planet around the sun or an electron around 
an atomic nucleus. Within the planetary system, orbits of planets, asteroids, and comets around a larger celestial 
body are often elliptical. Comets, however, may take on a parabolic or hyperbolic orbit instead. And, in reality, the 
characteristics of the planets’ orbits may vary over time. Each orbit is tied to the location of the celestial body being 
orbited and the distance and direction of the planet or other object from that body. As a result, we tend to use polar 
coordinates to represent these orbits.

In an elliptical orbit, the periapsis is the point at which the two objects are closest, and the apoapsis is the point at which 
they are farthest apart. Generally, the velocity of the orbiting body tends to increase as it approaches the periapsis 
and decrease as it approaches the apoapsis. Some objects reach an escape velocity, which results in an infinite orbit. 
These bodies exhibit either a parabolic or a hyperbolic orbit about a body; the orbiting body breaks free of the celestial 
body’s gravitational pull and fires off into space. Each of these orbits can be modeled by a conic section in the polar 
coordinate system.

Identifying a Conic in Polar Form
Any conic may be determined by three characteristics: a single focus, a fixed line called the directrix, and the ratio of 
the distances of each to a point on the graph. Consider the parabola x = 2 + y 2 shown in Figure 2.

Figure 2

Polar axis

x = 2 + y2

F, Focus @ pole

r
D

P(r, θ)

Directrix

θ
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In The Parabola, we learned how a parabola is defined by the focus (a fixed point) and the directrix (a fixed line). In 
this section, we will learn how to define any conic in the polar coordinate system in terms of a fixed point, the focus 
P(r, θ) at the pole, and a line, the directrix, which is perpendicular to the polar axis.

If F is a fixed point, the focus, and D is a fixed line, the directrix, then we can let e be a fixed positive number, called 
the eccentricity, which we can define as the ratio of the distances from a point on the graph to the focus and the point 

on the graph to the directrix. Then the set of all points P such that e =   PF ___ PD   is a conic. In other words, we can define 

a conic as the set of all points P with the property that the ratio of the distance from P to F to the distance from P to 
D is equal to the constant e.

For a conic with eccentricity e,

•	 if 0 ≤ e < 1, the conic is an ellipse

•	 if e = 1, the conic is a parabola

•	 if e > 1, the conic is an hyperbola

With this definition, we may now define a conic in terms of the directrix, x = ± p, the eccentricity e, and the angle θ. 
Thus, each conic may be written as a polar equation, an equation written in terms of r and θ.

the polar equation for a conic 
For a conic with a focus at the origin, if the directrix is x = ± p, where p is a positive real number, and the eccentricity 
is a positive real number e, the conic has a polar equation

 r =   
ep
 _ 

1 ± e cos θ
  

For a conic with a focus at the origin, if the directrix is y = ± p, where p is a positive real number, and the eccentricity 
is a positive real number e, the conic has a polar equation

 r =   
ep
 _ 

1 ± e sin θ
  

How To…
Given the polar equation for a conic, identify the type of conic, the directrix, and the eccentricity.

1. Multiply the numerator and denominator by the reciprocal of the constant in the denominator to rewrite the 
equation in standard form.

2. Identify the eccentricity e as the coefficient of the trigonometric function in the denominator.
3. Compare e with 1 to determine the shape of the conic.
4. Determine the directrix as x = p if cosine is in the denominator and y = p if sine is in the denominator. Set ep equal 

to the numerator in standard form to solve for x or y.

Example 1 Identifying a Conic Given the Polar Form

For each of the following equations, identify the conic with focus at the origin, the directrix, and the eccentricity.

a. r =   6 _________ 3 + 2 sin θ     b. r =   12 _________ 4 + 5 cos θ     c. r =   7 _________ 2 − 2 sin θ  

Solution For each of the three conics, we will rewrite the equation in standard form. Standard form has a 1 as 
the constant in the denominator. Therefore, in all three parts, the first step will be to multiply the numerator and 
denominator by the reciprocal of the constant of the original equation,   1 __ c  , where c is that constant.

a. Multiply the numerator and denominator by   1 __ 3  .

r =   6 _________ 3 + 2sin θ   ⋅     
    1 __ 3      

 _ 
      1 __ 3    

     =      
6    1 __ 3    

  __  
  3    1 __ 3     + 2    1 __ 3     sin θ

        =   2 __  
  1 +   2 _ 

3
   sin θ
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Because sin θ is in the denominator, the directrix is y = p. Comparing to standard form, note that e =   2 __ 3  . 
Therefore, from the numerator,
 2 = ep

 2 =  2 __ 3  p

     3 __ 2     2 =     3 __ 2       2 __ 3   p

 3 = p

Since e < 1, the conic is an ellipse. The eccentricity is e =   2 __ 3   and the directrix is y = 3.

b. Multiply the numerator and denominator by   1 __ 4  .

 r =   12 _ 
4 + 5 cos θ

   ⋅     
    1 _ 4      

 _ 

       1 _ 4     
   

 r =     
12    1 _ 4     

  __   
   4    1 _ 4      + 5    1 _ 4      cos θ

   

 r =   3 _ 

1 +   5 _ 4   cos θ
  

Because cos θ is in the denominator, the directrix is x = p. Comparing to standard form, e =   5 __ 4  .

Therefore, from the numerator,
 3 = ep

 3 =   5 __ 4   p

     4 __ 5     3 =     4 __ 5       5 __ 4   p

   12 ___ 5   = p

Since e > 1, the conic is a hyperbola. The eccentricity is e =   5 __ 4   and the directrix is x =   12 ___ 5   = 2.4.

c. Multiply the numerator and denominator by   1 __ 2  .

 r =   7 _ 
2 − 2 sin θ

   ⋅     
    1 _ 

2
      
 _ 

      1 _ 
2

     
   

 r =     
7    1 _ 

2
     
  __  

2    1 _ 
2

      − 2    1 _ 
2

      sin θ
   

 r =   
  7 _ 
2

  
 _ 

1 − sin θ
  

Because sine is in the denominator, the directrix is y = −p. Comparing to standard form, e = 1.
Therefore, from the numerator,
   7 __ 2   = ep

   7 __ 2   = (1)p

   7 __ 2   = p

Because e = 1, the conic is a parabola. The eccentricity is e = 1 and the directrix is y = −  7 __ 2   = −3.5.
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Try It #1
Identify the conic with focus at the origin, the directrix, and the eccentricity for r =   2 ________ 3 − cos θ  .

Graphing the Polar equations of Conics
When graphing in Cartesian coordinates, each conic section has a unique equation. This is not the case when graphing 
in polar coordinates. We must use the eccentricity of a conic section to determine which type of curve to graph, and 
then determine its specific characteristics. The first step is to rewrite the conic in standard form as we have done in the 
previous example. In other words, we need to rewrite the equation so that the denominator begins with 1. This enables 
us to determine e and, therefore, the shape of the curve. The next step is to substitute values for θ and solve for r to plot 

a few key points. Setting θ equal to 0,   π __ 2  , π, and   3π ___ 2   provides the vertices so we can create a rough sketch of the graph.

Example 2 Graphing a Parabola in Polar Form

Graph r =   5 _________ 3 + 3 cos θ  .

Solution First, we rewrite the conic in standard form by multiplying the numerator and denominator by the 
reciprocal of 3, which is   1 __ 3  .

 r =   5 _ 
3 + 3 cos θ

   =     
5    1 _ 

3
       
  __   

   3    1 _ 
3

      + 3    1 _ 
3

      cos θ
   

 r =   
  5 __ 3  
 _ 

1 + cos θ
  

Because e = 1, we will graph a parabola with a focus at the origin. The function has a cos θ, and there is an addition 
sign in the denominator, so the directrix is x = p.

   5 __ 3   = ep

   5 __ 3   = (1)p

   5 __ 3   = p
The directrix is x =   5 __ 3  .

Plotting a few key points as in Table 1 will enable us to see the vertices. See Figure 3.

A B C D

θ 0    π __ 2  π   3π ___ 2  

r =   5 _________ 3 + 3 cos θ    5 __ 6   ≈ 0.83   5 __ 3   ≈ 1.67 undefined   5 __ 3   ≈ 1.67

Table 1

Figure 3

A

Directrix

B

F

D

2

r

3 4 5

x = 5
3
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Analysi s We can check our result with a graphing utility. See Figure 4.

2 3 4 5

Figure 4 
Example 3 Graphing a Hyperbola in Polar Form

Graph r =   8 _________ 2 − 3 sin θ  .

Solution First, we rewrite the conic in standard form by multiplying the numerator and denominator by the 
reciprocal of 2, which is   1 __ 2  .

 r =   8 _ 
2 − 3 sin θ

   =     
8    1 _ 

2
     
  __  

   2    1 _ 
2

      − 3    1 _ 
2

      sin θ
   

 r =   4 _ 

1 −   3 _ 
2

   cos θ
  

Because e =   3 __ 2  , e > 1, so we will graph a hyperbola with a focus at the origin. The function has a sin θ term and there 
is a subtraction sign in the denominator, so the directrix is y = −p.

 4 = ep

 4 =     3 __ 2     p
 4    2 __ 3      = p

   8 __ 3   = p
The directrix is y = −  8 __ 3  .

Plotting a few key points as in Table 2 will enable us to see the vertices. See Figure 5.

A B C D

θ 0    π __ 2  π   3π ___ 2  

r =   8 _________ 2 − 3 sin θ  4 −8 4   8 __ 5   = 1.6

Table 2

1 2 3 4

AC

D

B

r

5 6 7 8 9 10

Figure 5
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Example 4 Graphing an Ellipse in Polar Form

Graph r =   10 __________ 5 − 4 cos θ.  

Solution First, we rewrite the conic in standard form by multiplying the numerator and denominator by the 
reciprocal of 5, which is   1 __ 5  .

 r =   10 _________ 5 − 4 cos θ   =     
10    1 _ 5     

  __   
   5    1 _ 5      − 4    1 _ 5      cos θ

   

 r =   2 _ 
1 −   4 __ 5   sin θ

  

Because e =   4 __ 5  , e < 1, so we will graph an ellipse with a focus at the origin. The function has a cos θ, and there is a 

subtraction sign in the denominator, so the directrix is x = −p.

 2 = ep

 2 =     4 __ 5     p
 2    5 __ 4      = p

   5 __ 2   = p

The directrix is x = −  5 __ 2  .

Plotting a few key points as in Table 3 will enable us to see the vertices. See Figure 6.

A B C D

θ 0    π __ 2  π   3π ___ 2  

r =   10 _________ 5 − 4 cos θ  10 2   10 ___ 9   ≈ 1.1 2

Table 3

Figure 6

2
D

C
B

A

r

4 6 8 10 12

x = −
5
2

Directrix
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Analysi s  We can check our result with a graphing utility.  
See Figure 7.

Figure 7  r =   10 _ 
5 − 4 cos θ

   graphed on a viewing window  

of [−3, 12, 1] by [ −4, 4, 1], θ min = 0 and θ max = 2π. 

Try It #2

Graph r =   2 _________ 4 − cos θ.  

Defining Conics in Terms of a Focus and a Directrix
So far we have been using polar equations of conics to describe and graph the curve. Now we will work in reverse; we 
will use information about the origin, eccentricity, and directrix to determine the polar equation.

How To…
Given the focus, eccentricity, and directrix of a conic, determine the polar equation.

1. Determine whether the directrix is horizontal or vertical. If the directrix is given in terms of y, we use the general 
polar form in terms of sine. If the directrix is given in terms of x, we use the general polar form in terms of cosine.

2. Determine the sign in the denominator. If p < 0, use subtraction. If p > 0, use addition.
3. Write the coefficient of the trigonometric function as the given eccentricity.
4. Write the absolute value of p in the numerator, and simplify the equation.

Example 5   Finding the Polar Form of a Vertical Conic Given a Focus at the Origin and the Eccentricity and Directrix

Find the polar form of the conic given a focus at the origin, e = 3 and directrix y = − 2.

Solution The directrix is y = −p, so we know the trigonometric function in the denominator is sine.

Because y = −2, −2 < 0, so we know there is a subtraction sign in the denominator. We use the standard form of

 r =   
ep
 ________ 1 − esin θ  

and e = 3 and  | −2 |  = 2 = p.

Therefore,
 r =   (3)(2) _________ 1 − 3 sin θ  

 r =   6 _________ 1 − 3 sin θ  

Example 6  Finding the Polar Form of a Horizontal Conic Given a Focus at the Origin and the Eccentricity and 
Directrix

Find the polar form of a conic given a focus at the origin, e =   3 _ 5  , and directrix x = 4.

Solution Because the directrix is x = p, we know the function in the denominator is cosine. Because x = 4, 4 > 0, so 
we know there is an addition sign in the denominator. We use the standard form of

 r =   
ep
 _________ 1 + e cos θ  

and e =   3 __ 5   and |4| = 4 = p.
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Therefore,

 r =     
    3 _ 5     (4)

 ___________ 
1 +   3 _ 5   cos θ

  

 r =   
  12 _ 5  
 ___________ 

1 +   3 _ 5   cos θ
  

 r =   
  12 _ 5  
 _______________  

1     5 _ 5     +   3 _ 5   cos θ
  

 r =   
  12 _ 5  
 ____________ 

  5 _ 5   +   3 _ 5   cos θ
  

 r =   12 _ 5   ⋅   5 _________ 5 + 3 cos θ  

 r =   12 _________ 5 + 3 cos θ  

Try It #3
Find the polar form of the conic given a focus at the origin, e = 1, and directrix x = −1.

Example 7 Converting a Conic in Polar Form to Rectangular Form

Convert the conic r =   1 _________ 
5 − 5sin θ

   to rectangular form.

Solution We will rearrange the formula to use the identities r =  √
—

 x 2 + y2  , x = r cos θ, and y = r sin θ.

 r =   1 _________ 
5 − 5sin θ

   

 r ⋅ (5 − 5 sin θ) =   1 _________ 
5 − 5sin θ

    ⋅ (5 − 5 sin θ) Eliminate the fraction.

 5r − 5r sin θ = 1 Distribute.

 5r = 1 + 5r sin θ Isolate 5r.

 25r 2 = (1 + 5r sin θ)2 Square both sides.

 25(x 2 + y  2) = (1 + 5y)2 Substitute r =  √
—

 x 2 + y 2   and y = r sin θ.

 25x 2 + 25y 2 = 1 + 10y + 25y 2 Distribute and use FOIL.

 25x 2 − 10y = 1 Rearrange terms and set equal to 1.

Try It #4
Convert the conic r =   2 __________ 

1 + 2cos θ
   to rectangular form.

Access these online resources for additional instruction and practice with conics in polar coordinates.
•	 Polar equations of Conic Sections (http://openstaxcollege.org/l/determineconic)

•	 Graphing Polar equations of Conics – 1 (http://openstaxcollege.org/l/graphconic1)

•	 Graphing Polar equations of Conics – 2 (http://openstaxcollege.org/l/graphconic2)

http://openstaxcollege.org/l/determineconic
http://openstaxcollege.org/l/graphconic1
http://openstaxcollege.org/l/graphconic2
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10.5 SeCTIOn exeRCISeS

VeRBAl
1. Explain how eccentricity determines which conic 

section is given.
2. If a conic section is written as a polar equation, what 

must be true of the denominator?
3. If a conic section is written as a polar equation, and 

the denominator involves sin θ, what conclusion can 
be drawn about the directrix?

4. If the directrix of a conic section is perpendicular to 
the polar axis, what do we know about the equation 
of the graph?

5. What do we know about the focus/foci of a conic 
section if it is written as a polar equation?

AlGeBRAIC
For the following exercises, identify the conic with a focus at the origin, and then give the directrix and eccentricity.

6. r =   6 __________ 
1 − 2 cos θ

  7. r =   3 __________ 
4 − 4 sin θ

  8. r =   8 __________ 
4 − 3 cos θ

  9. r =   5 __________ 
1 + 2 sin θ

  

10. r =   16 __________ 
4 + 3 cos θ

  11. r =   3 ____________  
10 + 10 cos θ

  12. r =   2 ________ 
1 − cos θ

  13. r =   4 __________ 
7 + 2 cos θ

  

14. r(1 − cos θ) = 3 15. r(3 + 5sin θ) = 11 16. r(4 − 5sin θ) = 1 17. r(7 + 8cos θ) = 7

For the following exercises, convert the polar equation of a conic section to a rectangular equation.

18. r =   4 __________ 
1 + 3 sin θ

  19. r =   2 __________ 
5 − 3 sin θ

  20. r =   8 __________ 
3 − 2 cos θ

  21. r =   3 __________ 
2 + 5 cos θ

  

22. r =   4 __________ 
2 + 2 sin θ

  23. r =   3 __________ 
8 − 8 cos θ

  24. r =   2 __________ 
6 + 7 cos θ

  25. r =   5 ___________ 
5 − 11 sin θ

  

26. r(5 + 2 cos θ) = 6 27. r(2 − cos θ) = 1 28. r(2.5 − 2.5 sin θ) = 5 29. r =   6sec θ ___________ 
−2 + 3 sec θ

  

30. r =   6csc θ __________ 
3 + 2 csc θ

  

For the following exercises, graph the given conic section. If it is a parabola, label the vertex, focus, and directrix. If it 
is an ellipse, label the vertices and foci. If it is a hyperbola, label the vertices and foci.

31. r =   5 ________ 
2 + cos θ

  32. r =   2 __________ 
3 + 3 sin θ

  33. r =   10 __________ 
5 − 4 sin θ

  34. r =   3 __________ 
1 + 2 cos θ

  

35. r =   8 __________ 
4 − 5 cos θ

  36. r =   3 __________ 
4 − 4 cos θ

  37. r =   2 _ 
1 − sin θ

  38. r =   6 __________ 
3 + 2 sin θ

  

39. r(1 + cos θ) = 5 40. r(3 − 4sin θ) = 9 41. r(3 − 2sin θ) = 6 42. r(6 − 4cos θ) = 5
For the following exercises, find the polar equation of the conic with focus at the origin and the given eccentricity 
and directrix.

43. Directrix: x = 4; e =   1 __ 5  44. Directrix: x = − 4; e = 5 45. Directrix: y = 2; e = 2

46. Directrix: y = − 2; e =   1 __ 2  47. Directrix: x = 1; e = 1 48. Directrix: x = −1; e = 1

49. Directrix: x = −  1 __ 4  ; e =   7 __ 2  50. Directrix: y =   2 __ 5  ; e =   7 __ 2  51. Directrix: y = 4; e =   3 __ 2  

52. Directrix: x = −2; e =   8 __ 3  53. Directrix: x = −5; e =   3 __ 4  54. Directrix: y = 2; e = 2.5

55. Directrix: x = −3; e =   1 __ 3  

exTenSIOnS
Recall from Rotation of Axes that equations of conics with an xy term have rotated graphs. For the following exercises, 
express each equation in polar form with r as a function of θ.

56. xy = 2 57. x 2 + xy + y 2 = 4 58. 2x 2 + 4xy + 2y 2 = 9

59. 16x 2 + 24xy + 9y 2 = 4 60. 2xy + y = 1
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Key Terms
angle of rotation an acute angle formed by a set of axes rotated from the Cartesian plane where, if cot(2θ) > 0, then θ is 

between (0°, 45°); if cot(2θ) < 0, then θ is between (45°, 90°); and if cot(2θ) = 0, then θ = 45° 

center of a hyperbola the midpoint of both the transverse and conjugate axes of a hyperbola

center of an ellipse the midpoint of both the major and minor axes

conic section any shape resulting from the intersection of a right circular cone with a plane

conjugate axis the axis of a hyperbola that is perpendicular to the transverse axis and has the co-vertices as its endpoints

degenerate conic sections any of the possible shapes formed when a plane intersects a double cone through the apex. Types 
of degenerate conic sections include a point, a line, and intersecting lines.

directrix a line perpendicular to the axis of symmetry of a parabola; a line such that the ratio of the distance between the 
points on the conic and the focus to the distance to the directrix is constant

eccentricity the ratio of the distances from a point P on the graph to the focus F and to the directrix D represented by  

e =   PF ___ PD  , where e is a positive real number 

ellipse the set of all points (x, y) in a plane such that the sum of their distances from two fixed points is a constant 

foci plural of focus

focus (of a parabola) a fixed point in the interior of a parabola that lies on the axis of symmetry

focus (of an ellipse) one of the two fixed points on the major axis of an ellipse such that the sum of the distances from 
these points to any point (x, y) on the ellipse is a constant 

hyperbola the set of all points (x, y) in a plane such that the difference of the distances between (x, y) and the foci is a 
positive constant 

latus rectum the line segment that passes through the focus of a parabola parallel to the directrix, with endpoints on the 
parabola 

major axis the longer of the two axes of an ellipse 

minor axis the shorter of the two axes of an ellipse 

nondegenerate conic section a shape formed by the intersection of a plane with a double right cone such that the plane 
does not pass through the apex; nondegenerate conics include circles, ellipses, hyperbolas, and parabolas 

parabola the set of all points (x, y) in a plane that are the same distance from a fixed line, called the directrix, and a fixed 
point (the focus) not on the directrix 

polar equation an equation of a curve in polar coordinates r and θ 

transverse axis the axis of a hyperbola that includes the foci and has the vertices as its endpoints 

Key equations
Horizontal ellipse, center at origin   x

 2

 __ 
a2

   +   y
 2

 __ 
b2

   = 1, a > b

Vertical ellipse, center at origin   x
 2

 __ 
b2

   +   y
 2

 __ 
a2

   = 1, a > b

Horizontal ellipse, center (h, k)   (x − h)2

 _______ 
a2

   +   (y − k)2

 _______ 
b2

   = 1, a > b

Vertical ellipse, center (h, k)   (x − h)2

 _______ 
b2

   +   (y − k)2

 _______ 
a2

   = 1, a > b

Hyperbola, center at origin, transverse axis on x-axis   x
 2

 __ 
a2

   −   y
 2

 __ 
b2

   = 1

Hyperbola, center at origin, transverse axis on y-axis   y
 2

 __ 
a2

   −   x
 2

 __ 
b2

   = 1
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Hyperbola, center at (h, k), transverse axis parallel to x-axis   (x − h)2

 _______ 
a2

   −   (y − k)2

 _______ 
b2

   = 1

Hyperbola, center at (h, k), transverse axis parallel to y-axis   (y − k)2

 _______ 
a2

   −   (x − h)2

 _______ 
b2

   = 1

Parabola, vertex at origin, axis of symmetry on x-axis y 2 = 4px

Parabola, vertex at origin, axis of symmetry on y-axis x 2 = 4py

Parabola, vertex at (h, k), axis of symmetry on x-axis  (y − k)2 = 4p(x − h)

Parabola, vertex at (h, k), axis of symmetry on y-axis (x − h)2 = 4p(y − k)

General Form equation of a conic section Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0

Rotation of a conic section x = x' cos θ − y' sin θ

 y = x' sin θ + y' cos θ

Angle of rotation θ, where cot(2θ) =   A − C ______ 
B

  

Key Concepts

10.1 The Ellipse

•	An ellipse is the set of all points (x, y) in a plane such that the sum of their distances from two fixed points is a 
constant. Each fixed point is called a focus (plural: foci).

•	 When given the coordinates of the foci and vertices of an ellipse, we can write the equation of the ellipse in 
standard form. See Example 1 and Example 2.

•	 When given an equation for an ellipse centered at the origin in standard form, we can identify its vertices, 
co-vertices, foci, and the lengths and positions of the major and minor axes in order to graph the ellipse. See 
Example 3 and Example 4.

•	 When given the equation for an ellipse centered at some point other than the origin, we can identify its key features 
and graph the ellipse. See Example 5 and Example 6.

•	 Real-world situations can be modeled using the standard equations of ellipses and then evaluated to find key 
features, such as lengths of axes and distance between foci. See Example 7.

10.2 The Hyperbola

•	A hyperbola is the set of all points (x, y) in a plane such that the difference of the distances between (x, y) and 
the foci is a positive constant.

•	 The standard form of a hyperbola can be used to locate its vertices and foci. See Example 1.

•	 When given the coordinates of the foci and vertices of a hyperbola, we can write the equation of the hyperbola 
in standard form. See Example 2 and Example 3.

•	 When given an equation for a hyperbola, we can identify its vertices, co-vertices, foci, asymptotes, and lengths 
and positions of the transverse and conjugate axes in order to graph the hyperbola. See Example 4 and Example 5.

•	 Real-world situations can be modeled using the standard equations of hyperbolas. For instance, given the 
dimensions of a natural draft cooling tower, we can find a hyperbolic equation that models its sides. See Example 6.
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10.3 The Parabola

•	A parabola is the set of all points (x, y) in a plane that are the same distance from a fixed line, called the directrix, 
and a fixed point (the focus) not on the directrix.

•	 The standard form of a parabola with vertex (0, 0) and the x-axis as its axis of symmetry can be used to graph the 
parabola. If p > 0, the parabola opens right. If p < 0, the parabola opens left. See Example 1.

•	 The standard form of a parabola with vertex (0, 0) and the y-axis as its axis of symmetry can be used to graph the 
parabola. If p > 0, the parabola opens up. If p < 0, the parabola opens down. See Example 2.

•	 When given the focus and directrix of a parabola, we can write its equation in standard form. See Example 3.

•	 The standard form of a parabola with vertex (h, k) and axis of symmetry parallel to the x-axis can be used to graph 
the parabola. If p > 0, the parabola opens right. If p < 0, the parabola opens left. See Example 4.

•	 The standard form of a parabola with vertex (h, k) and axis of symmetry parallel to the y-axis can be used to graph 
the parabola. If p > 0, the parabola opens up. If p < 0, the parabola opens down. See Example 5.

•	 Real-world situations can be modeled using the standard equations of parabolas. For instance, given the diameter 
and focus of a cross-section of a parabolic reflector, we can find an equation that models its sides. See Example 6.

10.4 Rotation of Axes

•	 Four basic shapes can result from the intersection of a plane with a pair of right circular cones connected tail to 
tail. They include an ellipse, a circle, a hyperbola, and a parabola.

•	A nondegenerate conic section has the general form Ax 2 + Bxy + Cy 2 + Dx + Ey + F = 0 where A, B and C are 
not all zero. The values of A, B, and C determine the type of conic. See Example 1.

•	 Equations of conic sections with an xy term have been rotated about the origin. See Example 2.

•	 The general form can be transformed into an equation in the x' and y' coordinate system without the x' y' term. 
See Example 3 and Example 4.

•	An expression is described as invariant if it remains unchanged after rotating. Because the discriminant is invariant, 
observing it enables us to identify the conic section. See Example 5.

10.5 Conic Sections in Polar Coordinates

•	Any conic may be determined by a single focus, the corresponding eccentricity, and the directrix. We can also 
define a conic in terms of a fixed point, the focus P(r, θ) at the pole, and a line, the directrix, which is perpendicular 
to the polar axis.

•	A conic is the set of all points e =   PF ___ PD  , where eccentricity e is a positive real number. Each conic may be written 

in terms of its polar equation. See Example 1.

•	 The polar equations of conics can be graphed. See Example 2, Example 3, and Example 4.

•	 Conics can be defined in terms of a focus, a directrix, and eccentricity. See Example 5 and Example 6.

•	 We can use the identities r =  √
—

 x 2 + y 2  , x = r cos θ, and y = r sin θ to convert the equation for a conic from polar 
to rectangular form. See Example 7.
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THe ellIPSe

For the following exercises, write the equation of the ellipse in standard form. Then identify the center, vertices, and 
foci.

1.   x
 2

 ___ 25   +   y
 2

 ___ 
64

   = 1 2.   (x − 2)2

 _______ 
100

   +   (y + 3)2

 _______ 
36 

   = 1

3. 9x 2 + y 2 + 54x − 4y + 76 = 0 4. 9x 2 + 36y 2 − 36x + 72y + 36 = 0

For the following exercises, graph the ellipse, noting center, vertices, and foci.

5.   x 2 ___ 
36

   +   y 2 __ 
9

   = 1 6.   (x − 4)2

 _______ 
25

   +   (y + 3)2

 _______ 
49

   = 1

7. 4x 2 + y 2 + 16x + 4y − 44 = 0 8. 2x 2 + 3y 2 − 20x + 12y + 38 = 0

For the following exercises, use the given information to find the equation for the ellipse.

9. Center at (0, 0), focus at (3, 0), vertex at (−5, 0) 10. Center at (2, −2), vertex at (7, −2), focus at (4, −2)

11. A whispering gallery is to be constructed such that 
the foci are located 35 feet from the center. If the 
length of the gallery is to be 100 feet, what should 
the height of the ceiling be?

THe HYPeRBOlA

For the following exercises, write the equation of the hyperbola in standard form. Then give the center, vertices, and 
foci.

12.   x
 2

 ___ 
81

   −   y
 2

 __ 
9

   = 1 13.   (y + 1)2

 _______ 
16

   −   (x − 4)2

 _______ 
36

   = 1

14. 9y 2 − 4x 2 + 54y − 16x + 29 = 0 15. 3x 2 − y 2 − 12x − 6y − 9 = 0

For the following exercises, graph the hyperbola, labeling vertices and foci.

16.   x
 2

 __ 
9

   −   y
 2

 ___ 
16

   = 1 17.   (y − 1)2

 _______ 
49

   −   (x + 1)2

 _______ 
4

   = 1

18. x 2 − 4y 2 + 6x + 32y − 91 = 0 19. 2y 2 − x 2 − 12y − 6 = 0

For the following exercises, find the equation of the hyperbola.

20. Center at (0, 0), vertex at (0, 4), focus at (0, −6) 21. Foci at (3, 7) and (7, 7), vertex at (6, 7)

THe PARABOlA

For the following exercises, write the equation of the parabola in standard form. Then give the vertex, focus, and 
directrix.

22. y 2 = 12x 23. (x + 2)2 =   1 __ 
2

  (y − 1) 24. y 2 − 6y − 6x − 3 = 0 25. x 2 + 10x − y + 23 = 0

For the following exercises, graph the parabola, labeling vertex, focus, and directrix.

26. x 2 + 4y = 0 27. (y − 1)2 =   1 __ 
2

  (x + 3) 28. x 2 − 8x − 10y + 46 = 0 29. 2y 2 + 12y + 6x + 15 = 0
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For the following exercises, write the equation of the parabola using the given information.

30. Focus at (−4, 0); directrix is x = 4 31. Focus at   2,   9 _ 
8

     ; directrix is y =   7 _ 
8

  

32. A cable TV receiving dish is the shape of a 
paraboloid of revolution. Find the location of the 
receiver, which is placed at the focus, if the dish is 5 
feet across at its opening and 1.5 feet deep.

ROTATIOn OF AxeS

For the following exercises, determine which of the conic sections is represented.

33. 16x 2 + 24xy + 9y 2 + 24x − 60y − 60 = 0 34. 4x 2 + 14xy + 5y 2+ 18x − 6y + 30 = 0

35. 4x 2 + xy + 2y 2 + 8x − 26y + 9 = 0

For the following exercises, determine the angle θ that will eliminate the xy term, and write the corresponding equation 
without the xy term.

36. x 2 + 4xy − 2y 2 − 6 = 0 37. x 2 − xy + y 2 − 6 = 0

For the following exercises, graph the equation relative to the x'y' system in which the equation has no x'y' term.

38. 9x 2 − 24xy + 16y 2 − 80x − 60y + 100 = 0 39. x 2 − xy + y 2 − 2 = 0

40. 6x 2 + 24xy − y 2 − 12x + 26y + 11 = 0

COnIC SeCTIOnS In POlAR COORDInATeS

For the following exercises, given the polar equation of the conic with focus at the origin, identify the eccentricity and 
directrix.

41. r =   10 _________ 
1 − 5 cos θ

   42. r =   6 _________ 
3 + 2 cos θ

  43. r =   1 _________ 
4 + 3 sin θ

  44. r =   3 _________ 
5 − 5 sin θ

  

For the following exercises, graph the conic given in polar form. If it is a parabola, label the vertex, focus, and directrix. 
If it is an ellipse or a hyperbola, label the vertices and foci.

45. r =   3 ________ 
1 − sin θ

  46. r =   8 _________ 
4 + 3 sin θ

  47. r =   10 _________ 
4 + 5 cos θ

  48. r =   9 _________ 
3 − 6 cos θ

  

For the following exercises, given information about the graph of a conic with focus at the origin, find the equation 
in polar form.

49. Directrix is x = 3 and eccentricity e = 1 50. Directrix is y = −2 and eccentricity e = 4
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For the following exercises, write the equation in standard form and state the center, vertices, and foci.

1.   x
 2

 __ 
9

   +   y
 2

 __ 
4

   = 1 2. 9y 2 + 16x 2 − 36y + 32x − 92 = 0

For the following exercises, sketch the graph, identifying the center, vertices, and foci.

3.   (x − 3)2

 _______ 
64

   +   (y − 2)2

 _______ 
36

   = 1 4.  2x 2 + y 2 + 8x − 6y − 7 = 0

5. Write the standard form equation of an ellipse with a 
center at (1, 2), vertex at (7, 2), and focus at (4, 2).

6. A whispering gallery is to be constructed with a 
length of 150 feet. If the foci are to be located 20 feet 
away from the wall, how high should the ceiling be?

For the following exercises, write the equation of the hyperbola in standard form, and give the center, vertices, foci, 
and asymptotes.

7.   x
 2

 ___ 
49

   −   y
 2

 ___ 
81

   = 1 8.  16y 2 − 9x 2 + 128y + 112 = 0

For the following exercises, graph the hyperbola, noting its center, vertices, and foci. State the equations of the 
asymptotes.

9.   (x − 3)2

 _______ 
25

   −   (y + 3)2

 _______ 
1

   = 1 10. y 2 − x 2 + 4y − 4x − 18 = 0

11. Write the standard form equation of a hyperbola 
with foci at (1, 0) and (1, 6), and a vertex at (1, 2).

For the following exercises, write the equation of the parabola in standard form, and give the vertex, focus, and 
equation of the directrix.

12. y 2 + 10x = 0 13.  3x 2 − 12x − y + 11 = 0

For the following exercises, graph the parabola, labeling the vertex, focus, and directrix.

14. (x − 1)2 = −4(y + 3) 15. y 2 + 8x − 8y + 40 = 0
16. Write the equation of a parabola with a focus at  

(2, 3) and directrix y = −1.
17. A searchlight is shaped like a paraboloid of 

revolution. If the light source is located 1.5 feet from 
the base along the axis of symmetry, and the depth 
of the searchlight is 3 feet, what should the width of 
the opening be?

For the following exercises, determine which conic section is represented by the given equation, and then determine 
the angle θ that will eliminate the xy term.

18. 3x 2 − 2xy + 3y 2 = 4 19. x 2 + 4xy + 4y 2 + 6x − 8y = 0

For the following exercises, rewrite in the x'y' system without the x'y' term, and graph the rotated graph.

20. 11x 2 + 10 √
—
 3  xy + y 2 = 4 21. 16x 2 + 24xy + 9y 2 − 125x = 0

For the following exercises, identify the conic with focus at the origin, and then give the directrix and eccentricity.

22. r =   3 ________ 2 − sin θ  23. r =   5 _________ 4 + 6 cos θ  

For the following exercises, graph the given conic section. If it is a parabola, label vertex, focus, and directrix. If it is 
an ellipse or a hyperbola, label vertices and foci.

24. r =   12 _________ 
4 − 8 sin θ

  25. r =   2 _________ 4 + 4 sin θ  

26. Find a polar equation of the conic with focus at the 
origin, eccentricity of e = 2, and directrix: x = 3.
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Figure 1 (credit: Robert S. Donovan, Flickr.) 

Introduction
A lottery winner has some big decisions to make regarding what to do with the winnings. Buy a villa in Saint Barthélemy? 
A luxury convertible? A cruise around the world? 

The likelihood of winning the lottery is slim, but we all love to fantasize about what we could buy with the winnings. 
One of the first things a lottery winner has to decide is whether to take the winnings in the form of a lump sum or as 
a series of regular payments, called an annuity, over the next 30 years or so. 

This decision is often based on many factors, such as tax implications, interest rates, and investment strategies. There 
are also personal reasons to consider when making the choice, and one can make many arguments for either decision. 
However, most lottery winners opt for the lump sum. 

In this chapter, we will explore the mathematics behind situations such as these. We will take an in-depth look at 
annuities. We will also look at the branch of mathematics that would allow us to calculate the number of ways to 
choose lottery numbers and the probability of winning. 

Sequences, Probability and  
Counting Theory
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Write the terms of a sequence defined by an explicit formula. 

•	 Write the terms of a sequence defined by a recursive formula. 

•	 Use factorial notation. 

11.1 SeQUenCeS AnD THeIR nOTATIOnS 

A video game company launches an exciting new advertising campaign. They predict the number of online visits to 
their website, or hits, will double each day. The model they are using shows 2 hits the first day, 4 hits the second day, 
8 hits the third day, and so on. See Table 1. 

Day 1 2 3 4 5 …

Hits 2 4 8 16 32 …
Table 1

If their model continues, how many hits will there be at the end of the month? To answer this question, we’ll first need 
to know how to determine a list of numbers written in a specific order. In this section, we will explore these kinds of 
ordered lists. 

Writing the Terms of a Sequence Defined by an explicit Formula 
One way to describe an ordered list of numbers is as a sequence. A sequence is a function whose domain is a subset 
of the counting numbers. The sequence established by the number of hits on the website is 

{2, 4, 8, 16, 32, …}. 

The ellipsis (…) indicates that the sequence continues indefinitely. Each number in the sequence is called a term. The 
first five terms of this sequence are 2, 4, 8, 16, and 32. 

Listing all of the terms for a sequence can be cumbersome. For example, finding the number of hits on the website at 
the end of the month would require listing out as many as 31 terms. A more efficient way to determine a specific term 
is by writing a formula to define the sequence. 

One type of formula is an explicit formula, which defines the terms of a sequence using their position in the sequence. 
Explicit formulas are helpful if we want to find a specific term of a sequence without finding all of the previous terms. 
We can use the formula to find the nth term of the sequence, where n is any positive number. In our example, each 
number in the sequence is double the previous number, so we can use powers of 2 to write a formula for the nth term. 

{2, 4, 8, 16, 22, …, ?, …}
 ↓ ↓ ↓ ↓ ↓ ↓
 {21, 22, 23,  24,   25, …, 2n, …}

The first term of the sequence is 21 = 2, the second term is 22 = 4, the third term is 23 = 8, and so on. The nth term of 
the sequence can be found by raising 2 to the nth power. An explicit formula for a sequence is named by a lower case 
letter a, b, c... with the subscript n. The explicit formula for this sequence is 

 an = 2n . 

Now that we have a formula for the nth term of the sequence, we can answer the question posed at the beginning of 
this section. We were asked to find the number of hits at the end of the month, which we will take to be 31 days. To 
find the number of hits on the last day of the month, we need to find the 31st term of the sequence. We will substitute 
31 for n in the formula. 

 a31 = 231

 = 2,147,483,648 
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If the doubling trend continues, the company will get 2,147,483,648 hits on the last day of the month. That is over 2.1 
billion hits! The huge number is probably a little unrealistic because it does not take consumer interest and competition 
into account. It does, however, give the company a starting point from which to consider business decisions.

Another way to represent the sequence is by using a table. The first five terms of the sequence and the nth term of the 
sequence are shown in Table 2. 

n 1 2 3 4 5 n

nth term of the sequence, an 2 4 8 16 32 2n

Table 2

Graphing provides a visual representation of the sequence as a set of distinct points. We can see from the graph 
in Figure 1 that the number of hits is rising at an exponential rate. This particular sequence forms an exponential 
function. 

Figure 1 
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Lastly, we can write this particular sequence as 

{2, 4, 8, 16, 32, …, 2n, …}

A sequence that continues indefinitely is called an infinite sequence. The domain of an infinite sequence is the set of 
counting numbers. If we consider only the first 10 terms of the sequence, we could write 

{2, 4, 8, 16, 32, …, 2n, … , 1024}. 

This sequence is called a finite sequence because it does not continue indefinitely. 

sequence 
A sequence is a function whose domain is the set of positive integers. A finite sequence is a sequence whose 
domain consists of only the first n positive integers. The numbers in a sequence are called terms. The variable a 
with a number subscript is used to represent the terms in a sequence and to indicate the position of the term in 
the sequence.

a1, a2, a3, … , an, …

We call a1 the first term of the sequence, a2 the second term of the sequence, a3 the third term of the sequence, 
and so on. The term an is called the nth term of the sequence, or the general term of the sequence. An explicit 
formula defines the nth term of a sequence using the position of the term. A sequence that continues indefinitely 
is an infinite sequence.

Q & A…
Does a sequence always have to begin with a1?

No. In certain problems, it may be useful to define the initial term as a0 instead of a1. In these problems, the domain 
of the function includes 0. 
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How To…
Given an explicit formula, write the first n terms of a sequence. 

1. Substitute each value of n into the formula. Begin with n = 1 to find the first term, a1. 
2. To find the second term, a2, use n = 2. 
3. Continue in the same manner until you have identified all n terms. 

Example 1 Writing the Terms of a Sequence Defined by an Explicit Formula 

Write the first five terms of the sequence defined by the explicit formula an = −3n + 8. 

Solution Substitute n = 1 into the formula. Repeat with values 2 through 5 for n. 
 n = 1 a1 = −3(1) + 8 = 5
 n = 2 a2 = −3(2) + 8 = 2
 n = 3 a3 = −3(3) + 8 = −1
 n = 4 a4 = −3(4) + 8 = −4
 n = 5 a5 = −3(5) + 8 = −7

The first five terms are {5, 2, −1, −4, −7}. 

Analysi s The sequence values can be listed in a table. A table, such as Table 3, is a convenient way to input the function 
into a graphing utility. 

n 1 2 3 4 5

an 5 2 −1 −4 −7
Table 3

A graph can be made from this table of values. From the graph in Figure 2, we can see that this sequence represents a 
linear function, but notice the graph is not continuous because the domain is over the positive integers only.

Figure 2 
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Try It #1

Write the first five terms of the sequence defined by the explicit formula tn = 5n − 4.
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Investigating Alternating Sequences 

Sometimes sequences have terms that are alternate. In fact, the terms may actually alternate in sign. The steps to 
finding terms of the sequence are the same as if the signs did not alternate. However, the resulting terms will not show 
increase or decrease as n increases. Let’s take a look at the following sequence. 

{2, −4, 6, −8}
Notice the first term is greater than the second term, the second term is less than the third term, and the third term is 
greater than the fourth term. This trend continues forever. Do not rearrange the terms in numerical order to interpret 
the sequence. 

How To…
Given an explicit formula with alternating terms, write the first n terms of a sequence. 
1. Substitute each value of n into the formula. Begin with n = 1 to find the first term, a1. The sign of the term is given 

by the (−1)n in the explicit formula. 
2. To find the second term, a2, use n = 2. 
3. Continue in the same manner until you have identified all n terms. 

Example 2 Writing the Terms of an Alternating Sequence Defined by an Explicit Formula 

Write the first five terms of the sequence. 
 an =   (−1)n n 2 _______ n + 1   

Solution Substitute n = 1, n = 2, and so on in the formula. 

 n = 1 a1 =   (−1)1 12
 _______ 1 + 1   = −  1 __ 2  

 n = 2 a2 =   (−1)2 22
 _______ 2 + 1   =   4 __ 3  

 n = 3 a3 =   (−1)3 32
 _______ 3 + 1   = −  9 __ 4  

 n = 4  a4 =   (−1)4 42
 _______ 4 + 1   =   16 __ 5  

 n = 5 a5 =   (−1)5 52
 _______ 5 + 1   = −  25 ___ 6  

The first five terms are   −  1 __ 2  ,   4 __ 3  , −  9 __ 4  ,   16 ___ 5  , −  25 ___ 6    

Analysi s The graph of this function, shown in Figure 3, looks different from the ones we have seen previously in this 
section because the terms of the sequence alternate between positive and negative values.

Figure 3 
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Q & A…
In Example 2, does the (−1) to the power of n account for the oscillations of signs?

Yes, the power might be n, n + 1, n − 1, and so on, but any odd powers will result in a negative term, and any even 
power will result in a positive term.

Try It #2

Write the first five terms of the sequence. an =   4n _____ (−2)n  

Investigating Piecewise Explicit Formulas

We’ve learned that sequences are functions whose domain is over the positive integers. This is true for other types 
of functions, including some piecewise functions. Recall that a piecewise function is a function defined by multiple 
subsections. A different formula might represent each individual subsection.

How To…
Given an explicit formula for a piecewise function, write the first n terms of a sequence
1. Identify the formula to which n = 1 applies.
2. To find the first term, a1, use n = 1 in the appropriate formula.
3. Identify the formula to which n = 2 applies.
4. To find the second term, a2, use n = 2 in the appropriate formula.
5. Continue in the same manner until you have identified all n terms.

Example 3 Writing the Terms of a Sequence Defined by a Piecewise Explicit Formula

Write the first six terms of the sequence.

 an = { 
n2 if n is not divisible by 3

              
  n __ 3   if n is divisible by 3

     

Solution Substitute n = 1, n = 2, and so on in the appropriate formula. Use n2 when n is not a multiple of 3. Use  
  n _ 
3 

   when n is a multiple of 3.
 a1 = 12 = 1 1 is not a multiple of 3. Use n2.
 a2 = 22 = 4 2 is not a multiple of 3. Use n2.

 a3 =   3 __ 3   = 1 3 is a multiple of 3. Use   n __ 3  .

 a4 = 42 = 16 4 is not a multiple of 3. Use n2.

 a5 = 52 = 25 5 is not a multiple of 3. Use n2.

 a6 =   6 __ 3   = 2 6 is a multiple of 3. Use   n __ 3  .

The first six terms are {1, 4, 1, 16, 25, 2}.

Analysi s Every third point on the graph shown in Figure 4 stands out from the two nearby points. This occurs because 
the sequence was defined by a piecewise function.

Figure 4 

10

4

an

n

8

12

16

20

24

28

2 3 4 5 6 7



SECTION 11.1 seQuences and their notations 943

Try It #3

Write the first six terms of the sequence. an = {  
2n3 if n is odd

         
  5n ___ 2   if n is even

    

Finding an Explicit Formula

Thus far, we have been given the explicit formula and asked to find a number of terms of the sequence. Sometimes, 
the explicit formula for the nth term of a sequence is not given. Instead, we are given several terms from the sequence. 
When this happens, we can work in reverse to find an explicit formula from the first few terms of a sequence. The key to 
finding an explicit formula is to look for a pattern in the terms. Keep in mind that the pattern may involve alternating 
terms, formulas for numerators, formulas for denominators, exponents, or bases.

How To…
Given the first few terms of a sequence, find an explicit formula for the sequence.

1. Look for a pattern among the terms.
2. If the terms are fractions, look for a separate pattern among the numerators and denominators.
3. Look for a pattern among the signs of the terms.
4. Write a formula for an in terms of n. Test your formula for n = 1, n = 2, and n = 3.

Example 4 Writing an Explicit Formula for the nth Term of a Sequence

Write an explicit formula for the nth term of each sequence.

a.   −  2 ___ 11  ,   3 ___ 13  , −  4 ___ 15  ,   5 ___ 17  , −  6 ___ 19  , …  

b.   −  2 ___ 25  , −  2 ___ 125  , −  2 ___ 625  , −  2 _____ 3,125  , −  2 ______ 15,625  , …  

c. {e 4, e 5, e 6, e 7, e 8, … }

Solution Look for the pattern in each sequence.

a.  The terms alternate between positive and negative. We can use (−1)n to make the terms alternate. The numerator 
can be represented by n + 1. The denominator can be represented by 2n + 9.

 an =   (−1)n (n + 1) ___________ 2n + 9  

b.  The terms are all negative.

   −  2 ___ 25  , −  2 ___ 125  , −  2 ___ 625  , −  2 _____ 3,125  , −  2 ______ 15,625  , …   The numerator is 2

   −  2 __ 52  , −  2 __ 53  , −  2 __ 54  , −  2 __ 55  , −  2 __ 56  , −  2 __ 57  , … −  2 __ 5n     The denominators are increasing powers of 5

So we know that the fraction is negative, the numerator is 2, and the denominator can be represented by 5 n + 1.

 an = −  2 ______ 5 n + 1  

c.  The terms are powers of e. For n = 1, the first term is e 4 so the exponent must be n + 3.

an = e  n + 3

Try It #4

Write an explicit formula for the nth term of the sequence.

{9,  −81,  729,  −6,561,  59,049, …}
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Try It #5

Write an explicit formula for the nth term of the sequence.

  −  3 __ 4  , −  9 __ 8  , −  27 ___ 12  , −  81 ___ 16  , −  243 ___ 20  , ...  

Try It #6

Write an explicit formula for the nth term of the sequence.

    1 __ e2  ,    1 _ e  , 1, e, e 2, ...  

Writing the Terms of a Sequence Defined by a Recursive Formula
Sequences occur naturally in the growth patterns of nautilus shells, pinecones, tree branches, and many other natural 
structures. We may see the sequence in the leaf or branch arrangement, the number of petals of a flower, or the pattern 
of the chambers in a nautilus shell. Their growth follows the Fibonacci sequence, a famous sequence in which each 
term can be found by adding the preceding two terms. The numbers in the sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34,…. 
Other examples from the natural world that exhibit the Fibonacci sequence are the Calla Lily, which has just one petal, 
the Black-Eyed Susan with 13 petals, and different varieties of daisies that may have 21 or 34 petals.

Each term of the Fibonacci sequence depends on the terms that come before it. The Fibonacci sequence cannot easily 
be written using an explicit formula. Instead, we describe the sequence using a recursive formula, a formula that 
defines the terms of a sequence using previous terms.

A recursive formula always has two parts: the value of an initial term (or terms), and an equation defining an in terms 
of preceding terms. For example, suppose we know the following:

 a1 = 3

 an = 2an − 1 − 1, for n ≥ 2

We can find the subsequent terms of the sequence using the first term.

 a1 = 3

 a2 = 2a1 − 1 = 2(3) − 1 = 5

 a3 = 2a2 − 1 = 2(5) − 1 = 9

 a4 = 2a3 − 1 = 2(9) − 1 = 17

So the first four terms of the sequence are {3, 5, 9, 17} .

The recursive formula for the Fibonacci sequence states the first two terms and defines each successive term as the 
sum of the preceding two terms.

 a1 = 1

 a2 = 1

 an = an − 1 + an − 2 for n ≥ 3

To find the tenth term of the sequence, for example, we would need to add the eighth and ninth terms. We were told 
previously that the eighth and ninth terms are 21 and 34, so

 a10 = a9 + a8 = 34 + 21 = 55

recursive formula 
A recursive formula is a formula that defines each term of a sequence using preceding term(s ). Recursive formulas 
must always state the initial term, or terms, of the sequence.
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Q & A…
Must the first two terms always be given in a recursive formula?

No. The Fibonacci sequence defines each term using the two preceding terms, but many recursive formulas define 
each term using only one preceding term. These sequences need only the first term to be defined.

How To…
Given a recursive formula with only the first term provided, write the first n terms of a sequence.

1. Identify the initial term, a1, which is given as part of the formula. This is the first term.
2. To find the second term, a2, substitute the initial term into the formula for an − 1. Solve.
3. To find the third term, a3, substitute the second term into the formula. Solve.
4. Repeat until you have solved for the nth term.

Example 5 Writing the Terms of a Sequence Defined by a Recursive Formula

Write the first five terms of the sequence defined by the recursive formula.

 a1 = 9
 an = 3an − 1 − 20, for n ≥ 2

Solution The first term is given in the formula. For each subsequent term, we replace an − 1 with the value of the 
preceding term.
 n = 1 a1 = 9
 n = 2 a2 = 3a1 − 20 = 3(9) − 20 = 27 − 20 = 7
 n = 3 a3 = 3a2 − 20 = 3(7) − 20 = 21 − 20 = 1
 n = 4 a4 = 3a3 − 20 = 3(1) − 20 = 3 − 20 = −17
 n = 5 a5 = 3a4 − 20 = 3( −17) − 20 = −51 − 20 = −71

The first five terms are {9, 7, 1, – 17, – 71}. See Figure 5.

Figure 5 
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Try It #7

Write the first five terms of the sequence defined by the recursive formula.

 a1 = 2

 an = 2an − 1 + 1, for n ≥ 2

How To…
Given a recursive formula with two initial terms, write the first n terms of a sequence.

1. Identify the initial term, a1, which is given as part of the formula.
2. Identify the second term, a2, which is given as part of the formula.
3. To find the third term, substitute the initial term and the second term into the formula. Evaluate.
4. Repeat until you have evaluated the nth term.
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Example 6 Writing the Terms of a Sequence Defined by a Recursive Formula

Write the first six terms of the sequence defined by the recursive formula.

 a1 = 1

 a2 = 2

 an = 3an − 1 + 4an − 2, for n ≥ 3

Solution The first two terms are given. For each subsequent term, we replace an − 1 and an − 2 with the values of the 
two preceding terms.

 n = 3 a3 = 3a2 + 4a1 = 3(2) + 4(1) = 10

 n = 4 a4 = 3a3 + 4a2 = 3(10) + 4(2) = 38

 n = 5 a5 = 3a4 + 4a3 = 3(38) + 4(10) = 154

 n = 6 a6 = 3a5 + 4a4 = 3(154) + 4(38) = 614

The first six terms are {1, 2, 10, 38, 154, 614}. See Figure 6.
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Try It #8

Write the first 8 terms of the sequence defined by the recursive formula.

 a1 = 0

 a2 = 1

 a3 = 1

 an =   
an − 1 _____ an − 2

   + an − 3, for n ≥ 4

Using Factorial notation
The formulas for some sequences include products of consecutive positive integers. n factorial, written as n!, is the 
product of the positive integers from 1 to n. For example,

 4! = 4 ⋅ 3 ⋅ 2 ⋅ 1 = 24

 5! = 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120

An example of formula containing a factorial is an = (n + 1)!. The sixth term of the sequence can be found by 
substituting 6 for n.

 a6 = (6 + 1)! = 7! = 7 · 6 · 5 · 4 · 3 · 2 · 1 = 5,040

The factorial of any whole number n is n(n − 1)! We can therefore also think of 5! as 5 ⋅ 4!.
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n factorial 
n factorial is a mathematical operation that can be defined using a recursive formula. The factorial of n, denoted 
n!, is defined for a positive integer n as:
 0! = 1
 1! = 1
 n ! = n(n − 1)(n − 2) ⋯ (2)(1), for n ≥ 2
The special case 0! is defined as 0! = 1.

Q & A…
Can factorials always be found using a calculator?

No. Factorials get large very quickly—faster than even exponential functions! When the output gets too large for the 
calculator, it will not be able to calculate the factorial.

Example 7 Writing the Terms of a Sequence Using Factorials

Write the first five terms of the sequence defined by the explicit formula an =   5n _______ (n + 2)!  .
Solution Substitute n = 1, n = 2, and so on in the formula.

 n = 1 a1 =    5(1) _______ (1 + 2)!   =   5 __ 3!   =   5 ______ 3 · 2 · 1   =   5 __ 6  

 n = 2 a2 =   5(2) _______ (2 + 2)!   =   10 ___ 4!   =   10 _________ 4 · 3 · 2 · 1   =   5 ___ 12  

 n = 3 a3 =   5(3) _______ (3 + 2)!   =   15 ___ 5!   =   15 ___________ 5 · 4 · 3 · 2 · 1   =   1 __ 8  

 n = 4 a4 =   5(4) _______ (4 + 2)!   =   20 ___ 6!   =   20 _____________  6 · 5 · 4 · 3 · 2 · 1   =   1 ___ 36  

 n = 5 a5 =    5(5) _______ (5 + 2)!   =   25 ___ 7!   =   25 _______________  7 · 6 · 5 · 4 · 3 · 2 · 1   =   5 _____ 1,008  

The first five terms are     5 __ 6  ,   5 ___ 12  ,   1 __ 8  ,   1 ___ 36  ,   5 _____ 1,008    .

Analysi s Figure 7 shows the graph of the sequence. Notice that, since factorials grow very quickly, the presence of the 
factorial term in the denominator results in the denominator becoming much larger than the numerator as n increases. 
This means the quotient gets smaller and, as the plot of the terms shows, the terms are decreasing and nearing zero.

Figure 7 
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Try It #9

Write the first five terms of the sequence defined by the explicit formula an =   (n + 1)! _______ 2n  .

Access this online resource for additional instruction and practice with sequences.
•	 Finding Terms in a Sequence (http://openstaxcollege.org/l/findingterms)

http://openstaxcollege.org/l/findingterms
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11.1 SeCTIOn exeRCISeS

VeRBAl
1. Discuss the meaning of a sequence. If a finite 

sequence is defined by a formula, what is its domain? 
What about an infinite sequence?

2. Describe three ways that a sequence can be defined.

3. Is the ordered set of even numbers an infinite 
sequence? What about the ordered set of odd 
numbers? Explain why or why not.

4. What happens to the terms an of a sequence when 
there is a negative factor in the formula that is raised 
to a power that includes n? What is the term used to 
describe this phenomenon?

5. What is a factorial, and how is it denoted? Use an 
example to illustrate how factorial notation can be 
beneficial.

AlGeBRAIC
For the following exercises, write the first four terms of the sequence.

6. an = 2n − 2 7. an = −  16 _____ n + 1  8. an = −(−5)n − 1 9. an =   2
n
 __ n3  

10. an =   2n + 1 ______ n3  11. an = 1.25 ⋅ (−4)n − 1 12. an = −4 ⋅ (−6)n − 1 13. an =   n2
 ______ 2n + 1  

14. an = (−10)n + 1 15. an = −     4 ⋅ (−5)n − 1
 __________ 5     

For the following exercises, write the first eight terms of the piecewise sequence.

16. an = {  (−2)n − 2 if n is even 
(3)n − 1 if n is odd 17. an = {    n2

 _ 
2n + 1

   if n ≤ 5 

n2 − 5 if n > 5

18. an = {  (2n + 1)2 if n is divisible by 4 
  2 _ n   if n is not divisible by 4

19. an = {  −0.6 ⋅ 5n − 1 if n is prime or 1 
2.5 ⋅ (−2)n − 1 if n is composite

20. an = {  4(n2 − 2) if n ≤ 3 or n > 6 
   n

2 − 2 _ 4   if 3 < n ≤ 6 

For the following exercises, write an explicit formula for each sequence.
21. 4, 7, 12, 19, 28, … 22.  −4, 2, − 10, 14, − 34, … 23. 1, 1,   4 __ 3  , 2,   16 ___ 5  , …

24. 0,   1 − e1
 _____ 1 + e2  ,   

1 − e2
 _____ 1 + e3  ,   

1 − e3

 ______ 
1 + e4

  ,   1 − e4

 ______ 
1 + e5

  , … 25. 1, −  1 __ 2  ,   1 __ 4  , −  1 __ 8  ,   1 ___ 16  , …

For the following exercises, write the first five terms of the sequence.
26. a1 = 9, an = an − 1 + n 27. a1 = 3, an = (−3)an − 1

28. a1 = −4, an =   
an − 1 + 2n

 _ 
an − 1 − 1

  29. a1 = −1, an =   
(−3)n − 1

 _ 
an − 1 − 2

  

30. a1 = −30, an = (2 + an − 1)     1 __ 2      
n
 

For the following exercises, write the first eight terms of the sequence.
31. a1 =   1 ___ 24  , a2 = 1, an = (2an − 2)(3an − 1) 32. a1 = −1, a2 = 5, an = an − 2(3 − an −1)

33. a1 = 2, a2 = 10, an =   
2(an −1 + 2)

 __ an − 2
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For the following exercises, write a recursive formula for each sequence.
34.  −2.5, − 5, − 10, − 20, − 40, … 35.  −8, − 6, − 3, 1, 6, … 36. 2, 4, 12, 48, 240, …

37. 35, 38, 41, 44, 47, … 38. 15, 3,   3 __ 5  ,   3 ___ 25  ,   3 ___ 125  , …

For the following exercises, evaluate the factorial.
39. 6! 40.     12 ___ 6     ! 41.   12! ___ 6!  42.   100! ____ 99!  

For the following exercises, write the first four terms of the sequence.
43. an =   n! __ n2  44. an =   3 ⋅ n ! _____ 4 ⋅ n !  45. an =   n ! _________ n2 − n − 1  46. an =    100 ⋅ n ________ n(n − 1)!  

GRAPHICAl

For the following exercises, graph the first five terms of the indicated sequence

47. an =   (−1)n
 _____ n   + n

48. an = {    4 + n _ 
2n

   if n in even 

3 + n if n is odd

49. a1 = 2, an = (−an − 1 + 1)2

50. an = 1, an = an − 1 + 8 51. an =   (n + 1)! _______ (n − 1)!  

For the following exercises, write an explicit formula for the sequence using the first five points shown on the graph.
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For the following exercises, write a recursive formula for the sequence using the first five points shown on the graph.
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TeCHnOlOGY
Follow these steps to evaluate a sequence defined recursively using a graphing calculator:

•	 On the home screen, key in the value for the initial term a1 and press [ENTER].
•	 Enter the recursive formula by keying in all numerical values given in the formula, along with the key strokes 

[2ND] ANS for the previous term an − 1. Press [ENTER].
•	 Continue pressing [ENTER] to calculate the values for each successive term.

For the following exercises, use the steps above to find the indicated term or terms for the sequence.
57. Find the first five terms of the sequence a1 =   87 ___ 111  ,  

an =   4 __ 3  an − 1 +   12 ___ 37  . Use the >Frac feature to give 

fractional results.

58. Find the 15th term of the sequence  
a1 = 625, an = 0.8an − 1 + 18.

59. Find the first five terms of the sequence  
a1 = 2, an = 2[(an − 1) − 1] + 1.

60. Find the first ten terms of the sequence  

a1 = 8, an =   
(an − 1 + 1)!

 _ 
an − 1!

   .
61. Find the tenth term of the sequence a1 = 2, an = nan − 1

Follow these steps to evaluate a finite sequence defined by an explicit formula. 
Using a TI-84, do the following.

•	 In the home screen, press [2ND] LIST.
•	 Scroll over to OPS and choose “seq(” from the dropdown list. Press [ENTER].
•	 In the line headed “Expr:” type in the explicit formula, using the [X,T, θ, n] button for n
•	 In the line headed “Variable:” type in the variable used on the previous step.
•	 In the line headed “start:” key in the value of n that begins the sequence.
•	 In the line headed “end:” key in the value of n that ends the sequence.
•	 Press [ENTER] 3 times to return to the home screen. You will see the sequence syntax on the screen. Press 

[ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through the 
list of terms.

Using a TI-83, do the following.
•	 In the home screen, press [2ND] LIST.
•	 Scroll over to OPS and choose “seq(” from the dropdown list. Press [ENTER].
•	 Enter the items in the order “Expr”, “Variable”, “start”, “end” separated by commas. See the instructions above 

for the description of each item.
•	 Press [ENTER] to see the list of terms for the finite sequence defined. Use the right arrow key to scroll through 

the list of terms.

For the following exercises, use the steps above to find the indicated terms for the sequence. Round to the nearest 
thousandth when necessary.

62. List the first five terms of the sequence.  
an = −  28 ___ 9  n +   5 _ 

3
  

63. List the first six terms of the sequence.  

an =   n
3 − 3.5n2 + 4.1n − 1.5  ___________________  2.4n  

64. List the first five terms of the sequence.  
an =   15n ⋅ (−2)n − 1

  ____________ 47  
65. List the first four terms of the sequence. 

an = 5.7n + 0.275(n − 1)!

66. List the first six terms of the sequence an =   n! __ n  .

exTenSIOnS
67. Consider the sequence defined by an = −6 − 8n. Is 

an = −421 a term in the sequence? Verify the result.
68. What term in the sequence an =   n

2 + 4n + 4 __________ 2(n + 2)   has 
the value 41? Verify the result.

69. Find a recursive formula for the sequence  
1, 0, −1, −1, 0, 1, 1, 0, −1, −1, 0, 1, 1, ...  
(Hint: find a pattern for an based on the first two 
terms.)

70. Calculate the first eight terms of the sequences 

an =   (n + 2)! _______ (n − 1)!   and bn = n3 + 3n2 + 2n, and then 
make a conjecture about the relationship between 
these two sequences.

71. Prove the conjecture made in the preceding exercise.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Find the common difference for an arithmetic sequence.

•	 Write terms of an arithmetic sequence.

•	 Use a recursive formula for an arithmetic sequence.

•	 Use an explicit formula for an arithmetic sequence.

11. 2 ARITHMeTIC SeQUenCeS

Companies often make large purchases, such as computers and vehicles, for business use. The book-value of these 
supplies decreases each year for tax purposes. This decrease in value is called depreciation. One method of calculating 
depreciation is straight-line depreciation, in which the value of the asset decreases by the same amount each year.

As an example, consider a woman who starts a small contracting business. She purchases a new truck for $25,000. After 
five years, she estimates that she will be able to sell the truck for $8,000. The loss in value of the truck will therefore be 
$17,000, which is $3,400 per year for five years. The truck will be worth $21,600 after the first year; $18,200 after two 
years; $14,800 after three years; $11,400 after four years; and $8,000 at the end of five years. In this section, we will 
consider specific kinds of sequences that will allow us to calculate depreciation, such as the truck’s value.

Finding Common Differences
The values of the truck in the example are said to form an arithmetic sequence because they change by a constant 
amount each year. Each term increases or decreases by the same constant value called the common difference of the 
sequence. For this sequence, the common difference is −3,400. 

{25000, 21600, 18200, 14800,

−3,400 −3,400 −3,400 −3,400 −3,400

11400, 8000} 

The sequence below is another example of an arithmetic sequence. In this case, the constant difference is 3. You can 
choose any term of the sequence, and add 3 to find the subsequent term.

{3, 6, 9, 12,

+3 +3 +3 +3

15, ...}

arithmetic sequence 
An arithmetic sequence is a sequence that has the property that the difference between any two consecutive terms 
is a constant. This constant is called the common difference. If a1 is the first term of an arithmetic sequence and 
d is the common difference, the sequence will be:

{an} = {a1, a1 + d, a1 + 2d, a1 + 3d,...}

Example 1 Finding Common Differences

Is each sequence arithmetic? If so, find the common difference.

a. {1, 2, 4, 8, 16, ... }    b. { −3, 1, 5, 9, 13, ... }

Solution Subtract each term from the subsequent term to determine whether a common difference exists.

a. The sequence is not arithmetic because there is no common difference.

2 − 1 = 1 4 − 2 = 2 8 − 4 = 4 16 − 8 = 8

b. The sequence is arithmetic because there is a common difference. The common difference is 4.

1 − (−3) = 4 5 − 1 = 4 9 − 5 = 4 13 − 9 = 4
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Analysi s The graph of each of these sequences is shown in Figure 1. We can see from the graphs that, although both 
sequences show growth, a is not linear whereas b is linear. Arithmetic sequences have a constant rate of change so their 
graphs will always be points on a line.
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Q & A…
If we are told that a sequence is arithmetic, do we have to subtract every term from the following term to find the 
common difference?

No. If we know that the sequence is arithmetic, we can choose any one term in the sequence, and subtract it from the 
subsequent term to find the common difference.

Try It #1

Is the given sequence arithmetic? If so, find the common difference.

{18, 16, 14, 12, 10, … }

Try It #2

Is the given sequence arithmetic? If so, find the common difference.

{1, 3, 6, 10, 15, … }

Writing Terms of Arithmetic Sequences
Now that we can recognize an arithmetic sequence, we will find the terms if we are given the first term and the 
common difference. The terms can be found by beginning with the first term and adding the common difference 
repeatedly. In addition, any term can also be found by plugging in the values of n and d into formula below.

an = a1 + (n − 1)d

How To…
Given the first term and the common difference of an arithmetic sequence, find the first several terms.

1. Add the common difference to the first term to find the second term.
2. Add the common difference to the second term to find the third term.
3. Continue until all of the desired terms are identified.
4. Write the terms separated by commas within brackets.

Example 2 Writing Terms of Arithmetic Sequences

Write the first five terms of the arithmetic sequence with a1 = 17 and d = −3.

Solution Adding −3 is the same as subtracting 3. Beginning with the first term, subtract 3 from each term to find 
the next term.

The first five terms are {17, 14, 11, 8, 5}
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Analysi s As expected, the graph of the sequence consists of points on a line as shown in Figure 2.
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Try It #3

List the first five terms of the arithmetic sequence with a1 = 1 and d = 5.

How To…
Given any first term and any other term in an arithmetic sequence, find a given term.

1. Substitute the values given for a1, an, n into the formula an = a1 + (n − 1)d to solve for d.
2. Find a given term by substituting the appropriate values for a1, n, and d into the formula an = a1 + (n − 1)d.

Example 3 Writing Terms of Arithmetic Sequences

Given a1 = 8 and a4 = 14, find a5.

Solution The sequence can be written in terms of the initial term 8 and the common difference d.

 {8, 8 + d, 8 + 2d, 8 + 3d}

We know the fourth term equals 14; we know the fourth term has the form a1 + 3d = 8 + 3d.

We can find the common difference d.

 an = a1 + (n − 1)d

 a4 = a1 + 3d

 a4 = 8 + 3d Write the fourth term of the sequence in terms of a1 and d.

 14 = 8 + 3d Substitute 14 for a4.

 d = 2 Solve for the common difference.

Find the fifth term by adding the common difference to the fourth term.

 a5 = a4 + 2 = 16

Analysi s Notice that the common difference is added to the first term once to find the second term, twice to find the third 
term, three times to find the fourth term, and so on. The tenth term could be found by adding the common difference to 
the first term nine times or by using the equation an = a1 + (n − 1)d.

Try It #4

Given a3 = 7 and a5 = 17, find a2.

Using Recursive Formulas for Arithmetic Sequences
Some arithmetic sequences are defined in terms of the previous term using a recursive formula. The formula provides 
an algebraic rule for determining the terms of the sequence. A recursive formula allows us to find any term of an 
arithmetic sequence using a function of the preceding term. Each term is the sum of the previous term and the 
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common difference. For example, if the common difference is 5, then each term is the previous term plus 5. As with 
any recursive formula, the first term must be given.

an = an − 1 + d n ≥ 2

recursive formula for an arithmetic sequence 
The recursive formula for an arithmetic sequence with common difference d is:

an = an − 1 + d n ≥ 2

How To…
Given an arithmetic sequence, write its recursive formula.

1. Subtract any term from the subsequent term to find the common difference.
2. State the initial term and substitute the common difference into the recursive formula for arithmetic sequences.

Example 4 Writing a Recursive Formula for an Arithmetic Sequence

Write a recursive formula for the arithmetic sequence.

{ −18, −7, 4, 15, 26, …}

Solution The first term is given as −18. The common difference can be found by subtracting the first term from the 
second term.

d = −7 − (−18) = 11

Substitute the initial term and the common difference into the recursive formula for arithmetic sequences.

 a1 = −18

 an = an − 1 + 11, for n ≥ 2

Analysi s We see that the common difference is the slope of the line formed when we graph the terms of the sequence, as 
shown in Figure 3. The growth pattern of the sequence shows the constant difference of 11 units.
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Q & A…
Do we have to subtract the first term from the second term to find the common difference?

No. We can subtract any term in the sequence from the subsequent term. It is, however, most common to subtract the 
first term from the second term because it is often the easiest method of finding the common difference.

Try It #5

Write a recursive formula for the arithmetic sequence.

{25, 37, 49, 61, …}
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Using explicit Formulas for Arithmetic Sequences
We can think of an arithmetic sequence as a function on the domain of the natural numbers; it is a linear function 
because it has a constant rate of change. The common difference is the constant rate of change, or the slope of the 
function. We can construct the linear function if we know the slope and the vertical intercept.

an = a1 + d(n − 1)

To find the y-intercept of the function, we can subtract the common difference from the first term of the sequence. 
Consider the following sequence.

{200, 150, 100, 50,

−50−50−50−50

0, ...}

The common difference is −50, so the sequence represents a linear function with a slope of −50. To find the y-intercept, 
we subtract −50 from 200: 200 − ( −50) = 200 + 50 = 250. You can also find the y -intercept by graphing the function 
and determining where a line that connects the points would intersect the vertical axis. The graph is shown in Figure 4.
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Recall the slope-intercept form of a line is y = mx + b. When dealing with sequences, we use an in place of y and n in 
place of x. If we know the slope and vertical intercept of the function, we can substitute them for m and b in the slope-
intercept form of a line. Substituting − 50 for the slope and 250 for the vertical intercept, we get the following equation:

an = −50n + 250

We do not need to find the vertical intercept to write an explicit formula for an arithmetic sequence. Another explicit 
formula for this sequence is an = 200 − 50(n − 1), which simplifies to an = −50n + 250.

explicit formula for an arithmetic sequence 
An explicit formula for the nth term of an arithmetic sequence is given by

an = a1 + d (n − 1)

How To…
Given the first several terms for an arithmetic sequence, write an explicit formula.

1. Find the common difference, a2 − a1.
2. Substitute the common difference and the first term into an = a1 + d(n − 1).

Example 5 Writing the nth Term Explicit Formula for an Arithmetic Sequence

Write an explicit formula for the arithmetic sequence.

{2, 12, 22, 32, 42, …}
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Solution The common difference can be found by subtracting the first term from the second term.

 d = a2 − a1

 = 12 − 2

 = 10

The common difference is 10. Substitute the common difference and the first term of the sequence into the formula 
and simplify.
 an = 2 + 10(n − 1)

 an = 10n − 8

Analysi s The graph of this sequence, represented in Figure 5, shows a slope of 10 and a vertical intercept of −8.
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Try It #6

Write an explicit formula for the following arithmetic sequence.

{50, 47, 44, 41, … }

Finding the Number of Terms in a Finite Arithmetic Sequence

Explicit formulas can be used to determine the number of terms in a finite arithmetic sequence. We need to find the 
common difference, and then determine how many times the common difference must be added to the first term to 
obtain the final term of the sequence.

How To…
Given the first three terms and the last term of a finite arithmetic sequence, find the total number of terms.

1. Find the common difference d.
2. Substitute the common difference and the first term into an = a1 + d(n − 1).
3. Substitute the last term for an and solve for n.

Example 6 Finding the Number of Terms in a Finite Arithmetic Sequence

Find the number of terms in the finite arithmetic sequence.
{8, 1, −6, ... , −41}

Solution The common difference can be found by subtracting the first term from the second term.
 1 − 8 = −7
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The common difference is −7. Substitute the common difference and the initial term of the sequence into the nth term 
formula and simplify.
 an = a1 + d(n − 1)
 an = 8 + (−7)(n − 1)
 an = 15 − 7n
Substitute −41 for an and solve for n
 −41 = 15 − 7n
 8 = n
There are eight terms in the sequence.

Try It #7
Find the number of terms in the finite arithmetic sequence.

{6, 11, 16, ... , 56}

Solving Application Problems with Arithmetic Sequences

In many application problems, it often makes sense to use an initial term of a0 instead of a1. In these problems, we alter 
the explicit formula slightly to account for the difference in initial terms. We use the following formula:

 an = a0 + dn

Example 7 Solving Application Problems with Arithmetic Sequences

A five-year old child receives an allowance of $1 each week. His parents promise him an annual increase of $2 per week.

a. Write a formula for the child’s weekly allowance in a given year.

b. What will the child’s allowance be when he is 16 years old?

Solution

a.  The situation can be modeled by an arithmetic sequence with an initial term of 1 and a common difference of 2.

Let A be the amount of the allowance and n be the number of years after age 5. Using the altered explicit 
formula for an arithmetic sequence we get:

 An = 1 + 2n

b. We can find the number of years since age 5 by subtracting.

 16 − 5 = 11

We are looking for the child’s allowance after 11 years. Substitute 11 into the formula to find the child’s 
allowance at age 16.

 A11 = 1 + 2(11) = 23

The child’s allowance at age 16 will be $23 per week.

Try It #8
A woman decides to go for a 10-minute run every day this week and plans to increase the time of her daily run by 4 
minutes each week. Write a formula for the time of her run after n weeks. How long will her daily run be 8 weeks from 
today?

Access this online resource for additional instruction and practice with arithmetic sequences.
•	 Arithmetic Sequences (http://openstaxcollege.org/l/arithmeticseq)

http://openstaxcollege.org/l/arithmeticseq
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11.2 SeCTIOn exeRCISeS

VeRBAl

1. What is an arithmetic sequence? 2. How is the common difference of an arithmetic 
sequence found?

3. How do we determine whether a sequence is 
arithmetic?

4. What are the main differences between using a 
recursive formula and using an explicit formula to 
describe an arithmetic sequence?

5. Describe how linear functions and arithmetic 
sequences are similar. How are they different?

AlGeBRAIC

For the following exercises, find the common difference for the arithmetic sequence provided.
6. {5, 11, 17, 23, 29, ... } 7.   0,   1 __ 2  , 1,   3 __ 2  , 2, ...  

For the following exercises, determine whether the sequence is arithmetic. If so find the common difference.

8. {11.4, 9.3, 7.2, 5.1, 3, ... } 9. {4, 16, 64, 256, 1024, ... }

For the following exercises, write the first five terms of the arithmetic sequence given the first term and common 
difference.

10. a1 = −25, d = −9 11. a1 = 0, d =   2 __ 3  

For the following exercises, write the first five terms of the arithmetic series given two terms.
12. a1 = 17, a7 = −31 13. a13 = −60, a33 = −160

For the following exercises, find the specified term for the arithmetic sequence given the first term and common 
difference.

14. First term is 3, common difference is 4, find the 
5th term.

15. First term is 4, common difference is 5, find the 
4th term.

16. First term is 5, common difference is 6, find the 
8th term.

17. First term is 6, common difference is 7, find the 
6th term.

18. First term is 7, common difference is 8, find the 
7th term.

For the following exercises, find the first term given two terms from an arithmetic sequence.
19. Find the first term or a1 of an arithmetic sequence if 

a6 = 12 and a14 = 28.
20. Find the first term or a1 of an arithmetic sequence if 

a7 = 21 and a15 = 42.
21. Find the first term or a1 of an arithmetic sequence if 

a8 = 40 and a23 = 115.
22. Find the first term or a1 of an arithmetic sequence if 

a9 = 54 and a17 = 102.
23. Find the first term or a1 of an arithmetic sequence if 

a11 = 11 and a21 = 16.

For the following exercises, find the specified term given two terms from an arithmetic sequence.
24. a1 = 33 and a7 = −15. Find a4. 25. a3 = −17.1 and a10 = −15.7. Find a21.

For the following exercises, use the recursive formula to write the first five terms of the arithmetic sequence.
26. a1 = 39; an = an − 1 −3 27. a1 = −19; an = an − 1 −1.4
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For the following exercises, write a recursive formula for each arithmetic sequence.
28. a = {40, 60, 80, ... } 29. a = {17, 26, 35, ... } 30. a = {−1, 2, 5, ... }

31. a = {12, 17, 22, ... } 32. a = {−15, −7, 1, ... } 33. a = {8.9, 10.3, 11.7, ... }

34. a = {−0.52, −1.02, −1.52, ... } 35. a =     1 __ 5  ,   9 ___ 20  ,   7 ___ 
10

  , ...  36. a =   −   1 __ 2  , −   5 __ 4  , −2, ...  

37. a =     1 __ 6  , −  11 ___ 12  , −2, ...  

For the following exercises, use the recursive formula to write the first five terms of the arithmetic sequence.
38. a = {7, 4, 1, ... }; Find the 17th term. 39. a = {4, 11, 18, ... }; Find the 14th term.
40. a = {2, 6, 10, ... }; Find the 12th term.

For the following exercises, use the recursive formula to write the first five terms of the arithmetic sequence.
41. a = 24 − 4n 42. a =   1 __ 2  n −   1 __ 2  

For the following exercises, write an explicit formula for each arithmetic sequence.
43. a = {3, 5, 7, ... } 44. a = {32, 24, 16, ... } 45. a = {−5, 95, 195, ... }
46. a = {−17, −217, −417, ... } 47. a = {1.8, 3.6, 5.4, ... } 48. a = {−18.1, −16.2, −14.3, ... }

49. a = {15.8, 18.5, 21.2, ... } 50. a =     1 __ 3  , −  4 __ 3  , −3, ...  51. a =   0,   1 __ 3  ,   2 __ 3  , ...  

52. a =   −5, −   10 ___ 
3

  , −  5 __ 3  , …  

For the following exercises, find the number of terms in the given finite arithmetic sequence.
53. a = {3, −4, −11, ... , −60} 54. a = {1.2, 1.4, 1.6, ... , 3.8} 55. a =     1 __ 2  , 2,   7 __ 2  , ... , 8  

GRAPHICAl

For the following exercises, determine whether the graph shown represents an arithmetic sequence.
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For the following exercises, use the information provided to graph the first 5 terms of the arithmetic sequence.
58. a1 = 0, d = 4 59. a1 = 9; an = an − 1 − 10 60. an = −12 + 5n

TeCHnOlOGY

For the following exercises, follow the steps to work with the arithmetic sequence an = 3n − 2 using a graphing

calculator:
•	 Press [MODE]

 › Select [SEQ] in the fourth line
 › Select [DOT] in the fifth line
 › Press [ENTER]

•	 Press [Y=]
 › nMin is the first counting number for the sequence. Set nMin = 1
 › u(n) is the pattern for the sequence. Set u(n) = 3n − 2
 › u(nMin) is the first number in the sequence. Set u(nMin) = 1

•	 Press [2ND] then [WINDOW] to go to TBLSET
 › Set TblStart = 1
 › Set ΔTbl = 1
 › Set Indpnt: Auto and Depend: Auto

•	 Press [2ND] then [GRAPH] to go to the [TABLE]

61. What are the first seven terms shown in the column 
with the heading u(n)?

62. Use the scroll-down arrow to scroll to n = 50. What 
value is given for u(n)?

63. Press [WINDOW]. Set nMin = 1, nMax = 5,  
xMin = 0, xMax = 6, yMin = −1, and  
yMax = 14. Then press [GRAPH]. Graph the 
sequence as it appears on the graphing calculator.

For the following exercises, follow the steps given above to work with the arithmetic sequence an =   1 __ 2  n + 5 using a 
graphing calculator.

64. What are the first seven terms shown in the column 
with the heading u(n) in the [TABLE] feature?

65. Graph the sequence as it appears on the graphing 
calculator. Be sure to adjust the [WINDOW] 
settings as needed.

exTenSIOnS
66. Give two examples of arithmetic sequences whose 

4th terms are 9.
67. Give two examples of arithmetic sequences whose 

10th terms are 206.

68. Find the 5th term of the arithmetic sequence  
{9b, 5b, b, … }.

69. Find the 11th term of the arithmetic sequence  
{3a − 2b, a + 2b, −a + 6b, … }.

70. At which term does the sequence {5.4, 14.5, 23.6, ...} 
exceed 151?

71. At which term does the sequence     17 _ 
3

  ,   31 _ 
6

  ,   14 _ 
3

  ,...   
begin to have negative values?

72. For which terms does the finite arithmetic sequence  

   5 _ 
2

  ,   19 ___ 8  ,   9 _ 4  , ... ,   1 _ 
8

     have integer values?

73. Write an arithmetic sequence using a recursive 
formula. Show the first 4 terms, and then find the 
31st term.

74. Write an arithmetic sequence using an explicit 
formula. Show the first 4 terms, and then find the 
28th term.



SECTION 11.3 geometric seQuences 961

leARnInG OBjeCTIVeS

In this section, you will:

•	 Find the common ratio for a geometric sequence.

•	 List the terms of a geometric sequence.

•	 Use a recursive formula for a geometric sequence.

•	 Use an explicit formula for a geometric sequence.

11. 3 GeOMeTRIC SeQUenCeS

Many jobs offer an annual cost-of-living increase to keep salaries consistent with inflation. Suppose, for example, a 
recent college graduate finds a position as a sales manager earning an annual salary of $26,000. He is promised a 2% 
cost of living increase each year. His annual salary in any given year can be found by multiplying his salary from the 
previous year by 102%. His salary will be $26,520 after one year; $27,050.40 after two years; $27,591.41 after three years; 
and so on. When a salary increases by a constant rate each year, the salary grows by a constant factor. In this section, 
we will review sequences that grow in this way.

Finding Common Ratios
The yearly salary values described form a geometric sequence because they change by a constant factor each year. 
Each term of a geometric sequence increases or decreases by a constant factor called the common ratio. The sequence 
below is an example of a geometric sequence because each term increases by a constant factor of 6. Multiplying any 
term of the sequence by the common ratio 6 generates the subsequent term.

{1, 6, 36, 216,

×6 ×6 ×6 ×6

1,296, ...}

definition of a geometric sequence 
A geometric sequence is one in which any term divided by the previous term is a constant. This constant is called 
the common ratio of the sequence. The common ratio can be found by dividing any term in the sequence by the 
previous term. If a1 is the initial term of a geometric sequence and r is the common ratio, the sequence will be

 {a1, a1r, a1r 2, a1r 3, ... }.

How To…
Given a set of numbers, determine if they represent a geometric sequence.

1. Divide each term by the previous term.
2. Compare the quotients. If they are the same, a common ratio exists and the sequence is geometric.

Example 1 Finding Common Ratios

Is the sequence geometric? If so, find the common ratio.

a.  1, 2, 4, 8, 16, ...    b.  48, 12, 4, 2,...

Solution Divide each term by the previous term to determine whether a common ratio exists.

a.   2 _ 
1

   = 2   4 _ 
2

  = 2   8 _ 4   = 2   16 _ 
8

   = 2

The sequence is geometric because there is a common ratio. The common ratio is 2.

b.   12 _ 
48

   =   1 __ 
4

     4 _ 
12

   =   1 _ 
3

     2 _ 4   =   1 _ 
2

  

The sequence is not geometric because there is not a common ratio.
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Analysi s The graph of each sequence is shown in Figure 1. It seems from the graphs that both (a) and (b) appear have 
the form of the graph of an exponential function in this viewing window. However, we know that (a) is geometric and so 
this interpretation holds, but (b) is not.

an an

n n0

4

8

12

16

20

1 2 3 4 5 6 0

12

(a) (b)

24

36

48

60

1 2 3 4 5 6

Figure 1

Q & A…
If you are told that a sequence is geometric, do you have to divide every term by the previous term to find the 
common ratio?

No. If you know that the sequence is geometric, you can choose any one term in the sequence and divide it by the 
previous term to find the common ratio.

Try It #1
Is the sequence geometric? If so, find the common ratio.

5, 10, 15, 20, ...

Try It #2
Is the sequence geometric? If so, find the common ratio.

100, 20, 4,   4 __ 
5

  , ...

Writing Terms of Geometric Sequences
Now that we can identify a geometric sequence, we will learn how to find the terms of a geometric sequence if we are 
given the first term and the common ratio. The terms of a geometric sequence can be found by beginning with the 
first term and multiplying by the common ratio repeatedly. For instance, if the first term of a geometric sequence is 
a1 = −2 and the common ratio is r = 4, we can find subsequent terms by multiplying −2 ⋅ 4 to get −8 then multiplying 
the result −8 ⋅ 4 to get −32 and so on.
 a1 = −2

 a2 = (−2 ⋅ 4) = −8

 a3 = (−8 ⋅ 4) = −32

 a4 = (−32 ⋅ 4) = −128
The first four terms are {−2, −8, −32, −128}.

How To…
Given the first term and the common factor, find the first four terms of a geometric sequence.

1. Multiply the initial term, a1, by the common ratio to find the next term, a2.
2. Repeat the process, using an = a2 to find a3 and then a3 to find a4, until all four terms have been identified.
3. Write the terms separated by commons within brackets.
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Example 2 Writing the Terms of a Geometric Sequence

List the first four terms of the geometric sequence with a1 = 5 and r = −2.

Solution Multiply a1 by −2 to find a2. Repeat the process, using a2 to find a3, and so on.
 a1 = 5
 a2 = −2a1 = −10
 a3 = −2a2 = 20
 a4 = −2a3 = −40
The first four terms are {5, −10, 20, −40}.

Try It #3
List the first five terms of the geometric sequence with a1 = 18 and r =   1 __ 

3
  .

Using Recursive Formulas for Geometric Sequences
A recursive formula allows us to find any term of a geometric sequence by using the previous term. Each term is the 
product of the common ratio and the previous term. For example, suppose the common ratio is 9. Then each term is 
nine times the previous term. As with any recursive formula, the initial term must be given.

recursive formula for a geometric sequence 
The recursive formula for a geometric sequence with common ratio r and first term a1 is

an = r an − 1, n ≥ 2

How To…
Given the first several terms of a geometric sequence, write its recursive formula.

1. State the initial term.
2. Find the common ratio by dividing any term by the preceding term.
3. Substitute the common ratio into the recursive formula for a geometric sequence.

Example 3 Using Recursive Formulas for Geometric Sequences

Write a recursive formula for the following geometric sequence.

 {6, 9, 13.5, 20.25, ... }

Solution The first term is given as 6. The common ratio can be found by dividing the second term by the first term.

 r =   9 _ 
6

   = 1.5

Substitute the common ratio into the recursive formula for geometric sequences and define a1.
 an = ran − 1

 an = 1.5an − 1 for n ≥ 2
 a1 = 6

Analysis The sequence of data points follows an exponential pattern. The common ratio is also the base of an 
exponential function as shown in Figure 2.

an

n0

6

12

18

24

1 2 3 4 5
Figure 2
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Q & A…
Do we have to divide the second term by the first term to find the common ratio?

No. We can divide any term in the sequence by the previous term. It is, however, most common to divide the second 
term by the first term because it is often the easiest method of finding the common ratio.

Try It #4

Write a recursive formula for the following geometric sequence.

  2,   4 _ 
3

  ,   8 _ 
9

  ,   16 _ 
27

  ,...  

Using explicit Formulas for Geometric Sequences
Because a geometric sequence is an exponential function whose domain is the set of positive integers, and the common 
ratio is the base of the function, we can write explicit formulas that allow us to find particular terms.

an = a1 r n − 1

Let’s take a look at the sequence {18, 36, 72, 144, 288,...}. This is a geometric sequence with a common ratio of 2 and 
an exponential function with a base of 2. An explicit formula for this sequence is

an = 18 · 2n − 1

The graph of the sequence is shown in Figure 3.

144

180

72

0 2 3 4 5 6
n

an

288

360

324

252

216

108

36

1
Figure 3

explicit formula for a geometric sequence 
The nth term of a geometric sequence is given by the explicit formula:

an = a1 r n − 1

Example 4 Writing Terms of Geometric Sequences Using the Explicit Formula

Given a geometric sequence with a1 = 3 and a4 = 24, find a2.

Solution The sequence can be written in terms of the initial term and the common ratio r.

3, 3r, 3r 2, 3r 3,...
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Find the common ratio using the given fourth term.

 an = a1r n − 1

 a4 = 3r 3 Write the fourth term of sequence in terms of a1 and r

 24 = 3r 3 Substitute 24 for a4

 8 = r 3 Divide

 r = 2 Solve for the common ratio

Find the second term by multiplying the first term by the common ratio.

 a2 = 2a1

 = 2(3)

 = 6

Analysi s The common ratio is multiplied by the first term once to find the second term, twice to find the third term, 
three times to find the fourth term, and so on. The tenth term could be found by multiplying the first term by the common 
ratio nine times or by multiplying by the common ratio raised to the ninth power.

Try It #5

Given a geometric sequence with a2 = 4 and a3 = 32, find a6.

Example 5 Writing an Explicit Formula for the nth Term of a Geometric Sequence

Write an explicit formula for the nth term of the following geometric sequence.

{2, 10, 50, 250,...}

Solution The first term is 2. The common ratio can be found by dividing the second term by the first term.

   10 ___ 2   = 5

The common ratio is 5. Substitute the common ratio and the first term of the sequence into the formula.

 an = a1r (n − 1)

 an = 2 ⋅ 5n − 1

The graph of this sequence in Figure 4 shows an exponential pattern.

300

250

200

150

100

50

0 1 2 3 4 5

an

n

Figure 4

Try It #6

Write an explicit formula for the following geometric sequence.

{–1, 3, –9, 27, ...}



CHAPTER 11 seQuences, proBaBility and counting theory966

Solving Application Problems with Geometric Sequences
In real-world scenarios involving arithmetic sequences, we may need to use an initial term of a0 instead of a1. In these 
problems, we can alter the explicit formula slightly by using the following formula:

an = a0 r n

Example 6 Solving Application Problems with Geometric Sequences

In 2013, the number of students in a small school is 284. It is estimated that the student population will increase by 
4% each year.

a. Write a formula for the student population.

b. Estimate the student population in 2020.

Solution

a.  The situation can be modeled by a geometric sequence with an initial term of 284. The student population will 
be 104% of the prior year, so the common ratio is 1.04.

Let P be the student population and n be the number of years after 2013. Using the explicit formula for a 
geometric sequence we get

 Pn = 284 ⋅ 1.04n

b.  We can find the number of years since 2013 by subtracting.

 2020 − 2013 = 7

We are looking for the population after 7 years. We can substitute 7 for n to estimate the population in 2020.

 P7 = 284 ⋅ 1.047 ≈ 374

The student population will be about 374 in 2020.

Try It #7

A business starts a new website. Initially the number of hits is 293 due to the curiosity factor. The business estimates 
the number of hits will increase by 2.6% per week.

a. Write a formula for the number of hits.

b. Estimate the number of hits in 5 weeks.

Access these online resources for additional instruction and practice with geometric sequences.

•	 Geometric Sequences (http://openstaxcollege.org/l/geometricseq)

•	 Determine the Type of Sequence (http://openstaxcollege.org/l/sequencetype)

•	 Find the Formula for a Sequence (http://openstaxcollege.org/l/sequenceformula)

http://openstaxcollege.org/l/geometricseq
http://openstaxcollege.org/l/sequencetype
http://openstaxcollege.org/l/sequenceformula
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11.3 SeCTIOn exeRCISeS

VeRBAl

1. What is a geometric sequence? 2. How is the common ratio of a geometric sequence 
found?

3. What is the procedure for determining whether a 
sequence is geometric?

4. What is the difference between an arithmetic 
sequence and a geometric sequence?

5. Describe how exponential functions and geometric 
sequences are similar. How are they different?

AlGeBRAIC
For the following exercises, find the common ratio for the geometric sequence.

6. 1, 3, 9, 27, 81, ... 7.  −0.125, 0.25, −0.5, 1, −2, ... 8.  −2, −  1 ___ 2  , −  1 ___ 8  , −  1 ___ 32  , −  1 ___ 128  , ...

For the following exercises, determine whether the sequence is geometric. If so, find the common ratio.

9.  −6, −12, −24, −48, −96, ... 10. 5, 5.2, 5.4, 5.6, 5.8, ... 11.  −1,   1 __ 2  , −  1 ___ 4  ,   1 __ 8  , −  1 ___ 16  , ...

12. 6, 8, 11, 15, 20, ... 13. 0.8, 4, 20, 100, 500, ...

For the following exercises, write the first five terms of the geometric sequence, given the first term and common ratio.

14. a1 = 8, r = 0.3 15. a1 = 5, r =   1 __ 5  

For the following exercises, write the first five terms of the geometric sequence, given any two terms.
16. a7 = 64, a10 = 512 17. a6 = 25, a8 = 6.25

For the following exercises, find the specified term for the geometric sequence, given the first term and common ratio.
18. The first term is 2, and the common ratio is 3. Find 

the 5th term.
19. The first term is 16 and the common ratio is −  1 ___ 3  . 

Find the 4th term.

For the following exercises, find the specified term for the geometric sequence, given the first four terms.

20. an = {−1, 2, −4, 8, ...}. Find a12. 21. an =   −2,   2 __ 3  , −  2 __ 9  ,   2 ___ 27  , ....   Find a 7 .

For the following exercises, write the first five terms of the geometric sequence.

22. a1 = −486, an = −  1 ___ 3  an − 1 23. a1 = 7, an = 0.2an − 1

For the following exercises, write a recursive formula for each geometric sequence.
24. an = {−1, 5, −25, 125, ...} 25. an = {−32, −16, −8, −4, ...}

26. an = {14, 56, 224, 896, ...} 27. an = {10, −3, 0.9, −0.27, ...}

28. an = {0.61, 1.83, 5.49, 16.47, ...} 29. an =     3 __ 5  ,   1 ___ 10  ,   1 ___ 60  ,   1 ___ 360  , ...  

30. an =   −2,   4 __ 3  , −  8 __ 9  ,   16 ___ 27  , ...  31. an =     1 ___ 512  , −   1 ___ 128  ,   1 ___ 32  , −  1 ___ 8  , ...  

For the following exercises, write the first five terms of the geometric sequence.
32. an = −4 ⋅ 5n − 1

33. an = 12 ⋅    −  1 ___ 2      
n − 1
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For the following exercises, write an explicit formula for each geometric sequence.
34. an = {−2, −4, −8, −16, ...} 35. an = {1, 3, 9, 27, ...}
36. an = {−4, −12, −36, −108, ...} 37. an = {0.8, −4, 20, −100, ...}
38. an = {−1.25, −5, −20, −80, ...} 39. an =   −1, −   4 __ 5  , −  16 ___ 25  , −  64 ___ 125  , ...  

40. an =   2,   1 __ 3  ,   1 ___ 18  ,   1 ___ 108  , ...  41. an =   3, −1,   1 __ 3  , −  1 __ 9  , ...  

For the following exercises, find the specified term for the geometric sequence given.
42. Let a1 = 4, an = −3an − 1. Find a8. 43. Let an =  −  −  1 __ 3      

n − 1
 . Find a12.

For the following exercises, find the number of terms in the given finite geometric sequence.
44. an = {−1, 3, −9, ... , 2187} 45. an =   2, 1,   1 __ 2  , ... ,   1 ____ 1024    

GRAPHICAl
For the following exercises, determine whether the graph shown represents a geometric sequence.

46. 
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47. 
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(5, 5.5938)

For the following exercises, use the information provided to graph the first five terms of the geometric sequence.

48. a1 = 1, r =   1 __ 2  49. a1 = 3, an = 2an − 1 50. an = 27 ⋅ 0.3n − 1

exTenSIOnS
51. Use recursive formulas to give two examples of 

geometric sequences whose 3rd terms are 200.
52. Use explicit formulas to give two examples of 

geometric sequences whose 7th terms are 1024.

53. Find the 5th term of the geometric sequence  
{b, 4b, 16b, ...}.

54. Find the 7th term of the geometric sequence 
{64a(−b), 32a(−3b), 16a(−9b), ...}.

55. At which term does the sequence 
{10, 12, 14.4, 17.28, ...} exceed 100?

56. At which term does the sequence  

    1 ____ 2187  ,   1 ___ 729  ,   1 ___ 243  ,   1 ___ 81  ...   begin to have integer values?

57. For which term does the geometric sequence  

an = −36      2 __ 3      
n − 1

  first have a non-integer value?

58. Use the recursive formula to write a geometric 
sequence whose common ratio is an integer. Show 
the first four terms, and then find the 10th term.

59. Use the explicit formula to write a geometric 
sequence whose common ratio is a decimal number 
between 0 and 1. Show the first 4 terms, and then 
find the 8th term.

60. Is it possible for a sequence to be both arithmetic and 
geometric? If so, give an example.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Use summation notation.

•	 Use the formula for the sum of the first n terms of an arithmetic series.

•	 Use the formula for the sum of the first n terms of a geometric series.

•	 Use the formula for the sum of an infinite geometric series.

•	 Solve annuity problems.

11. 4 SeRIeS AnD THeIR nOTATIOnS

A couple decides to start a college fund for their daughter. They plan to invest $50 in the fund each month. The fund 
pays 6% annual interest, compounded monthly. How much money will they have saved when their daughter is ready 
to start college in 6 years? In this section, we will learn how to answer this question. To do so, we need to consider the 
amount of money invested and the amount of interest earned.

Using Summation notation
To find the total amount of money in the college fund and the sum of the amounts deposited, we need to add the 
amounts deposited each month and the amounts earned monthly. The sum of the terms of a sequence is called a series. 
Consider, for example, the following series.
 3 + 7 + 11 + 15 + 19 + ...

The nth partial sum of a series is the sum of a finite number of consecutive terms beginning with the first term. The 
notation Sn represents the partial sum.
 S1 = 3

 S2 = 3 + 7 = 10

 S3 = 3 + 7 + 11 = 21

 S4 = 3 + 7 + 11 + 15 = 36

Summation notation is used to represent series. Summation notation is often known as sigma notation because it uses 
the Greek capital letter sigma, Σ, to represent the sum. Summation notation includes an explicit formula and specifies 
the first and last terms in the series. An explicit formula for each term of the series is given to the right of the sigma. A 
variable called the index of summation is written below the sigma. The index of summation is set equal to the lower 
limit of summation, which is the number used to generate the first term in the series. The number above the sigma, 
called the upper limit of summation, is the number used to generate the last term in a series.

Upper limit of summation →
← Explicit formula for kth term of series

Index of summation → ← Lower limit of summation
 ∑ 
k = 1

  
5

  2k 

If we interpret the given notation, we see that it asks us to find the sum of the terms in the series ak = 2k for k = 1 
through k = 5. We can begin by substituting the terms for k and listing out the terms of this series.

 a1 = 2(1) = 2

 a2 = 2(2) = 4

 a3 = 2(3) = 6

 a4 = 2(4) = 8

 a5 = 2(5) = 10

We can find the sum of the series by adding the terms:

  ∑ 
k = 1

  
5

  2k  = 2 + 4 + 6 + 8 + 10 = 30
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summation notation 
The sum of the first n terms of a series can be expressed in summation notation as follows:

 ∑ 
k = 1

  
n

  ak 

This notation tells us to find the sum of ak from k = 1 to k = n.

k is called the index of summation, 1 is the lower limit of summation, and n is the upper limit of summation.

Q & A…
Does the lower limit of summation have to be 1?

No. The lower limit of summation can be any number, but 1 is frequently used. We will look at examples with lower 
limits of summation other than 1.

How To…
Given summation notation for a series, evaluate the value. 

1. Identify the lower limit of summation.
2. Identify the upper limit of summation.
3. Substitute each value of k from the lower limit to the upper limit into the formula.
4. Add to find the sum.

Example 1 Using Summation Notation

Evaluate  ∑ 
k = 3

  
7

  k2 .

Solution According to the notation, the lower limit of summation is 3 and the upper limit is 7. So we need to find 
the sum of k 2 from k = 3 to k = 7. We find the terms of the series by substituting k = 3, 4, 5, 6, and 7 into the function 
k 2. We add the terms to find the sum.

  ∑ 
k = 3

  
7

  k 2  = 32 + 42 + 52 + 62 + 72

 = 9 + 16 + 25 + 36 + 49

 = 135

Try It #1

Evaluate  ∑ 
k = 2

  
5

  (3k − 1) .

Using the Formula for Arithmetic Series
Just as we studied special types of sequences, we will look at special types of series. Recall that an arithmetic sequence 
is a sequence in which the difference between any two consecutive terms is the common difference, d. The sum of 
the terms of an arithmetic sequence is called an arithmetic series. We can write the sum of the first n terms of an 
arithmetic series as:

 Sn = a1 + (a1 + d) + (a1 + 2d) + ... + (an − d) + an.

We can also reverse the order of the terms and write the sum as

 Sn = an + (an − d) + (an − 2d) + ... + (a1 + d) + a1.

If we add these two expressions for the sum of the first n terms of an arithmetic series, we can derive a formula for the 
sum of the first n terms of any arithmetic series.



SECTION 11.4 series and their notations 971

 Sn = a1 + (a1 + d) + (a1 + 2d) + ... + (an − d) + an

 + Sn = an + (an − d) + (an − 2d) + ... + (a1 + d) + a1

 2Sn = (a1 + an) + (a1 + an) + ... + (a1 + an)
Because there are n terms in the series, we can simplify this sum to

 2Sn = n(a1 + an).

We divide by 2 to find the formula for the sum of the first n terms of an arithmetic series.

 Sn =   
n(a1 + an) __________ 2  

formula for the sum of the first n terms of an arithmetic series 
An arithmetic series is the sum of the terms of an arithmetic sequence. The formula for the sum of the first n 
terms of an arithmetic sequence is

Sn =   
n(a1 + an) __________ 2  

How To…
Given terms of an arithmetic series, find the sum of the first n terms.
1. Identify a1 and an.
2. Determine n.
3. Substitute values for a1, an, and n into the formula Sn =    

n(a1 + an) _ 
2

  .
4. Simplify to find Sn.

Example 2 Finding the First n Terms of an Arithmetic Series

Find the sum of each arithmetic series.

a. 5 + 8 + 11 + 14 + 17 + 20 + 23 + 26 + 29 + 32
b. 20 + 15 + 10 + … + −50

c.  ∑ 
k = 1

  
12

  3k − 8 

Solution

a. We are given a1 = 5 and an = 32.
Count the number of terms in the sequence to find n = 10.
Substitute values for a1, an, and n into the formula and simplify.

 Sn =   
n(a1 + an) __________ 2  

 S10 =   10(5 + 32) _________ 2   = 185

b. We are given a1 = 20 and an = −50.
Use the formula for the general term of an arithmetic sequence to find n.
 an = a1 + (n − 1)d
 −50 = 20 + (n − 1)( −5)
 −70 = (n − 1)( −5)
 14 = n − 1
 15 = n

Substitute values for a1, an, n into the formula and simplify.

 Sn =   
n(a1 + an) __________ 2  

 S15 =   15(20 − 50) __________ 2   = −225
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c. To find a1, substitute k = 1 into the given explicit formula.

 ak = 3k − 8

 a1 = 3(1) − 8 = −5

We are given that n = 12. To find a12, substitute k = 12 into the given explicit formula.

 ak = 3k − 8

 a12 = 3(12) − 8 = 28

Substitute values for a1, an, and n into the formula and simplify.

 Sn =   
n(a1 + an) _ 

2
  

 S12 =   
12( −5 + 28)

 __ 
2

   = 138

Try It #2
Use the formula to find the sum of the arithmetic series.

1.4 + 1.6 + 1.8 + 2.0 + 2.2 + 2.4 + 2.6 + 2.8 + 3.0 + 3.2 + 3.4

Try It #3
Use the formula to find the sum of the arithmetic series.

13 + 21 + 29 + … + 69

Try It #4
Use the formula to find the sum of the arithmetic series.

 ∑ 
k = 1

  
10

  5 − 6k 

Example 3 Solving Application Problems with Arithmetic Series

On the Sunday after a minor surgery, a woman is able to walk a half-mile. Each Sunday, she walks an additional 
quarter-mile. After 8 weeks, what will be the total number of miles she has walked?

Solution This problem can be modeled by an arithmetic series with a1 =   1 __ 2   and d =   1 __ 4  . We are looking for the total 

number of miles walked after 8 weeks, so we know that n = 8, and we are looking for S8. To find a8, we can use the 
explicit formula for an arithmetic sequence.

 an = a1 + d(n − 1)

 a8 =   1 __ 2   +   1 __ 4  (8 − 1) =   9 __ 4  

We can now use the formula for arithmetic series.

 Sn =   
n(a1 + an) _ 

2
  

 S8 =     
8    1 __ 2   +   9 __ 4     

 __ 
2

   = 11

She will have walked a total of 11 miles.

Try It #5

A man earns $100 in the first week of June. Each week, he earns $12.50 more than the previous week. After 12 weeks, 
how much has he earned?
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Using the Formula for Geometric Series
Just as the sum of the terms of an arithmetic sequence is called an arithmetic series, the sum of the terms in a geometric 
sequence is called a geometric series. Recall that a geometric sequence is a sequence in which the ratio of any two 
consecutive terms is the common ratio, r. We can write the sum of the first n terms of a geometric series as 

 Sn = a1 + ra1 + r2a1 + ... + rn – 1a1.

Just as with arithmetic series, we can do some algebraic manipulation to derive a formula for the sum of the first n 
terms of a geometric series. We will begin by multiplying both sides of the equation by r.

 rSn = ra1 + r 2a1 + r 3a1 + ... + r na1

Next, we subtract this equation from the original equation.

 Sn = a1 + ra1 + r 2a1 + ... + r n – 1 a1.

 −rSn = −(ra1 + r 2a1 + r 3a1 + ... + r na1)

 (1 − r)Sn = a1 − r n a1

Notice that when we subtract, all but the first term of the top equation and the last term of the bottom equation cancel 
out. To obtain a formula for Sn, divide both sides by (1 − r).

 Sn =   
a1(1 − rn)

 _________ 1 − r   r ≠ 1

formula for the sum of the first n terms of a geometric series 
A geometric series is the sum of the terms in a geometric sequence. The formula for the sum of the first n terms 
of a geometric sequence is represented as

Sn =   
a1(1 − r n)

 _________ 1 − r   r ≠ 1

How To…
Given a geometric series, find the sum of the first n terms.

1. Identify a1, r, and n.
2. Substitute values for a1, r, and n into the formula Sn =   

a1(1 − r n)
 _________ 1 − r  .

3. Simplify to find Sn.

Example 4 Finding the First n Terms of a Geometric Series

Use the formula to find the indicated partial sum of each geometric series.

a. S11 for the series 8 + (−4) + 2 + …

b.  ∑ 
k = 1

  
6

  3 ⋅ 2k 

Solution

a. a1 = 8, and we are given that n = 11.

We can find r by dividing the second term of the series by the first.

r =   −4 ___ 8   = −  1 ___ 2  

Substitute values for a1, r, and n into the formula and simplify.

 Sn =   
a1(1 − rn)

 _ 
1 − r

  

 S11 =       
8   1 −    −  1 __ 2      

11
    
  __  

1 −   −  1 __ 2     
     ≈ 5.336
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b. Find a1 by substituting k = 1 into the given explicit formula.

 a1 = 3 ⋅ 21 = 6

We can see from the given explicit formula that r = 2. The upper limit of summation is 6, so n = 6.

Substitute values for a1, r, and n into the formula, and simplify.

 Sn =   
a1(1 − r n)

 _________ 1 − r  

 S6 =   6(1 − 26) ________ 1 − 2   = 378

Try It #6
Use the formula to find the indicated partial sum of each geometric series.
S20 for the series 1,000 + 500 + 250 + …

Try It #7
Use the formula to find the indicated partial sum of each geometric series.

 ∑ 
k = 1

  
8

  3k 

Example 5 Solving an Application Problem with a Geometric Series

At a new job, an employee’s starting salary is $26,750. He receives a 1.6% annual raise. Find his total earnings at the 
end of 5 years.

Solution The problem can be represented by a geometric series with a1 = 26, 750; n = 5; and r = 1.016. Substitute 
values for a1, r, and n into the formula and simplify to find the total amount earned at the end of 5 years.

 Sn =   
a1(1 − rn)

 _________ 1 − r  

 S5 =   26,750(1 − 1.0165)  ________________  
1 − 1.016

   ≈ 138,099.03

He will have earned a total of $138,099.03 by the end of 5 years.

Try It #8

At a new job, an employee’s starting salary is $32,100. She receives a 2% annual raise. How much will she have earned 
by the end of 8 years?

Using the Formula for the Sum of an Infinite Geometric Series
Thus far, we have looked only at finite series. Sometimes, however, we are interested in the sum of the terms of an 
infinite sequence rather than the sum of only the first n terms. An infinite series is the sum of the terms of an infinite 
sequence. An example of an infinite series is 2 + 4 + 6 + 8 + ...

This series can also be written in summation notation as  ∑ 
k = 1

  
∞

   2k , where the upper limit of summation is infinity. Because 

the terms are not tending to zero, the sum of the series increases without bound as we add more terms. Therefore, the 
sum of this infinite series is not defined. When the sum is not a real number, we say the series diverges.

Determining Whether the Sum of an Infinite Geometric Series is Defined

If the terms of an infinite geometric series approach 0, the sum of an infinite geometric series can be defined. The 
terms in this series approach 0:

1 + 0.2 + 0.04 + 0.008 + 0.0016 + ...
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The common ratio r = 0.2. As n gets very large, the values of rn get very small and approach 0. Each successive term 
affects the sum less than the preceding term. As each succeeding term gets closer to 0, the sum of the terms approaches 
a finite value. The terms of any infinite geometric series with −1 < r < 1 approach 0; the sum of a geometric series is 
defined when −1 < r < 1.

determining whether the sum of an infinite geometric series is defined 
The sum of an infinite series is defined if the series is geometric and −1 < r < 1.

How To…
Given the first several terms of an infinite series, determine if the sum of the series exists.

1. Find the ratio of the second term to the first term.
2. Find the ratio of the third term to the second term.
3. Continue this process to ensure the ratio of a term to the preceding term is constant throughout. If so, the series 

is geometric.
4. If a common ratio, r, was found in step 3, check to see if −1 < r < 1 . If so, the sum is defined. If not, the sum is 

not defined.

Example 6 Determining Whether the Sum of an Infinite Series is Defined

Determine whether the sum of each infinite series is defined.

a. 12 + 8 + 4 + …    b.   3 __ 4   +   1 __ 2   +   1 __ 3   + ...    c.  ∑ 
k = 1

  
∞

  27 ⋅       1 __ 3      
k
      d.  ∑ 

k = 1
  

∞

  5k 

Solution
a.  The ratio of the second term to the first is   2 __ 3  , which is not the same as the ratio of the third term to the second,   1 __ 2  . 

The series is not geometric.

b.  The ratio of the second term to the first is the same as the ratio of the third term to the second. The series is 
geometric with a common ratio of   2 __ 3  . The sum of the infinite series is defined.

c.  The given formula is exponential with a base of   1 __ 3  ; the series is geometric with a common ratio of   1 __ 3  . The sum 
of the infinite series is defined.

d.  The given formula is not exponential; the series is not geometric because the terms are increasing, and so cannot 
yield a finite sum.

Try It #9
Determine whether the sum of the infinite series is defined.

  1 __ 3   +   1 __ 2   +   3 __ 4   +   9 __ 8   + ...

Try It #10
Determine whether the sum of the infinite series is defined.

24 + (−12) + 6 + (−3) + ...

Try It #11
Determine whether the sum of the infinite series is defined.

 ∑ 
k = 1

  
∞

  15 ⋅ (−0.3)k 

Finding Sums of Infinite Series

When the sum of an infinite geometric series exists, we can calculate the sum. The formula for the sum of an infinite 
series is related to the formula for the sum of the first n terms of a geometric series.

 Sn =   
a1(1 − r n)

 _________ 1 − r  
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We will examine an infinite series with r =   1 __ 2  . What happens to r n as n increases?

      1 _ 
2

      
2
  =   1 __ 4  

      1 _ 
2

      
3
  =   1 __ 8  

      1 _ 
2

      
4
  =   1 ___ 16  

The value of rn decreases rapidly. What happens for greater values of n?

      1 _ 
2

      
10

  =   1 _____ 1,024  

      1 _ 
2

      
20

  =   1 ________ 1,048,576  

      1 _ 
2

      
30

  =   1 ____________  1,073,741,824  

As n gets very large, r n gets very small. We say that, as n increases without bound, r n approaches 0. As r n approaches 
0, 1 − r n approaches 1. When this happens, the numerator approaches a1. This give us a formula for the sum of an 
infinite geometric series.

formula for the sum of an infinite geometric series 
The formula for the sum of an infinite geometric series with −1 < r < 1 is

S =   
a1 _ 

1 − r
  

How To…
Given an infinite geometric series, find its sum.

1. Identify a1 and r.
2. Confirm that −1 < r < 1.
3. Substitute values for a1 and r into the formula, S =   

a1 _ 
1 − r

  .
4. Simplify to find S.

Example 7 Finding the Sum of an Infinite Geometric Series

Find the sum, if it exists, for the following:

a. 10 + 9 + 8 + 7 + …  b. 248.6 + 99.44 + 39.776 + …  c.  ∑ 
k = 1

  
∞

  4,374 ⋅    −  1 __ 3      
k − 1

    d.  ∑ 
k = 1

  
∞

     1 __ 9   ⋅      4 __ 3      k  
Solution

a. There is not a constant ratio; the series is not geometric.

b. There is a constant ratio; the series is geometric. a1 = 248.6 and r =   99.44 _____ 248.6   = 0.4, so the sum exists.

Substitute a1 = 248.6 and r = 0.4 into the formula and simplify to find the sum:

S =   
a1 _ 

1 − r
  

 S =   248.6 _ 
1 − 0.4

   = 414. 
_

 3 

c.  The formula is exponential, so the series is geometric with r = −  1 __ 3  . Find a1 by substituting k = 1 into the given 
explicit formula:

 a1 = 4,374 ⋅    −  1 __ 3      
1 − 1

  = 4,374
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Substitute a1 = 4,374 and r = −  1 __ 3   into the formula, and simplify to find the sum:

 S =   
a1 _ 

1 − r
  

 S =   4,374 __ 
1 −   −  1 __ 3     

     = 3,280.5

d.  The formula is exponential, so the series is geometric, but r > 1. The sum does not exist.

Example 8 Finding an Equivalent Fraction for a Repeating Decimal

Find an equivalent fraction for the repeating decimal 0. 
_

 3 

Solution We notice the repeating decimal 0. 
_

 3  = 0.333... so we can rewrite the repeating decimal as a sum of terms.

 0. 
_

 3  = 0.3 + 0.03 + 0.003 + ...

Looking for a pattern, we rewrite the sum, noticing that we see the first term multiplied to 0.1 in the second term, and 
the second term multiplied to 0.1 in the third term.

 0. 
_

 3  = 0.3 + (0.1) (0.3) + (0.1) (0.1)(0.3)

 First Term Second Term

Notice the pattern; we multiply each consecutive term by a common ratio of 0.1 starting with the first term of 0.3. So, 
substituting into our formula for an infinite geometric sum, we have

 S =   
a1 _ 

1 − r
   =   0.3 ______ 1 − 0.1   =   0.3 ___ 0.9   =   1 ___ 3  .

Try It #12
Find the sum, if it exists. 2 +   2 __ 3   +   2 __ 9   + ...

Try It #13
Find the sum, if it exists.  ∑ 

k = 1
  

∞

  0.76k + 1 

Try It #14
Find the sum, if it exists.  ∑ 

k = 1
  

∞

     −  3 __ 8      k 

 Solving Annuity Problems
At the beginning of the section, we looked at a problem in which a couple invested a set amount of money each month 
into a college fund for six years. An annuity is an investment in which the purchaser makes a sequence of periodic, 
equal payments. To find the amount of an annuity, we need to find the sum of all the payments and the interest 
earned. In the example, the couple invests $50 each month. This is the value of the initial deposit. The account paid 6% 
annual interest, compounded monthly. To find the interest rate per payment period, we need to divide the 6% annual 
percentage interest (APR) rate by 12. So the monthly interest rate is 0.5%. We can multiply the amount in the account 
each month by 100.5% to find the value of the account after interest has been added.

We can find the value of the annuity right after the last deposit by using a geometric series with a1 = 50 and  
r = 100.5% = 1.005. After the first deposit, the value of the annuity will be $50. Let us see if we can determine the 
amount in the college fund and the interest earned.

We can find the value of the annuity after n deposits using the formula for the sum of the first n terms of a geometric 
series. In 6 years, there are 72 months, so n = 72. We can substitute a1 = 50, r = 1.005, and n = 72 into the formula, 
and simplify to find the value of the annuity after 6 years.

 S72 =   50(1 − 1.00572)  _____________ 1 − 1.005   ≈ 4,320.44

After the last deposit, the couple will have a total of $4,320.44 in the account. Notice, the couple made 72 payments of 
$50 each for a total of 72(50) = $3,600. This means that because of the annuity, the couple earned $720.44 interest in 
their college fund.

}
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How To…
Given an initial deposit and an interest rate, find the value of an annuity.

1. Determine a1, the value of the initial deposit.
2. Determine n, the number of deposits.
3. Determine r.

a. Divide the annual interest rate by the number of times per year that interest is compounded.
b. Add 1 to this amount to find r.

4. Substitute values for a1, r, and n into the formula for the sum of the first n terms of a geometric series,

Sn =   
a1(1 – rn)

 _ 1 – r   .

5. Simplify to find Sn, the value of the annuity after n deposits.

Example 9 Solving an Annuity Problem

A deposit of $100 is placed into a college fund at the beginning of every month for 10 years. The fund earns 9% annual 
interest, compounded monthly, and paid at the end of the month. How much is in the account right after the last 
deposit?

Solution The value of the initial deposit is $100, so a1 = 100. A total of 120 monthly deposits are made in the 10 years, 
so n = 120. To find r, divide the annual interest rate by 12 to find the monthly interest rate and add 1 to represent the 
new monthly deposit.

 r = 1 +   0.09 ____ 12   = 1.0075

Substitute a1 = 100, r = 1.0075, and n = 120 into the formula for the sum of the first n terms of a geometric series, and 
simplify to find the value of the annuity.

 S120 =   100(1 − 1.0075120)  _______________  1 − 1.0075   ≈ 19,351.43

So the account has $19,351.43 after the last deposit is made.

Try It #15

At the beginning of each month, $200 is deposited into a retirement fund. The fund earns 6% annual interest, 
compounded monthly, and paid into the account at the end of the month. How much is in the account if deposits are 
made for 10 years?

Access these online resources for additional instruction and practice with series.

•	 Arithmetic Series (http://openstaxcollege.org/l/arithmeticser)

•	 Geometric Series (http://openstaxcollege.org/l/geometricser)

•	 Summation notation (http://openstaxcollege.org/l/sumnotation)

http://openstaxcollege.org/l/arithmeticser
http://openstaxcollege.org/l/geometricser
http://openstaxcollege.org/l/sumnotation
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11.4 SeCTIOn exeRCISeS

VeRBAl

1. What is an nth partial sum? 2. What is the difference between an arithmetic 
sequence and an arithmetic series?

3. What is a geometric series? 4. How is finding the sum of an infinite geometric 
series different from finding the nth partial sum?

5. What is an annuity?

AlGeBRAIC

For the following exercises, express each description of a sum using summation notation.
6. The sum of terms m2 + 3m from m = 1 to m = 5 7. The sum from of n = 0 to n = 4 of 5n

8. The sum of 6k − 5 from k = −2 to k = 1 9. The sum that results from adding the number 4 five 
times

For the following exercises, express each arithmetic sum using summation notation.
10. 5 + 10 + 15 + 20 + 25 + 30 + 35 + 40 + 45 + 50 11. 10 + 18 + 26 + … + 162

12.   1 __ 2   + 1 +  3 ___ 2   + 2 + … + 4

For the following exercises, use the formula for the sum of the first n terms of each arithmetic sequence.

13.   3 __ 2   + 2 +   5 __ 2   + 3 +   7 __ 2  14. 19 + 25 + 31 + … + 73 15. 3.2 + 3.4 + 3.6 + … + 5.6

For the following exercises, express each geometric sum using summation notation.
16. 1 + 3 + 9 + 27 + 81 + 243 + 729 + 2187 17. 8 + 4 + 2 + … + 0.125

18.  −  1 __ 6   +   1 ___ 12   −   1 ___ 24   + … +   1 ___ 768  

For the following exercises, use the formula for the sum of the first n terms of each geometric sequence, and then state 
the indicated sum.

19. 9 + 3 + 1 +   1 _ 
3

   +   1 _ 
9

  20.   ∑ 
n = 1

  
9

  5 ⋅ 2n − 1 21.   ∑ 
a = 1

  
11

  64 ⋅ 0.2a − 1 

For the following exercises, determine whether the infinite series has a sum. If so, write the formula for the sum. If 
not, state the reason.

22. 12 + 18 + 24 + 30 + ... 23. 2 + 1.6 + 1.28 + 1.024 + ... 24.   ∑ 
m = 1

  
∞

  4m − 1 

25.   ∑ 
 k = 1

  
∞

  −   −  1 __ 2      k − 1
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GRAPHICAl

For the following exercises, use the following scenario. Javier makes monthly deposits into a savings account. He 
opened the account with an initial deposit of $50. Each month thereafter he increased the previous deposit amount 
by $20.

26. Graph the arithmetic sequence showing one year of 
Javier’s deposits.

27. Graph the arithmetic series showing the monthly 
sums of one year of Javier’s deposits.

For the following exercises, use the geometric series  ∑ 
k = 1

  
∞

        1 __ 2      
k
  .

28. Graph the first 7 partial sums of the series. 29. What number does Sn seem to be approaching in 
the graph? Find the sum to explain why this makes 
sense.

nUMeRIC
For the following exercises, find the indicated sum.

30.  ∑ 
a = 1

  
14

  a 31.  ∑ 
n = 1

  
6

  n(n − 2) 32.  ∑ 
k = 1

  
17

  k2 33.  ∑ 
k = 1

  
7

  2k 

For the following exercises, use the formula for the sum of the first n terms of an arithmetic series to find the sum.

34.  −1.7 + −0.4 + 0.9 + 2.2 + 3.5 + 4.8 35. 6 +   15 ___ 2   + 9 +   21 ___ 2   + 12 +   27 ___ 2   + 15

36.  −1 + 3 + 7 + ... + 31 37.  ∑ 
k = 1

  
11

       k __ 2   −   1 __ 2      

For the following exercises, use the formula for the sum of the first n terms of a geometric series to find the partial sum.

38. S6 for the series −2 − 10 − 50 − 250 ... 39. S7 for the series 0.4 − 2 + 10 − 50 ...

40.   ∑ 
k = 1

  
9

  2k − 1 41.  ∑ 
n = 1

  
10

  −2 ⋅      1 __ 2      
n − 1

  

For the following exercises, find the sum of the infinite geometric series.

42. 4 + 2 + 1 +   1 __ 2   ... 43.  −1 −   1 __ 4   −   1 ___ 16   −   1 ___ 64  ... 44.   ∑ 
∞

  
k = 1

 3 ⋅      1 __ 4      k − 1
  

45.   ∑ 
n = 1

  
∞

  4.6 ⋅ 0.5n − 1 

For the following exercises, determine the value of the annuity for the indicated monthly deposit amount, the number 
of deposits, and the interest rate.

46. Deposit amount: $50; total deposits: 60; interest rate: 
5%, compounded monthly

47. Deposit amount: $150; total deposits: 24; interest 
rate: 3%, compounded monthly

48. Deposit amount: $450; total deposits: 60; interest 
rate: 4.5%, compounded quarterly

49. Deposit amount: $100; total deposits: 120; interest 
rate: 10%, compounded semi-annually

exTenSIOnS
50. The sum of terms 50 − k 2 from k = x through 7 is 

115. What is x?
51. Write an explicit formula for ak such that  

 ∑ 
k = 0

  
6

  ak = 189 . Assume this is an arithmetic series.

52. Find the smallest value of n such that 

 ∑ 
k = 1

  
n

  (3k − 5) > 100 .

53. How many terms must be added before the series 
−1 − 3 − 5 − 7.... has a sum less than −75?
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54. Write 0. 
_

 65  as an infinite geometric series using 
summation notation. Then use the formula for 
finding the sum of an infinite geometric series to 
convert 0.65 to a fraction.

55. The sum of an infinite geometric series is five times 
the value of the first term. What is the common ratio 
of the series?

56. To get the best loan rates available, the Riches 
want to save enough money to place 20% down 
on a $160,000 home. They plan to make monthly 
deposits of $125 in an investment account that 
offers 8.5% annual interest compounded semi-
annually. Will the Riches have enough for a 20% 
down payment after five years of saving? How much 
money will they have saved?

57. Karl has two years to save $10,000 to buy a used 
car when he graduates. To the nearest dollar, what 
would his monthly deposits need to be if he invests 
in an account offering a 4.2% annual interest rate 
that compounds monthly?

ReAl-WORlD APPlICATIOnS
58. Keisha devised a week-long study plan to prepare for 

finals. On the first day, she plans to study for 1 hour, 
and each successive day she will increase her study 
time by 30 minutes. How many hours will Keisha 
have studied after one week?

59. A boulder rolled down a mountain, traveling 6 feet 
in the first second. Each successive second, its 
distance increased by 8 feet. How far did the boulder 
travel after 10 seconds?

60. A scientist places 50 cells in a petri dish. Every hour, 
the population increases by 1.5%. What will the cell 
count be after 1 day?

61. A pendulum travels a distance of 3 feet on its first 
swing. On each successive swing, it travels   3 __ 4   the 
distance of the previous swing. What is the total 
distance traveled by the pendulum when it stops 
swinging?

62. Rachael deposits $1,500 into a retirement fund 
each year. The fund earns 8.2% annual interest, 
compounded monthly. If she opened her account 
when she was 19 years old, how much will she have 
by the time she is 55? How much of that amount 
will be interest earned?



CHAPTER 11 seQuences, proBaBility and counting theory982

leARnInG OBjeCTIVeS

In this section, you will:

•	 Solve counting problems using the Addition Principle.

•	 Solve counting problems using the Multiplication Principle.

•	 Solve counting problems using permutations involving n distinct objects.

•	 Solve counting problems using combinations.

•	 Find the number of subsets of a given set.

•	 Solve counting problems using permutations involving n non-distinct objects.

11. 5 COUnTInG PRInCIPleS

A new company sells customizable cases for tablets and smartphones. Each case comes in a variety of colors and can 
be personalized for an additional fee with images or a monogram. A customer can choose not to personalize or could 
choose to have one, two, or three images or a monogram. The customer can choose the order of the images and the 
letters in the monogram. The company is working with an agency to develop a marketing campaign with a focus on 
the huge number of options they offer. Counting the possibilities is challenging!

We encounter a wide variety of counting problems every day. There is a branch of mathematics devoted to the study of 
counting problems such as this one. Other applications of counting include secure passwords, horse racing outcomes, 
and college scheduling choices. We will examine this type of mathematics in this section.

Using the Addition Principle
The company that sells customizable cases offers cases for tablets and smartphones. There are 3 supported tablet models 
and 5 supported smartphone models. The Addition Principle tells us that we can add the number of tablet options 
to the number of smartphone options to find the total number of options. By the Addition Principle, there are 8 total 
options, as we can see in Figure 1.

Figure 1

the Addition Principle 
According to the Addition Principle, if one event can occur in m ways and a second event with no common 
outcomes can occur in n ways, then the first or second event can occur in m + n ways.

Example 1 Using the Addition Principle

There are 2 vegetarian entrée options and 5 meat entrée options on a dinner menu. What is the total number of entrée 
options?
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Solution We can add the number of vegetarian options to the number of meat options to find the total number of 
entrée options.

Vegetarian + Vegetarian + Meat + Meat + Meat + Meat + Meat
↓ ↓ ↓ ↓ ↓ ↓ ↓

Option 1 + Option 2 + Option 3 + Option 4 + Option 5 + Option 6 + Option 7

There are 7 total options.

Try It #1

A student is shopping for a new computer. He is deciding among 3 desktop computers and 4 laptop computers. What 
is the total number of computer options? 

Using the Multiplication Principle 
The Multiplication Principle applies when we are making more than one selection. Suppose we are choosing an 
appetizer, an entrée, and a dessert. If there are 2 appetizer options, 3 entrée options, and 2 dessert options on a fixed-
price dinner menu, there are a total of 12 possible choices of one each as shown in the tree diagram in Figure 2.

Soup

Chicken ChickenFish FishSteak Steak

Cake Cake

Cake

Cake

Cake

CakePudding Pudding Pudding

Pudding

Pudding

Pudding

Salad(Appetizers)

(Entress)

(Dessert)

Figure 2

The possible choices are:

1. soup, chicken, cake
2. soup, chicken, pudding
3. soup, fish, cake
4. soup, fish, pudding
5. soup, steak, cake
6. soup, steak, pudding
7. salad, chicken, cake
8. salad, chicken, pudding
9. salad, fish, cake

10. salad, fish, pudding
11. salad, steak, cake
12. salad, steak, pudding 

We can also find the total number of possible dinners by multiplying.

We could also conclude that there are 12 possible dinner choices simply by applying the Multiplication Principle.

# of appetizer options × # of entree options × # of dessert options

 2 × 3 × 2 = 12
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the Multiplication Principle 
According to the Multiplication Principle, if one event can occur in m ways and a second event can occur in n 
ways after the first event has occurred, then the two events can occur in m × n ways. This is also known as the 
Fundamental Counting Principle.

Example 2 Using the Multiplication Principle

Diane packed 2 skirts, 4 blouses, and a sweater for her business trip. She will need to choose a skirt and a blouse 
for each outfit and decide whether to wear the sweater. Use the Multiplication Principle to find the total number of 
possible outfits.

Solution To find the total number of outfits, find the product of the number of skirt options, the number of blouse 
options, and the number of sweater options.

# of skirt options × # of blouse options × # of sweater options

 2 × 4 × 2 = 16
There are 16 possible outfits.

Try It #2

A restaurant offers a breakfast special that includes a breakfast sandwich, a side dish, and a beverage. There are 3 
types of breakfast sandwiches, 4 side dish options, and 5 beverage choices. Find the total number of possible breakfast 
specials.

Finding the number of Permutations of n Distinct Objects
The Multiplication Principle can be used to solve a variety of problem types. One type of problem involves placing 
objects in order. We arrange letters into words and digits into numbers, line up for photographs, decorate rooms, and 
more. An ordering of objects is called a permutation.

Finding the Number of Permutations of n Distinct Objects Using the Multiplication Principle

To solve permutation problems, it is often helpful to draw line segments for each option. That enables us to determine 
the number of each option so we can multiply. For instance, suppose we have four paintings, and we want to find the 
number of ways we can hang three of the paintings in order on the wall. We can draw three lines to represent the 
three places on the wall.
  ×  × 

There are four options for the first place, so we write a 4 on the first line.

  ×  × 

After the first place has been filled, there are three options for the second place so we write a 3 on the second line.

  ×  × 

After the second place has been filled, there are two options for the third place so we write a 2 on the third line. Finally, 
we find the product.

  ×  ×  = 24

There are 24 possible permutations of the paintings.

How To…
Given n distinct options, determine how many permutations there are.

1. Determine how many options there are for the first situation.
2. Determine how many options are left for the second situation.
3. Continue until all of the spots are filled.
4. Multiply the numbers together.

4

4 3

4 3 2
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Example 3 Finding the Number of Permutations Using the Multiplication Principle

At a swimming competition, nine swimmers compete in a race.

a. How many ways can they place first, second, and third?

b. How many ways can they place first, second, and third if a swimmer named Ariel wins first place?
(Assume there is only one contestant named Ariel.)

c. How many ways can all nine swimmers line up for a photo?

Solution

a. Draw lines for each place.

 ×  × 

There are 9 options for first place. Once someone has won first place, there are 8 remaining options for second 
place. Once first and second place have been won, there are 7 remaining options for third place.

  ×  ×  = 504

Multiply to find that there are 504 ways for the swimmers to place.

b. Draw lines for describing each place.

 ×  × 

We know Ariel must win first place, so there is only 1 option for first place. There are 8 remaining options for 
second place, and then 7 remaining options for third place.

  ×  ×  = 56

Multiply to find that there are 56 ways for the swimmers to place if Ariel wins first.

c. Draw lines for describing each place in the photo.

 ×  ×  ×  ×  ×  ×  ×  × 

There are 9 choices for the first spot, then 8 for the second, 7 for the third, 6 for the fourth, and so on until only 
1 person remains for the last spot.

 ×  ×  ×  ×  ×  ×  ×  ×  = 362,880

There are 362,880 possible permutations for the swimmers to line up.

Analysi s Note that in part c, we found there were 9! ways for 9 people to line up. The number of permutations of n 
distinct objects can always be found by n!.

Try It #3

A family of five is having portraits taken. Use the Multiplication Principle to find how many ways the family can line 
up for the portrait.

Try It #4

A family of five is having portraits taken. Use the Multiplication Principle to find how many ways the photographer 
can line up 3 of the family members.

Try It #5

A family of five is having portraits taken. Use the Multiplication Principle to find how many ways the family can line 
up for the portrait if the parents are required to stand on each end.

options for 1st place options for 2nd place options for 3rd place

9 8 7

options for 1st place options for 2nd place options for 3rd place

1 8 7

9 8 7 6 5 4 3 2 1
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Finding the Number of Permutations of n Distinct Objects Using a Formula

For some permutation problems, it is inconvenient to use the Multiplication Principle because there are so many 
numbers to multiply. Fortunately, we can solve these problems using a formula. Before we learn the formula, let’s look 
at two common notations for permutations. If we have a set of n objects and we want to choose r objects from the set 
in order, we write P (n, r). Another way to write this is nPr, a notation commonly seen on computers and calculators. 
To calculate P(n, r), we begin by finding n!, the number of ways to line up all n objects. We then divide by (n − r)! to 
cancel out the (n − r) items that we do not wish to line up.

Let’s see how this works with a simple example. Imagine a club of six people. They need to elect a president, a vice 
president, and a treasurer. Six people can be elected president, any one of the five remaining people can be elected vice 
president, and any of the remaining four people could be elected treasurer. The number of ways this may be done is  
6 × 5 × 4 = 120. Using factorials, we get the same result.

  6! __ 3!   =   6 · 5 · 4 · 3! _________ 3!   = 6 · 5 · 4 = 120

There are 120 ways to select 3 officers in order from a club with 6 members. We refer to this as a permutation of 6 taken 
3 at a time. The general formula is as follows.

P(n, r) =   n! _______ (n − r)!  

Note that the formula stills works if we are choosing all n objects and placing them in order. In that case we would 
be dividing by (n − n)! or 0!, which we said earlier is equal to 1. So the number of permutations of n objects taken n 
at a time is   n! __ 1   or just n!.

formula for permutations of n distinct objects 
Given n distinct objects, the number of ways to select r objects from the set in order is

P(n, r) =   n! _______ (n − r)!  

How To…
Given a word problem, evaluate the possible permutations.
1. Identify n from the given information.
2. Identify r from the given information.
3. Replace n and r in the formula with the given values.
4. Evaluate.

Example 4 Finding the Number of Permutations Using the Formula

A professor is creating an exam of 9 questions from a test bank of 12 questions. How many ways can she select and 
arrange the questions?

Solution Substitute n = 12 and r = 9 into the permutation formula and simplify.

 P(n, r) =   n! _______ (n − r)!  

 P(12, 9) =   12! ________ (12 − 9)!   =   12! ___ 3!   = 79,833,600

There are 79,833,600 possible permutations of exam questions!

Analysis We can also use a calculator to find permutations. For this problem, we would enter 15, press the [nPr  function], 
enter [12], and then press the equal sign. The [nPr function] may be located under the [MATH] menu with probability 
commands.

Q & A…
Could we have solved Example 4 using the Multiplication Principle?

Yes. We could have multiplied 15 ⋅ 14 ⋅ 13 ⋅ 12 ⋅ 11 ⋅ 10 ⋅ 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 to find the same answer.
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Try It #6

A play has a cast of 7 actors preparing to make their curtain call. Use the permutation formula to find how many ways 
the 7 actors can line up.

Try It #7

A play has a cast of 7 actors preparing to make their curtain call. Use the permutation formula to find how many ways 
5 of the 7 actors can be chosen to line up.

Find the number of Combinations Using the Formula
So far, we have looked at problems asking us to put objects in order. There are many problems in which we want to 
select a few objects from a group of objects, but we do not care about the order. When we are selecting objects and the 
order does not matter, we are dealing with combinations. A selection of r objects from a set of n objects where the 
order does not matter can be written as C (n, r). Just as with permutations, C(n, r) can also be written as nCr. In this 
case, the general formula is as follows.

C (n, r) =   n! _________ r!(n − r)!  

An earlier problem considered choosing 3 of 4 possible paintings to hang on a wall. We found that there were 24 ways 
to select 3 of the 4 paintings in order. But what if we did not care about the order? We would expect a smaller number 
because selecting paintings 1, 2, 3 would be the same as selecting paintings 2, 3, 1. To find the number of ways to 
select 3 of the 4 paintings, disregarding the order of the paintings, divide the number of permutations by the number 
of ways to order 3 paintings. There are 3! = 3 · 2 · 1 = 6 ways to order 3 paintings. There are   24 ___ 6   , or 4 ways to select 
3 of the 4 paintings.

This number makes sense because every time we are selecting 3 paintings, we are not selecting 1 painting. There are 
4 paintings we could choose not to select, so there are 4 ways to select 3 of the 4 paintings.

formula for combinations of n distinct objects 
Given n distinct objects, the number of ways to select r objects from the set is

C (n, r) =   n! _________ r!(n − r)!  

How To…
Given a number of options, determine the possible number of combinations.

1. Identify n from the given information.
2. Identify r from the given information.
3. Replace n and r in the formula with the given values.
4. Evaluate.

Example 5 Finding the Number of Combinations Using the Formula

A fast food restaurant offers five side dish options. Your meal comes with two side dishes.
a. How many ways can you select your side dishes?
b. How many ways can you select 3 side dishes?

Solution

a. We want to choose 2 side dishes from 5 options.

 C(5, 2) =   5! ________ 2!(5 − 2)!   = 10

b. We want to choose 3 side dishes from 5 options.

 C(5, 3) =   5! ________ 3!(5 − 3)!   = 10



CHAPTER 11 seQuences, proBaBility and counting theory988

Analysi s We can also use a graphing calculator to find combinations. Enter 5, then press nCr, enter 3, and then press 
the equal sign. The nCr function may be located under the MATH menu with probability commands.

Q & A…
Is it a coincidence that parts ( a) and ( b) in Example 5 have the same answers?

No. When we choose r objects from n objects, we are not choosing (n − r) objects. Therefore, C(n, r) = C(n, n − r).

Try It #8

An ice cream shop offers 10 flavors of ice cream. How many ways are there to choose 3 flavors for a banana split?

Finding the number of Subsets of a Set
We have looked only at combination problems in which we chose exactly r objects. In some problems, we want to 
consider choosing every possible number of objects. Consider, for example, a pizza restaurant that offers 5 toppings. 
Any number of toppings can be ordered. How many different pizzas are possible?

To answer this question, we need to consider pizzas with any number of toppings. There is C(5, 0) = 1 way to order 
a pizza with no toppings. There are C(5, 1) = 5 ways to order a pizza with exactly one topping. If we continue this 
process, we get

C(5, 0) + C(5, 1) + C(5, 2) + C(5, 3) + C(5, 4) + C(5, 5) = 32

There are 32 possible pizzas. This result is equal to 25.

We are presented with a sequence of choices. For each of the n objects we have two choices: include it in the subset 
or not. So for the whole subset we have made n choices, each with two options. So there are a total of 2 · 2 · 2 · … · 2 
possible resulting subsets, all the way from the empty subset, which we obtain when we say “no” each time, to the 
original set itself, which we obtain when we say “yes” each time.

formula for the number of subsets of a set 
A set containing n distinct objects has 2n subsets.

Example 6 Finding the Number of Subsets of a Set

A restaurant offers butter, cheese, chives, and sour cream as toppings for a baked potato. How many different ways 
are there to order a potato?

Solution We are looking for the number of subsets of a set with 4 objects. Substitute n = 4 into the formula.

 2n = 24

 = 16

There are 16 possible ways to order a potato.

Try It #9

A sundae bar at a wedding has 6 toppings to choose from. Any number of toppings can be chosen. How many different 
sundaes are possible?

Finding the number of Permutations of n non-Distinct Objects
We have studied permutations where all of the objects involved were distinct. What happens if some of the objects are 
indistinguishable? For example, suppose there is a sheet of 12 stickers. If all of the stickers were distinct, there would 
be 12! ways to order the stickers. However, 4 of the stickers are identical stars, and 3 are identical moons. Because all 
of the objects are not distinct, many of the 12! permutations we counted are duplicates. The general formula for this 
situation is as follows.
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  n! __________ r1! r2 ! … rk !
  

In this example, we need to divide by the number of ways to order the 4 stars and the ways to order the 3 moons to find 
the number of unique permutations of the stickers. There are 4! ways to order the stars and 3! ways to order the moon.

  12! ____ 4!3!   = 3,326,400

There are 3,326,400 ways to order the sheet of stickers.

formula for finding the number of permutations of n non-distinct objects 
If there are n elements in a set and r1 are alike, r2 are alike, r3 are alike, and so on through rk , the number of 
permutations can be found by

  n! __________ r1! r2! … rk !
  

Example 7 Finding the Number of Permutations of n Non-Distinct Objects

Find the number of rearrangements of the letters in the word DISTINCT.

Solution There are 8 letters. Both I and T are repeated 2 times. Substitute n = 8, r1 = 2, and r2 = 2 into the formula.

  8! ____ 2!2!   = 10,080

There are 10,080 arrangements.

Try It #10

Find the number of rearrangements of the letters in the word CARRIER.

Access these online resources for additional instruction and practice with combinations and permutations.

•	 Combinations (http://openstaxcollege.org/l/combinations)

•	 Permutations (http://openstaxcollege.org/l/permutations)

http://openstaxcollege.org/l/combinations
http://openstaxcollege.org/l/permutations
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11.5 SeCTIOn exeRCISeS

VeRBAl
For the following exercises, assume that there are n ways an event A can happen, m ways an event B can happen, and 
that A and B are non-overlapping.

1. Use the Addition Principle of counting to explain 
how many ways event A or B can occur.

2. Use the Multiplication Principle of counting to 
explain how many ways event A and B can occur.

Answer the following questions.
3. When given two separate events, how do we know 

whether to apply the Addition Principle or the 
Multiplication Principle when calculating possible 
outcomes? What conjunctions may help to determine 
which operations to use?

4. Describe how the permutation of n objects differs 
from the permutation of choosing r objects from a 
set of n objects. Include how each is calculated.

5. What is the term for the arrangement that selects r 
objects from a set of n objects when the order of the 
r objects is not important? What is the formula for 
calculating the number of possible outcomes for this 
type of arrangement?

nUMeRIC
For the following exercises, determine whether to use the Addition Principle or the Multiplication Principle. Then 
perform the calculations.

6. Let the set A = { −5, −3, −1, 2, 3, 4, 5, 6}.  How 
many ways are there to choose a negative or an even 
number from A?

7. Let the set B = { −23, −16, −7, −2, 20, 36, 48, 72}. 
How many ways are there to choose a positive or an 
odd number from A?

8. How many ways are there to pick a red ace or a club 
from a standard card playing deck?

9. How many ways are there to pick a paint color from 
5 shades of green, 4 shades of blue, or 7 shades of 
yellow?

10. How many outcomes are possible from tossing a pair 
of coins?

11. How many outcomes are possible from tossing a coin 
and rolling a 6-sided die?

12. How many two-letter strings—the first letter from A 
and the second letter from B—can be formed from 
the sets A = {b, c, d } and B = {a, e, i, o, u}?

13. How many ways are there to construct a string of 3 
digits if numbers can be repeated?

14. How many ways are there to construct a string of 3 
digits if numbers cannot be repeated?

For the following exercises, compute the value of the expression.
15. P(5, 2) 16. P(8, 4) 17. P(3, 3) 18. P(9, 6) 19. P(11, 5)

20. C(8, 5) 21. C(12, 4) 22. C(26, 3) 23. C(7, 6) 24. C(10, 3)

For the following exercises, find the number of subsets in each given set.
25. {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} 26. {a, b, c, … , z}
27. A set containing 5 distinct numbers, 4 distinct 

letters, and 3 distinct symbols
28. The set of even numbers from 2 to 28

29. The set of two-digit numbers between 1 and 100 
containing the digit 0

For the following exercises, find the distinct number of arrangements.
30. The letters in the word “juggernaut” 31. The letters in the word “academia”
32. The letters in the word “academia” that begin and 

end in “a”
33. The symbols in the string #,#,#,@,@,$,$,$,%,%,%,%

34. The symbols in the string #,#,#,@,@,$,$,$,%,%,%,% 
that begin and end with “%”
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exTenSIOnS
35. The set, S consists of 900,000,000 whole numbers, 

each being the same number of digits long. How 
many digits long is a number from S? (Hint: use 
the fact that a whole number cannot start with the 
digit 0.)

36. The number of 5-element subsets from a set 
containing n elements is equal to the number of 
6-element subsets from the same set. What is the 
value of n? (Hint: the order in which the elements 
for the subsets are chosen is not important.)

37. Can C(n, r) ever equal P(n, r)? Explain. 38. Suppose a set A has 2,048 subsets. How many 
distinct objects are contained in A?

39. How many arrangements can be made from the 
letters of the word “mountains” if all the vowels 
must form a string?

ReAl-WORlD APPlICATIOnS
40. A family consisting of 2 parents and 3 children is 

to pose for a picture with 2 family members in the 
front and 3 in the back.
a. How many arrangements are possible with no 

restrictions?
b. How many arrangements are possible if the parents 

must sit in the front?
c. How many arrangements are possible if the parents 

must be next to each other?

41. A cell phone company offers 6 different voice 
packages and 8 different data packages. Of those, 
3 packages include both voice and data. How many 
ways are there to choose either voice or data, but not 
both?

42. In horse racing, a “trifecta” occurs when a bettor 
wins by selecting the first three finishers in the exact 
order (1st place, 2nd place, and 3rd place). How 
many different trifectas are possible if there are 14 
horses in a race?

43. A wholesale T-shirt company offers sizes small, 
medium, large, and extra-large in organic or non-
organic cotton and colors white, black, gray, blue, 
and red. How many different T-shirts are there to 
choose from?

44. Hector wants to place billboard advertisements 
throughout the county for his new business. How 
many ways can Hector choose 15 neighborhoods 
to advertise in if there are 30 neighborhoods in the 
county?

45. An art store has 4 brands of paint pens in 12 different  
colors and 3 types of ink. How many paint pens are 
there to choose from?

46. How many ways can a committee of 3 freshmen and 
4 juniors be formed from a group of 8 freshmen and 
11 juniors?

47. How many ways can a baseball coach arrange the 
order of 9 batters if there are 15 players on the team?

48. A conductor needs 5 cellists and 5 violinists to 
play at a diplomatic event. To do this, he ranks 
the orchestra’s 10 cellists and 16 violinists in order 
of musical proficiency. What is the ratio of the 
total cellist rankings possible to the total violinist 
rankings possible?

49. A motorcycle shop has 10 choppers, 6 bobbers, and 
5 café racers—different types of vintage motorcycles. 
How many ways can the shop choose 3 choppers, 5 
bobbers, and 2 café racers for a weekend showcase?

50. A skateboard shop stocks 10 types of board decks, 3 
types of trucks, and 4 types of wheels. How many 
different skateboards can be constructed?

51. Just-For-Kicks Sneaker Company offers an online 
customizing service. How many ways are there to 
design a custom pair of Just-For-Kicks sneakers if 
a customer can choose from a basic shoe up to 11 
customizable options?

52. A car wash offers the following optional services to 
the basic wash: clear coat wax, triple foam polish, 
undercarriage wash, rust inhibitor, wheel brightener, 
air freshener, and interior shampoo. How many 
washes are possible if any number of options can be 
added to the basic wash?

53. Susan bought 20 plants to arrange along the border 
of her garden. How many distinct arrangements can 
she make if the plants are comprised of 6 tulips, 6 
roses, and 8 daisies?

54. How many unique ways can a string of Christmas 
lights be arranged from 9 red, 10 green, 6 white, and 
12 gold color bulbs?
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Apply the Binomial Theorem.

11. 6 BInOMIAl THeOReM

A polynomial with two terms is called a binomial. We have already learned to multiply binomials and to raise binomials 
to powers, but raising a binomial to a high power can be tedious and time-consuming. In this section, we will discuss 
a shortcut that will allow us to find (x + y)n without multiplying the binomial by itself n times.

Identifying Binomial Coefficients
In Counting Principles, we studied combinations. In the shortcut to finding (x + y)n, we will need to use combinations 
to find the coefficients that will appear in the expansion of the binomial. In this case, we use the notation     n _ r     instead 
of C(n, r), but it can be calculated in the same way. So

     n _ r     = C(n, r) =   n! ________ r!(n − r)!  

The combination     n _ r     is called a binomial coefficient. An example of a binomial coefficient is     5 __ 2     = C(5, 2) = 10.

binomial coefficients 
If n and r are integers greater than or equal to 0 with n ≥ r, then the binomial coefficient is

    n _ r     = C(n, r) =   n! ________ r!(n − r)!  

Q & A…
Is a binomial coefficient always a whole number?

Yes. Just as the number of combinations must always be a whole number, a binomial coefficient will always be a whole 
number.

Example 1 Finding Binomial Coefficients

Find each binomial coefficient.

a.     5 __ 3         b.     9 __ 2         c.     9 __ 7     

Solution

Use the formula to calculate each binomial coefficient. You can also use the nCr function on your calculator.

     n _ r     = C(n, r) =   n! ________ r!(n − r)!  

a.     5 __ 3     =   5! ________ 3!(5 − 3)!   =   5 ⋅ 4 ⋅ 3! _______ 
3!2!

   = 10 

b.     9 __ 2     =   9! ________ 2!(9 − 2)!   =   9 ⋅ 8 ⋅ 7! _______ 2!7!   = 36

c.     9 __ 7     =   9! ________ 7!(9 − 7)!   =   9 ⋅ 8 ⋅ 7! _______ 7!2!   = 36

Analysi s Notice that we obtained the same result for parts (b) and (c). If you look closely at the solution for these two 
parts, you will see that you end up with the same two factorials in the denominator, but the order is reversed, just as 
with combinations.

     n _ r     =     n _ n − r     



SECTION 11.6 Binomial theorem 993

Try It #1

Find each binomial coefficient.

a.     7 __ 3         b.     11 __ 4    

Using the Binomial Theorem
When we expand (x + y)n by multiplying, the result is called a binomial expansion, and it includes binomial 
coefficients. If we wanted to expand (x + y)52, we might multiply (x + y) by itself fifty-two times. This could take 
hours! If we examine some simple binomial expansions, we can find patterns that will lead us to a shortcut for finding 
more complicated binomial expansions.

 (x + y)2 = x 2 + 2xy + y 2

 (x + y)3 = x 3 + 3x 2 y + 3xy 2 + y 3

 (x + y)4 = x 4 + 4x 3 y + 6x 2 y 2 + 4xy 3 + y 4

First, let’s examine the exponents. With each successive term, the exponent for x decreases and the exponent for y 
increases. The sum of the two exponents is n for each term.

Next, let’s examine the coefficients. Notice that the coefficients increase and then decrease in a symmetrical pattern. 
The coefficients follow a pattern:

    n _ 
0

    ,     n _ 
1

    ,     n _ 
2

    , ...,     n _ n    .

These patterns lead us to the Binomial Theorem, which can be used to expand any binomial.

 (x + y)n =  ∑ 
k = 0

  
n

      n _ 
k

     xn − kyk 

 = xn +     n _ 
1

    xn − 1 y +     n _ 
2

    xn − 2 y 2 + ... +     n _ 
n − 1

    xy n − 1 + yn

Another way to see the coefficients is to examine the expansion of a binomial in general form, x + y, to successive 
powers 1, 2, 3, and 4.
 (x + y)1 = x + y

 (x + y)2 = x2 + 2xy + y2

 (x + y)3 = x3 + 3x2 y + 3xy2 + y3

 (x + y)4 = x4 + 4x3 y + 6x2 y2 + 4xy3 + y4

Can you guess the next expansion for the binomial (x + y)5?

1

Exponent sum:
Exponents on x : 4 3 2 1 0

0 1 2 3 4Exponents on y :

21 + 1

32 + 1

43 + 1

54 + 1

4+0

n + 1 n + 1

2

3

4

n

(x + y)1 = x + y
Exponent

Pascal’s Triangle
Pattern # of Terms

(x + y)2 = x2 + 2xy + y2

(x + y)3 = x3 + 3x2y + 3xy2 + y3

xy 3+1xy 2+2xy 1+3xy 0+4xy

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

Figure 1
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See Figure 1, which illustrates the following:
•	 There are n + 1 terms in the expansion of (x + y)n.
•	 The degree (or sum of the exponents) for each term is n.
•	 The powers on x begin with n and decrease to 0.
•	 The powers on y begin with 0 and increase to n.
•	 The coefficients are symmetric.

To determine the expansion on (x + y)5, we see n = 5, thus, there will be 5 + 1 = 6 terms. Each term has a combined 
degree of 5. In descending order for powers of x, the pattern is as follows:

•	 Introduce x 5, and then for each successive term reduce the exponent on x by 1 until x 0 = 1 is reached.
•	 Introduce y 0 = 1, and then increase the exponent on y by 1 until y 5 is reached.

x5, x 4y, x3y 2, x 2y 3, xy 4, y 5

The next expansion would be

(x + y)5 = x5 + 5x 4y + 10x 3y2 + 10x 2y 3 + 5xy 4 + y 5.

But where do those coefficients come from? The binomial coefficients are symmetric. We can see these coefficients in 
an array known as Pascal's Triangle, shown in Figure 2.

Pascal’s Triangle
1

1 1

1 3 3 1

1 14 6 4

1 5 15 10 10

1 2 1
1 + 2 = 3

6 + 4 = 10
Figure 2

To generate Pascal’s Triangle, we start by writing a 1. In the row below, row 2, we write two 1’s. In the 3rd row, flank 
the ends of the rows with 1’s, and add 1 + 1 to find the middle number, 2. In the nth row, flank the ends of the row 
with 1’s. Each element in the triangle is the sum of the two elements immediately above it.

To see the connection between Pascal’s Triangle and binomial coefficients, let us revisit the expansion of the binomials 
in general form.

1 → (x + y)0 = 1

1 1 → (x + y)1 = x + y

1 2 1 → (x + y)2 = x 2 + 2xy + y 2

1 3 3 1 → (x + y)3 = x 3 + 3x 2y + 3xy2 + y 3

1 4 6 4 1 → (x + y)4 = x4 + 4x 3y + 6x 2y 2 + 4xy 3 + y 4

1 5 10 10 5 1 → (x + y)5 = x 5 + 5x 4y + 10x 3y 2 + 10x 2 y 3 + 5xy 4 + y 5

the Binomial Theorem 
The Binomial Theorem is a formula that can be used to expand any binomial.

 (x + y)n =  ∑ 
k = 0

  
n

      n 
k

     x n − k yk 

 = x n +     n _ 
1

    x n − 1 y +     n _ 
2

    x n − 2y 2 + ... +     n _ 
n − 1

    xy n − 1 + y n



SECTION 11.6 Binomial theorem 995

How To…
Given a binomial, write it in expanded form.

1. Determine the value of n according to the exponent.
2. Evaluate the k = 0 through k = n using the Binomial Theorem formula.
3. Simplify.

Example 2 Expanding a Binomial

Write in expanded form.

a. (x + y)5

b. (3x − y)4

Solution

a. Substitute n = 5 into the formula. Evaluate the k = 0 through k = 5 terms. Simplify.

 (x + y)5 =     5 _ 
0

    x 5y 0 +     5 _ 
1

    x  4y1 +     5 _ 
2

    x 3y 2 +     5 _ 
3

    x 2y 3 +     5 _ 4    x1y 4 +     5 _ 5    x 0y 5

 (x + y)5 = x 5 + 5x 4y + 10x 3y 2 + 10x 2y 3 + 5xy 4 + y 5

b.  Substitute n = 4 into the formula. Evaluate the k = 0 through k = 4 terms. Notice that 3x is in the place that was 
occupied by x and that −y is in the place that was occupied by y. So we substitute them. Simplify.

 (3x − y)4 =     4 _ 
0

    (3x)4(−y)0 +     4 _ 
1

    (3x)3(−y)1 +     4 _ 
2

    (3x)2(−y)2 +     4 _ 
3

    (3x)1(−y)3 +    4 _ 4    (3x)0(−y)4

 (3x − y)4 = 81x 4 − 108x 3y + 54x 2y 2 − 12xy 3 + y 4

Analysi s Notice the alternating signs in part b. This happens because (−y) raised to odd powers is negative, but (−y) 
raised to even powers is positive. This will occur whenever the binomial contains a subtraction sign.

Try It #2

Write in expanded form.

a. (x − y)5    b. (2x + 5y)3

Using the Binomial Theorem to Find a Single Term
Expanding a binomial with a high exponent such as (x + 2y)16 can be a lengthy process.

Sometimes we are interested only in a certain term of a binomial expansion. We do not need to fully expand a binomial 
to find a single specific term.

Note the pattern of coefficients in the expansion of (x + y)5.

(x + y)5 = x 5 +     5 _ 
1

    x 4y +     5 _ 
2

    x3y2 +     5 _ 
3

    x 2y 3 +     5 _ 4    xy 4 + y 5

The second term is     5 _ 
1

    x 4y. The third term is     5 _ 
2

    x 3y 2. We can generalize this result.

    n _ r    xn − ry r

the (r + 1)th term of a binomial expansion 
The (r + 1)th term of the binomial expansion of (x + y)n is:

    n _ r    x n − ry r
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How To…
Given a binomial, write a specific term without fully expanding.

1. Determine the value of n according to the exponent.
2. Determine (r + 1).
3. Determine r.
4. Replace r in the formula for the (r + 1)th term of the binomial expansion.

Example 3 Writing a Given Term of a Binomial Expansion

Find the tenth term of (x + 2y)16 without fully expanding the binomial.

Solution Because we are looking for the tenth term, r + 1 = 10, we will use r = 9 in our calculations.

    n _ r    xn − r yr

    16 _ 
9

    x16 − 9(2y)9 = 5,857,280x7y 9

Try It #3

Find the sixth term of (3x − y)9 without fully expanding the binomial.

Access these online resources for additional instruction and practice with binomial expansion.

•	 The Binomial Theorem (http://openstaxcollege.org/l/binomialtheorem)

•	 Binomial Theorem example (http://openstaxcollege.org/l/btexample)

http://openstaxcollege.org/l/binomialtheorem
http://openstaxcollege.org/l/btexample
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11.6 SeCTIOn exeRCISeS

VeRBAl

1. What is a binomial coefficient, and how it is 
calculated?

2. What role do binomial coefficients play in a 
binomial expansion? Are they restricted to any type 
of number?

3. What is the Binomial Theorem and what is its use? 4. When is it an advantage to use the Binomial 
Theorem? Explain.

AlGeBRAIC

For the following exercises, evaluate the binomial coefficient.

5.     6 _ 
2

    6.     5 _ 
3

    7.     7 _ 4    8.     9 _ 7    9.     10 _ 
9

    

10.     25 _ 
11

    11.     17 _ 
6

    12.     200 _ 
199

    

For the following exercises, use the Binomial Theorem to expand each binomial.

13. (4a − b)3 14. (5a + 2)3 15. (3a + 2b)3 16. (2x + 3y)4 17.  (4x + 2y)5

18. (3x − 2y)4 19. (4x − 3y)5
20.      1 _ x   + 3y    

5
 21. (x−1 + 2y −1)4

22.  ( √
—
 x   −  √

—
 y  )5

For the following exercises, use the Binomial Theorem to write the first three terms of each binomial.

23. (a + b)17 24.  (x − 1)18 25. (a − 2b)15 26. (x − 2y)8 27. (3a + b)20

28. (2a + 4b)7
29.  (x3 −  √

—
 y  )8

For the following exercises, find the indicated term of each binomial without fully expanding the binomial.

30. The fourth term of (2x − 3y)4 31. The fourth term of (3x − 2y)5

32. The third term of (6x − 3y)7 33. The eighth term of (7 + 5y)14

34. The seventh term of (a + b)11 35. The fifth term of (x − y)7

36. The tenth term of (x − 1)12 37. The ninth term of (a − 3b 2)11

38. The fourth term of    x 3 −   1 __ 2      
10

 39. The eighth term of      y _ 2   +   2 _ x      
9
 

GRAPHICAl

For the following exercises, use the Binomial Theorem to expand the binomial f (x) = (x + 3)4. Then find and graph 
each indicated sum on one set of axes.

40. Find and graph f1(x), such that f1(x) is the first term 
of the expansion.

41. Find and graph f2(x), such that f2(x) is the sum of the 
first two terms of the expansion.

42. Find and graph f3(x), such that f3(x) is the sum of the 
first three terms of the expansion.

43. Find and graph f4(x), such that f4(x) is the sum of the 
first four terms of the expansion.

44. Find and graph f5(x), such that f5(x) is the sum of the 
first five terms of the expansion.
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exTenSIOnS

45. In the expansion of (5x + 3y)n, each term has the 
form     n _ 

k
    an − kbk, where k successively takes on 

the value 0, 1, 2, ..., n. If     n _ 
k

     =     7 _ 
2

    , what is the 
corresponding term?

46. In the expansion of (a + b)n, the coefficient of a n − kbk 
is the same as the coefficient of which other term?

47. Consider the expansion of (x + b)40. What is the 
exponent of b in the kth term?

48. Find     n _ 
k − 1

     +     n _ 
k

     and write the answer as a 

binomial coefficient in the form     n _ 
k

    . Prove it. Hint: 

Use the fact that, for any integer p, such that p ≥ 1, 
p! = p(p − 1)!.

49. Which expression cannot be expanded using the 
Binomial Theorem? Explain.
a.  (x 2 − 2x + 1)
b.  ( √

—
 a   + 4 √

—
 a   − 5)8

c.  (x 3 + 2y 2 − z)5

d.  (3x 2 −  √—
 2y 3  )12
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Construct probability models.

•	 Compute probabilities of equally likely outcomes.

•	 Compute probabilities of the union of two events.

•	 Use the complement rule to find probabilities.

•	 Compute probability using counting theory.

11.7 PROBABIlITY

Figure 1 An example of a “spaghetti model,” which can be used to predict possible paths of a tropical storm.[34]

Residents of the Southeastern United States are all too familiar with charts, known as spaghetti models, such as the 
one in Figure 1. They combine a collection of weather data to predict the most likely path of a hurricane. Each colored 
line represents one possible path. The group of squiggly lines can begin to resemble strands of spaghetti, hence the 
name. In this section, we will investigate methods for making these types of predictions.

Constructing Probability Models
Suppose we roll a six-sided number cube. Rolling a number cube is an example of an experiment, or an activity with 
an observable result. The numbers on the cube are possible results, or outcomes, of this experiment. The set of all 
possible outcomes of an experiment is called the sample space of the experiment. The sample space for this experiment 
is {1, 2, 3, 4, 5, 6}. An event is any subset of a sample space.

The likelihood of an event is known as probability. The probability of an event p is a number that always satisfies  
0 ≤ p ≤ 1, where 0 indicates an impossible event and 1 indicates a certain event. A probability model is a mathematical 
description of an experiment listing all possible outcomes and their associated probabilities. For instance, if there is a 
1% chance of winning a raffle and a 99% chance of losing the raffle, a probability model would look much like Table 1.

Outcome Probability
Winning the raffle 1%

Losing the raffle 99%
Table 1

The sum of the probabilities listed in a probability model must equal 1, or 100%.

34 The figure is for illustrative purposes only and does not model any particular storm.
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How To…
Given a probability event where each event is equally likely, construct a probability model.
1. Identify every outcome.
2. Determine the total number of possible outcomes.
3. Compare each outcome to the total number of possible outcomes.

Example 1 Constructing a Probability Model

Construct a probability model for rolling a single, fair die, with the event being the number shown on the die.

Solution Begin by making a list of all possible outcomes for the experiment. The possible outcomes are the numbers 
that can be rolled: 1, 2, 3, 4, 5, and 6. There are six possible outcomes that make up the sample space.

Assign probabilities to each outcome in the sample space by determining a ratio of the outcome to the number of 
possible outcomes. There is one of each of the six numbers on the cube, and there is no reason to think that any 
particular face is more likely to show up than any other one, so the probability of rolling any number is   1 __ 6  .

Outcome Roll of 1 Roll of 2 Roll of 3 Roll of 4 Roll of 5 Roll of 6

Probability   1 __ 6    1 __ 6    1 __ 6    1 __ 6    1 __ 6    1 __ 6  

Table 2

Q & A…
Do probabilities always have to be expressed as fractions?
No. Probabilities can be expressed as fractions, decimals, or percents. Probability must always be a number
between 0 and 1, inclusive of 0 and 1.

Try It #1
Construct a probability model for tossing a fair coin.

Computing Probabilities of equally likely Outcomes
Let S be a sample space for an experiment. When investigating probability, an event is any subset of S. When the 
outcomes of an experiment are all equally likely, we can find the probability of an event by dividing the number of 
outcomes in the event by the total number of outcomes in S. Suppose a number cube is rolled, and we are interested 
in finding the probability of the event “rolling a number less than or equal to 4.” There are 4 possible outcomes in the 

event and 6 possible outcomes in S, so the probability of the event is   4 __ 6   =   2 __ 3  .

computing the probability of an event with equally likely outcomes 
The probability of an event E in an experiment with sample space S with equally likely outcomes is given by

P(E) =   number of elements in E  ____________________  number of elements in S   =   n(E) ____ n(S)  

E is a subset of S, so it is always true that 0 ≤ P(E) ≤ 1.

Example 2 Computing the Probability of an Event with Equally Likely Outcomes

A six-sided number cube is rolled. Find the probability of rolling an odd number.

Solution The event “rolling an odd number” contains three outcomes. There are 6 equally likely outcomes in the 
sample space. Divide to find the probability of the event.

P(E) =   3 __ 6   =   1 __ 2  
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Try It #2

A six-sided number cube is rolled. Find the probability of rolling a number greater than 2.

Computing the Probability of the Union of Two events
We are often interested in finding the probability that one of multiple events occurs. Suppose we are playing a card 
game, and we will win if the next card drawn is either a heart or a king. We would be interested in finding the 
probability of the next card being a heart or a king. The union of two events E and F, written E ∪ F, is the event that 
occurs if either or both events occur.

P(E ∪ F) = P(E) + P(F) − P(E ∩ F)

Suppose the spinner in Figure 2 is spun. We want to find the probability of spinning orange or spinning a b.

a

a

b

b

cd

Figure 2

There are a total of 6 sections, and 3 of them are orange. So the probability of spinning orange is   3 __ 6   =   1 __ 2  . There 
are a total of 6 sections, and 2 of them have a b. So the probability of spinning a b is   2 __ 6   =   1 __ 3  . If we added these two 
probabilities, we would be counting the sector that is both orange and a b twice. To find the probability of spinning 
an orange or a b, we need to subtract the probability that the sector is both orange and has a b.

  1 __ 2   +   1 __ 3   −   1 __ 6   =   2 __ 3  

The probability of spinning orange or a b is   2 __ 3  .

probability of the union of two events 
The probability of the union of two events E and F (written E ∪ F) equals the sum of the probability of E and the 
probability of F minus the probability of E and F occurring together (which is called the intersection of E and F 
and is written as E ∩ F).
 P(E ∪ F) = P(E) + P(F) − P(E ∩ F)

Example 3 Computing the Probability of the Union of Two Events

A card is drawn from a standard deck. Find the probability of drawing a heart or a 7.

Solution A standard deck contains an equal number of hearts, diamonds, clubs, and spades. So the probability 
of drawing a heart is   1 __ 4  . There are four 7s in a standard deck, and there are a total of 52 cards. So the probability of 
drawing a 7 is   1 ___ 13  .

The only card in the deck that is both a heart and a 7 is the 7 of hearts, so the probability of drawing both a heart and 

a 7 is   1 ___ 52  . Substitute P(H) =   1 __ 4  , P(7) =   1 ___ 13  , and P(H ∩ 7) =   1 ___ 52   into the formula.

 P(E ∪ F) = P(E) + P(F) − P(E ∩ F)

 =   1 __ 4   +   1 ___ 13   −   1 ___ 52  

 =   4 ___ 13  

The probability of drawing a heart or a 7 is   4 ___ 13  .
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Try It #3

A card is drawn from a standard deck. Find the probability of drawing a red card or an ace.

Computing the Probability of Mutually exclusive events
Suppose the spinner in Figure 2 is spun again, but this time we are interested in the probability of spinning an orange 
or a d. There are no sectors that are both orange and contain a d, so these two events have no outcomes in common. 
Events are said to be mutually exclusive events when they have no outcomes in common. Because there is no overlap, 
there is nothing to subtract, so the general formula is

 P(E ∪ F) = P(E) + P(F)

Notice that with mutually exclusive events, the intersection of E and F is the empty set. The probability of spinning 

an orange is   3 __ 6   =   1 __ 2   and the probability of spinning a d is   1 __ 6  . We can find the probability of spinning an orange or a 

d simply by adding the two probabilities.

 P(E ∪ F) = P(E) + P(F)

 =   1 __ 2   +   1 __ 6  

 =   2 __ 3  

The probability of spinning an orange or a d is   2 __ 3  .

probability of the union of mutually exclusive events 
The probability of the union of two mutually exclusive events E and F is given by

P(E ∪ F) = P(E) + P(F)

How To…
Given a set of events, compute the probability of the union of mutually exclusive events.

1. Determine the total number of outcomes for the first event.
2. Find the probability of the first event.
3. Determine the total number of outcomes for the second event.
4. Find the probability of the second event.
5. Add the probabilities.

Example 4 Computing the Probability of the Union of Mutually Exclusive Events

A card is drawn from a standard deck. Find the probability of drawing a heart or a spade.

Solution The events “drawing a heart” and “drawing a spade” are mutually exclusive because they cannot occur 
at the same time. The probability of drawing a heart is   1 __ 4  , and the probability of drawing a spade is also   1 __ 4  , so the 

probability of drawing a heart or a spade is

   1 __ 4   +   1 __ 4   =   1 __ 2  

Try It #4

A card is drawn from a standard deck. Find the probability of drawing an ace or a king.
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Using the Complement Rule to Compute Probabilities
We have discussed how to calculate the probability that an event will happen. Sometimes, we are interested in finding 
the probability that an event will not happen. The complement of an event E, denoted E′, is the set of outcomes in the 
sample space that are not in E. For example, suppose we are interested in the probability that a horse will lose a race. 
If event W is the horse winning the race, then the complement of event W is the horse losing the race.

To find the probability that the horse loses the race, we need to use the fact that the sum of all probabilities in a 
probability model must be 1.
 P(E′) = 1 − P(E)

The probability of the horse winning added to the probability of the horse losing must be equal to 1. Therefore, if the 

probability of the horse winning the race is   1 __ 9  , the probability of the horse losing the race is simply

 1 −   1 __ 9   =   8 __ 9  

the complement rule 
The probability that the complement of an event will occur is given by

P(E′) = 1 − P(E)

Example 5 Using the Complement Rule to Calculate Probabilities

Two six-sided number cubes are rolled.

a. Find the probability that the sum of the numbers rolled is less than or equal to 3.

b. Find the probability that the sum of the numbers rolled is greater than 3.

Solution The first step is to identify the sample space, which consists of all the possible outcomes. There are two 
number cubes, and each number cube has six possible outcomes. Using the Multiplication Principle, we find that there 
are 6 × 6, or 36 total possible outcomes. So, for example, 1-1 represents a 1 rolled on each number cube.

1-1 1-2 1-3 1-4 1-5 1-6
2-1 2-2 2-3 2-4 2-5 2-6
3-1 3-2 3-3 3-4 3-5 3-6
4-1 4-2 4-3 4-4 4-5 4-6
5-1 5-2 5-3 5-4 5-5 5-6
6-1 6-2 6-3 6-4 6-5 6-6

Table 3

a.  We need to count the number of ways to roll a sum of 3 or less. These would include the following 
outcomes: 1-1, 1-2, and 2-1. So there are only three ways to roll a sum of 3 or less. The probability is

   3 ___ 36   =   1 ___ 12  

b.  Rather than listing all the possibilities, we can use the Complement Rule. Because we have already found 
the probability of the complement of this event, we can simply subtract that probability from 1 to find the 
probability that the sum of the numbers rolled is greater than 3.

 P(E′) = 1 − P(E)

 = 1 −   1 ___ 12  

 =   11 ___ 12  

Try It #5

Two number cubes are rolled. Use the Complement Rule to find the probability that the sum is less than 10.
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Computing Probability Using Counting Theory
Many interesting probability problems involve counting principles, permutations, and combinations. In these 
problems, we will use permutations and combinations to find the number of elements in events and sample spaces. 
These problems can be complicated, but they can be made easier by breaking them down into smaller counting 
problems.

Assume, for example, that a store has 8 cellular phones and that 3 of those are defective. We might want to find the 
probability that a couple purchasing 2 phones receives 2 phones that are not defective. To solve this problem, we need 
to calculate all of the ways to select 2 phones that are not defective as well as all of the ways to select 2 phones. There 
are 5 phones that are not defective, so there are C(5, 2) ways to select 2 phones that are not defective. There are 8 phones, 
so there are C(8, 2) ways to select 2 phones. The probability of selecting 2 phones that are not defective is:

   
ways to select 2 phones that are not defective

    ____   
ways to select 2 phones

   =   
C(5, 2)

 _ 
C(8, 2)

  

 =   10 ___ 28  

 =   5 ___ 14  

Example 6 Computing Probability Using Counting Theory

A child randomly selects 5 toys from a bin containing 3 bunnies, 5 dogs, and 6 bears.

a. Find the probability that only bears are chosen.

b. Find the probability that 2 bears and 3 dogs are chosen.

c. Find the probability that at least 2 dogs are chosen.

Solution

a.  We need to count the number of ways to choose only bears and the total number of possible ways to select 5 
toys. There are 6 bears, so there are C(6, 5) ways to choose 5 bears. There are 14 toys, so there are C(14, 5) ways 
to choose any 5 toys.

   C(6, 5) _______ C(14, 5)   =   6 _____ 2,002   =   3 _____ 1,001  

b.  We need to count the number of ways to choose 2 bears and 3 dogs and the total number of possible ways 
to select 5 toys. There are 6 bears, so there are C(6, 2) ways to choose 2 bears. There are 5 dogs, so there are 
C(5, 3) ways to choose 3 dogs. Since we are choosing both bears and dogs at the same time, we will use the 
Multiplication Principle. There are C(6, 2) ⋅ C(5, 3) ways to choose 2 bears and 3 dogs. We can use this result 
to find the probability.

   C(6, 2)C(5, 3)  ____________ C(14, 5)   =   15 ⋅ 10 ______ 2,002   =   75 _____ 1,001  

c.  It is often easiest to solve “at least” problems using the Complement Rule. We will begin by finding the probability 
that fewer than 2 dogs are chosen. If less than 2 dogs are chosen, then either no dogs could be chosen, or 1 dog 
could be chosen.

When no dogs are chosen, all 5 toys come from the 9 toys that are not dogs. There are C(9, 5) ways to choose 
toys from the 9 toys that are not dogs. Since there are 14 toys, there are C(14, 5) ways to choose the 5 toys from 
all of the toys.

   C(9, 5) _______ C(14,5)   =   63 _____ 1,001  

If there is 1 dog chosen, then 4 toys must come from the 9 toys that are not dogs, and 1 must come from the 5 
dogs. Since we are choosing both dogs and other toys at the same time, we will use the Multiplication Principle. 
There are C(5, 1) ⋅ C(9, 4) ways to choose 1 dog and 1 other toy.

   C(5, 1)C(9, 4)  ____________ C(14, 5)   =   5 ⋅ 126 ______ 2,002   =   315 _____ 1,001  
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Because these events would not occur together and are therefore mutually exclusive, we add the probabilities 
to find the probability that fewer than 2 dogs are chosen.

   63 _____ 1,001   +   315 _____ 1,001   =   378 _____ 1,001  

We then subtract that probability from 1 to find the probability that at least 2 dogs are chosen.

 1 −   378 _____ 1,001   =   623 _____ 1,001  

Try It #6

A child randomly selects 3 gumballs from a container holding 4 purple gumballs, 8 yellow gumballs, and 2 green 
gumballs.

a. Find the probability that all 3 gumballs selected are purple.

b. Find the probability that no yellow gumballs are selected.

c. Find the probability that at least 1 yellow gumball is selected.

Access these online resources for additional instruction and practice with probability.

•	 Introduction to Probability (http://openstaxcollege.org/l/introprob)

•	 Determining Probability (http://openstaxcollege.org/l/determineprob)

http://openstaxcollege.org/l/introprob
http://openstaxcollege.org/l/determineprob
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11.7 SeCTIOn exeRCISeS

VeRBAl

1. What term is used to express the likelihood of an 
event occurring? Are there restrictions on its values? 
If so, what are they? If not, explain.

2. What is a sample space?

3. What is an experiment? 4. What is the difference between events and 
outcomes? Give an example of both using the 
sample space of tossing a coin 50 times.

5. The union of two sets is defined as a set of elements 
that are present in at least one of the sets. How is 
this similar to the definition used for the union 
of two events from a probability model? How is it 
different?

nUMeRIC
For the following exercises, use the spinner shown in Figure 3 to find the probabilities indicated.

A

B

C

DE

F

I

O

Figure 3 

6. Landing on red

7. Landing on a vowel

8. Not landing on blue

9. Landing on purple or a vowel

10. Landing on blue or a vowel

11. Landing on green or blue

12. Landing on yellow or a consonant

13. Not landing on yellow or a consonant

For the following exercises, two coins are tossed.
14. What is the sample space? 15. Find the probability of tossing two heads.
16. Find the probability of tossing exactly one tail. 17. Find the probability of tossing at least one tail.

For the following exercises, four coins are tossed.
18. What is the sample space? 19. Find the probability of tossing exactly two heads.
20. Find the probability of tossing exactly three heads. 21. Find the probability of tossing four heads or four 

tails.
22. Find the probability of tossing all tails. 23. Find the probability of tossing not all tails.
24. Find the probability of tossing exactly two heads or 

at least two tails.
25. Find the probability of tossing either two heads or 

three heads.

For the following exercises, one card is drawn from a standard deck of 52 cards. Find the probability of drawing the 
following:

26. A club 27. A two 28. Six or seven 29. Red six
30. An ace or a diamond 31. A non-ace 32. A heart or a non-jack

For the following exercises, two dice are rolled, and the results are summed.

33. Construct a table showing the sample space of 
outcomes and sums.

34. Find the probability of rolling a sum of 3.
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35. Find the probability of rolling at least one four or a 
sum of 8.

36. Find the probability of rolling an odd sum less 
than 9.

37. Find the probability of rolling a sum greater than or 
equal to 15.

38. Find the probability of rolling a sum less than 15.

39. Find the probability of rolling a sum less than 6 or 
greater than 9.

40. Find the probability of rolling a sum between 6 and 
9, inclusive.

41. Find the probability of rolling a sum of 5 or 6. 42. Find the probability of rolling any sum other than 5 
or 6.

For the following exercises, a coin is tossed, and a card is pulled from a standard deck. Find the probability of the 
following:

43. A head on the coin or a club 44. A tail on the coin or red ace
45. A head on the coin or a face card 46. No aces

For the following exercises, use this scenario: a bag of M&Ms contains 12 blue, 6 brown, 10 orange, 8 yellow, 8 red, 
and 4 green M&Ms. Reaching into the bag, a person grabs 5 M&Ms.

47. What is the probability of getting all blue M&Ms? 48. What is the probability of getting 4 blue M&Ms?

49. What is the probability of getting 3 blue M&Ms? 50. What is the probability of getting no brown M&Ms?

exTenSIOnS

Use the following scenario for the exercises that follow: In the game of Keno, a player starts by selecting 20 numbers 
from the numbers 1 to 80. After the player makes his selections, 20 winning numbers are randomly selected from 
numbers 1 to 80. A win occurs if the player has correctly selected 3, 4, or 5 of the 20 winning numbers. (Round all 
answers to the nearest hundredth of a percent.)

51. What is the percent chance that a player selects 
exactly 3 winning numbers?

52. What is the percent chance that a player selects 
exactly 4 winning numbers?

53. What is the percent chance that a player selects all 
5 winning numbers?

54. What is the percent chance of winning?

55. How much less is a player’s chance of selecting 
3 winning numbers than the chance of selecting 
either 4 or 5 winning numbers?

ReAl-WORlD APPlICATIOnS

Use this data for the exercises that follow: In 2013, there were roughly 317 million citizens in the United States, and 
about 40 million were elderly (aged 65 and over).[35]

56. If you meet a U.S. citizen, what is the percent chance 
that the person is elderly? (Round to the nearest tenth 
of a percent.)

57. If you meet five U.S. citizens, what is the percent 
chance that exactly one is elderly? (Round to the 
nearest tenth of a percent.)

58. If you meet five U.S. citizens, what is the percent 
chance that three are elderly? (Round to the nearest 
tenth of a percent.)

59. If you meet five U.S. citizens, what is the percent 
chance that four are elderly? (Round to the nearest 
thousandth of a percent.)

60. It is predicted that by 2030, one in five U.S. citizens 
will be elderly. How much greater will the chances 
of meeting an elderly person be at that time? What 
policy changes do you foresee if these statistics hold 
true?

35 United States Census Bureau. http://www.census.gov

http://www.census.gov


1008 CHAPTER 11 seQuences, proBaBility and counting theory

CHAPTeR 11 ReVIeW

Key Terms
Addition Principle if one event can occur in m ways and a second event with no common outcomes can occur in n ways, 

then the first or second event can occur in m + n ways 

annuity an investment in which the purchaser makes a sequence of periodic, equal payments 

arithmetic sequence a sequence in which the difference between any two consecutive terms is a constant 

arithmetic series the sum of the terms in an arithmetic sequence 

binomial coefficient the number of ways to choose r objects from n objects where order does not matter; equivalent to   
C(n, r), denoted     n _ r     

binomial expansion the result of expanding (x + y)n by multiplying 

Binomial Theorem a formula that can be used to expand any binomial

combination a selection of objects in which order does not matter

common difference the difference between any two consecutive terms in an arithmetic sequence

common ratio the ratio between any two consecutive terms in a geometric sequence

complement of an event the set of outcomes in the sample space that are not in the event E 

diverge a series is said to diverge if the sum is not a real number

event any subset of a sample space

experiment an activity with an observable result

explicit formula a formula that defines each term of a sequence in terms of its position in the sequence

finite sequence a function whose domain consists of a finite subset of the positive integers {1, 2, … n} for some positive 
integer n 

Fundamental Counting Principle if one event can occur in m ways and a second event can occur in n ways after the first 
event has occurred, then the two events can occur in m × n ways; also known as the Multiplication Principle 

geometric sequence a sequence in which the ratio of a term to a previous term is a constant

geometric series the sum of the terms in a geometric sequence

index of summation in summation notation, the variable used in the explicit formula for the terms of a series and written 
below the sigma with the lower limit of summation

infinite sequence a function whose domain is the set of positive integers

infinite series the sum of the terms in an infinite sequence

lower limit of summation the number used in the explicit formula to find the first term in a series

Multiplication Principle if one event can occur in m ways and a second event can occur in n ways after the first event has 
occurred, then the two events can occur in m × n ways; also known as the Fundamental Counting Principle 

mutually exclusive events events that have no outcomes in common

n factorial the product of all the positive integers from 1 to n 

nth partial sum the sum of the first n terms of a sequence 

nth term of a sequence a formula for the general term of a sequence

outcomes the possible results of an experiment 

permutation a selection of objects in which order matters 

probability a number from 0 to 1 indicating the likelihood of an event 

probability model a mathematical description of an experiment listing all possible outcomes and their associated 
probabilities 
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recursive formula a formula that defines each term of a sequence using previous term(s ) 

sample space the set of all possible outcomes of an experiment 

sequence a function whose domain is a subset of the positive integers 

series the sum of the terms in a sequence 

summation notation a notation for series using the Greek letter sigma; it includes an explicit formula and specifies the 
first and last terms in the series 

term a number in a sequence 

union of two events the event that occurs if either or both events occur 

upper limit of summation the number used in the explicit formula to find the last term in a series 

Key equations
 0! = 1
Formula for a factorial 1! = 1 
 n!= n(n − 1)(n − 2) ⋯ (2)(1), for n ≥ 2 

recursive formula for nth term of an arithmetic sequence an = an −1 + d; n ≥ 2 

explicit formula for nth term of an arithmetic sequence an = a1 + d(n − 1) 

recursive formula for nth term of a geometric sequence an = ran − 1, n ≥ 2 

explicit formula for nth term of a geometric sequence an = a1r n −1

sum of the first n terms of an arithmetic series Sn =   
n(a1+ an) _ 

2
   

sum of the first n terms of a geometric series Sn =   
a1(1 − rn)

 _________ 1 − r  , r ≠1

sum of an infinite geometric series with −1 < r < 1 Sn =   
a1 _ 

1 − r
  , r ≠ 1 

number of permutations of n distinct objects taken r at a time P(n, r) =   n! _ 
(n − r)!

  

number of combinations of n distinct objects taken r at a time C(n, r) =   n! _ 
r!(n − r)!

  

number of permutations of n non-distinct objects   n! _ 
r1!r2! … rk!

  

Binomial Theorem (x + y)n =  ∑ 
k – 0

  
n

      n _ 
k

      x n − ky k  

(r + 1)th term of a binomial expansion     n _ r    xn − ryr 

probability of an event with equally likely outcomes P(E)=   n(E) ____ 
n(S)

   

probability of the union of two events P(E ∪ F) = P(E) + P(F) − P(E ∩ F) 

probability of the union of mutually exclusive events P(E ∪ F) = P(E) + P(F) 

probability of the complement of an event P(E ') = 1 − P(E) 
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Key Concepts

11.1 Sequences and Their Notations 
•	 A sequence is a list of numbers, called terms, written in a specific order. 

•	 Explicit formulas define each term of a sequence using the position of the term. See Example 1, Example 2, and 
Example 3. 

•	 An explicit formula for the nth term of a sequence can be written by analyzing the pattern of several terms. See Example 4. 

•	 Recursive formulas define each term of a sequence using previous terms. 

•	 Recursive formulas must state the initial term, or terms, of a sequence. 

•	 A set of terms can be written by using a recursive formula. See Example 5 and Example 6. 

•	 A factorial is a mathematical operation that can be defined recursively. 

•	 The factorial of n is the product of all integers from 1 to n See Example 7. 

11.2 Arithmetic Sequences 
•	 An arithmetic sequence is a sequence where the difference between any two consecutive terms is a constant. 

•	 The constant between two consecutive terms is called the common difference. 

•	 The common difference is the number added to any one term of an arithmetic sequence that generates the subsequent 
term. See Example 1. 

•	 The terms of an arithmetic sequence can be found by beginning with the initial term and adding the common difference 
repeatedly. See Example 2 and Example 3. 

•	 A recursive formula for an arithmetic sequence with common difference d is given by an = an − 1 + d, n ≥ 2. See 
Example 4. 

•	 As with any recursive formula, the initial term of the sequence must be given. 

•	 An explicit formula for an arithmetic sequence with common difference d is given by an = a1 + d(n − 1). See Example 5. 

•	 An explicit formula can be used to find the number of terms in a sequence. See Example 6. 

•	 In application problems, we sometimes alter the explicit formula slightly to an = a0 + dn. See Example 7. 

11.3 Geometric Sequences 
•	 A geometric sequence is a sequence in which the ratio between any two consecutive terms is a constant. 

•	 The constant ratio between two consecutive terms is called the common ratio. 

•	 The common ratio can be found by dividing any term in the sequence by the previous term. See Example 1. 

•	 The terms of a geometric sequence can be found by beginning with the first term and multiplying by the common 
ratio repeatedly. See Example 2 and Example 4. 

•	 A recursive formula for a geometric sequence with common ratio r is given by an = ran − 1 for n ≥ 2 . 

•	 As with any recursive formula, the initial term of the sequence must be given. See Example 3. 

•	 An explicit formula for a geometric sequence with common ratio r is given by an = a1r
 n − 1. See Example 5. 

•	 In application problems, we sometimes alter the explicit formula slightly to an = a0r n. See Example 6. 

11.4 Series and Their Notations 
•	 The sum of the terms in a sequence is called a series. 

•	 A common notation for series is called summation notation, which uses the Greek letter sigma to represent the sum. 
See Example 1. 

•	 The sum of the terms in an arithmetic sequence is called an arithmetic series. 

•	 The sum of the first n terms of an arithmetic series can be found using a formula. See Example 2 and Example 3. 

•	 The sum of the terms in a geometric sequence is called a geometric series. 

•	 The sum of the first n terms of a geometric series can be found using a formula. See Example 4 and Example 5. 

•	 The sum of an infinite series exists if the series is geometric with −1 < r < 1. 
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•	 If the sum of an infinite series exists, it can be found using a formula. See Example 6, Example 7, and Example 8. 

•	 An annuity is an account into which the investor makes a series of regularly scheduled payments. The value of an 
annuity can be found using geometric series. See Example 9. 

11.5 Counting Principles 
•	 If one event can occur in m ways and a second event with no common outcomes can occur in n ways, then the first 

or second event can occur in m + n ways. See Example 1. 

•	 If one event can occur in m ways and a second event can occur in n ways after the first event has occurred, then the 
two events can occur in m × n ways. See Example 2. 

•	 A permutation is an ordering of n objects. 

•	 If we have a set of n objects and we want to choose r objects from the set in order, we write P(n, r). 

•	 Permutation problems can be solved using the Multiplication Principle or the formula for P(n, r). See Example 3 and 
Example 4. 

•	 A selection of objects where the order does not matter is a combination. 

•	 Given n distinct objects, the number of ways to select r objects from the set is C (n, r) and can be found using a 
formula. See Example 5. 

•	 A set containing n distinct objects has 2n subsets. See Example 6. 

•	 For counting problems involving non-distinct objects, we need to divide to avoid counting duplicate permutations. 
See Example 7. 

11.6 Binomial Theorem 

•	     n _ r     is called a binomial  coefficient and is equal to C (n, r). See Example 1.

•	 The Binomial Theorem allows us to expand binomials without multiplying. See Example 2. 

•	 We can find a given term of a binomial expansion without fully expanding the binomial. See Example 3. 

11.7 Probability 
•	 Probability is always a number between 0 and 1, where 0 means an event is impossible and 1 means an event is 

certain. 

•	 The probabilities in a probability model must sum to 1. See Example 1. 

•	 When the outcomes of an experiment are all equally likely, we can find the probability of an event by dividing the 
number of outcomes in the event by the total number of outcomes in the sample space for the experiment. See 
Example 2. 

•	 To find the probability of the union of two events, we add the probabilities of the two events and subtract the 
probability that both events occur simultaneously. See Example 3. 

•	 To find the probability of the union of two mutually exclusive events, we add the probabilities of each of the events. 
See Example 4. 

•	 The probability of the complement of an event is the difference between 1 and the probability that the event occurs. 
See Example 5. 

•	 In some probability problems, we need to use permutations and combinations to find the number of elements in 
events and sample spaces. See Example 6. 
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CHAPTeR 11 ReVIeW exeRCISeS

SeQUenCeS AnD THeIR nOTATIOn

1. Write the first four terms of the sequence defined by 
the recursive formula a1 = 2, an = an − 1 + n.

2. Evaluate   6! ________ (5 − 3)!3!  .

3. Write the first four terms of the sequence defined by 
the explicit formula an = 10n + 3. 

4. Write the first four terms of the sequence defined by 
the explicit formula an =   n! ________ n(n + 1).   

ARITHMeTIC SeQUenCeS 

5. Is the sequence   4 _ 7  ,   47 _ 
21

  ,   82 _ 
21

  ,   39 _ 7  , ... arithmetic? If so, 

find the common difference. 

6. Is the sequence 2, 4, 8, 16, ... arithmetic? If so, find 
the common difference.

7. An arithmetic sequence has the first term a1 = 18 
and common difference d = −8. What are the first 
five terms?

8. An arithmetic sequence has terms a3 = 11.7 and  
a8 = −14.6. What is the first term?

9. Write a recursive formula for the arithmetic 
sequence −20, − 10, 0,10,… 

10. Write a recursive formula for the arithmetic sequence 
0, −  1 _ 

2
  , −1, −  3 _ 

2
  , … , and then find the 31st term.

11. Write an explicit formula for the arithmetic 

sequence   7 _ 
8

  ,   29 _ 
24

  ,   37 _ 
24

  ,   15 _ 
8

  , …

12. How many terms are in the finite arithmetic 
sequence 12, 20, 28, … , 172?

GeOMeTRIC SeQUenCeS 

13. Find the common ratio for the geometric sequence 
2.5, 5, 10, 20, … 

14. Is the sequence 4, 16, 28, 40, … geometric? If so find 
the common ratio. If not, explain why. 

15. A geometric sequence has terms a7 = 16,384 and 
a9 = 262,144. What are the first five terms? 

16. A geometric sequence has the first term a1 = −3 and 

common ratio r =   1 _ 
2

  . What is the 8th term? 

17. What are the first five terms of the geometric 
sequence a1 = 3, an = 4 ⋅ an − 1? 

18. Write a recursive formula for the geometric 

sequence 1,   1 _ 
3

  ,   1 _ 
9

  ,   1 _ 
27

  , …

19. Write an explicit formula for the geometric sequence 

−  1 _ 5  , −  1 _ 
15

  , −  1 _ 45  , −  1 _ 
135

  , …

20. How many terms are in the finite geometric 

sequence −5, −  5 _ 
3

  , −  5 _ 
9

  , …, −   5 ______ 59,049  ?

SeRIeS AnD THeIR nOTATIOn 

21. Use summation notation to write the sum of terms  
  1 _ 
2

  m + 5 from m = 0 to m = 5. 
22. Use summation notation to write the sum that 

results from adding the number 13 twenty times. 

23. Use the formula for the sum of the first n terms of an 
arithmetic series to find the sum of the first eleven 
terms of the arithmetic series 2.5, 4, 5.5, … . 

24. A ladder has 15 tapered rungs, the lengths of which 
increase by a common difference. The first rung is 
5 inches long, and the last rung is 20 inches long. 
What is the sum of the lengths of the rungs? 
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25. Use the formula for the sum of the first n terms of a 
geometric series to find S9 for the series 12, 6, 3,   3 __ 2  , … 

26. The fees for the first three years of a hunting club 
membership are given in Table 1. If fees continue to 
rise at the same rate, how much will the total cost be 
for the first ten years of membership?

Year Membership Fees

1 $1500

2 $1950

3  $2535
Table 1

27. Find the sum of the infinite geometric series  

∑ 
k −1

  
∞

   45 ⋅    −  1 __ 
3

      
k = 1

 . 

28. A ball has a bounce-back ratio   3 _ 5   of the height of 

the previous bounce. Write a series representing the 
total distance traveled by the ball, assuming it was 
initially dropped from a height of 5 feet. What is 
the total distance? (Hint: the total distance the ball 
travels on each bounce is the sum of the heights of 
the rise and the fall.) 

29. Alejandro deposits $80 of his monthly earnings 
into an annuity that earns 6.25% annual interest, 
compounded monthly. How much money will he 
have saved after 5 years? 

30. The twins Sarah and Scott both opened retirement 
accounts on their 21st birthday. Sarah deposits 
$4,800.00 each year, earning 5.5% annual interest, 
compounded monthly. Scott deposits $3,600.00 each 
year, earning 8.5% annual interest, compounded 
monthly. Which twin will earn the most interest by 
the time they are 55 years old? How much more?

COUnTInG PRInCIPleS

31. How many ways are there to choose a number 
from the set { −10, −6, 4, 10, 12, 18, 24, 32} that is 
divisible by either 4 or 6?

32. In a group of 20 musicians, 12 play piano, 7 play 
trumpet, and 2 play both piano and trumpet. How 
many musicians play either piano or trumpet?

33. How many ways are there to construct a 4-digit code 
if numbers can be repeated?

34. A palette of water color paints has 3 shades of green, 
3 shades of blue, 2 shades of red, 2 shades of yellow, 
and 1 shade of black. How many ways are there to 
choose one shade of each color?

35. Calculate P(18, 4). 36. In a group of 5 freshman, 10 sophomores, 3 juniors, 
and 2 seniors, how many ways can a president, vice 
president, and treasurer be elected?

37. Calculate C(15, 6). 38. A coffee shop has 7 Guatemalan roasts, 4 Cuban 
roasts, and 10 Costa Rican roasts. How many ways 
can the shop choose 2 Guatemalan, 2 Cuban, and 3 
Costa Rican roasts for a coffee tasting event?

39. How many subsets does the set {1, 3, 5, … , 99} 
have?

40. A day spa charges a basic day rate that includes use 
of a sauna, pool, and showers. For an extra charge, 
guests can choose from the following additional 
services: massage, body scrub, manicure, pedicure, 
facial, and straight-razor shave. How many ways are 
there to order additional services at the day spa?

41. How many distinct ways can the word 
DEADWOOD be arranged?

42. How many distinct rearrangements of the letters of 
the word DEADWOOD are there if the arrangement 
must begin and end with the letter D?
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BInOMIAl THeOReM

43. Evaluate the binomial coefficient     23 _ 
8

     . 44. Use the Binomial Theorem to expand    3x +   1 _ 
2

  y    
6
 .

45. Use the Binomial Theorem to write the first three 
terms of (2a + b)17.

46. Find the fourth term of (3a 2 − 2b)11 without fully 
expanding the binomial.

PROBABIlITY

For the following exercises, assume two die are rolled.

47. Construct a table showing the sample space. 48. What is the probability that a roll includes a 2?

49. What is the probability of rolling a pair? 50. What is the probability that a roll includes a 2 or 
results in a pair?

51. What is the probability that a roll doesn’t include a 2 
or result in a pair?

52. What is the probability of rolling a 5 or a 6?

53. What is the probability that a roll includes neither a 
5 nor a 6?

For the following exercises, use the following data: An elementary school survey found that 350 of the 500 students 
preferred soda to milk. Suppose 8 children from the school are attending a birthday party. (Show calculations and 
round to the nearest tenth of a percent.)

54. What is the percent chance that all the children 
attending the party prefer soda?

55. What is the percent chance that at least one of the 
children attending the party prefers milk?

56. What is the percent chance that exactly 3 of the 
children attending the party prefer soda?

57. What is the percent chance that exactly 3 of the 
children attending the party prefer milk?
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CHAPTeR 11 PRACTICe TeST

1. Write the first four terms of the sequence defined by 

the recursive formula a = −14, an =   
2 + an – 1 ________ 2   .

2. Write the first four terms of the sequence defined by 

the explicit formula an =   n
2 − n − 1 ________ n!  .

3. Is the sequence 0.3, 1.2, 2.1, 3, … arithmetic? If so 
find the common difference.

4. An arithmetic sequence has the first term a1 = −4 

and common difference d = −  4 _ 
3

  . What is the 6th term?

5. Write a recursive formula for the arithmetic 

sequence −2, −   7 _ 
2

  , − 5, −   13 _ 
2

   , … and then find the 

22nd term.

6. Write an explicit formula for the arithmetic sequence 
15.6, 15, 14.4, 13.8, … and then find the 32nd term.

7. Is the sequence − 2, − 1, −   1 _ 
2

  , −   1 _ 4  , … geometric? If 

so find the common ratio. If not, explain why.

8. What is the 11th term of the geometric 
sequence − 1.5, − 3, − 6, − 12, … ?

9. Write a recursive formula for the geometric 

sequence 1, −    1 _ 
2

  ,   1 _ 4  , −   1 _ 
8

  , …

10. Write an explicit formula for the geometric sequence 

4, −   4 _ 
3

  ,   4 _ 
9

  , −   4 _ 
27

  , …

11. Use summation notation to write the sum of terms 

3k 2 −   5 __ 
6

   k from k = −3 to k = 15.

12. A community baseball stadium has 10 seats in the 
first row, 13 seats in the second row, 16 seats in the 
third row, and so on. There are 56 rows in all. What is 
the seating capacity of the stadium?

13. Use the formula for the sum of the first n terms of a 

geometric series to find  ∑ 
k = 1

  
7

  −0.2 ⋅ (−5)k − 1 .

14. Find the sum of the infinite geometric series.  

∑ 
k = 1

  
∞

     1 _ 
3

   ⋅   −  1 _ 5      
k − 1

15. Rachael deposits $3,600 into a retirement fund 
each year. The fund earns 7.5% annual interest, 
compounded monthly. If she opened her account 
when she was 20 years old, how much will she have 
by the time she’s 55? How much of that amount was 
interest earned?

16. In a competition of 50 professional ballroom dancers, 
22 compete in the fox-trot competition, 18 compete 
in the tango competition, and 6 compete in both the 
fox-trot and tango competitions. How many dancers 
compete in the foxtrot or tango competitions?

17. A buyer of a new sedan can custom order the car by 
choosing from 5 different exterior colors, 3 different 
interior colors, 2 sound systems, 3 motor designs, 
and either manual or automatic transmission. How 
many choices does the buyer have?

18. To allocate annual bonuses, a manager must choose 
his top four employees and rank them first to fourth. 
In how many ways can he create the “Top-Four” list 
out of the 32 employees?

19. A rock group needs to choose 3 songs to play at the 
annual Battle of the Bands. How many ways can 
they choose their set if have 15 songs to pick from?

20. A self-serve frozen yogurt shop has 8 candy toppings 
and 4 fruit toppings to choose from. How many ways 
are there to top a frozen yogurt?

21. How many distinct ways can the word 
EVANESCENCE be arranged if the anagram must 
end with the letter E?

22. Use the Binomial Theorem to expand      3 _ 
2

  x −   1 _ 
2

  y    
5
 .

23. Find the seventh term of    x2 −   1 __ 
2

      
13

 without fully 

expanding the binomial.
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For the following exercises, use the spinner in Figure 1.

Figure 1 

1

2

3

4

5

6

7

24. Construct a probability model showing each 
possible outcome and its associated probability. 
(Use the first letter for colors.)

25. What is the probability of landing on an odd 
number?

26. What is the probability of landing on blue? 27. What is the probability of landing on blue or an odd 
number?

28. What is the probability of landing on anything other 
than blue or an odd number?

29. A bowl of candy holds 16 peppermint, 14 
butterscotch, and 10 strawberry flavored candies. 
Suppose a person grabs a handful of 7 candies. What 
is the percent chance that exactly 3 are butterscotch? 
(Show calculations and round to the nearest tenth of 
a percent.)
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Introduction to Calculus

CHAPTeR OUTlIne

12.1 Finding limits: numerical and Graphical Approaches
12.2 Finding limits: Properties of limits
12.3 Continuity
12.4 Derivatives

Figure 1 jamaican sprinter Usain Bolt accelerates out of the blocks. (credit: nick Webb)

Introduction
The eight-time world champion and winner of six Olympic gold medals in sprinting, Usain Bolt has truly earned his 
nickname as the “fastest man on Earth.” Also known as the “lightning bolt,” he set the track on fire by running at a top 
speed of 27.79 mph—the fastest time ever recorded by a human runner.

Like the fastest land animal, a cheetah, Bolt does not run at his top speed at every instant. How then, do we approximate 
his speed at any given instant? We will find the answer to this and many related questions in this chapter.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Understand limit notation.

•	 Find a limit using a graph.

•	 Find a limit using a table.

12.1 FInDInG lIMITS: nUMeRICAl AnD GRAPHICAl APPROACHeS

Intuitively, we know what a limit is. A car can go only so fast and no faster. A trash can might hold 33 gallons and 
no more. It is natural for measured amounts to have limits. What, for instance, is the limit to the height of a woman? 
The tallest woman on record was Jinlian Zeng from China, who was 8 ft 1 in.[36] Is this the limit of the height to which 
women can grow? Perhaps not, but there is likely a limit that we might describe in inches if we were able to determine 
what it was.

To put it mathematically, the function whose input is a woman and whose output is a measured height in inches has 
a limit. In this section, we will examine numerical and graphical approaches to identifying limits.

Understanding limit notation
We have seen how a sequence can have a limit, a value that the sequence of terms moves toward as the number of terms 
increases. For example, the terms of the sequence

1,   1 _ 
2

  ,   1 _ 4  ,   1 _ 
8

   ...

gets closer and closer to 0. A sequence is one type of function, but functions that are not sequences can also have 
limits. We can describe the behavior of the function as the input values get close to a specific value. If the limit of a 
function f (x) = L, then as the input x gets closer and closer to a, the output y-coordinate gets closer and closer to L. 
We say that the output “approaches” L.

Figure 1 provides a visual representation of the mathematical concept of limit. As the input value x approaches a, the 
output value f (x) approaches L.

Figure 1 The output (y-coordinate) approaches L as the input (x-coordinate) approaches a.

We write the equation of a limit as
  lim    
x → a

   f(x) = L.

This notation indicates that as x approaches a both from the left of x = a and the right of x = a, the output value 
approaches L.

Consider the function
 f (x) =   x 2 − 6x − 7 __________ 

x − 7
  .

We can factor the function as shown.

 f (x) =    
 (x − 7) (x + 1)  ____________ 

  x − 7 
   Cancel like factors in numerator and denominator.

 f (x) = x + 1, x ≠ 7 Simplify.

Output Y
approaches L

Input x approaches a

x

f(x)

a

L

36 https://en.wikipedia.org/wiki/Human_height and http://en.wikipedia.org/wiki/List_of_tallest_people

https://en.wikipedia.org/wiki/Human_height
http://en.wikipedia.org/wiki/List_of_tallest_people
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Notice that x cannot be 7, or we would be dividing by 0, so 7 is not in the domain of the original function. In order to 
avoid changing the function when we simplify, we set the same condition, x ≠ 7, for the simplified function. We can 
represent the function graphically as shown in Figure 2.

Figure 2 Because 7 is not allowed as an input, there is no point at x = 7.

What happens at x = 7 is completely different from what happens at points close to x = 7 on either side. The notation

   lim    
x → 7

   f (x) = 8

indicates that as the input x approaches 7 from either the left or the right, the output approaches 8. The output can get 
as close to 8 as we like if the input is sufficiently near 7.

What happens at x = 7? When x = 7, there is no corresponding output. We write this as 

f (7) does not exist.

This notation indicates that 7 is not in the domain of the function. We had already indicated this when we wrote the 
function as

f (x) = x + 1, x ≠ 7.

Notice that the limit of a function can exist even when f (x) is not defined at x = a. Much of our subsequent work will 
be determining limits of functions as x nears a, even though the output at x = a does not exist.

the limit of a function 
A quantity L is the limit of a function f (x) as x approaches a if, as the input values of x approach a (but do not 
equal a), the corresponding output values of f (x) get closer to L. Note that the value of the limit is not affected by 
the output value of f (x) at a. Both a and L must be real numbers. We write it as

   lim    
x → a

   f (x) = L

Example 1 Understanding the Limit of a Function

For the following limit, define a, f (x), and L.
   lim    

x → 2
  (3x + 5) = 11

Solution First, we recognize the notation of a limit. If the limit exists, as x approaches a, we write

   lim    
x → a

   f (x) = L.

We are given
   lim    

x → 2
  (3x + 5) = 11

This means that a = 2, f (x) = 3x + 5, and L = 11.

Analysi s Recall that y = 3x + 5 is a line with no breaks. As the input values approach 2, the output values will get close 
to 11. This may be phrased with the equation   lim    

x → 2
  (3x + 5) = 11, which means that as x nears 2 (but is not exactly 2), the 

output of the function f (x) = 3x + 5 gets as close as we want to 3(2) + 5, or 11, which is the limit L, as we take values of 
x sufficiently near 2 but not at x = 2.

2

x

y

−1−1

−2

−2

1

3

3

21 4

4

5 6 7 8 9 10

5
6
7
8
9

10

f(x) = 
x2−6x−7

x−7
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Try It #1

For the following limit, define a, f (x), and L.

  lim    
x → 5

  (2x2 − 4) = 46

Understanding Left-Hand Limits and Right-Hand Limits

We can approach the input of a function from either side of a value—from the left or the right. Figure 3 shows the 
values of 

f (x) = x + 1, x ≠ 7 

as described earlier and depicted in Figure 2.

Values of x approach 7 from the left (x < 7) x = 7 Values of x approach 7 from the right (x > 7)
x 6.9 6.99 6.999 7 7.001 7.01 7.1

f (x) 7.9 7.99 7.999 Undefined 8.001 8.01 8.1

  
 Values of output approach the limit, 8 Values of output approach the limit, 8

Figure 3

Values described as “from the left” are less than the input value 7 and would therefore appear to the left of the value on 
a number line. The input values that approach 7 from the left in Figure 3 are 6.9, 6.99, and 6.999. The corresponding 
outputs are 7.9, 7.99, and 7.999. These values are getting closer to 8. The limit of values of f (x) as x approaches from 
the left is known as the left-hand limit. For this function, 8 is the left-hand limit of the function f (x) = x + 1, x ≠ 7 
as x approaches 7.

Values described as “from the right” are greater than the input value 7 and would therefore appear to the right of 
the value on a number line. The input values that approach 7 from the right in Figure 3 are 7.1, 7.01, and 7.001. The 
corresponding outputs are 8.1, 8.01, and 8.001. These values are getting closer to 8. The limit of values of f (x) as x 
approaches from the right is known as the right-hand limit. For this function, 8 is also the right-hand limit of the 
function f (x) = x + 1, x ≠ 7 as x approaches 7.

Figure 3 shows that we can get the output of the function within a distance of 0.1 from 8 by using an input within a 
distance of 0.1 from 7. In other words, we need an input x within the interval 6.9 < x < 7.1 to produce an output value 
of f (x) within the interval 7.9 < f (x) < 8.1.

We also see that we can get output values of f (x) successively closer to 8 by selecting input values closer to 7. In fact, 
we can obtain output values within any specified interval if we choose appropriate input values.

Figure 4 provides a visual representation of the left- and right-hand limits of the function. From the graph of f (x), we 
observe the output can get infinitesimally close to L = 8 as x approaches 7 from the left and as x approaches 7 from 
the right.

To indicate the left-hand limit, we write
   lim    

x → 7−
   f (x) = 8.

To indicate the right-hand limit, we write
   lim    

x → 7+
   f (x) = 8.

Figure 4 The left- and right-hand limits are the same for this function.
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left- and right-hand limits 
The left-hand limit of a function f (x) as x approaches a from the left is equal to L, denoted by

  lim    
x → a−

   f(x) = L.

The values of f (x) can get as close to the limit L as we like by taking values of x sufficiently close to a such that  
x < a and x ≠ a.

The right-hand limit of a function f (x), as x approaches a from the right, is equal to L, denoted by
  lim    
x → a+

   f(x) = L.

The values of f (x) can get as close to the limit L as we like by taking values of x sufficiently close to a but greater 
than a. Both a and L are real numbers.

Understanding Two-Sided Limits

In the previous example, the left-hand limit and right-hand limit as x approaches a are equal. If the left- and right-hand 
limits are equal, we say that the function f (x) has a two-sided limit as x approaches a. More commonly, we simply 
refer to a two-sided limit as a limit. If the left-hand limit does not equal the right-hand limit, or if one of them does 
not exist, we say the limit does not exist.

the two-sided limit of function as x approaches a 
The limit of a function f (x), as x approaches a, is equal to L, that is,

  lim    
x → a

   f(x) = L.
if and only if

  lim    
x → a−

   f(x) =   lim    
x → a+

   f(x)

In other words, the left-hand limit of a function f (x) as x approaches a is equal to the right-hand limit of the 
same function as x approaches a. If such a limit exists, we refer to the limit as a two-sided limit. Otherwise we 
say the limit does not exist.

Finding a limit Using a Graph
To visually determine if a limit exists as x approaches a, we observe the graph of the function when x is very near to 
x = a. In Figure 5 we observe the behavior of the graph on both sides of a.

x

y

y = f(x)

x < a x > a
a

f (x) = Llim
x a−

f (x) = Llim
x a+

L

Figure 5

To determine if a left-hand limit exists, we observe the branch of the graph to the left of x = a, but near x = a. This is 
where x < a. We see that the outputs are getting close to some real number L so there is a left-hand limit.

To determine if a right-hand limit exists, observe the branch of the graph to the right of x = a, but near x = a. This is 
where x > a. We see that the outputs are getting close to some real number L, so there is a right-hand limit.

If the left-hand limit and the right-hand limit are the same, as they are in Figure 5, then we know that the function has 
a two-sided limit. Normally, when we refer to a “limit,” we mean a two-sided limit, unless we call it a one-sided limit.

Finally, we can look for an output value for the function f (x) when the input value x is equal to a. The coordinate pair 
of the point would be (a, f (a)). If such a point exists, then f (a) has a value. If the point does not exist, as in Figure 5, 
then we say that f (a) does not exist.



CHAPTER 12 introduction to calculus1022

How To…
Given a function f (x), use a graph to find the limits and a function value as x approaches a.
1. Examine the graph to determine whether a left-hand limit exists.
2. Examine the graph to determine whether a right-hand limit exists.
3. If the two one-sided limits exist and are equal, then there is a two-sided limit—what we normally call a “limit.”
4. If there is a point at x = a, then f (a) is the corresponding function value.

Example 2 Finding a Limit Using a Graph

a. Determine the following limits and function value for the function f shown in Figure 6.
i.   lim    

x → 2−
  f (x)   ii.   lim    

x → 2+
  f (x)   iii.   lim    

x → 2
  f (x)   iv. f (2)

b. Determine the following limits and function value for the function f shown in Figure 7.
i.   lim    

x → 2−
  f (x)   ii.   lim    

x → 2+
  f (x)   iii.   lim    

x → 2
  f (x)   iv. f (2)
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Solution
a. Looking at Figure 6:

 i.   lim    
x → 2−

  f (x) = 8; when x < 2, but infinitesimally close to 2, the output values get close to y = 8.

 ii.   lim    
x → 2+

  f (x) = 3; when x > 2, but infinitesimally close to 2, the output values approach y = 3.

 iii.   lim    
x → 2

  f (x) does not exist because   lim    
x → 2−

  f (x) ≠   lim    
x → 2+

  f (x); the left- and right-hand limits are not equal.

 iv. f (2) = 3 because the graph of the function f passes through the point (2, f (2)) or (2, 3).

b. Looking at Figure 7:

 i.   lim    
x → 2−

  f (x) = 8; when x < 2 but infinitesimally close to 2, the output values approach y = 8.

 ii.   lim    
x → 2−

  f (x) = 8; when x > 2 but infinitesimally close to 2, the output values approach y = 8.

 iii.   lim    
x → 2

  f (x) = 8 because   lim    
x → 2−

  f (x) =  lim    
x → 2+

  f (x) = 8; the left and right-hand limits are equal.

 iv. f (2) = 4 because the graph of the function f passes through the point (2, f (2)) or (2, 4).

Try It #2
Using the graph of the function y = f (x) shown in Figure 8, estimate the following limits.

a.   lim    
x → 0−

  f (x) b.   lim    
x → 0+

  f (x) c.   lim    
x → 0

  f (x)
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d.   lim    
x → 2−

  f (x) e.   lim    
x → 2+

  f (x) f.   lim    
x → 2

  f (x)

g.   lim    
x → 4−

  f (x) h.   lim    
x → 4+

  f (x) i.   lim    
x → 4

  f (x)
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Finding a limit Using a Table
Creating a table is a way to determine limits using numeric information. We create a table of values in which the 
input values of x approach a from both sides. Then we determine if the output values get closer and closer to some 
real value, the limit L.

Let’s consider an example using the following function:

    lim    
x → 5

      x3 − 125 _ x − 5     
To create the table, we evaluate the function at values close to x = 5. We use some input values less than 5 and some 
values greater than 5 as in Figure 9. The table values show that when x > 5 but nearing 5, the corresponding output 
gets close to 75. When x > 5 but nearing 5, the corresponding output also gets close to 75.

x 4.9 4.99 4.999 5 5.001 5.01 5.1

f (x) 73.51 74.8501 74.985001 Undefined 75.015001 75.1501 76.51
  
   lim    

x → 5−
  f (x) = 75   lim    

x → 5+
  f (x) = 75

Figure 9

Because
   lim    

x → 5−
  f (x) = 75 =   lim    

x → 5+
  f (x),

then
   lim    

x → 5
  f (x) = 75.

Remember that f (5) does not exist.

How To…
Given a function f, use a table to find the limit as x approaches a and the value of f (a), if it exists.

1. Choose several input values that approach a from both the left and right. Record them in a table.
2. Evaluate the function at each input value. Record them in the table.
3. Determine if the table values indicate a left-hand limit and a right-hand limit.
4. If the left-hand and right-hand limits exist and are equal, there is a two-sided limit.
5. Replace x with a to find the value of f (a).

Example 3 Finding a Limit Using a Table

Numerically estimate the limit of the following expression by setting up a table of values on both sides of the limit.

   lim    
x → 0

      5sin(x)
 _ 

3x
     

Solution We can estimate the value of a limit, if it exists, by evaluating the function at values near x = 0. We cannot 
find a function value for x = 0 directly because the result would have a denominator equal to 0, and thus would be 
undefined.
 f (x) =   

5sin(x)
 _ 

3x
  

We create Figure 10 by choosing several input values close to x = 0, with half of them less than x = 0 and half of them 
greater than x = 0. Note that we need to be sure we are using radian mode. We evaluate the function at each input 
value to complete the table.

The table values indicate that when x < 0 but approaching 0, the corresponding output nears   5 _ 
3

  .

When x > 0 but approaching 0, the corresponding output also nears   5 _ 
3

  .
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x −0.1 −0.01 −0.001 0 0.001 0.01 0.1

f (x) 1.66389 1.666639 1.666666 Undefined 1.666666 1.666639 1.66389

  

   lim    
x → 0−

   f (x) =   5 _ 
3

     lim    
x → 0+

   f (x) =   5 __ 3  
Figure 10

Because
   lim    

x → 0−
   f (x) =   5 _ 

3
   =   lim    

x → 0+
  f (x),

then

   lim    
x → 0−

   f (x) =   5 _ 
3

   .

Q & A…
Is it possible to check our answer using a graphing utility?

Yes. We previously used a table to find a limit of 75 for the function f (x) =   x
3 − 125 _ x − 5   as x approaches 5. To check, we 

graph the function on a viewing window as shown in Figure 11. A graphical check shows both branches of the graph of 
the function get close to the output 75 as x nears 5. Furthermore, we can use the ‘trace’ feature of a graphing calculator. 
By approaching x = 5 we may numerically observe the corresponding outputs getting close to 75.

Figure 11

Try It #3

Numerically estimate the limit of the following function by making a table:

  lim    
x → 0

      20sin(x)
 _ 4x     

Q & A…
Is one method for determining a limit better than the other?

No. Both methods have advantages. Graphing allows for quick inspection. Tables can be used when graphical utilities 
aren’t available, and they can be calculated to a higher precision than could be seen with an unaided eye inspecting 
a graph.

Example 4 Using a Graphing Utility to Determine a Limit

With the use of a graphing utility, if possible, determine the left- and right-hand limits of the following function as x 
approaches 0. If the function has a limit as x approaches 0, state it. If not, discuss why there is no limit.

f (x) = 3sin     π _ x     

3

50

x

y

f
25
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100
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125

−2 −1−3−4−5

L = 75

a = 5
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Solution We can use a graphing utility to investigate the behavior of the graph close to x = 0. Centering around 
x = 0, we choose two viewing windows such that the second one is zoomed in closer to x = 0 than the first one. The 
result would resemble Figure 12 for [ − 2, 2] by [ − 3, 3].

x

y

f

−2

−4

2

4

Figure 12

The result would resemble Figure 13 for [−0.1, 0.1] by [−3, 3].

x

y

−0.1 0.1

−4

4

Figure 13 even closer to zero, we are even less able to distinguish any limits.

The closer we get to 0, the greater the swings in the output values are. That is not the behavior of a function with either 
a left-hand limit or a right-hand limit. And if there is no left-hand limit or right-hand limit, there certainly is no limit 
to the function f (x) as x approaches 0.

We write

  lim    
x → 0−

    3sin     π _ x         does not exist.

  lim    
x → 0+

    3sin     π _ x         does not exist.

  lim    
x → 0

    3sin     π _ x         does not exist.

Try It #4

Numerically estimate the following limit:   lim    
x → 0

    sin     2 _ x        .

Access these online resources for additional instruction and practice with finding limits.

•	 Introduction to limits (http://openstaxcollege.org/l/introtolimits)

•	 Formal Definition of a limit (http://openstaxcollege.org/l/formaldeflimit)

http://openstaxcollege.org/l/introtolimits
http://openstaxcollege.org/l/formaldeflimit
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12.1 SeCTIOn exeRCISeS

VeRBAl
1. Explain the difference between a value at x = a and 

the limit as x approaches a.
2. Explain why we say a function does not have a limit 

as x approaches a if, as x approaches a, the left-hand 
limit is not equal to the right-hand limit.

GRAPHICAl
For the following exercises, estimate the functional values and the limits from the graph of the function f provided 
in Figure 14.
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3.   lim     
x → −2−

  f (x) 4.   lim     
x → −2+

  f (x)

5.   lim    
x → −2

  f (x) 6. f (−2)

7.   lim     
x → −1−

  f (x) 8.   lim    
x → 1+

  f (x)

9.   lim    
x → 1

  f (x) 10. f (1)

11.   lim    
x → 4−

  f (x) 12.   lim    
x → 4+

  f (x)

13.   lim    
x → 4

  f (x) 14. f (4)

For the following exercises, draw the graph of a function from the functional values and limits provided.

15.   lim    
x → 0−

  f (x) = 2,   lim    
x → 0+

  f (x) = −3,   lim    
x → 2

  f (x) = 2,  

f (0) = 4, f (2) = −1, f (−3) does not exist.

16.   lim    
x → 2−

  f (x) = 0,   lim    
x → 2+

  = −2,   lim    
x → 0

  f (x) = 3,  

f (2) = 5, f (0)

17.   lim    
x → 2−

  f (x) = 2,   lim    
x → 2+

  = −3,   lim    
x → 0

  f (x) = 5, f (0) = 1,  

f (1) = 0

18.   lim    
x → 3−

  f (x) = 0,   lim    
x → 3+

  f (x) = 5,   lim    
x → 5

  f (x) = 0, f (5) = 4,  

f (3) does not exist.

19.   lim    
x → 4

  f (x)= 6,   lim    
x → 6+

  f (x) = −1,   lim    
x → 0

  f (x) = 5, f (4) = 6,  

f  (2) = 6

20.   lim    
x → −3

  f (x) = 2,   lim    
x → 1+

  f (x) = −2,   lim    
x → 3

  f (x) = − 4,  

f (−3) = 0, f (0) = 0

21.   lim    
x → π

   f (x) = π 2,   lim    
x → −π

   f (x) =   π _ 
2

  ,   lim    
x → 1−

  f (x) = 0,  

f (π) =  √
—
 2  , f (0) does not exist.

For the following exercises, use a graphing calculator to determine the limit to 5 decimal places as x approaches 0.

22. f (x) =  (1 + x)   
1
 _ x   23. g (x) =  (1 + x)   

2
 _ x   24. h (x) =  (1 + x)   

3
 _ x   25. i(x) =  (1 + x)   

4
 _ x   

26. j(x) =  (1 + x)   
5
 _ x   27. Based on the pattern you observed in the exercises above, make a conjecture as to 

the limit of f (x) =  (1 + x)   
6
 _ x   , g (x) =  (1 + x)   

7
 _ x   , and h(x) =  (1 + x)   

n
 _ x   .

For the following exercises, use a graphing utility to find graphical evidence to determine the left- and right-hand 
limits of the function given as x approaches a. If the function has a limit as x approaches a, state it. If not, discuss why 
there is no limit.

28. (x) =     | x |  − 1,   if x ≠ 1
           

x 3,           if x = 1
      a = 1 29. (x) =      1 _____ 

x + 1
  ,      if x = −2

             
(x + 1)2,  if x ≠ −2

      a = −2
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nUMeRIC

For the following exercises, use numerical evidence to determine whether the limit exists at x = a. If not, describe the 
behavior of the graph of the function near x = a. Round answers to two decimal places.

30. f (x) =   x
2 − 4x _ 

16 − x 2
  ; a = 4 31. f (x) =   x 2 − x − 6 _ 

x 2 − 9
  ; a = 3

32. f (x) =   x 2 − 6x − 7 _ 
x 2 − 7x

  ; a = 7 33. f (x) =   x 2 − 1 _ 
x 2 − 3x + 2

  ; a = 1

34. f (x) =   1 − x 2 _ 
x 2 − 3x + 2

  ; a = 1 35. f (x) =   10 − 10x2
 _ 

x 2 − 3x + 2
  ; a = 1

36. f (x) =   x __  
6x 2 − 5x − 6

  ; a =   3 __ 
2

  37. f (x) =   x __  
4x 2 + 4x + 1

  ; a = −   1 __ 
2

  

38. f (x) =   2 _ x − 4  ; a = 4

For the following exercises, use a calculator to estimate the limit by preparing a table of values. If there is no limit, 
describe the behavior of the function as x approaches the given value.

39.   lim    
x → 0

    7tanx _ 
3x

  40.   lim    
x → 4

    x2
 _ x − 4  41.   lim    

x → 0
    2sinx _ 4tanx  

For the following exercises, use a graphing utility to find numerical or graphical evidence to determine the left and 
right-hand limits of the function given as x approaches a. If the function has a limit as x approaches a, state it. If not, 
discuss why there is no limit.

42.   lim    
x → 0

   e  e 
  1 _ x    43.   lim    

x → 0
   e  e −   1 __ x 2    44.   lim    

x → 0
    
 | x | 

 _ x  45.   lim    
x → −1

     
 | x + 1 | 

 _ 
x + 1

  

46.   lim    
x → 5

    
 | x − 5 | 

 _ 5 − x  47.   lim    
x → −1

    1 _ 
(x + 1)2

  48.   lim    
x → 1

    1 _ 
(x − 1)3

  49.   lim    
x → 0

    5 _ 

1 −  e   
2 _ x   
  

50. Use numerical and graphical evidence to compare and contrast the limits of two functions whose formulas 

appear similar: f (x) =     1 − x _ x     and g(x) =     1 + x _ x     as x approaches 0. Use a graphing utility, if possible, to 

determine the left- and right-hand limits of the functions f (x) and g(x) as x approaches 0. If the functions have 
a limit as x approaches 0, state it. If not, discuss why there is no limit.

exTenSIOnS

51. According to the Theory of Relativity, the mass m of 
a particle depends on its velocity v. That is 

m =   
 mo 

where mo is the mass when the particle is at rest and 
c is the speed of light. Find the limit of the mass, m, 
as v approaches c −.

52. Allow the speed of light, c, to be equal to 1.0. If the 
mass, m, is 1, what occurs to m as v → c? Using the 
values listed in Table 1, make a conjecture as to what 
the mass is as v approaches 1.00.

v m
0.5 1.15
0.9 2.29

0.95 3.20
0.99 7.09

0.999 22.36
0.99999 223.61

Table 1 

 √ 
_____

 1 −   v 2 __ c 2     
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Find the limit of a sum, a difference, and a product.

•	 Find the limit of a polynomial.

•	 Find the limit of a power or a root.

•	 Find the limit of a quotient.

12. 2 FInDInG lIMITS: PROPeRTIeS OF lIMITS

Consider the rational function

 f (x) =   x
2 − 6x − 7 __________ 

x − 7
  

The function can be factored as follows:

 f (x) =    
 (x − 7) (x + 1)  ____________ 

  x − 7 
  , which gives us f (x) = x + 1, x ≠ 7.

Does this mean the function f is the same as the function g(x) = x + 1?

The answer is no. Function f does not have x = 7 in its domain, but g does. Graphically, we observe there is a hole in 
the graph of f (x) at x = 7, as shown in Figure 1 and no such hole in the graph of g(x), as shown in Figure 2.
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x 2 − 6x − 7f (x) =
x − 7
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x

Figure 1 The graph of function f contains a break at x = 7  
and is therefore not continuous at x = 7.
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g(x) = x + 1

Figure 2 The graph of function g is continuous. 

So, do these two different functions also have different limits as x approaches 7?

Not necessarily. Remember, in determining a limit of a function as x approaches a, what matters is whether the output 
approaches a real number as we get close to x = a. The existence of a limit does not depend on what happens when x 
equals a.

Look again at Figure 1 and Figure 2. Notice that in both graphs, as x approaches 7, the output values approach 8. This 
means

  lim    
x → 7

  f (x) =   lim    
x → 7

  g(x).

Remember that when determining a limit, the concern is what occurs near x = a, not at x = a. In this section, we will 
use a variety of methods, such as rewriting functions by factoring, to evaluate the limit. These methods will give us 
formal verification for what we formerly accomplished by intuition.



SECTION 12.2 Finding limits: properties oF limits 1029

Finding the limit of a Sum, a Difference, and a Product
Graphing a function or exploring a table of values to determine a limit can be cumbersome and time-consuming. 
When possible, it is more efficient to use the properties of limits, which is a collection of theorems for finding limits.

Knowing the properties of limits allows us to compute limits directly. We can add, subtract, multiply, and divide the 
limits of functions as if we were performing the operations on the functions themselves to find the limit of the result. 
Similarly, we can find the limit of a function raised to a power by raising the limit to that power. We can also find the 
limit of the root of a function by taking the root of the limit. Using these operations on limits, we can find the limits 
of more complex functions by finding the limits of their simpler component functions.

properties of limits 
Let a, k, A, and B represent real numbers, and f and g be functions, such that   lim    

x → a
  f (x) = A and   lim    

x → a
  g(x) = B. For 

limits that exist and are finite, the properties of limits are summarized in Table 1.

Constant, k   lim    
x → a

  k = k

Constant times a function   lim    
x → a

  [k ⋅ f (x)] = k   lim    
x → a

   f (x) = kA

Sum of functions   lim    
x → a

  [f (x) + g(x)] =   lim    
x → a

  f (x) +   lim    
x → a

  g(x) = A + B

Difference of functions   lim    
x → a

  [f (x) − g(x)] =   lim    
x → a

  f (x) −   lim    
x → a

  g(x) = A − B

Product of functions   lim    
x → a

  [f (x) ⋅ g(x)] =   lim    
x → a

  f (x) ⋅   lim    
x → a

  g(x) = A ⋅ B

Quotient of functions   lim    
x → a

    f (x) ____ 
g(x)

   =   
  lim    
x → a

  f (x)
 _________   lim    

x → a
  g(x)   =   A _ 

B
  , B ≠ 0

Function raised to an exponent   lim    
x → a

 [ f (x)]n =     lim    
x → ∞

  f (x)   n = An,  
where n is a positive integer

nth root of a function, where  
n is a positive integer   lim    

x → a
    n √

—
 f (x)   =   

n
 √
—

   lim    
x → a

  [ f (x)]   =   n √
—

 A  

Polynomial function   lim    
x → a

  p(x) = p(a)

Table 1 

Example 1 Evaluating the Limit of a Function Algebraically

Evaluate   lim    
x → 3

  (2x + 5).

Solution   lim    
x → 3

 (2x + 5) =   lim    
x → 3

 (2x) +   lim    
x → 3

  (5) Sum of functions property

 = 2  lim    
x → 3

 (x) +   lim    
x → 3

  (5) Constant times a function property

 = 2(3) + 5   Evaluate

 = 11

Try It #1

Evaluate the following limit:   lim     
x → −12

 (−2x + 2).
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Finding the limit of a Polynomial
Not all functions or their limits involve simple addition, subtraction, or multiplication. Some may include polynomials. 
Recall that a polynomial is an expression consisting of the sum of two or more terms, each of which consists of a 
constant and a variable raised to a nonnegative integral power. To find the limit of a polynomial function, we can find 
the limits of the individual terms of the function, and then add them together. Also, the limit of a polynomial function 
as x approaches a is equivalent to simply evaluating the function for a.

How To…
Given a function containing a polynomial, find its limit.

1. Use the properties of limits to break up the polynomial into individual terms.
2. Find the limits of the individual terms.
3. Add the limits together.
4. Alternatively, evaluate the function for a.

Example 2 Evaluating the Limit of a Function Algebraically

Evaluate   lim    
x → 3

 (5x2).

Solution
   lim    

x → 3
 (5x2) = 5   lim    

x → 3
 (x2) Constant times a function property

 = 5(32) Function raised to an exponent property

 = 45

Try It #2

Evaluate   lim    
x → 4

 (x3 − 5).

Example 3 Evaluating the Limit of a Polynomial Algebraically

Evaluate   lim    
x → 5

 (2x3 − 3x + 1).

Solution
   lim    

x → 5
 (2x3 − 3x + 1) =   lim    

x → 5
 (2x3) −   lim    

x → 5
 (3x) +   lim    

x → 5
 (1) Sum of functions

 = 2  lim    
x → 5

 (x3) − 3  lim    
x → 5

 (x) +   lim    
x → 5

 (1) Constant times a function

 = 2(53) − 3(5) + 1 Function raised to an exponent

 = 236 Evaluate

Try It #3

Evaluate the following limit:   lim    
x → −1

 (x4 − 4x3 + 5).

Finding the limit of a Power or a Root
When a limit includes a power or a root, we need another property to help us evaluate it. The square of the limit of a 
function equals the limit of the square of the function; the same goes for higher powers. Likewise, the square root of 
the limit of a function equals the limit of the square root of the function; the same holds true for higher roots.

Example 4 Evaluating a Limit of a Power

Evaluate   lim    
x → 2

 (3x + 1)5.
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Solution We will take the limit of the function as x approaches 2 and raise the result to the 5th power.

   lim    
x → 2

  (3x + 1) 5  =      lim    
x → 2

 (3x + 1)    5 

 =  (3(2) + 1) 5 
 =  7 5 
 = 16,807

Try It #4
Evaluate the following limit:   lim    

x → −4
 (10x + 36)3.

Q & A…
If we can’t directly apply the properties of a limit, for example in   lim    

x → 2
     x2 + 6x + 8 __________ 

x − 2
     , can we still determine the 

limit of the function as x approaches a?
Yes. Some functions may be algebraically rearranged so that one can evaluate the limit of a simplified equivalent form 
of the function.

Finding the limit of a Quotient
Finding the limit of a function expressed as a quotient can be more complicated. We often need to rewrite the function 
algebraically before applying the properties of a limit. If the denominator evaluates to 0 when we apply the properties 
of a limit directly, we must rewrite the quotient in a different form. One approach is to write the quotient in factored 
form and simplify.

How To…
Given the limit of a function in quotient form, use factoring to evaluate it.

1. Factor the numerator and denominator completely.
2. Simplify by dividing any factors common to the numerator and denominator.
3. Evaluate the resulting limit, remembering to use the correct domain.

Example 5 Evaluating the Limit of a Quotient by Factoring

Evaluate   lim    
x → 2

     x
2 − 6x + 8 __________ 

x − 2
     .

Solution Factor where possible, and simplify.

   lim    
x → 2

     x
2 − 6x + 8 __________ 

x − 2
      =   lim    

x → 2
      (x − 2)(x − 4)  ____________ 

x − 2
      Factor the numerator.

 =   lim    
x → 2

       (x − 2) (x − 4)  ____________ 
  x − 2 

      Cancel the common factors.

 =   lim    
x → 2

 (x − 4) Evaluate.

 = 2 − 4 = −2

Analysis When the limit of a rational function cannot be evaluated directly, factored forms of the numerator and 
denominator may simplify to a result that can be evaluated.
Notice, the function

 f (x) =   x
2 − 6x + 8 __________ 

x − 2
  

is equivalent to the function
 f (x) = x − 4, x ≠ 2.

Notice that the limit exists even though the function is not defined at x = 2.
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Try It #5

Evaluate the following limit:   lim    
x → 7

     x2 − 11x + 28 ____________ 
7 − x

     .
Example 6 Evaluating the Limit of a Quotient by Finding the LCD

Evaluate   lim    
x → 5

       
1 __ x   −   1 __ 

5
  
 ______ x − 5     .

Solution Find the LCD for the denominators of the two terms in the numerator, and convert both fractions to have 
the LCD as their denominator.

   lim    
x → 5

 
      

1 __ x   −   1 __ 
5

  
 ______ x − 5      =   lim    

x → 5
 
    5x     1 __ x   −   1 __ 

5
     
 __________ 5x(x − 5)      Multiply numerator and denominator by LCD.

 =   lim    
x → 5

 
        5x    1 __ 

x
      − 5x     1 __ 

5
       
  _________________     5x(x − 5)      Apply distributive property.

 =   lim    
x → 5

     5 − x ________ 
5x(x − 5)

      Simplify.

 =   lim    
x → 5

     −1(x − 5) _________ 
5x(x − 5)

      Factor the numerator

 =   lim    
x → 5

 −   1 _ 5x   Cancel out like fractions

 = −   1 ____ 
5(5)

   Evaluate for x = 5

 = −   1 ___ 
25

  

Analysis When determining the limit of a rational function that has terms added or subtracted in either the numerator 
or denominator, the first step is to find the common denominator of the added or subtracted terms; then, convert both 
terms to have that denominator, or simplify the rational function by multiplying numerator and denominator by the 
least common denominator. Then check to see if the resulting numerator and denominator have any common factors.

Try It #6

Evaluate   lim    
x → −5

 
      1 __ 

5
   +   1 __ x  

 ________ 
10 + 2x

     .

How To…
Given a limit of a function containing a root, use a conjugate to evaluate.

1. If the quotient as given is not in indeterminate     0 __ 
0

      form, evaluate directly.

2. Otherwise, rewrite the sum (or difference) of two quotients as a single quotient, using the least common denominator 
(LCD).

3. If the numerator includes a root, rationalize the numerator; multiply the numerator and denominator by the 
conjugate of the numerator. Recall that a ±  √

—
 b   are conjugates.

4. Simplify.
5. Evaluate the resulting limit.
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Example 7 Evaluating a Limit Containing a Root Using a Conjugate

Evaluate   lim    
x → 0

      √
—

 25 − x   − 5  __ x     .
Solution

   lim    
x → 0

      √
—

 25 − x   − 5  __ x      =   lim    
x → 0

      √
—

 25 − x   − 5  __ x   ⋅     √
—

 25 − x   + 5  __  
 √
—

 25 − x   + 5
       Multiply numerator and denominator by the 

conjugate.

 =   lim    
x → 0

      (25 − x) − 25
  __  

  x   √
—

 25 − x   + 5   
         Multiply:    √

—
 25 − x   − 5    ⋅    √

—
 25 − x   + 5     

       = (25 − x) − 25.

 =   lim    
x → 0

      
−x __  

  x   √
—

 25 − x   + 5   
        Combine like terms.

 =   lim    
x → 0

      
−x __  

  x   √
—

 25 − x   + 5   
        Simplify   −x ___ 

x
   = −1.

 =    −1 __  

 √
—

 25 − 0   + 5
    Evaluate.

 =    −1 _____ 
5 + 5

   = −   1 ___ 
10

  

Analysi s When determining a limit of a function with a root as one of two terms where we cannot evaluate directly, 
think about multiplying the numerator and denominator by the conjugate of the terms.

Try It #7

Evaluate the following limit:   lim    
h → 0

       √
—

 16 − h   − 4 ____________ 
h

     .

Example 8 Evaluating the Limit of a Quotient of a Function by Factoring

Evaluate   lim    
x → 4

      4 − x ________ 
 √

—
 x   − 2

     .
Solution

   lim    
x → 4

      4 − x _ 

 √
—
 x   − 2

      =   lim    
x → 4

           2 +  √
—
 x      2 −  √

—
 x          __  

 √
—
 x   − 2

     Factor.

 =   lim    
x → 4

           
 2 +  √

—
 x      2 −  √

—
 x          ___  

−  2 −  √
—

 x    
     Factor −1 out of the denominator. Simplify.

 =   lim    
x → 4

  −  2 +  √
—
 x     Evaluate.

 = −  2 +  √
—
 4     

 = −4

Analysi s Multiplying by a conjugate would expand the numerator; look instead for factors in the numerator. Four is a 
perfect square so that the numerator is in the form 

a2 − b2 
and may be factored as

(a + b)(a −b).
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Try It #8

Evaluate the following limit:   lim    
x → 3

      x − 3 _ 

 √
—
 x   −  √

—
 3  
     .

How To…
Given a quotient with absolute values, evaluate its limit.

1. Try factoring or finding the LCD.
2. If the limit cannot be found, choose several values close to and on either side of the input where the function is 

undefined.
3. Use the numeric evidence to estimate the limits on both sides.

Example 9 Evaluating the Limit of a Quotient with Absolute Values

Evaluate   lim    
x → 7

    
 | x − 7 | 

 _ x − 7  .

Solution The function is undefined at x = 7, so we will try values close to 7 from the left and the right.

Left-hand limit:   
 | 6.9 − 7 | 

 _ 
6.9 − 7

   =   
 | 6.99 − 7 | 

 _ 
6.99 − 7

   =   
 | 6.999 − 7 | 

 _ 
6.999 − 7

   = − 1

Right-hand limit:   
 | 7.1 − 7 | 

 _ 
7.1 − 7

   =   
 | 7.01 − 7 | 

 _ 
7.01 − 7

   =   
 | 7.001 − 7 | 

 _ 
7.001 − 7

   = 1

Since the left- and right-hand limits are not equal, there is no limit.

Try It #9

Evaluate   lim    
x → 6+

    6 − x _ 
 | x − 6 | 

  .

Access the following online resource for additional instruction and practice with properties of limits.

•	 Determine a limit Analytically (http://openstaxcollege.org/l/limitanalytic)

http://openstaxcollege.org/l/limitanalytic


SECTION 12.2 section exercises 1035

12.2 SeCTIOn exeRCISeS

VeRBAl

1. Give an example of a type of function f whose limit, 
as x approaches a, is f (a).

2. When direct substitution is used to evaluate the limit 
of a rational function as x approaches a and the 
result is f (a) =   0 _ 

0
  , does this mean that the limit of f 

does not exist?
3. What does it mean to say the limit of f (x), as x 

approaches c, is undefined?

AlGeBRAIC
For the following exercises, evaluate the limits algebraically.

4.   lim    
x → 0

 (3) 5.   lim    
x → 2

      −5x _ 
x2 − 1

     6.   lim    
x → 2

     x2 − 5x + 6 _ 
x + 2

     7.   lim    
x → 3

     x2 − 9 _ 
x − 3

     

8.   lim    
x → −1

     x2 − 2x − 3 _ 
x + 1

     9.   lim    
x →   3 __ 

2
  
     6x2 − 17x + 12  __ 

2x − 3
     10.   lim     

x → −   7 __ 
2

  
     8x2 + 18x − 35  __ 

2x + 7
     11.   lim    

x → 3
     x2 − 9 _  

x 2 − 5x + 6
     

12.   lim    
x → −3

     −7x4 − 21x3
  __  

−12x4 + 108x2
     13.   lim    

x → 3
     x2 + 2x − 3 _ 

x − 3
     14.   lim    

h → 0
     (3 + h)3 − 27

  __ 
h

     15.   lim    
h → 0

     (2 − h)3 − 8
 __ 

h
     

16.   lim    
h → 0

     (h + 3)2 − 9
 __ 

h
     17.   lim    

h → 0
      √

—
 5 − h   −  √

—
 5    __ 

h
     18.   lim    

x → 0
      √

—
 3 − x   −  √

—
 3    __ x     19.   lim    

x → 9
     x2 − 81 _ 

3 −  √
—
 x  
     

20.   lim    
x → 1

      √
—
 x   − x2
 _ 

1 −  √
—
 x  
     21.   lim    

x → 0
     

x __  
 √
—

 1 + 2x   − 1
     22.   lim    

x →   1 __ 
2

  
 23.   lim    

x → 4
     x3 − 64 _ 

x2 − 16
     

24.   lim    
x → 2−

      | x − 2 | 
 _ 

x − 2
     25.   lim    

x → 2+
      | x − 2 | 

 _ 
x − 2

     26.   lim    
x → 2

      | x − 2 | 
 _ 

x − 2
     27.   lim    

x → 4−
      | x − 4 | 

 _ 4 − x     

28.   lim    
x → 4+

      | x − 4 | 
 _ 4 − x     29.   lim    

x → 4
      | x − 4 | 

 _ 4 − x     30.   lim    
x → 2

     −8 + 6x − x2
  __ 

x − 2
     

For the following exercise, use the given information to evaluate the limits:   lim    
x → c

  f (x) = 3,   lim    
x → c

  g(x) = 5

31.   lim    
x → c

    2 f (x) +  √
—

 g(x)     32.   lim    
x → c

    3 f (x) +  √
—

 g(x)     33.   lim    
x → c

    
f (x)

 _ 
g(x)

  

For the following exercises, evaluate the following limits.

34.   lim    
x → 2

 cos(πx) 35.   lim    
x → 2

 sin(πx) 36.   lim    
x → 2

 sin    π _ x    

37. f (x) =    2x2 + 2x + 1, x ≤ 0
            

x − 3,               x > 0
    ;   lim    

x → 0+
  f (x) 38. f (x) =    2x2 + 2x + 1, x ≤ 0

            
x − 3,               x > 0

    ;   lim    
x → 0−

  f (x)

39. f (x) =    2x2 + 2x + 1, x ≤ 0
            

x − 3,               x > 0
    ;   lim    

x → 0
  f (x) 40.   lim    

x → 4
     √
—

 x + 5   − 3 ___________ 
x − 4

  

41.   lim     
x → 2+

    2x − 〚x〛  42.   lim     
x → 2

     √
—

 x + 7   − 3 ___________ 
x2 − x − 2

  43.   lim     
x → 3+

   x 2 ______ 
x 2 − 9

  

    x2 −   1 __ 
4

  
 _ 

2x − 1
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For the following exercises, find the average rate of change    f (x + h) − f (x)  _____________ 
h

  .

44. f (x) = x + 1 45. f (x) = 2x 2 − 1 46. f (x) = x 2 + 3x + 4 47. f (x) = x 2 + 4x − 100

48. f (x) = 3x 2 + 1 49. f (x) = cos(x) 50. f (x) = 2x 3 − 4x 51. f (x) =   1 _ x  

52. f (x) =   1 _ 
x2

  53. f (x) =  √
—
 x  

GRAPHICAl

54. Find an equation that could be represented by 
Figure 3. 

Figure 3 

55. Find an equation that could be represented by 
Figure 4. 

Figure 4 

56. What is the right-hand limit of the function as x 
approaches 0?

Figure 5 

57. What is the left-hand limit of the function as x 
approaches 0?

Figure 6 

ReAl-WORlD APPlICATIOnS

58. The position function s(t) = −16t 2 + 144t gives the 
position of a projectile as a function of time. Find 
the average velocity (average rate of change) on the 
interval [1, 2] .

59. The height of a projectile is given by 
s(t) = −64t 2 + 192t Find the average rate of change 
of the height from t = 1 second to t = 1.5 seconds.

60. The amount of money in an account after t years 
compounded continuously at 4.25% interest is given 
by the formula A = A0 e 0.0425t, where A0 is the initial 
amount invested. Find the average rate of change of 
the balance of the account from t = 1 year to t = 2 
years if the initial amount invested is $1,000.00.
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Determine whether a function is continuous at a number.

•	 Determine the numbers for which a function is discontinuous.

•	 Determine whether a function is continuous.

12. 3 COnTInUITY

Arizona is known for its dry heat. On a particular day, the temperature might rise as high as 118° F and drop down 
only to a brisk 95° F. Figure 1 shows the function T, where the output of T(x) is the temperature in Fahrenheit degrees 
and the input x is the time of day, using a 24-hour clock on a particular summer day.

Figure 1 Temperature as a function of time forms a continuous function.

When we analyze this graph, we notice a specific characteristic. There are no breaks in the graph. We could trace the 
graph without picking up our pencil. This single observation tells us a great deal about the function. In this section, 
we will investigate functions with and without breaks.

Determining Whether a Function Is Continuous at a number
Let’s consider a specific example of temperature in terms of date and location, such as June 27, 2013, in Phoenix, AZ. 
The graph in Figure 1 indicates that, at 2 a.m., the temperature was 96° F. By 2 p.m. the temperature had risen to 
116° F, and by 4 p.m. it was 118° F. Sometime between 2 a.m. and 4 p.m., the temperature outside must have been 
exactly 110.5° F. In fact, any temperature between 96° F and 118° F occurred at some point that day. This means all 
real numbers in the output between 96° F and 118° F are generated at some point by the function according to the 
intermediate value theorem,

Look again at Figure 1. There are no breaks in the function’s graph for this 24-hour period. At no point did the 
temperature cease to exist, nor was there a point at which the temperature jumped instantaneously by several degrees. 
A function that has no holes or breaks in its graph is known as a continuous function. Temperature as a function of 
time is an example of a continuous function.

If temperature represents a continuous function, what kind of function would not be continuous? Consider an example 
of dollars expressed as a function of hours of parking. Let’s create the function D, where D(x) is the output representing 
cost in dollars for parking x number of hours. See Figure 2.

Suppose a parking garage charges $4.00 per hour or fraction of an hour, with a $25 per day maximum charge. Park 
for two hours and five minutes and the charge is $12. Park an additional hour and the charge is $16. We can never be 
charged $13, $14, or $15. There are real numbers between 12 and 16 that the function never outputs. There are breaks 
in the function’s graph for this 24-hour period, points at which the price of parking jumps instantaneously by several 
dollars.
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Figure 2 Parking-garage charges form a discontinuous function.

A function that remains level for an interval and then jumps instantaneously to a higher value is called a stepwise 
function. This function is an example.

A function that has any hole or break in its graph is known as a discontinuous function. A stepwise function, such 
as parking-garage charges as a function of hours parked, is an example of a discontinuous function.

So how can we decide if a function is continuous at a particular number? We can check three different conditions. 
Let’s use the function y = f (x) represented in Figure 3 as an example.

Figure 3

Condition 1 According to Condition 1, the function f (a) defined at x = a must exist. In other words, there is a 
y-coordinate at x = a as in Figure 4.

Figure 4

Condition 2 According to Condition 2, at x = a the limit, written   lim    
x → a

  f (x), must exist. This means that at x = a the 
left-hand limit must equal the right-hand limit. Notice as the graph of f in Figure 3 approaches x = a from the left 
and right, the same y-coordinate is approached. Therefore, Condition 2 is satisfied. However, there could still be a 
hole in the graph at x = a.

Condition 3 According to Condition 3, the corresponding y coordinate at x = a fills in the hole in the graph of f. This 
is written   lim    

x → a
  f (x) = f (a).

Satisfying all three conditions means that the function is continuous. All three conditions are satisfied for the function 
represented in Figure 5 so the function is continuous as x = a.
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Figure 5 All three conditions are satisfied. The function is continuous at x = a.

Figure 6 through Figure 9 provide several examples of graphs of functions that are not continuous at x = a and the 
condition or conditions that fail.

Figure 6 Condition 2 is satisfied. Conditions 1 and 3 both fail.

Figure 7 Conditions 1 and 2 are both satisfied. Condition 3 fails.

Figure 8 Condition 1 is satisfied. Conditions 2 and 3 fail.
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Figure 9 Conditions 1, 2, and 3 all fail.

definition of continuity 

A function f (x) is continuous at x = a provided all three of the following conditions hold true:
•	 Condition 1: f (a) exists.

•	 Condition 2:   lim    
x → a

  f (x) exists at x = a.

•	 Condition 3:   lim    
x → a

  f (x) = f (a).

If a function f (x) is not continuous at x = a, the function is discontinuous at x = a.

Identifying a Jump Discontinuity

Discontinuity can occur in different ways. We saw in the previous section that a function could have a left-hand limit 
and a right-hand limit even if they are not equal. If the left- and right-hand limits exist but are different, the graph 

“jumps” at x = a. The function is said to have a jump discontinuity.

As an example, look at the graph of the function y = f (x) in Figure 10. Notice as x approaches a how the output 
approaches different values from the left and from the right.

Figure 10 Graph of a function with a jump discontinuity.

jump discontinuity 

A function f (x) has a jump discontinuity at x = a if the left- and right-hand limits both exist but are not equal:

  lim    
x → a−

  f (x) ≠   lim    
x → a+

  f (x).

Identifying Removable Discontinuity

Some functions have a discontinuity, but it is possible to redefine the function at that point to make it continuous. 
This type of function is said to have a removable discontinuity. Let’s look at the function y = f (x) represented by the 
graph in Figure 11. The function has a limit. However, there is a hole at x = a. The hole can be filled by extending the 
domain to include the input x = a and defining the corresponding output of the function at that value as the limit of 
the function at x = a.
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Figure 11 Graph of function f with a removable discontinuity at x = a.

removable discontinuity 

A function f (x) has a removable discontinuity at x = a if the limit,   lim    
x → a

  f (x), exists, but either

1. f (a) does not exist or

2. f (a), the value of the function at x = a does not equal the limit, f (a) ≠   lim    
x → a

  f (x).

Example 1 Identifying Discontinuities

Identify all discontinuities for the following functions as either a jump or a removable discontinuity.

a. f (x) =   x
2 − 2x − 15 ___________ 

x − 5
  

b. g(x) =    x + 1, x < 2
         

−x,     x ≥ 2
     

Solution

a. Notice that the function is defined everywhere except at x = 5.

Thus, f (5) does not exist, Condition 2 is not satisfied. Since Condition 1 is satisfied, the limit as x approaches 
5 is 8, and Condition 2 is not satisfied. This means there is a removable discontinuity at x = 5.

b. Condition 2 is satisfied because g(2) = − 2.

Notice that the function is a piecewise function, and for each piece, the function is defined everywhere on its 
domain. Let’s examine Condition 1 by determining the left- and right-hand limits as x approaches 2.

Left-hand limit:   lim    
x → 2−

  (x + 1) = 2 + 1 = 3. The left-hand limit exists.

Right-hand limit:   lim    
x → 2+

  (−x) = − 2. The right-hand limit exists. But

  lim    
x → 2−

  f (x) ≠   lim    
x → 2+

  f (x).

So,   lim    
x → 2

  f (x) does not exist, and Condition 2 fails: There is no removable discontinuity. However, since both 
left- and right-hand limits exist but are not equal, the conditions are satisfied for a jump discontinuity at x = 2.

Try It #1

Identify all discontinuities for the following functions as either a jump or a removable discontinuity.

a. f (x) =   x
2 − 6x ______ 
x − 6

  

b. g(x) =     √
—
 x  , 0 ≤ x < 4

          
2x,   x ≥ 4

        

a
x

y

f
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Recognizing Continuous and Discontinuous Real-number Functions
Many of the functions we have encountered in earlier chapters are continuous everywhere. They never have a hole in 
them, and they never jump from one value to the next. For all of these functions, the limit of f (x) as x approaches a is 
the same as the value of f (x) when x = a. So   lim    

x → a
  f (x) = f (a). There are some functions that are continuous everywhere 

and some that are only continuous where they are defined on their domain because they are not defined for all real 
numbers.

examples of continuous functions 

The following functions are continuous everywhere:

Polynomial functions Ex: f (x) = x 4 − 9x 2

Exponential functions Ex: f (x) = 4x + 2 − 5

Sine functions Ex: f (x) = sin(2x) − 4

Cosine functions Ex: f (x) = − cos   x +   π __ 
3

     
Table 1 

The following functions are continuous everywhere they are defined on their domain:

Logarithmic functions Ex: f (x) = 2ln(x) , x > 0

Tangent functions Ex: f (x) = tan(x) + 2, x ≠   π __ 
2

   + kπ, k is an integer

Rational functions Ex: f (x) =   x 2 − 25 _______ 
x − 7

  , x ≠ 7

Table 2 

How To…
Given a function f (x), determine if the function is continuous at x = a.

1. Check Condition 1: f (a) exists.
2. Check Condition 2:   lim    

x → a
  f (x) exists at x = a.

3. Check Condition 3:   lim    
x → a

  f (x) = f (a).

4. If all three conditions are satisfied, the function is continuous at x = a. If any one of the conditions is not satisfied, 
the function is not continuous at x = a.

Example 2 Determining Whether a Piecewise Function is Continuous at a Given Number

Determine whether the function f (x) =    4x,       x ≤ 3
         

8 + x, x > 3
      is continuous at

a. x = 3

b. x =   8 __ 
3

  

Solution To determine if the function f is continuous at x = a, we will determine if the three conditions of continuity 
are satisfied at x = a.

a. Condition 1: Does f (a) exist?
f (3) = 4(3) = 12

⇒ Condition 1 is satisfied.
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Condition 2: Does   lim    
x → 3

  f (x) exist?

To the left of x = 3, f (x) = 4x; to the right of x = 3, f (x) = 8 + x. We need to evaluate the left- and right-hand 
limits as x approaches 1.

•	Left-hand limit:   lim    
x → 3−

  f (x) =   lim    
x → 3−

  4(3) = 12

•	Right-hand limit:   lim    
x → 3+

  f (x) =   lim    
x → 3+

  (8 + x) = 8 + 3 = 11

Because   lim    
x → 1−

  f (x) ≠   lim    
x → 1+

  f (x),   lim    
x → 1

  f (x) does not exist.

⇒ Condition 2 fails.
There is no need to proceed further. Condition 2 fails at x = 3. If any of the conditions of continuity are
not satisfied at x = 3, the function f (x) is not continuous at x = 3.

b. x =   8 __ 
3

  

Condition 1: Does f     8 _ 
3

      exist?
f     8 _ 

3
      = 4     8 _ 

3
     =   32 _ 

3
  

⇒ Condition 1 is satisfied.

Condition 2: Does   lim    
x →   8 _ 3  

  f (x) exist?

To the left of x =   8 _ 
3 

   f (x) = 4x; to the right of x =    8 _ 
3 

   f (x) = 8 + x. We need to evaluate the left- and  
right-hand limits as x approaches   8 _ 

3
  .

•	Left-hand limit:   lim    
x →    8 _ 3   

−
 
  f (x) =   lim    

x →    8 _ 3   
−

 
  4    8 _ 

3
      =   32 _ 

3
  

•	Right-hand limit:    lim    
x →    8 _ 3   + 

  f (x) =   lim    
x →    8 _ 3   + 

  (8 + x) = 8 +   8 _ 
3

   =   32 _ 
3

  

Because   lim    
x →   8 _ 3  

  f (x) exists,
⇒ Condition 2 is satisfied.

Condition 3: Is f     8 _ 
3

     =   lim    
x →   8 _ 3  

  f (x)?

f     32 _ 
3

     =   32 _ 
3

     lim    
x →   8 _ 3  

  f (x)

⇒ Condition 3 is satisfied.

Because all three conditions of continuity are satisfied at x =   8 _ 
3

  , the function f (x) is continuous at x =   8 _ 
3

  .

Try It #2

Determine whether the function f (x) =       1 _ x  ,    x ≤ 2
  

  9x − 11.5, x > 2
      is continuous at x = 2. 

Example 3 Determining Whether a Rational Function is Continuous at a Given Number

Determine whether the function f (x) =   x
2 − 25 _ x − 5   is continuous at x = 5.

Solution To determine if the function f is continuous at x = 5, we will determine if the three conditions of continuity 
are satisfied at x = 5.
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Condition 1:
 f (5) does not exist.

 ⇒ Condition 1 fails.

There is no need to proceed further. Condition 2 fails at x = 5. If any of the conditions of continuity are not satisfied 
at x = 5, the function f is not continuous at x = 5.

Analysi s See Figure 12. Notice that for Condition 2 we have

   lim    
x → 5

   x
2 − 25 _______ 
x − 5

   =   lim    
x → 3

    
 (x − 5) (x + 5)  ____________ 

  x − 5 
  

 =   lim    
x → 5

 (x + 5)

 = 5 + 5 = 10

⇒ Condition 2 is satisfied.

At x = 5, there exists a removable discontinuity. See Figure 12.

Figure 12

Try It #3

Determine whether the function f (x) =   9 − x2

 ______ 
x2 − 3x

   is continuous at x = 3. If not, state the type of discontinuity.

Determining the Input Values for Which a Function Is Discontinuous
Now that we can identify continuous functions, jump discontinuities, and removable discontinuities, we will look at 
more complex functions to find discontinuities. Here, we will analyze a piecewise function to determine if any real 
numbers exist where the function is not continuous. A piecewise function may have discontinuities at the boundary 
points of the function as well as within the functions that make it up.

To determine the real numbers for which a piecewise function composed of polynomial functions is not continuous, 
recall that polynomial functions themselves are continuous on the set of real numbers. Any discontinuity would be at 
the boundary points. So we need to explore the three conditions of continuity at the boundary points of the piecewise 
function.

How To…
Given a piecewise function, determine whether it is continuous at the boundary points.

1. For each boundary point a of the piecewise function, determine the left- and right-hand limits as x approaches a, 
as well as the function value at a.

2

x

y

f

1

3

3

210 4

4

5 6 7 8

5
6
7
8
9

10
11
12
13
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2. Check each condition for each value to determine if all three conditions are satisfied.
3. Determine whether each value satisfies condition 1: f (a) exists.

4. Determine whether each value satisfies condition 2:   lim    
x → a

  f (x) exists.

5. Determine whether each value satisfies condition 3:   lim    
x → a

  f (x) = f (a).

6. If all three conditions are satisfied, the function is continuous at x = a. If any one of the conditions fails, the function 
is not continuous at x = a.

Example 4 Determining the Input Values for Which a Piecewise Function Is Discontinuous

Determine whether the function f is discontinuous for any real numbers.

 f (x) =    x + 1,    x < 2
  

        
  3,            2 ≤ x < 4            

x2 − 11, x ≥ 4
     

Solution The piecewise function is defined by three functions, which are all polynomial functions, f (x) = x + 1 
on x < 2, f (x) = 3 on 2 ≤ x < 4, and f (x) = x2 − 5 on x ≥ 4. Polynomial functions are continuous everywhere. Any 
discontinuities would be at the boundary points, x = 2 and x = 4.

At x = 2, let us check the three conditions of continuity.

Condition 1:
 f (2) = 3

⇒ Condition 1 is satisfied.

Condition 2: Because a different function defines the output left and right of x = 2, does

   lim    
x → 2−

  f (x) =   lim    
x → 2+

  f (x)?

•	 Left-hand limit:   lim    
x → 2−

  f (x) =   lim    
x → 2−

  (x + 1) = 2 + 1 = 3

•	 Right-hand limit:   lim    
x → 2+

  f (x) =   lim    
x → 2+

  3 = 3

Because 3 = 3,   lim    
x → 2−

  f (x) =   lim    
x → 2+

  f (x)
⇒ Condition 2 is satisfied.

Condition 3:
   lim    

x → 2
  f (x) = 3 = f (2)

⇒ Condition 3 is satisfied.

Because all three conditions are satisfied at x = 2, the function f (x) is continuous at x = 2.

At x = 4, let us check the three conditions of continuity.

Condition 2: Because a different function defines the output left and right of x = 4, does   lim    
x → 4−

  f (x) =   lim    
x → 4+

  f (x)?

•	 Left-hand limit:   lim    
x → 4−

  f (x) =   lim    
x → 4−

  3 = 3

•	 Right-hand limit:   lim    
x → 4+

  f (x) =   lim    
x → 4+

 (x2 − 11) = 42 − 11 = 5

Because 3 ≠ 5,   lim    
x → 4−

  f (x) ≠   lim    
x → 4+

  f (x), so   lim    
x → 4

  f (x) does not exist.

⇒ Condition 2 fails.

Because one of the three conditions does not hold at x = 4, the function f (x) is discontinuous at x = 4.
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Analysi s See Figure 13. At x = 4, there exists a jump discontinuity. Notice that the function is continuous at x = 2.

2

x

y

f

−1
−1−2

−2

−3−4−5

1

3

3

21 4

4

5 6

5
6
7
8
9

10

Figure 13 Graph is continuous at x = 2 but shows a jump discontinuity at x = 4.

Try It #4  

Determine where the function f (x) = 

   πx _ 4  ,  x < 2

      π _ x  ,   2 ≤ x ≤ 6
   2πx, x > 6

 is discontinuous.

Determining Whether a Function Is Continuous
To determine whether a piecewise function is continuous or discontinuous, in addition to checking the boundary 
points, we must also check whether each of the functions that make up the piecewise function is continuous.

How To…
Given a piecewise function, determine whether it is continuous.

1. Determine whether each component function of the piecewise function is continuous. If there are discontinuities, 
do they occur within the domain where that component function is applied?

2. For each boundary point x = a of the piecewise function, determine if each of the three conditions hold.

Example 5 Determining Whether a Piecewise Function Is Continuous

Determine whether the function below is continuous. If it is not, state the location and type of each discontinuity.

f (x) =    sin(x), x < 0
          

x 3,        x > 0
     

Solution The two functions composing this piecewise function are f (x) = sin(x) on x < 0 and f (x) = x 3 on x > 0. The 
sine function and all polynomial functions are continuous everywhere. Any discontinuities would be at the boundary 
point,

At x = 0, let us check the three conditions of continuity.

Condition 1:
f (0) does not exist.

⇒ Condition 1 fails.

Because all three conditions are not satisfied at x = 0, the function f (x) is discontinuous at x = 0.
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Analysi s See Figure 14. There exists a removable discontinuity at x = 0;   lim    
x → 0

  f (x) = 0, thus the limit exists and is finite, 
but f (a) does not exist.

Figure 14 Function has removable discontinuity at 0.

Access these online resources for additional instruction and practice with continuity.

•	 Continuity at a Point (http://openstaxcollege.org/l/continuitypoint)

•	 Continuity at a Point: Concept Check (http://openstaxcollege.org/l/contconcept)

2
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f(x) = x3

f(x) = sin(x)
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−1−2
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−4
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−5−6

−5
−6
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3

3

21 4

4

5 6
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http://openstaxcollege.org/l/continuitypoint
http://openstaxcollege.org/l/contconcept
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12.3 SeCTIOn exeRCISeS

VeRBAl

1. State in your own words what it means for a 
function f to be continuous at x = c.

2. State in your own words what it means for a 
function to be continuous on the interval (a, b).

AlGeBRAIC

For the following exercises, determine why the function f is discontinuous at a given point a on the graph. State which 
condition fails.

3. f (x) = ln  | x + 3 | , a = − 3 4. f (x) = ln  | 5x − 2 | , a =   2 _ 5  

5. f (x) =   x
2 − 16 _ x + 4  , a = −4 6. f (x) =   x

2 − 16x _ x   , a = 0

7. f (x) =    x,   x ≠ 3
      

2x, x = 3
     a = 3 8. f (x) =    5, x ≠ 0

      
3, x = 0

     a = 0

9. f (x) =      1 _____ 
2 − x

  , x ≠ 2
         

3,        x = 2
      a = 2 10. f (x) =      1 _____ 

x + 6
  , x = − 6

          
x2,        x ≠ −6

      a = −6

11. f (x) =    3 + x, x < 1
  

     
  x,        x = 1         

x2,       x > 1
      a = 1 12. f (x) =    3 − x, x < 1

  
      

  x,         x = 1          
2x2,      x > 1

     a = 1

13. f (x) =    3 + 2x, x < 1
  

      
  x,           x = 1          

−x2,      x > 1
     a = 1 14. f (x) =    x2,          x < − 2

  
       

  2x + 1, x = − 2           
x3,          x > − 2

     a = −2

15. f (x) =      x2 − 9 ______ 
x + 3

   , x < −3

  
       

  x − 9,    x = −3           

  1 _ x  ,           x > −3

        a = −3
16. f (x) = 

     
x2 − 9 ______ 
x + 3

  , x < −3

  
      

  x − 9,  x = −3          
−6,      x > −3

      a = 3

17. f (x) =   x
2 − 4 _ 

x − 2
  , a = 2 18. f (x) =   25 − x2

 __  
x2 − 10x + 25

  , a = 5

19. f (x) =   x3 − 9x __  
x2 + 11x + 24

  , a = −3 20. f (x) =   x
3 − 27 _ 

x2 − 3x
  , a = 3

21. f (x) =   x _  | x |   , a = 0 22. f (x) =   
2 | x + 2 | 

 _ 
x + 2

  , a = −2

For the following exercises, determine whether or not the given function f is continuous everywhere. If it is 
continuous everywhere it is defined, state for what range it is continuous. If it is discontinuous, state where it is 
discontinuous.

23. f (x) = x3 − 2x − 15 24. f (x) =   x
2 − 2x − 15 ___________ 

x − 5
  25. f (x) = 2 ⋅ 3x + 4 26. f (x) = −sin(3x)

27. f (x) =    
| x − 2 |  ______ 
x2 − 2x

  28. f (x) = tan(x) + 2 29. f (x) = 2x +   5 _ x  30. f (x) = log2 (x)
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31. f (x) = ln x2 32. f (x) = e 2x
33. f (x) =  √

—
 x − 4  34. f (x) = sec(x) − 3.

35. f (x) = x2 + sin(x)

36. Determine the values of b and c such that the following function is continuous on the entire real number line.    

f (x) =     x + 1,           1 < x < 3
             

x2 + bx + c,  | x − 2 |  ≥ 1
    

GRAPHICAl
For the following exercises, refer to Figure 15. Each square represents one 
square unit. For each value of a, determine which of the three conditions 
of continuity are satisfied at x = a and which are not.

x

y

Figure 15  

37. x = −3

38. x = 2

39. x = 4

For the following exercises, use a graphing utility to graph the function 
f (x) = sin     12π _ x      as in Figure 16. Set the x-axis a short distance before 
and after 0 to illustrate the point of discontinuity.

x

y

−5

−5

−10

−10

50 10

5

10

Figure 16 

40. Which conditions for continuity fail at the point of discontinuity?

41. Evaluate f (0).

42. Solve for x if f (x) = 0.

43. What is the domain of f (x)?

For the following exercises, consider the function shown in Figure 17.

2

x

y

1

3

3

21 4

4

5

5

−2

−2 −1−1

−3

−3

−4

−4

−5
−6

−5

Figure 17 

44. At what x-coordinates is the function discontinuous?

45. What condition of continuity is violated at these points?
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46. Consider the function shown in Figure 18. At what 
x-coordinates is the function discontinuous? What 
condition(s) of continuity were violated?

Figure 18 

47. Construct a function that passes through the 
origin with a constant slope of 1, with removable 
discontinuities at x = −7 and x = 1.

48. The function f (x) =    x 3 − 1 _ 
x − 1

   is graphed in Figure 19. 
It appears to be continuous on the interval [−3, 3], 
but there is an x-value on that interval at which the 
function is discontinuous. Determine the value of x 
at which the function is discontinuous, and explain 
the pitfall of utilizing technology when considering 
continuity of a function by examining its graph.

Figure 19 

49. Find the limit   lim    
x → 1

  f (x) and determine if the 
following function is continuous at x = 1: 

f (x) =    x 2 + 4 x ≠ 1
         

2          x = 1
     

50. The graph of f (x) =   
sin(2x)

 _ x   is shown in 
Figure 20. Is the function f (x) continuous 
at x = 0? Why or why not?

−0.5
−0.5

0.5

0.5

1.0

1.5

2.0

2.5

1 1.5 2.5 3.5 4.53 42−2.5−3.5−4.5 −3−4 −1.5 −1
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y

x

Figure 20 
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leARnInG OBjeCTIVeS

In this section, you will:

•	 Find the derivative of a function.

•	 Find instantaneous rates of change.

•	 Find an equation of the tangent line to the graph of a function at a point.

•	 Find the instantaneous velocity of a particle.

12. 4 DeRIVATIVeS

The average teen in the United States opens a refrigerator door an estimated 25 times per day. Supposedly, this average 
is up from 10 years ago when the average teenager opened a refrigerator door 20 times per day.[37]

It is estimated that a television is on in a home 6.75 hours per day, whereas parents spend an estimated 5.5 minutes per 
day having a meaningful conversation with their children. These averages, too, are not the same as they were 10 years 
ago, when the television was on an estimated 6 hours per day in the typical household, and parents spent 12 minutes 
per day in meaningful conversation with their kids.

What do these scenarios have in common? The functions representing them have changed over time. In this section, 
we will consider methods of computing such changes over time.

Finding the Average Rate of Change of a Function
The functions describing the examples above involve a change over time. Change divided by time is one example of a 
rate. The rates of change in the previous examples are each different. In other words, some changed faster than others. 
If we were to graph the functions, we could compare the rates by determining the slopes of the graphs.

A tangent line to a curve is a line that intersects the curve at only a single point but does not cross it there. (The tangent 
line may intersect the curve at another point away from the point of interest.) If we zoom in on a curve at that point, 
the curve appears linear, and the slope of the curve at that point is close to the slope of the tangent line at that point.

Figure 1 represents the function f (x) = x 3 − 4x. We can see the slope at various points along the curve.
•	 slope at x = −2 is 8
•	 slope at x = −1 is –1
•	 slope at x = 2 is 8

Figure 1 Graph showing tangents to curve at –2, –1, and 2.

Let’s imagine a point on the curve of function f at x = a as shown in Figure 2. The coordinates of the point are  
(a, f (a)). Connect this point with a second point on the curve a little to the right of x = a, with an x-value increased by 
some small real number h. The coordinates of this second point are (a + h, f (a + h)) for some positive-value h.

37 http://www.csun.edu/science/health/docs/tv&health.html Source provided.
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CHAPTER 12 introduction to calculus1052

Figure 2 Connecting point a with a point just beyond allows us to measure a slope close to that of a tangent line at x = a.

We can calculate the slope of the line connecting the two points (a, f (a)) and (a + h, f (a + h)), called a secant line, by 

applying the slope formula, slope =   change in y __________ 
change in x

  . 

We use the notation msec to represent the slope of the secant line connecting two points.

 msec =    f (a + h) − f (a)  _____________  
(a + h) − (a)

  

 =   
 f (a + h) − f (a)

  __  
a + h − a

  

The slope msec equals the average rate of change between two points (a, f (a)) and (a + h, f (a + h)).

 msec =     f (a + h) − f (a)  ______________ 
h

  

the average rate of change between two points on a curve 
The average rate of change (AROC) between two points (a, f (a)) and (a + h, f (a + h)) on the curve of f is the slope 
of the line connecting the two points and is given by

 AROC =    f (a + h) − f (a)  _____________ 
h

  

Example 1 Finding the Average Rate of Change

Find the average rate of change connecting the points (2, −6) and (−1, 5).

Solution We know the average rate of change connecting two points may be given by

 AROC =    f (a + h) − f (a)  _____________ 
h

  .

If one point is (2, − 6), or (2, f (2)), then f (2) = −6.

The value h is the displacement from 2 to −1, which equals −1 − 2 = −3.

For the other point, f (a + h) is the y-coordinate at a + h, which is 2 + (−3) or −1, so f (a + h) = f (−1) = 5.

 AROC =    f (a + h) − f (a)  _____________ 
h

  

 =   5 − (−6) ________ 
−3

  

 =   11 ___ 
−3

  

 = −   11 ___ 
3

  

f(a)

y

x
a a + h

f(a + h)

(a, f(a + h))

h

f(a + h)

(a, f(a ))

f
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Try It #1

Find the average rate of change connecting the points (−5, 1.5) and ( − 2.5, 9).

Understanding the Instantaneous Rate of Change
Now that we can find the average rate of change, suppose we make h in Figure 2 smaller and smaller. Then a + h will 
approach a as h gets smaller, getting closer and closer to 0. Likewise, the second point (a + h, f (a + h)) will approach 
the first point, (a, f (a)). As a consequence, the connecting line between the two points, called the secant line, will get 
closer and closer to being a tangent to the function at x = a, and the slope of the secant line will get closer and closer 
to the slope of the tangent at x = a. See Figure 3.

Figure 3 The connecting line between two points moves closer to being a tangent line at x = a.

Because we are looking for the slope of the tangent at x = a, we can think of the measure of the slope of the curve of 
a function f at a given point as the rate of change at a particular instant. We call this slope the instantaneous rate 
of change, or the derivative of the function at x = a. Both can be found by finding the limit of the slope of a line 
connecting the point at x = a with a second point infinitesimally close along the curve. For a function f both the 
instantaneous rate of change of the function and the derivative of the function at x = a are written as f ′(a), and we can 
define them as a two-sided limit that has the same value whether approached from the left or the right.

f ′(a) =   lim    
h → 0

     f (a + h) − f (a)  _____________ 
h

  

The expression by which the limit is found is known as the difference quotient.

definition of instantaneous rate of change and derivative 

The derivative, or instantaneous rate of change, of a function f at x = a, is given by

f ′(a) =   lim    
h → 0

     f (a + h) − f (a)  _____________ 
h

  

The expression     f (a + h) − f (a)  _____________ 
h

   is called the difference quotient.

We use the difference quotient to evaluate the limit of the rate of change of the function as h approaches 0.

Derivatives: Interpretations and Notation

The derivative of a function can be interpreted in different ways. It can be observed as the behavior of a graph of the 
function or calculated as a numerical rate of change of the function.

•	 The derivative of a function f (x) at a point x = a is the slope of the tangent line to the curve f (x) at x = a. The 
derivative of f (x) at x = a is written f ′(a).

•	 The derivative f ′(a) measures how the curve changes at the point (a, f (a)).

•	 The derivative f ′(a) may be thought of as the instantaneous rate of change of the function f (x) at x = a.

•	 If a function measures distance as a function of time, then the derivative measures the instantaneous velocity at 
time t = a.

x

y

a

f(a)
P = (a, f(a ))

f

Q1

Q2

Secant Line P to Q1

Tangent Line at x = a

Secant Line P to Q2
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notations for the derivative 
The equation of the derivative of a function f (x) is written as y′ = f ′(x), where y = f (x). The notation f ′(x) is read 
as “ f prime of x.” Alternate notations for the derivative include the following:

 f ′(x) = y′ =   dy ___ 
dx

   =   df ___ 
dx

   =   d ___ 
dx

   f (x) = Df (x)

The expression f ′(x) is now a function of x ; this function gives the slope of the curve y = f (x) at any value of x. The 
derivative of a function f (x) at a point x = a is denoted f ′(a).

How To…
Given a function f, find the derivative by applying the definition of the derivative.

1. Calculate f (a + h).
2. Calculate f (a).
3. Substitute and simplify     f (a + h) − f (a)  _____________ 

h
  .

4. Evaluate the limit if it exists: f ′(a) =   lim    
h → 0

      f (a + h) − f (a)  _____________ 
h

  .

Example 2 Finding the Derivative of a Polynomial Function

Find the derivative of the function f (x) = x 2 − 3x + 5 at x = a.

Solution We have:

 f ′(a) =   lim    
h → 0

      f (a + h) − f (a)  _____________ 
h

   Definition of a derivative

Substitute f (a + h) = (a + h)2 − 3(a + h) + 5 and f (a) = a2 − 3a + 5.

 f ′(a) =   lim    
h → 0

     (a + h)(a + h) − 3(a + h) + 5 − (a2 − 3a + 5)    ______________________________________  
h

  

 =   lim    
h → 0

    a
2 + 2ah + h2 − 3a − 3h + 5 − a2 + 3a − 5    ____________________________________  

h
   Evaluate to remove parentheses.

 =   lim    
h → 0

    a
2 + 2ah + h2 −3a − 3h + 5 −a2 + 3a −5    __________________________________  

h
   Simplify.

 =   lim    
h → 0

    2ah + h2 − 3h  ____________ 
h

  

 =   lim    
h → 0

     
 h (2a + h − 3)  ____________ 

  h 
   Factor out an h.

 = 2a + 0 − 3 Evaluate the limit.

 = 2a − 3

Try It #2

Find the derivative of the function f (x) = 3x2 + 7x at x = a.

Finding Derivatives of Rational Functions

To find the derivative of a rational function, we will sometimes simplify the expression using algebraic techniques we 
have already learned.
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Example 3 Finding the Derivative of a Rational Function

Find the derivative of the function f (x) =   3 + x _____ 
2 − x

   at x = a.

Solution

 f ′(a) =   lim    
h → 0

    f (a + h) − f (a)  _____________ 
h

  

 =   lim    
h → 0

    
  3 + (a + h) __________ 
2 − (a + h)

   −     3 + a _____ 
2 − a

     
  ____________________ h   Substitute f (a + h) and f (a).

 =   lim    
h → 0

    
(2 − (a + h))(2 − a)    3 + (a + h) __________ 

2 − (a + h)
   −     3 + a _____ 

2 − a
        
    _______________________________________   

(2 − (a + h))(2 − a)(h)
    Multiply numerator and 

denominator by  
(2 − (a + h))(2 − a).

 =   lim    
h → 0

    
(2 − (a + h))(2 − a)    3 + (a + h) ___________ 

(2 − (a + h))
      − (2 − (a + h))  (2 − a)     3 + a _____ 

  2 − a 
     
      ________________________________________________________    

(2 − (a + h))(2 − a)(h)
   Distribute.

 =   lim    
h → 0

    6 − 3a + 2a − a2 + 2h − ah − 6 + 3a + 3h − 2a + a2 + ah     _________________________________________________    
(2 − (a + h))(2 − a)(h)

   Multiply.

 =   lim    
h → 0

    5  h  ____________________  
(2 − (a + h))(2 − a)(  h )

   Combine like terms.

 =   lim    
h → 0

    5 _________________  
(2 − (a + h))(2 − a)

   Cancel like factors.

 =   5 _________________  
(2 − (a + 0))(2 − a)

   =   5 ____________  
(2 − a)(2 − a)

   =   5 _______ 
(2 − a)2

   Evaluate the limit.

Try It #3

Find the derivative of the function f (x) =   10x + 11 ________ 
5x + 4

   at x = a.

Finding Derivatives of Functions with Roots

To find derivatives of functions with roots, we use the methods we have learned to find limits of functions with roots, 
including multiplying by a conjugate.

Example 4 Finding the Derivative of a Function with a Root

Find the derivative of the function f (x) = 4 √
—
 x   at x = 36.

Solution We have

 f ′(a) =   lim    
h → 0

      f (a + h) − f (a)  _____________ 
h

  

 =   lim    
h → 0

    4 √
—

 a + h   − 4 √
—
 a    _______________ 

h
   Substitute f (a + h) and f (a)

Multiply the numerator and denominator by the conjugate:   4 √
—

 a + h   + 4 √
—
 a    __  

4 √
—

 a + h   + 4 √
—
 a  
  .
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 f ′(a) =   lim    
h → 0

      4 √
—

 a + h   − 4 √
—
 a    ______________ 

h
      ⋅     4 √

—
 a + h   + 4 √

—
 a    __  

4 √
—

 a + h   + 4 √
—
 a  
     

 =   lim    
h → 0

      16(a + h) − 16a
  __  

h4   √
—

 a + h   + 4 √
—
 a    

       Multiply.

 =   lim    
h → 0

        16a  + 16h −   16a   __  
h4   √

—
 a + h   + 4 √

—
 a    

       Distribute and combine like terms.

 =   lim    
h → 0

      16h __  
 h  4 √

—
 a + h   + 4 √

—
 a    

       Simplify.

 =   lim    
h →0

    16 __  
4 √
—

 a + h   + 4 √
—
 a  
   Evaluate the limit by letting h = 0.

 =   16 _ 
8 √

—
 a  
   =   2 _ 

 √
—
 a  
  

 f ′(36) =   2 _ 
 √

—
 36  
   Evaluate the derivative at x = 36.

 =   2 _ 
6

  

 =   1 _ 
3

  

Try It #4

Find the derivative of the function f (x) = 9 √
—
 x   at x = 9.

Finding Instantaneous Rates of Change
Many applications of the derivative involve determining the rate of change at a given instant of a function with the 
independent variable time—which is why the term instantaneous is used. Consider the height of a ball tossed upward 
with an initial velocity of 64 feet per second, given by s(t) = −16t 2 + 64t + 6, where t is measured in seconds and s(t) 
is measured in feet. We know the path is that of a parabola. The derivative will tell us how the height is changing at 
any given point in time. The height of the ball is shown in Figure 4 as a function of time. In physics, we call this the 

“s-t graph.”

Figure 4
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Example 5 Finding the Instantaneous Rate of Change

Using the function above, s(t) = −16t2 + 64t + 6, what is the instantaneous velocity of the ball at 1 second and 3 
seconds into its flight?

Solution The velocity at t = 1 and t = 3 is the instantaneous rate of change of distance per time, or velocity. Notice 
that the initial height is 6 feet. To find the instantaneous velocity, we find the derivative and evaluate it at t = 1 and  
t = 3:

 f ′(a) =   lim    
h → 0

    f (a + h) − f (a)  _____________ 
h

  

 =   lim    
h → 0

    −16(t + h)2 + 64(t + h) + 6 − (−16t 2 + 64t + 6)    ________________________________________  
h

   Substitute s(t + h) and s(t).

 =   lim    
h → 0

    −16t 2 − 32ht − h 2 + 64t + 64h + 6 + 16t 2 − 64t − 6    ___________________________________________   
h

   Distribute.

 =   lim    
h → 0

    −32ht − h 2 + 64h  _______________ 
h

   Simplify.

 =   lim    
h → 0

    h( − 32t − h + 64)  ________________ 
h

   Factor the numerator.

 =   lim    
h → 0

  −32t − h + 64 Cancel out the common factor h.

 s′(t) = − 32t + 64 Evaluate the limit by letting h = 0.

For any value of t, s′(t) tells us the velocity at that value of t.

Evaluate t = 1 and t = 3.
 s′(1) = −32(1) + 64 = 32 

 s′(3) = −32(3) + 64 = −32

The velocity of the ball after 1 second is 32 feet per second, as it is on the way up.

The velocity of the ball after 3 seconds is −32 feet per second, as it is on the way down.

Try It #5

The position of the ball is given by s(t) = −16t 2 + 64t + 6. What is its velocity 2 seconds into flight?

Using Graphs to Find Instantaneous Rates of Change

We can estimate an instantaneous rate of change at x = a by observing the slope of the curve of the function f (x) at 
x = a. We do this by drawing a line tangent to the function at x = a and finding its slope.

How To…
Given a graph of a function f (x), find the instantaneous rate of change of the function at x = a.

1. Locate x = a on the graph of the function f (x).
2. Draw a tangent line, a line that goes through x = a at a and at no other point in that section of the curve. Extend 

the line far enough to calculate its slope as

  change in y __________ 
change in x

  .

Example 6 Estimating the Derivative at a Point on the Graph of a Function

From the graph of the function y = f (x) presented in Figure 5, estimate each of the following:

f (0); f (2); f ′(0); f ′(2)
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Figure 5

Solution To find the functional value, f (a), find the y-coordinate at x = a.

To find the derivative at x = a, f ′(a), draw a tangent line at x = a, and estimate the slope of that tangent line. See Figure 6.

Figure 6

a. f (0) is the y-coordinate at x = 0. The point has coordinates (0, 1), thus f (0) = 1.

b. f (2) is the y-coordinate at x = 2. The point has coordinates (2, 1), thus f (2) = 1.

c.  f ′(0) is found by estimating the slope of the tangent line to the curve at x = 0. The tangent line to the curve at 
x = 0 appears horizontal. Horizontal lines have a slope of 0, thus f ′(0) = 0.

d.  f ′(2) is found by estimating the slope of the tangent line to the curve at x = 2. Observe the path of the tangent 
line to the curve at x = 2. As the x value moves one unit to the right, the y value moves up four units to another 
point on the line. Thus, the slope is 4, so f ′(2) = 4.

Try It #6

Using the graph of the function f (x) = x3 − 3x shown in Figure 7, estimate: f (1), f ′(1), f (0), and f ′(0).

Figure 7
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Using Instantaneous Rates of Change to Solve Real-World Problems

Another way to interpret an instantaneous rate of change at x = a is to observe the function in a real-world context. 
The unit for the derivative of a function f (x) is

  
output units

 __ 
input unit

  

Such a unit shows by how many units the output changes for each one-unit change of input. The instantaneous rate of 
change at a given instant shows the same thing: the units of change of output per one-unit change of input.

One example of an instantaneous rate of change is a marginal cost. For example, suppose the production cost for a 
company to produce x items is given by C(x), in thousands of dollars. The derivative function tells us how the cost is 
changing for any value of x in the domain of the function. In other words, C′ (x) is interpreted as a marginal cost, the 
additional cost in thousands of dollars of producing one more item when x items have been produced. For example, 
C′ (11) is the approximate additional cost in thousands of dollars of producing the 12th item after 11 items have been 
produced. C′ (11) = 2.50 means that when 11 items have been produced, producing the 12th item would increase the 
total cost by approximately $2,500.00.

Example 7 Finding a Marginal Cost

The cost in dollars of producing x laptop computers is f (x) = x2 − 100x. At the point where 200 computers have been 
produced, what is the approximate cost of producing the 201st unit?

Solution If f (x) = x 2 − 100x describes the cost of producing x computers, f ′(x) will describe the marginal cost. We 
need to find the derivative. For purposes of calculating the derivative, we can use the following functions:

 f (a + b) = (x + h)2 − 100(x + h)

 f (a) = a2 − 100a

 f ′(x) =    f (a + h) − f (a)  _____________ 
h

   Formula for a derivative

 =    (x + h)2 − 100(x + h) − (x2 − 100x)   ______________________________  
h

   Substitute f (a + h) and f (a).

 =    x
2 + 2xh + h2 − 100x − 100h − x2 + 100x    __________________________________  

h
   Multiply polynomials, distribute.

 =    2xh + h2 − 100h  ______________ 
h

   Collect like terms.

 =    h(2x + h − 100)  ______________ 
h

   Factor and cancel like terms.

 = 2x + h − 100 Simplify.

 = 2x − 100 Evaluate when h = 0.

 f ′(x) = 2x − 100 Formula for marginal cost

 f ′(200) = 2(200) − 100 = 300 Evaluate for 200 units.

The marginal cost of producing the 201st unit will be approximately $300.

Example 8 Interpreting a Derivative in Context

A car leaves an intersection. The distance it travels in miles is given by the function f (t), where t represents hours. 
Explain the following notations:

f (0) = 0 ; f ′(1) = 60; f (1) = 70; f (2.5) = 150

Solution First we need to evaluate the function f (t) and the derivative of the function f ′(t), and distinguish between 
the two. When we evaluate the function f (t), we are finding the distance the car has traveled in t hours. When we 
evaluate the derivative f ′(t), we are finding the speed of the car after t hours.
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a. f (0) = 0 means that in zero hours, the car has traveled zero miles.

b. f ′(1) = 60 means that one hour into the trip, the car is traveling 60 miles per hour.

c.  f (1) = 70 means that one hour into the trip, the car has traveled 70 miles. At some point during the first hour, 
then, the car must have been traveling faster than it was at the 1-hour mark.

d. f (2.5) = 150 means that two hours and thirty minutes into the trip, the car has traveled 150 miles.

Try It #7

A runner runs along a straight east-west road. The function f (t) gives how many feet eastward of her starting point 
she is after t seconds. Interpret each of the following as it relates to the runner.

f (0) = 0; f (10) = 150; f ′(10) = 15; f ′(20) = −10; f (40) = −100

Finding Points Where a Function’s Derivative Does Not Exist

To understand where a function’s derivative does not exist, we need to recall what normally happens when a 
function f (x) has a derivative at x = a. Suppose we use a graphing utility to zoom in on x = a . If the function f (x) is 
differentiable, that is, if it is a function that can be differentiated, then the closer one zooms in, the more closely the 
graph approaches a straight line. This characteristic is called linearity.

Look at the graph in Figure 8. The closer we zoom in on the point, the more linear the curve appears.

Figure 8

We might presume the same thing would happen with any continuous function, but that is not so. The function  
f (x) =  | x | , for example, is continuous at x = 0, but not differentiable at x = 0. As we zoom in close to 0 in Figure 9, the 
graph does not approach a straight line. No matter how close we zoom in, the graph maintains its sharp corner.

Figure 9 Graph of the function f (x) = |x|, with x-axis from –0.1 to 0.1 and y-axis from –0.1 to 0.1.

We zoom in closer by narrowing the range to produce Figure 10 and continue to observe the same shape. This graph 
does not appear linear at x = 0.
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Figure 10 Graph of the function f (x) = |x|, with x-axis from –0.001 to 0.001 and y-axis from –0.001 to 0.001.

What are the characteristics of a graph that is not differentiable at a point? Here are some examples in which function 
f (x) is not differentiable at x = a.

In Figure 11, we see the graph of

f (x) =    x 2,        x ≤ 2
         

8 − x,  x > 2
     .

Notice that, as x approaches 2 from the left, the left-hand limit may be observed to be 4, while as x approaches 2 from 
the right, the right-hand limit may be observed to be 6. We see that it has a discontinuity at x = 2.

Figure 11 The graph of f (x) has a discontinuity at x = 2.

In Figure 12, we see the graph of f (x) =  | x | . We see that the graph has a corner point at x = 0.

Figure 12 The graph of f (x) = |x| has a corner point at x = 0 .

In Figure 13, we see that the graph of f (x) =  x   
2
 _ 3    has a cusp at x = 0. A cusp has a unique feature. Moving away from 

the cusp, both the left-hand and right-hand limits approach either infinity or negative infinity. Notice the tangent 
lines as x approaches 0 from both the left and the right appear to get increasingly steeper, but one has a negative slope, 
the other has a positive slope.

Figure 13 The graph of f (x) =  x   
2
 _ 3    has a cusp at x = 0.
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In Figure 14, we see that the graph of f (x) =  x   
1
 _ 3    has a vertical tangent at x = 0. Recall that vertical tangents are vertical 

lines, so where a vertical tangent exists, the slope of the line is undefined. This is why the derivative, which measures 
the slope, does not exist there.

Figure 14 The graph of f (x) =  x    
1
 _ 3    has a vertical tangent at x = 0.

differentiability 
A function f (x) is differentiable at x = a if the derivative exists at x = a, which means that f ′(a) exists. There are 
four cases for which a function f (x) is not differentiable at a point x = a.

1. When there is a discontinuity at x = a.
2. When there is a corner point at x = a.
3. When there is a cusp at x = a.
4. Any other time when there is a vertical tangent at x = a.

Example 9 Determining Where a Function Is Continuous and Differentiable from a Graph

Using Figure 15, determine where the function is
a. continuous   b. discontinuous   c. differentiable   d. not differentiable

At the points where the graph is discontinuous or not differentiable, state why.

Figure 15

Solution The graph of f (x) is continuous on (−∞, −2) ∪ (−2, 1) ∪ (1, ∞). The graph of f (x) has a removable 
discontinuity at x = −2 and a jump discontinuity at x = 1. See Figure 16.

Figure 16 Three intervals where the function is continuous
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The graph of f (x) is differentiable on (−∞, −2) ∪ (−2, −1) ∪ (−1, 1) ∪ (1, 2) ∪ (2, ∞). The graph of f (x) is not 
differentiable at x = −2 because it is a point of discontinuity, at x = −1 because of a sharp corner, at x = 1 because it 
is a point of discontinuity, and at x = 2 because of a sharp corner. See Figure 17.

Figure 17 Five intervals where the function is differentiable

Try It #8

Determine where the function y = f (x) shown in Figure 18 is continuous and differentiable from the graph.

Figure 18

Finding an equation of a line Tangent to the Graph of a Function
The equation of a tangent line to a curve of the function f (x) at x = a is derived from the point-slope form of a line,  
y = m(x − x1) + y1. The slope of the line is the slope of the curve at x = a and is therefore equal to f ′(a), the derivative 
of f (x) at x = a. The coordinate pair of the point on the line at x = a is (a, f (a)).

If we substitute into the point-slope form, we have

m = f ′(a)   x1 = a   y1 = f (a)

y = m(x − x1) + y1
 ↑ ↑ ↑
 f ′(a) a f (a)

The equation of the tangent line is

 y = f ′(a)(x − a) + f (a)

the equation of a line tangent to a curve of the function f 
The equation of a line tangent to the curve of a function f at a point x = a is

 y = f ′(a)(x − a) + f (a)
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How To…
Given a function f, find the equation of a line tangent to the function at x = a.

1. Find the derivative of f (x) at x = a using f ′(a) =   lim    
h → 0

      f (a + h) − f (a)  _____________ 
h

  .

2. Evaluate the function at x = a. This is f (a).
3. Substitute (a, f (a))and f ′(a) into y = f ′(a)(x − a) + f (a).
4. Write the equation of the tangent line in the form y = mx + b.

Example 10 Finding the Equation of a Line Tangent to a Function at a Point

Find the equation of a line tangent to the curve f (x) = x 2 − 4x at x = 3.

Solution
Using:
 f ′(a) =   lim    

h → 0
    f (a + h) − f (a)  _____________ 

h
  

Substitute f (a + h) = (a + h)2 − 4(a + h) and f (a) = a2 − 4a.

 f ′(a) =   lim    
h → 0

    (a + h)(a + h) − 4(a + h) − (a2 − 4a)   _______________________________  
h

  

 =   lim    
h → 0

    a
2 + 2ah + h2 − 4a − 4h − a2 + 4a   _____________________________  

h
   Remove parentheses.

 =   lim    
h → 0

     
 a2  + 2ah + h2   −4a  − 4h   − a2    + 4a    ____________________________  

h
   Combine like terms.

 =   lim    
h → 0

    2ah + h2 − 4h  ____________ 
h

  

 =   lim    
h → 0

     
 h (2a + h − 4)  ____________ 

  h 
   Factor out h.

 = 2a + 0 − 4

 f ′(a) = 2a − 4 Evaluate the limit.

 f ′(3) = 2(3) − 4 = 2

Equation of tangent line at x = 3:

 y = f ′(a)(x − a) + f (a)

 y = f ′(3)(x − 3) + f (3)

 y = 2(x − 3) + (−3)

 y = 2x − 9

Analysi s We can use a graphing utility to graph the function and the tangent line. In so doing, we can observe the point 
of tangency at x = 3 as shown in Figure 19.

Figure 19 Graph confirms the point of tangency at x = 3.
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Try It #9

Find the equation of a tangent line to the curve of the function f (x) = 5x2 − x + 4 at x = 2.

Finding the Instantaneous Speed of a Particle
If a function measures position versus time, the derivative measures displacement versus time, or the speed of the 
object. A change in speed or direction relative to a change in time is known as velocity. The velocity at a given instant 
is known as instantaneous velocity.

In trying to find the speed or velocity of an object at a given instant, we seem to encounter a contradiction. We 
normally define speed as the distance traveled divided by the elapsed time. But in an instant, no distance is traveled, 
and no time elapses. How will we divide zero by zero? The use of a derivative solves this problem. A derivative allows 
us to say that even while the object’s velocity is constantly changing, it has a certain velocity at a given instant. That 
means that if the object traveled at that exact velocity for a unit of time, it would travel the specified distance.

instantaneous velocity 
Let the function s(t) represent the position of an object at time t. The instantaneous velocity or velocity of the 
object at time t = a is given by

s′(a) =   lim    
h → 0

    s(a + h) − s(a)  _____________ 
h

  

Example 11 Finding the Instantaneous Velocity

A ball is tossed upward from a height of 200 feet with an initial velocity of 36 ft/sec. If the height of the ball in feet after 
t seconds is given by s(t) = −16t 2 + 36t + 200, find the instantaneous velocity of the ball at t = 2.

Solution First, we must find the derivative s′ (t) . Then we evaluate the derivative at t = 2, using 

 s(a + h) = − 16(a + h)2 + 36(a + h) + 200 and s(a) = − 16a2 + 36a + 200.

 s′(a) =   lim    
h → 0

    s(a + h) − s(a)  _____________ 
h

  

 =   lim    
h → 0

    −16(a + h)2 + 36(a + h) + 200 − (−16a2 + 36a + 200)     ______________________________________________   
h

  

 =   lim    
h → 0

    −16(a2 + 2ah + h2) + 36(a + h) + 200 − (−16a2 + 36a + 200)     ____________________________________________________   
h
  

 =   lim    
h → 0

    −16a2 − 32ah − 16h2 + 36a + 36h + 200 + 16a2 − 36a − 200     ___________________________________________________   
h
  

 =   lim    
h → 0

     
 −16a2  − 32ah − 16h2   +36a  + 36h   + 200    + 16a2    − 36a    − 200      __________________________________________________   

h
  

 =   lim    
h → 0

    −32ah − 16h2 + 36h  _________________ 
h

  

 =   lim    
h → 0

    h(−32a − 16h + 36)  _________________ 
h

  

 =   lim    
h → 0

 ( −32a − 16h + 36)

 = −32a − 16 ⋅ 0 + 36

 s′(a) = −32a + 36

 s′(2) = −32(2) + 36

 = −28

Analysi s This result means that at time t = 2 seconds, the ball is dropping at a rate of 28 ft/sec.
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Try It #10

A fireworks rocket is shot upward out of a pit 12 ft below the ground at a velocity of 60 ft/sec. Its height in feet after t 
seconds is given by s = −16t2 + 60t − 12. What is its instantaneous velocity after 4 seconds?

Access these online resources for additional instruction and practice with derivatives.
•	 estimate the Derivative (http://openstaxcollege.org/l/estimatederiv)

•	 estimate the Derivative ex. 4 (http://openstaxcollege.org/l/estimatederiv4)

http://openstaxcollege.org/l/estimatederiv
http://openstaxcollege.org/l/estimatederiv4
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12.4 SeCTIOn exeRCISeS

VeRBAl

1. How is the slope of a linear function similar to the 
derivative?

2. What is the difference between the average rate of 
change of a function on the interval [x, x + h] and 
the derivative of the function at x?

3. A car traveled 110 miles during the time period from 
2:00 P.M. to 4:00 P.M. What was the car's average 
velocity? At exactly 2:30 P.M., the speed of the car 
registered exactly 62 miles per hour. What is another 
name for the speed of the car at 2:30 P.M.? Why 
does this speed differ from the average velocity?

4. Explain the concept of the slope of a curve at point x.

5. Suppose water is flowing into a tank at an average 
rate of 45 gallons per minute. Translate this 
statement into the language of mathematics.

AlGeBRAIC

For the following exercises, use the definition of derivative   lim    
h → 0

    f (x + h) − f (x)  _____________ 
h

   to calculate the derivative of each 
function.

6. f (x) = 3x − 4 7. f (x) = −2x + 1 8. f (x) = x2 − 2x + 1 9. f (x) = 2x2 + x − 3

10. f (x) = 2x2 + 5 11. f (x) =    −1 _____ 
x − 2

  12. f (x) =    2 + x _____ 
1 − x

  13. f (x) =   5 − 2x ______ 
3 + 2x

  

14. f (x) =  √
—

 1 + 3x  15. f (x) = 3x3 − x2 + 2x + 5 16. f (x) = 5 17. f (x) = 5π

For the following exercises, find the average rate of change between the two points.
18. (−2, 0) and (−4, 5) 19. (4, −3) and (−2, −1) 20. (0, 5) and (6, 5) 21. (7, −2) and (7, 10)

For the following polynomial functions, find the derivatives.
22. f (x) = x3 + 1 23. f (x) = −3x2 − 7x + 6 24. f (x) = 7x2 25. f (x) = 3x3 + 2x2 + x − 26

For the following functions, find the equation of the tangent line to the curve at the given point x on the curve.
26. f (x) = 2x2 − 3x x = 3 27. f (x) = x3 + 1 x = 2 28. f (x) =   √

—
 x   x = 9

For the following exercise, find k such that the given line is tangent to the graph of the function.
29. f (x) = x2 − kx, y = 4x − 9

GRAPHICAl

For the following exercises, consider the graph of the function f and determine where the function is continuous/
discontinuous and differentiable/not differentiable.

30. 
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32. 

2

x

y

f (x)

−1
−1−2

−2

−3
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−4

−4

−5
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33. 

1
2
3

x

y

f (x)
−2
−1−1 1 2 3 4 5−2−3−4

−3
−4
−5
−6

4
5
6

6−5−6

For the following exercises, use Figure 20 to estimate either the function at a given value of x or the derivative at a 
given value of x, as indicated.

Figure 20 

34. f (−1) 35. f (0) 36. f (1) 37. f (2) 38. f (3) 39. f ′(−1)

40. f ′(0) 41. f ′(1) 42. f ′(2) 43. f ′(3)

44. Sketch the function based on the information below: 
f ′(x) = 2x, f (2) = 4

TeCHnOlOGY
45. Numerically evaluate the derivative. Explore the behavior of the graph of f (x) = x 2 around x = 1 by graphing 

the function on the following domains: [0.9, 1.1] , [0.99, 1.01] , [0.999, 1.001], and [0.9999, 1.0001] . We can 
use the feature on our calculator that automatically sets Ymin and Ymax to the Xmin and Xmax values we 
preset. (On some of the commonly used graphing calculators, this feature may be called ZOOM FIT or ZOOM 
AUTO). By examining the corresponding range values for this viewing window, approximate how the curve 
changes at x = 1, that is, approximate the derivative at x = 1.

ReAl-WORlD APPlICATIOnS

For the following exercises, explain the notation in words. The volume f (t) of a tank of gasoline, in gallons, t minutes 
after noon.

46. f (0) = 600 47. f ′(30) = −20 48. f (30) = 0 49. f ′(200) = 30 50. f (240) = 500

1
2
3

x

y

f (x)

−2
−1−1 1 2 3 4 5−2−3−4

−3
−4
−5
−6
−7
−8
−9

−10

4
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6−5−6
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For the following exercises, explain the functions in words. The height, s, of a projectile after t seconds is given by  
s(t) = −16t 2 + 80t.

51. s(2) = 96 52. s′(2) = 16 53. s(3) = 96 54. s′(3) = −16 55. s(0) = 0, s(5) = 0.

For the following exercises, the volume V of a sphere with respect to its radius r is given by V =   4 __ 
3

  πr 3.

56. Find the average rate of change of V as r changes 
from 1 cm to 2 cm.

57. Find the instantaneous rate of change of V when  
r = 3 cm.

For the following exercises, the revenue generated by selling x items is given by R(x) = 2x 2 + 10x.
58. Find the average change of the revenue function as 

x changes from x = 10 to x = 20.
59. Find R′(10) and interpret.

60. Find R′(15) and interpret. Compare R′(15) to 
R′(10), and explain the difference.

For the following exercises, the cost of producing x cellphones is described by the function C(x) = x 2 − 4x + 1000.
61. Find the average rate of change in the total cost as 

x changes from x = 10 to x = 15.
62. Find the approximate marginal cost, when 

15 cellphones have been produced, of producing the  
16th cellphone.

63. Find the approximate marginal cost, when 
20 cellphones have been produced, of producing 
the 21st cellphone.

exTenSIOn

For the following exercises, use the definition for the derivative at a point x = a,   lim    
x → a

      f (x) − f (a) __________ 
x − a

  , to find the derivative 
of the functions.

64. f (x) =   1 __ 
x2

  65. f (x) = 5x 2 − x + 4 66. f (x) = −x 2 + 4x + 7 67. f (x) =   −4 ______ 
3 − x2
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CHAPTeR 12 ReVIeW

Key Terms

average rate of change the slope of the line connecting the two points (a, f (a)) and (a + h, f (a + h)) on the curve of  

f (x); it is given by AROC =   f (a + h) − f (a)  _____________ 
h

  .

continuous function a function that has no holes or breaks in its graph

derivative the slope of a function at a given point; denoted f ′(a), at a point x = a it is f ′(a) =   lim    
h → 0

    f (a + h) − f (a)  _____________ 
h

  , 
providing the limit exists.

differentiable a function f (x) for which the derivative exists at x = a. In other words, if f ′(a) exists.

discontinuous function a function that is not continuous at x = a

instantaneous rate of change the slope of a function at a given point; at x = a it is given by f ′(a) =   lim    
h → 0

    f (a + h) − f (a)  _____________ 
h

  

instantaneous velocity the change in speed or direction at a given instant; a function s(t) represents the 
position of an object at time t, and the instantaneous velocity or velocity of the object at time t = a is given by 

s′(a) =   lim    
h → 0

    s(a + h) − s(a)  _____________ 
h

  .

jump discontinuity a point of discontinuity in a function f (x) at x = a where both the left and right-hand limits exist, 
but   lim    

x → a−  f (x) ≠   lim    
x → a+

  f (x)

left-hand limit the limit of values of f (x) as x approaches a from the left, denoted   lim    
x → a−  f (x) = L. The values of f (x) can get 

as close to the limit L as we like by taking values of x sufficiently close to a such that x < a and x ≠ a. Both a and L are 
real numbers.

limit when it exists, the value, L, that the output of a function f (x) approaches as the input x gets closer and closer to a but 
does not equal a. The value of the output, f (x), can get as close to L as we choose to make it by using input values of x 
sufficiently near to x = a, but not necessarily at x = a. Both a and L are real numbers, and L is denoted   lim    

x → a
  f (x) = L.

properties of limits a collection of theorems for finding limits of functions by performing mathematical operations on 
the limits

removable discontinuity a point of discontinuity in a function f (x) where the function is discontinuous, but can be 
redefined to make it continuous

right-hand limit the limit of values of f (x) as x approaches a from the right, denoted   lim    
x → a+

  f (x) = L. The values of f (x) can 
get as close to the limit L as we like by taking values of x sufficiently close to a where x > a, and x ≠ a. Both a and L are 
real numbers.

secant line a line that intersects two points on a curve

tangent line a line that intersects a curve at a single point

two-sided limit the limit of a function f (x), as x approaches a, is equal to L, that is,   lim    
x → a

  f (x) = L if and only if  
  lim    
x → a−

  f (x) =   lim    
x → a+

  f (x).

Key equations

average rate of change AROC =     f (a + h) − f (a)  _____________ 
h

  

derivative of a function f ′(a) =   lim    
h → 0

     f (a + h) − f (a)  _____________ 
h
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Key Concepts

12.1 Finding Limits: Numerical and Graphical Approaches

•	 A function has a limit if the output values approach some value L as the input values approach some quantity a. See 
Example 1.

•	 A shorthand notation is used to describe the limit of a function according to the form   lim    
x → a

   f (x) = L, which indicates 
that as x approaches a, both from the left of x = a and the right of x = a, the output value gets close to L.

•	 A function has a left-hand limit if f (x) approaches L as x approaches a where x < a. A function has a right-hand 
limit if f (x) approaches L as x approaches a where x > a.

•	 A two-sided limit exists if the left-hand limit and the right-hand limit of a function are the same. A function is said 
to have a limit if it has a two-sided limit.

•	 A graph provides a visual method of determining the limit of a function.

•	 If the function has a limit as x approaches a, the branches of the graph will approach the same y- coordinate near 
x = a from the left and the right. See Example 2.

•	 A table can be used to determine if a function has a limit. The table should show input values that approach a from 
both directions so that the resulting output values can be evaluated. If the output values approach some number, the 
function has a limit. See Example 3.

•	 A graphing utility can also be used to find a limit. See Example 4.

12.2 Finding Limits: Properties of Limits

•	 The properties of limits can be used to perform operations on the limits of functions rather than the functions 
themselves. See Example 1.

•	 The limit of a polynomial function can be found by finding the sum of the limits of the individual terms. See 
Example 2 and Example 3.

•	 The limit of a function that has been raised to a power equals the same power of the limit of the function. Another 
method is direct substitution. See Example 4.

•	 The limit of the root of a function equals the corresponding root of the limit of the function.

•	 One way to find the limit of a function expressed as a quotient is to write the quotient in factored form and simplify. 
See Example 5.

•	 Another method of finding the limit of a complex fraction is to find the LCD. See Example 6.

•	 A limit containing a function containing a root may be evaluated using a conjugate. See Example 7.

•	 The limits of some functions expressed as quotients can be found by factoring. See Example 8.

•	 One way to evaluate the limit of a quotient containing absolute values is by using numeric evidence. Setting it up 
piecewise can also be useful. See Example 9.

12.3 Continuity

•	 A continuous function can be represented by a graph without holes or breaks.

•	 A function whose graph has holes is a discontinuous function.

•	 A function is continuous at a particular number if three conditions are met:

•	 Condition 1: f (a) exists.

•	 Condition 2:   lim    
x → a

   f (x) exists at x = a.

•	 Condition 3:   lim    
x → a

   f (x) = f (a).

•	 A function has a jump discontinuity if the left- and right-hand limits are different, causing the graph to “jump.”

•	 A function has a removable discontinuity if it can be redefined at its discontinuous point to make it continuous. See 
Example 1.
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•	 Some functions, such as polynomial functions, are continuous everywhere. Other functions, such as logarithmic 
functions, are continuous on their domain. See Example 2 and Example 3.

•	 For a piecewise function to be continuous each piece must be continuous on its part of the domain and the function 
as a whole must be continuous at the boundaries. See Example 4 and Example 5.

12.4 Derivatives

•	 The slope of the secant line connecting two points is the average rate of change of the function between those points. 
See Example 1.

•	 The derivative, or instantaneous rate of change, is a measure of the slope of the curve of a function at a given point, 
or the slope of the line tangent to the curve at that point. See Example 2, Example 3, and Example 4.

•	 The difference quotient is the quotient in the formula for the instantaneous rate of change:     
f (a + h) − f (a)

  __ 
h

  

•	 Instantaneous rates of change can be used to find solutions to many real-world problems. See Example 5.

•	 The instantaneous rate of change can be found by observing the slope of a function at a point on a graph by drawing 
a line tangent to the function at that point. See Example 6.

•	 Instantaneous rates of change can be interpreted to describe real-world situations. See Example 7 and Example 8.

•	 Some functions are not differentiable at a point or points. See Example 9.

•	 The point-slope form of a line can be used to find the equation of a line tangent to the curve of a function. See 
Example 10.

•	 Velocity is a change in position relative to time. Instantaneous velocity describes the velocity of an object at a given 
instant. Average velocity describes the velocity maintained over an interval of time.

•	 Using the derivative makes it possible to calculate instantaneous velocity even though there is no elapsed time. See 
Example 11.
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CHAPTeR 12 ReVIeW exeRCISeS

FInDInG lIMITS: A nUMeRICAl AnD GRAPHICAl APPROACH

For the following exercises, use Figure 1.
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x

y
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−2
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−6
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−10
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6

6

42 8
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Figure 1  

1.   lim     
x → −1+

  f (x)

2.   lim     
x → −1−

  f (x)

3.   lim    
x → −1

  f (x)

4.   lim    
x → 3

  f (x)

5. At what values of x is the function discontinuous? 
What condition of continuity is violated?

6. Using Table 1, estimate   lim    
x → 0

  f (x).

x f (x)
−0.1 2.875
−0.01 2.92
−0.001 2.998

0 Undefined
0.001 2.9987
0.01 2.865
0.1 2.78145

0.15 2.678
Table 1 

For the following exercises, with the use of a graphing utility, use numerical or graphical evidence to determine the 
left- and right-hand limits of the function given as x approaches a. If the function has limit as x approaches a, state it. 
If not, discuss why there is no limit.

7. f (x) =     | x |  − 1, if x ≠ 1
           

x3,          if x = 1
        a = 1 8. f (x) =       1 _____ 

x + 1
  ,     if x = −2

            
(x + 1)2, if x ≠ −2

       a = −2

9. f (x) =     √— x + 3  , if x < 1
           

−  3
 √
—
 x  ,     if x > 1

      a = 1

FInDInG lIMITS: PROPeRTIeS OF lIMITS
For the following exercises, find the limits if   lim    

x → c
  f (x) = −3 and   lim    

x → c
  g(x) = 5.

10.   lim    
x → c

  ( f (x) + g(x)) 11.   lim    
x → c

     f (x) ____ 
g(x)

  

12.   lim    
x → c

  ( f (x) ⋅ g(x)) 13.   lim    
x → 0+

  f (x), f (x) =    3x2 + 2x + 1 x > 0
            

5x + 3            x < 0
    

14.   lim    
x → 0−

  f (x), f (x) =    3x2 + 2x + 1 x > 0
            

5x + 3            x < 0
    15.   lim    

x → 3+
 (3x − 〚x〛)
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For the following exercises, evaluate the limits using algebraic techniques.

16.   lim    
h → 0

      (h + 6)2 − 36  ___________ 
h

     17.   lim    
x → 25

      x 2 − 625 _ 
 √

—
 x   − 5

     18.   lim    
x → 1

      −x 2 − 9x ________ 
x

     19.   lim    
x → 4

      7 −  √
—

 12x + 1    _____________ 
x − 4

     

20.   lim    
x → −3

  
      

1
 _ 3   +   1 _ x  

 ______ 3 + x     
COnTInUITY

For the following exercises, use numerical evidence to determine whether the limit exists at x = a. If not, describe the 
behavior of the graph of the function at x = a.

21. f (x) =   −2 _____ 
x − 4

  ; a = 4 22. f (x) =   −2 _______ 
(x − 4)2

  ; a = 4

23. f (x) =   −x _________ 
x 2 − x − 6

  ; a = 3 24. f (x) =   6x 2 + 23x + 20  _____________ 
4x 2 − 25

  ; a = −   5 ___ 2  

25. f (x) =    √
—
 x   − 3 _______ 

9 − x
  ; a = 9

For the following exercises, determine where the given function f (x) is continuous. Where it is not continuous, state 
which conditions fail, and classify any discontinuities.

26. f (x) = x 2 − 2x − 15 27. f (x) =   x 2 − 2x − 15 ___________ 
x − 5

  28. f (x) =   x 2 − 2x __________ 
x 2 − 4x + 4

  29. f (x) =   x 3 − 125 _____________  
2x2 − 12x + 10

  

30. f (x) =   
x 2 −   1 __ 

x
  
 _______ 2 − x  31. f (x) =   x + 2 ___________ 

x 2 − 3x − 10
  32. f (x) =   x + 2 ______ 

x 3 + 8
  

DeRIVATIVeS

For the following exercises, find the average rate of change     f (x + h) − f (x)  _____________ 
h

  .

33. f (x) = 3x + 2 34. f (x) = 5 35. f (x) =   1 _____ 
x + 1

  36. f (x) = ln(x)

37. f (x) = e2x

For the following exercises, find the derivative of the function.

38. f (x) = 4x − 6 39. f (x) = 5x 2 − 3x 40. Find the equation of the tangent line to the graph of 
f (x) at the indicated x value. 
f (x) = −x 3 + 4x; x = 2.

For the following exercises, with the aid of a graphing utility, explain why the function is not differentiable everywhere 
on its domain. Specify the points where the function is not differentiable.

41. f (x) =   x _ 
 | x | 

  42. Given that the volume of a right circular cone 
is V =   1 __ 

3
  πr 2h and that a given cone has a fixed 

height of 9 cm and variable radius length, find the 
instantaneous rate of change of volume with respect 
to radius length when the radius is 2 cm. Give an 
exact answer in terms of π.
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CHAPTeR 12 PRACTICe TeST

For the following exercises, use the graph of f in Figure 1.
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Figure 1  

1. f (1)

2.   lim     
x → −1+

  f (x)

3.   lim     
x → −1−

  f (x)

4.   lim    
x → −1

  f (x)

5.   lim    
x → −2

  f (x)

6. At what values of x is f discontinuous? What property of continuity is violated?

For the following exercises, with the use of a graphing utility, use numerical or graphical evidence to determine the 
left- and right-hand limits of the function given as x approaches a. If the function has a limit as x approaches a, state 
it. If not, discuss why there is no limit.

7. f (x) =      1 __ 
x

   − 3,  if x ≤ 2
          

x3 + 1, if x > 2
      a = 2 8. f (x) =    x3 + 1,                if x < 1

  
         

  3x2 − 1,              if x = 1             
− √

—
 x + 3   + 4, if x > 1

      a = 1

For the following exercises, evaluate each limit using algebraic techniques.

9. 10.   lim    
h → 0

       √
—

 h2 + 25   − 5  ____________ 
h2

     11.   lim    
h → 0

      1 __ 
h

   −   1 ______ 
h2 + h

     

For the following exercises, determine whether or not the given function f is continuous. If it is continuous, show why. 
If it is not continuous, state which conditions fail.

12. f (x) =  √
—

 x 2 − 4  13. f (x) =   x
3 − 4x 2 − 9x + 36  ________________  
x 3 − 3x 2 + 2x − 6

  

For the following exercises, use the definition of a derivative to find the derivative of the given function at x = a.

14. f (x) =   3 ______ 
5 + 2x

  15. f (x) =   3 _ 
 √

—
 x  
  16. f (x) = 2x 2 + 9x

17. For the graph in Figure 2, determine where 
the function is continuous/discontinuous and 
differentiable/not differentiable.

2

x

f(x)

y

−1−2−3−4−5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5

Figure 2 

  lim    
x → −5

  
      1 _ 5   +   1 _ x  

 _______ 10 + 2x     
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For the following exercises, with the aid of a graphing utility, explain why the function is not differentiable 
everywhere on its domain. Specify the points where the function is not differentiable.

18. f (x) = |x − 2| − |x + 2| 19. f (x) =   2 ______ 
1 +  e   

2
 _ x   
  

For the following exercises, explain the notation in words when the height of a projectile in feet, s, is a function of time 
t in seconds after launch and is given by the function s(t).

20. s(0) 21. s(2) 22. s′(2) 23.   s(2) − s(1) _________ 
2 − 1

  24. s(t) = 0

For the following exercises, use technology to evaluate the limit.

25.   lim    
x → 0

    sin(x) _____ 
3x

  26.   lim    
x → 0

    tan2(x) ______ 
2x

  27.   lim    
x → 0

    sin(x)(1 − cos(x))  _______________ 
2x 2

  

28. Evaluate the limit by hand. 

  lim    
x → 1

  f (x), where f (x) =    4x − 7 x ≠ 1          
x 2 − 4 x = 1

     

At what value(s) of x is the function discontinuous?

For the following exercises, consider the function whose graph appears in Figure 3.

2

x

y

−1−2−3−4−5
−1
−2
−3
−4
−5

1

3

3

21 4

4

5

5

Figure 3 

29. Find the average rate of change of the function from 
x = 1 to x = 3.

30. Find all values of x at which f ′(x) = 0.

31. Find all values of x at which f ′(x) does not exist.

32. Find an equation of the tangent line to the graph of f 
the indicated point: f (x) = 3x2 − 2x − 6, x = − 2

For the following exercises, use the function f (x) =  x(1 − x)   
2
 _ 5   .

33. Graph the function f (x) =  x(1 − x)   
2
 _ 5    by entering 

f (x) =  x( (1 − x) 2 )   
1
 _ 5    and then by entering 

f (x) = x    (1 − x)   
1
 _ 5       

2
 .

34. Explore the behavior of the graph of f (x) around  
x = 1 by graphing the function on the following 
domains, [0.9, 1.1], [0.99, 1.01], [0.999, 1.001], and 
[0.9999, 1.0001]. Use this information to determine 
whether the function appears to be differentiable at 
x = 1.

For the following exercises, find the derivative of each of the functions using the definition:   lim    
h → 0

     f (x + h) − f (x)  _____________ 
h

  

35. f (x) = 2x − 8 36. f (x) = 4x2 − 7 37. f (x) = x −   1 __ 
2

  x2 38. f (x) =   1 _ 
x + 2

  39. f (x) =   3 _ 
x − 1

  

40. f (x) = −x3 + 1 41. f (x) = x2 + x3
42. f (x) =  √

—
 x − 1  
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Basic Functions and Identities
A1 Graphs of the Parent Functions
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–1–1–2
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–3

–3
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–4
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–4
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21 4

4
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–1–1–2
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–3
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–4

–4

1

3

3

21 4

4

2

–1–1–2

–2

–3

–3

–4

–4

1

3

3

21 4

4

2

–1–1–2

–2

–3

–3

–4

–4

1

3

3

21 4

4

2

–1–1–2

–2

–3

–3

–4

–4

1

3

3

21 4

4

x

f (x)

x

f (x)

x

f (x)

x

f (x)

x

f (x)

x

f (x)

Identity Square Square Root

Cubic Cube Root Reciprocal

Domain: (−∞, 0) ∪ (0, ∞)
Range: (−∞, 0) ∪ (0, ∞)

Domain: (−∞, ∞)
Range: (−∞, ∞)

Domain: (−∞, ∞)
Range: (−∞, ∞)

Domain: (−∞, ∞)
Range: (−∞, ∞)

Domain: (−∞, ∞)
    Range: [0, ∞)

Domain: [0, ∞)
Range: [0, ∞)

Figure A1

Figure A2

  

y = x

y = x 
3

y = x 
2 y = 

y = y = 3
x
1

x

f (x)

x

f (x)

x

f (x)

Absolute Value Exponential Natural Logarithm

Figure A3

y =  x y = e 
x y = ln(x)

Domain: (−∞, ∞)
    Range: [0, ∞)

Domain: (−∞, ∞)
    Range: [0, ∞)

Domain: (0, ∞)
    Range: (−∞, ∞)
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A2 Graphs of the Trigonometric Functions

x

y

x

Sine Cosine

Cosecant Secant Cotangent

Domain: x ≠ πk where k is an integer
Range: (−∞, −1]  ∪ [1,  ∞)

Domain: x ≠ πk where k is an integer
Range: (−∞, ∞)

Domain: (−∞, ∞)
Range: (−1, 1)

Domain: (−∞, ∞)
Range: (−1, 1)

Figure A5

y = sin x

y y y
Inverse Sine Inverse Cosine Inverse Tangent

Figure A6

y = sin−1 x 

Domain: [−1, 1]
Range: 

Domain: [−1, 1]
Range: [0, π)

Domain: (−∞, ∞)
Range: 

y y y
Inverse Cosecant Inverse Secant Inverse Cotangent

Figure A7

Domain: (−∞, −1]  ∪ [1,  ∞)
Range: 

Domain: (−∞, −1]  ∪ [1,  ∞)
Range: 

Domain: (−∞, ∞)
Range: 

Tangent

Figure A4
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–1
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–3
–4
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2π2π

4

π
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x

yy = tan x

2
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x

yy = csc x

4
2

6

–2
–4
–6
–8

ππ π
2

2π2π

 8

π
2

3π
2

3π
2

y = cos−1 x y = tan−1 x 

y = csc−1 x y = sec−1 x y = cot−1 x 

x
π
8

1
2

1
2

3
2

3
2

π
8

π
4

π
4

π
2

π
2

3π
8

3π
8

11 22
x

π
4

1
2

1
2

3
2

3
2

π
4

π
2

π
2

π

π
3π
2

3π
2

11 22

x

π

π
π
2

3π
2

π
2

–1–2–3–4 321 4

3π
2

x
π
8

π
8

π
4

π
4

π
2

π
2

3π
8

3π
8

1
2

1
2

3
2

3
2 11 22

Domain: x ≠   k where k is an odd integer
Range: (−∞, −1]  ∪ [1,  ∞)

π
2

Domain: x ≠   k where k is an odd integer
Range: (−∞, −1]  ∪ [1,  ∞)

π
2

x

π

π
π
2

3π
2

π
2

–1–2–3–4 321 4

3π
2

x

π

π
π
2

3π
2

π
2

–1–2–3–4 321 4

3π
2

yy = cos x

2
1

3

–1
–2
–3
–4

ππ π
2

2π2π

4

π
2

3π
2

3π
2
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A3 Trigonometric Identities

Identities Equations

Pythagorean Identities
sin2 θ + cos2 θ = 1
1 + tan2 θ = sec2 θ
1 + cot2 θ = csc2 θ

Even-odd Identities

cos(−θ) = cos θ
sec(−θ) = sec θ
sin(−θ) = −sin θ
tan(−θ) = −tan θ
csc(−θ) = −csc θ
cot(−θ) = −cot θ

Cofunction identities

sin θ = cos    π _ 
2

   − θ  

cos θ = sin    π _ 
2

   − θ  

tan θ = cot    π _ 
2

   − θ  

cot θ = tan    π _ 
2

   − θ  

sec θ = csc    π _ 
2

   − θ  

csc θ = sec    π _ 
2

   − θ  

Fundamental Identities

tan θ =    sin θ _ 
cos θ

   

sec θ =    1 _ 
cos θ

   

csc θ =    1 _ 
sin θ

   

cot θ =    1 _ 
tan θ

    =    cos θ _ 
sin θ

   

Sum and Difference Identities

cos (α + β) = cos α cos β − sin α sin β
cos (α − β) = cos α cos β + sin α sin β
sin (α + β) = sin α cos β + cos α sin β
sin (α − β) = sin α cos β − cos α sin β

tan (α + β) =    
tan α + tan β

  __  
1 − tan α tan β

   

tan (α − β) =    
tan α − tan β

  __  
1 + tan α tan β

   

Double-Angle Formulas

sin(2θ) = 2sin θ cos θ

cos(2θ) = cos2 θ − sin2 θ

cos(2θ) = 1 − 2sin2 θ

cos(2θ) = 2cos2 θ − 1

tan(2θ) =    2tan θ ________ 1 − tan2 θ  

Table  A1 
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Identities Equations

Half-Angle formulas

 sin   α _ 
2

   = ± √ 
_________

   1 − cos α _______ 2    

 cos   α _ 
2

   = ± √ 
_________

   1 + cos α _______ 2    

 tan   α _ 
2

   = ± √ 
_________

   1 − cos α _______ 1 + cos α    

 =   sin α _______ 1 − cos α  

 =   1 − cos α _______ sin α  

Reduction Formulas

 sin2θ =   1 − cos(2θ) _________ 2  

 cos2θ =   1 + cos(2θ) _________ 2  

 tan2θ =   1 − cos(2θ) _________ 1 + cos(2θ)  

Product-to-Sum Formulas

cos α cos β =    1 __ 2     cos  α − β   + cos  α + β      

sin α cos β =    1 __ 2     sin  α + β   + sin  α − β      

sin α sin β =    1 __ 2     cos  α − β   − cos  α + β      

cos α sin β =    1 __ 2     sin  α + β   − sin  α − β      

Sum-to-Product Formulas

sin α + sin β = 2 sin     α + β _____ 2     cos     α − β _____ 2    

sin α − sin β = 2 sin     α − β _____ 2     cos     α + β _____ 2    

cos α − cos β = −2 sin     α + β _____ 2     sin     α − β _____ 2    

cos α + cos β = 2cos     α + β _____ 2     cos     α − β _____ 2    

Law of Sines
   sin α _ a    =    

sin β
 _ 

b
    =    

sin γ
 _ c   

   sin a _ α    =    sin b _ 
β

    =    sin c _ γ    

Law of Cosines
a2 = b2 + c2 − 2bccos α
b2 = a2 + c2 − 2accos β
c2 = a2 + b2 − 2aacos γ

Table  A1 
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Try It Answers
Chapter 1

Section 1.1
1. a. Yes b. Yes (Note: If two players had been tied for, say, 4th 
place, then the name would not have been a function of rank.)
2. w = f (d)  3. Yes  4. g(5) = 1  5. m = 8
6. y = f (x) =      

3 √
—
 x   ___ 2     7. g(1) = 8  8. x = 0 or x = 2

9. a. Yes, because each bank account has a single balance at any 
given time. b. No, because several bank account numbers may 
have the same balance. c. No, because the same output may 
correspond to more than one input.  10. a. Yes, letter grade 
is a function of percent grade. b. No, it is not one-to-one. There 
are 100 different percent numbers we could get but only about 
five possible letter grades, so there cannot be only one percent 
number that corresponds to each letter grade.  11. Yes
12. No, because it does not pass the horizontal line test.

Section 1.2
1. {−5, 0, 5, 10, 15} 2. (−∞, ∞) 3.    −∞,   1 __ 2      ∪      1 __ 2  , ∞   
4.   −   5 __ 2   , ∞     5. a. Values that are less than or equal to –2, or 
values that are greater than or equal to –1 and less than 3; 
b. { x |x ≤ –2 or –1 ≤ x < 3 } c. (–∞, –2] ∪ [–1, 3)
6. Domain = [1950, 2002]; Range = [47,000,000, 89,000,000]  
7. Domain: (−∞, 2]; Range: (−∞, 0]
8. 

2

x

y

–1–1–2

–2

–3

–3

–4

–4

–5–6

–5
–6

1

3

3

21 4

4

5 6

5
6

Section 1.3

1.    $2.84 − $2.31  ___________ 5 years    =    $0.53 _____ 5 years    = $0.106 per year.  2.    1 __ 2    

3. a + 7  4. The local maximum appears to occur at (−1, 28), 
and the local minimum occurs at (5, −80). The function is 
increasing on (−∞, −1) ∪ (5, ∞) and decreasing on (−1, 5).

x

f (x)

–1–2–3–4
–20
–40
–60
–80

–100
–120

321 4

20

5 6 7 8

40

(5, −80)

(−1, 28)

Section 1.4
1. a. (fg)(x) = f (x)g(x) = (x − 1)(x 2 − 1) = x 3 − x 2 − x + 1 
(f − g)(x) = f (x) − g(x) = (x − 1) − (x2 − 1) = x − x 2 

b. No, the functions are not the same.
2. A gravitational force is still a force, so a(G(r)) makes sense as 
the acceleration of a planet at a distance r from the Sun (due to 
gravity), but G(a(F)) does not make sense. 
3. f ( g (1)) = f (3) = 3 and g ( f (4)) = g (1) = 3 4. g ( f (2)) = g (5) = 3
5. a. 8; b. 20  6. [−4, 0) ∪ (0, ∞)  
7. Possible answer: g(x) =   √

—
 4 + x2   ;  h(x) =    4 ____ 3 − x   ;  f = h ∘ g      

Section 1.5
1. b(t) = h (t) + 10 = −4.9t 2 + 30t + 10  
2. 

2

x

y

g(x)

f(x)
–1–2–3–4–5 –1

–2

1

3

3

21 4

4

5

5
 The graphs of f (x) and 
g (x) are shown here. The 
transformation is a horizontal 
shift. The function is shifted to 
the left by 2 units.

3. 

4

x

h(x)

–1–2–3–4–5–6 –2

2

3

6

21 4

8

5 6

10 h(x) � |x – 2|+ 4

 4. g(x) =    1 ____ x − 1    + 1

5. a. 

2

x

y

–1–2–3–4 –1
–2
–3

1

3

3

21 4

 b. 

2

x

y

–1–2–3–4 –1
–2

1

3

3
4

21 4

6. a. g(x) = −f (x) b. h(x) = f (−x)

x −2 0 2 4 x −2 0 2 4
g(x) −5 −10 −15 −20 h(x) 15 10 5 unknown

7.    Notice: h(x) = f (−x) looks 
the same as f (x).

8. even  9. x 2 4 6 8
g(x) 9 12 15 0

  10. g(x) = 3x − 2

11. g(x) = f       1 __ 3  x    so using the square root function we get  

g(x) =   √ 

___

   1 __ 3  x   

2

x

y

–1–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

210 4

4

5

5

f (x) = x2

h(x) = f (− x)= (− x)2

g(x) = −f (x) = −x2
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Section 1.6
1. | x − 2 | ≤ 3 2. Using the variable p for passing, | p − 80 | ≤ 20
3. f (x) = −| x + 2 | + 3  4. x = −1 or x = 2
5. f (0) = 1, so the graph intersects the vertical axis at (0, 1). 
f (x) = 0 when x = −5 and x = 1 so the graph intersects the 
horizontal axis at (−5, 0) and (1, 0).  6. 4 ≤ x ≤ 8  
7. k ≤ 1 or k ≥ 7; in interval notation, this would be 
(−∞, 1] ∪ [7, ∞).

Section 1.7
1. h(2) = 6  2. Yes  3. Yes  4. The domain of function  
f −1 is ( −∞, −2) and the range of function f −1 is (1, ∞).
5. a. f (60) = 50. In 60 minutes, 50 miles are traveled.  
b. f −1(60) = 70. To travel 60 miles, it will take 70 minutes.
6. a. 3  b. 5.6  7. x = 3y + 5  8. f −1(x) = (2 − x)2; 
domain of f : [0, ∞); domain of f −1: (−∞, 2]
9. 

x

y

y=x

f(x)

f –1(x)
2

–1–1–2

–2

–3

–3

1

3

3

21 4

4

5 76 8 9

5
6
7
8
9

Chapter 2
Section 2.1

1. m =    4 − 3 _ 0 − 2    =    1 _ 
−2    = −   1 __ 2  ; decreasing because m < 0.

2. m =    1,868 − 1,442  __  2,012 − 2,009    =    426 _ 3    = 142 people per year   

3. y − 2 = −2(x + 2); y = −2x − 2  
4. y − 0 = −3(x − 0); y = −3x  5. y = −7x + 3
6. H(x) = 0.5x + 12.5

Section 2.2
1. 

4

x

y

–2–4–6–8–10 –2
–4
–6
–8

–10

2

6

6

42 8

8

10

10

(0, 6)
(4, 3)

(8, 0)

  2. Possible answers include  
(−3, 7), (−6, 9), or (−9, 11)

3. 

4

x

y

–2–4–6–8–10 –2
–4
–6
–8

–10

2

6

6

42 8

8

10

10

y = 2x + 4

y = 2x

y = x 4. (16, 0)

 5.  a. f (x) = 2x; 

   b. g(x) = −  1 __ 2  x

 6. y = −  1 __ 3  x + 6

7. a. (0, 5) b. (5, 0) c. Slope –1 d. Neither parallel nor 
 perpendicular e. Decreasing function f. Given the identity 
function, perform a vertical flip (over the t-axis) and shift up 5 units.

Section 2.3
1. C(x) = 0.25x + 25,000; The y-intercept is (0, 25,000). If the 
company does not produce a single doughnut, they still incur a 
cost of $25,000.  2. a. 41,100 b. 2020  3. 21.15 miles

Section 2.4
1. 54° F  2. 150.871 billion gallons; extrapolation

Chapter 3

Section 3.1
1.  √

—
 −24   = 0 + 2i  √

—
 6     2. 

2

r

i

–1–1–2

–2

–3

–3

–4

–4

–5

–5

1

3

3

21 4

4

5

5
3. (3 − 4i) − (2 − 5i) = 1 − 9i
4. −8 − 24i  5. 18 + i

6. 102 − 29i  7. −  3 __ 
17

   +   5 __ 17  i

Section 3.2
1. The path passes through the origin and has vertex at (−4, 7), 

so (h)x = −  7 __ 16  (x + 4)2 + 7. To make the shot, h(−7.5) would 
need to be about 4 but h(−7.5) ≈ 1.64; he doesn’t make it.
2. g(x) = x 2 − 6x + 13 in general form; g(x) = (x − 3)2 + 4  
in standard form  3. The domain is all real numbers. The  
range is f (x) ≥   8 __ 11  , or     8 __ 11  , ∞   .  4. y-intercept at (0, 13), No  

x-intercepts   5. 3 seconds; 256 feet; 7 seconds

Section 3.3
1. f (x) is a power function because it can be written as f (x) = 8x 5. 
The other functions are not power functions.  
2. As x approaches positive or negative infinity, f (x) decreases 
without bound: as x → ±∞, f (x) → −∞ because of the  negative 
coefficient.   3. The degree is 6. The leading term is −x 6.  
The leading coefficient is −1.   4. As x → ∞, f (x) → −∞; as  
x → −∞, f (x) → −∞. It has the shape of an even degree power 
function with a negative coefficient.  5. The leading term is 
0.2x 3, so it is a degree 3 polynomial. As x approaches positive 
infinity, f (x) increases without bound; as x approaches negative 
infinity, f (x) decreases without bound.  6. y-intercept (0, 0); 
x-intercepts (0, 0), (−2, 0), and (5, 0)  7. There are at most 
12 x-intercepts and at most 11 turning points.  8. The end 
behavior indicates an odd-degree polynomial function; there 
are 3 x-intercepts and 2 turning points, so the degree is odd and 
at least 3. Because of the end behavior, we know that the lead 
coefficient must be negative.  9. The x-intercepts are (2, 0), 
(−1, 0), and (5, 0), the y-intercept is (0, 2), and the graph has at 
most 2 turning points.  

Section 3.4
1. y-intercept (0, 0); x-intercepts (0, 0), (–5, 0), (2, 0), and (3, 0)
2. The graph has a zero of –5 with multiplicity 3, a zero of –1 with 
multiplicity 2, and a zero of 3 with multiplicity 4.
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3. 

–4 –3 –2 –1 1 2

–50

–40

–30

–20

–10

10

x

y   4. Because f is a polynomial 
function and since f (1) is 
negative and f (2) is positive, 
there is at least one real zero 
between x = 1 and x = 2.

5. f (x) = −  1 __ 8  (x − 2)3(x + 1)2(x − 4)  6. The minimum occurs 
at  approximately the point (0, −6.5), and the maximum occurs at 
approximately the point (3.5, 7).

Section 3.5
1. 4x2 − 8x + 15 −   78 _____ 4x + 5     2. 3x 3 − 3x 2 + 21x − 150 +    1,090 _____ x + 7  

3. 3x2 − 4x + 1 

Section 3.6

1. f (−3) = −412  2. The zeros are 2, −2, and −4.  

3. There are no rational zeros.  4. The zeros are −4,   1 __ 2   , and 1.

5. f (x) = −  1 __ 2  x  3 +   5 __ 
2

  x 2 − 2x + 10  6. There must be 4, 2, or 

0 positive real roots and 0 negative real roots. The graph shows 
that there are 2 positive real zeros and 0 negative real zeros.  
7. 3 meters by 4 meters by 7 meters  

Section 3.7
1. End behavior: as x → ±∞,  f (x) → 0; Local behavior: as x → 0, 
f (x) → ∞ (there are no x- or y-intercepts).
2. 

x

y

–1–2–3–4–5 –1
–2
–3

–5

21

1
2
3
4
5

4 5

x = 3
y = –4–4

3

  The function and the 
asymptotes are shifted 3 units 
right and 4 units down.  
As x → 3, f (x) → ∞, and as  
x → ±∞,  f (x) → −4.  
The function is  
f (x) =   1 ______ (x − 3)2   − 4.

3.   12 __ 11   4. The domain is all real numbers except x = 1 and x = 5.

5. Removable discontinuity at x = 5. Vertical asymptotes: x = 0, 
x = 1.  6. Vertical asymptotes at x = 2 and x = –3; horizontal 
asymptote at y = 4.  7. For the transformed reciprocal 
squared function, we find the rational form. 

f(x)  =   1 ______ (x − 3)2   − 4  

  =   1 − 4(x − 3)2
 ___________ (x − 3)2  

  =   1 − 4(x2 − 6x + 9)  _______________   (x − 3)(x − 3)   

  =   −4x2 + 24x − 35  ______________  x2 − 6x + 9   
  

8. 

x

y

–2–4–6–8–10 –1
–2
–3
–4
–5

642

1
2
3
4
5
6

8 10

  Horizontal asymptote at y =   1 _ 
2

  . 
Vertical asymptotes at x = 1 
and x = 3. y-intercept at   0,   4 _ 

3
    . 

x-intercepts at (2, 0) and (–2, 0).  
(–2, 0) is a zero with 
multiplicity 2, and the graph 
bounces off the x-axis at this 
point. (2, 0) is a single zero and 
the graph crosses the axis at this 
point.

Section 3.8 
1. f −1( f(x)) = f −1    x + 5 _____ 3     = 3    x + 5 _____ 3     − 5 = (x − 5) + 5 = x 

and f ( f −1 (x)) = f (3x − 5) =   (3x − 5) + 5 __________ 3   =   3x __ 3   = x

2. f−1(x) = x 3 − 4  3. f −1(x) =  √
—

 x − 1    

4.  f −1(x) =   x 2 − 3 ______ 2   , x ≥ 0  5. f −1(x) =   2x + 3 ______ x − 1  

Section 3.9
1.   128 ____ 3    2.   9 __ 2    3. x = 20

Chapter 4
Section 4.1
1. g(x) = 0.875x and j(x) = 1095.6−2x represent exponential functions.
2. 5.5556  3. About 1.548 billion people; by the year 2031, 
India's population will exceed China's by about 0.001 billion, or 1 
million people.  4. (0, 129) and (2, 236); N(t) = 129(1.3526)t

5. f (x) = 2(1.5)x 6. f (x) =   √
—
 2   ( √

—
 2  )x ; Answers may vary due to 

round-off error. the answer should be very close to 1.4142(1.4142)x.
7. y ≈ 12 · 1.85x  8. About $3,644,675.88  9. $13,693
10. e−0.5 ≈ 0.60653  11. $3,659,823.44  12. 3.77E-26(Thi
s is calculator notation for the number written as 3.77 × 10−26 in 
scientific notation. While the output of an exponential function 
is never zero, this number is so close to zero that for all practical 
purposes we can accept zero as the answer.)

Section 4.2
1. 

2

x

f(x)

–1–1–2

–2

–3–4–5

1

3

3

21 4

4

5

5
6

(1, 4)

(–1, 0.25) (0, 1)

f(x) = 4x
 
  The domain is ( −∞, ∞); the 

range is (0, ∞); the horizontal 
asymptote is y = 0.

2. 

4

x

f(x)

–1–2–2

–4

–3–4–5

2

3

6

21 4

8

5

10 f(x) = 2x – 1 + 3

y = 3
(–1, 3.25)

(0, 3.5)
(1, 4)

 
  The domain is ( −∞, ∞); the 

range is (3, ∞); the horizontal 
asymptote is y = 3.

 3. x ≈ −1.608

Because the numerator is the same 
degree as the denominator we know 
that as x → ±∞, f (x) → −4; so 
y = –4 is the horizontal asymptote. 
Next, we set the denominator equal 
to zero, and find that the vertical 
asymptote is x = 3, because as x → 3,  
f (x) → ∞. We then set the numerator 
equal to 0 and find the x-intercepts 
are at (2.5, 0) and (3.5, 0). Finally, we 
evaluate the function at 0 and find 

the y-intercept to be at   0,   −35 ____ 9    .
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4. 

2

x

f(x)

–1–1–2

–2

–3–4–5

1

3

3

21 4

4

5

5

(–1, 0.125)
(1, 2)

(0, 0.5) y = 0

f(x) =   (4)x1
2

 
  The domain is ( −∞, ∞); the 

range is (0, ∞); the horizontal 
asymptote is y = 0.

5. 

2

x

g(x)

–2–1–4–6–8–10

1

6

3

42 8

4

10

5

(–1, 1.25)

(0, 1)
(1, 0.8)

y = 0

g(x) = 1.25–x
 
  The domain is ( −∞, ∞); the 

range is (0, ∞); the horizontal 
asymptote is y = 0.

6. f(x) = −  1 __ 3  ex − 2; the domain is ( −∞, ∞); the range is  
(− ∞, 2); the horizontal asymptote is y = 2.

Section 4.3
1. a. log10(1,000,000) = 6 is equivalent to 106 = 1,000,000
b. log5(25) = 2 is equivalent to 52 = 25 2. a. 32 = 9 is equivalent 
to log3(9) = 2 b. 53 = 125 is equivalent to log5(125) = 3
c. 2−1 =   1 _ 

2
   is equivalent to log2    1 _ 

2
     = −1

3. log121(11) =   1 _ 
2

   (recalling that  √
—

 121   =  121   
1 _ 2    = 11)

4. log2    1 _ 
32

     = −5 5. log(1,000,000) = 6 6. log(123) ≈ 2.0899

7. The difference in magnitudes was about 3.929.  8. It is not 
possible to take the logarithm of a negative number in the set of 
real numbers.

Section 4.4
1. (2, ∞)  2. (5, ∞)  
3. 

2

x

f(x)

–2–1–4

–2

–6

–3

–8–10

1

6

3

8

4

10

(1, 0)

x = 0

, 11
5

f (x) = log  (x)1
5

42

   The domain is (0, ∞), the 
range is (−∞, ∞), and the 
vertical asymptote is x = 0.

4. 

x

y

–1–2–5–6 –1
–2
–3
–4
–5

2
3
4
5

321 4 5 6

y = log3(x)

x = −4 x = 0

(1, 0)

(−1, 1)

(−3, 0)

f (x) = log3(x + 4)

(3, 1)
–4 –3

1

  The domain is (−4, ∞), the 
range (−∞, ∞), and the 
asymptote x = –4.

5. 

(1, 0)(0.25, 0)

(2, 1)(0.5, 1)

f(x) = log2(x) + 2

y = log2(x)

x = 0

x

y   The domain is (0, ∞), the range is 
(−∞, ∞), and the vertical asymptote  
is x = 0.

6. 

(16, 1)

y = log4(x) 
1
2f(x) =   log4(x)

x = 0

(1, 0)

(4, 1)

y

x

  The domain is 
(0, ∞), the range 
is (−∞, ∞), and 
the vertical 
asymptote is 
x = 0.

7. 

2

x

y

–2–1–4
–2

–6

–3

–8

–4

–10

–5

1

6

3

4 8

4

10

5 x = 2

2

  The domain is (2, ∞), the range 
is (−∞, ∞), and the vertical 
asymptote is x = 2.

8. 

2

x

y

–2–1–

–2

––10

1

6

3

42 8

4

10
x = 0

46–8

 The domain is (−∞, 0), the  
range is (−∞, ∞), and the 
vertical asymptote is x = 0.
9. x ≈ 3.049  10. x = 1  
11. f (x) = 2ln(x + 3) − 1

Section 4.5
1. logb(2) + logb(2) + logb(2) + logb(k) = 3logb(2) + logb(k)
2. log3(x + 3) − log3(x − 1) − log3(x − 2)  3. 2ln(x)  
4. −2ln(x)  5. log3(16)  6. 2log(x) + 3log(y) − 4log(z)

7.   2 __ 3  ln(x)   8.   1 __ 2  ln(x − 1) + ln(2x + 1) − ln(x + 3) − ln(x − 3)

9. log    3 ⋅ 5 ____ 4 ⋅ 6    ; can also be written log    5 __ 8     by reducing the 

fraction to lowest terms.  10. log     5(x − 1)3  √
—
 x    ___________ (7x − 1)      

11. log  x
12(x + 5)4

 ________ 
(2x + 3)4  ; this answer could also be written log    x

3(x + 5) _______ 
(2x + 3)

    
4
.

12. The pH increases by about 0.301.  13.   ln(8) ____ ln(0.5)  

14.   ln(100) _____ ln(5)   ≈   4.6051 _____ 1.6094   = 2.861

Section 4.6
1. x = −2  2. x = −1  3. x =   1 __ 2   

4. The equation has no solution.  5. x =   
ln(3)

 _ 
 ln    2 _ 

3
    

  

6. t = 2ln    11 __ 3     or ln    11 __ 3    
2
 

7. t = ln    1 _ 
 √

—
 2  
     = −  1 __ 2  ln(2)  8. x = ln(2)  9. x = e4  

10. x = e5 − 1  11. x ≈ 9.97  12. x = 1 or x = −1  

13. t = 703,800,000 ×  ln(0.8) ______ ln(0.5)   years ≈ 226,572, 993 years.

Section 4.7
1. f (t) = A0 e −0.0000000087t  2. Less than 230 years; 229.3157 to be exact
3. f (t) = A0  e        ln(2) ____ 3    t       4. 6.026 hours  5. 895 cases on day 15
6. Exponential. y = 2e 0.5x  7. y = 3e (ln 0.5)x 
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Section 4.8
1. a. The exponential regression model that fits these data is  
y = 522.88585984(1.19645256)x. b. If spending continues at this 
rate, the graduate’s credit card debt will be $4,499.38 after one year.
2. a. The logarithmic regression model that fits these data is  
y = 141.91242949 + 10.45366573ln(x) b. If sales continue at 
this rate, about 171,000 games will be sold in the year 2015.
3. a. The logistic regression model that fits these data is

y =    25.65665979  _____________________   
1 + 6.113686306e−0.3852149008x 

  . b. If the population 

continues to grow at this rate, there will be about 25,634 seals in 
2020.  c. To the nearest whole number, the carrying capacity 
is 25,657.

Chapter 5

Section 5.1
1. 

240°

x

y  2.   3π ___ 2    3. −135°  4.   7π _ 
10

  

 5. α = 150°  6. β = 60°  7.   7π ___ 6  

 8.   215π ____ 18   = 37.525 units  9. 1.88

 10. −   3π ___ 2   rad/s 

 11. 1,655 kilometers per hour

Section 5.2
1. cos(t) = −    √

—
 2   ____ 2  , sin(t) =    √

—
 2   ____ 2    2. cos(π) = −1, sin(π) = 0

3. sin(t) = −  7 __ 25      4. Approximately 0.866025403   5.   π _ 
3

    

6. a. cos(315°) =    √
—
 2   ____ 2  , sin(315°) = −    √

—
 2   ____ 2     b. cos   −  π ___ 6     =     √

—
 3   ____ 2  ,  

sin   −   π ___ 6     = −   1 _ 
2

    7.     1 __ 2  , −    √
—
 3   ____ 2    

Section 5.3

1.  sin t = −   √
—
 2   ____ 2   cos t =    √

—
 2   ____ 2   tan t = −1  

sec t =  √
—
 2  ,  csc t = − √

—
 2   cot t = −1

2.  sin   π __ 3   =    √
—
 3   ____ 2   cos   π __ 3   =   1 __ 2   tan   π __ 3   =  √

—
 3    

sec   π _ 
3

   = 2 csc   π __ 3   =   2 √
—
 3   _____ 3   cot   π __ 3   =    √

—
 3   ____ 3  

3.  sin   −  7π ___ 4     =    √
—
 2   ____ 2   cos   −  7π ___ 4     =    √

—
 2   ____ 2   tan   −  7π ___ 4     = 1 

sec   −  7π ___ 4     =  √
—
 2    csc   −  7π ___ 4     =  √

—
 2   cot   −  7π ___ 4     = 1

4. − √
—
 3    5. −2   6. sin t

7.  cot t = −  8 __ 17   sin t =   15 __ 17   tan t = −  15 __ 8    

csc t =   17 __ 15   cot t = −  8 __ 15  

8.  sin t = −1 cos t = 0 tan t = Undefined 
sec t = Undefined csc t = −1 cot t = 0

9.  sec t =  √
—
 2   csc t =  √

—
 2   tan t = 1 

cot t = 1  
10. ≈ −2.414 

Section 5.4

1.   7 ____ 25    

2.  sin(t) =   33 __ 65   cos(t) =   56 __ 65   tan(t) =   33 __ 56   

sec(t) =   65 __ 56   csc(t) =   65 __ 33   cot(t) =   56 __ 33  

3.  sin    π __ 4     =    √
—
 2   ____ 2   cos    π __ 4     =    √

—
 2   ____ 2   tan    π __ 4     = 1  

sec    π __ 4     =  √
—
 2   csc    π __ 4     =  √

—
 2   cot    π __ 4     = 1

4. 2 5. Adjacent = 10; opposite = 10 √
—
 3  ; missing angle is   π __ 6  .  

6. About 52 ft.

Chapter 6
Section 6.1

1. 6π  2.   1 __ 2   compressed  3.   π __ 2  ; right
4. 2 units up  5. Midline: y = 0; Amplitude : |A| =   1 __ 2  ;  
Period : P =   2π _ 

 ∣ B ∣ 
   = 6π; Phase shift:  C __ B   = π  6. f (x) = sin(x) + 2

7. Two possibilities: y = 4sin    π __ 5  x −   π __ 5     + 4 or 
y = −4sin    π __ 5  x +   4π ___ 5     + 4
8. 

–1

1

π–π π
2– π

2

x

y

g(x) = –0.8 cos (2x)

  Midline: y = 0;  
Amplitude : |A| = 0.8;  

Period : P =   2π ___ |B|   = π; 

Phase shift :   C __ B   = 0 or 

none

9. 

–7 –5 –3 –1 1 3 5 7

–2

–1

1

2

x

y
g(x) = –2 cos 3

π
6
πx +   Midline : y = 0;  

Amplitude : |A| = 2;  
Period : P =   2π ___ |B|   = 6 ;  

Phase shift :   C __ B   = −  1 __ 2  

10. 

–7

–5

–3

–1

1

3

5

7

π–π–2π 2π
x

y
f(x) = 7 cos x

 7

11. 

–7
–6
–5

–3
–2
–1

π 2π 3π 4π
x

y

y = −4

y = 3 cos x − 4

 3cos(x) − 4
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Section 6.2
1. 

x = −9 x = −3 x = 3 x = 9

–7 –5 –1 1 5 7

–5

1

3

5

x

y y = 3 tan 6
πx  2.  It would be reflected 

across the line y = −1, 
becoming an increasing 
function.

 3. g(x) = 4tan(2x)

4. 

–6

–4

–2

2

4

6

π–π 3π2π 4π
x

y
f (x) = −2.5sec (0.4x)   This is a vertical reflection of 

the preceding graph because A 
is negative.

5. 

–24

–20

–16

–12

–8

–4

4

8

π
4– π

4 – π
8

x

y
f(x) = −6sec (4x + 2) − 8

 

6. 

–6

–4

–2

2

4

6

x = π

π
4

3π
4

π
2x = 

x

y
f (x) = 0.5csc (2x)

7. 

x

y

–1 1 3 5–3–5

–2

–4

–6

6

f (x) = 2 cos + 12
π x 

g(x) = 2 sec + 12
π x 

 

Section 6.3
1. arccos(0.8776) ≈ 0.5  2. a. −  π __ 2   b. −  π __ 4   c.  π d.   π __ 3  

3. 1.9823 or 113.578°  4. sin−1(0.6) = 36.87° = 0.6435 radians

5.   π _ 
8

  ;   2π _ 
9

    6.   3π _ 4     7.   12 _ 
13

     8.   4 √
—
 2   _ 

9
     9.    4x _ 

 √
—

 16x2 + 1  
   

Chapter 7

Section 7.1
1. csc θ cos θ tan θ   =     1 _ 

sin θ
     cos θ     sin θ _ 

cos θ
     

=   cos θ ____ sin θ       sin θ ____ cos θ     

=   sin θcos θ ________ sin θcos θ   

= 1

2.   cot θ ____ csc θ   =   
  cos θ ____ sin θ  

 _ 
  1 ____ sin θ  

   =   cos θ ____ sin θ   ⋅   sin θ ____ 1   = cos θ

3.   sin2 θ − 1  ______________  tan θ sin θ − tan θ    =    (sin θ + 1)(sin θ − 1)  ________________  tan θ(sin θ − 1)   =    sin θ + 1 _______ tan θ   

4.  This is a difference of squares formula:  
25 − 9sin2 θ = (5 − 3sin θ)(5 + 3sin θ).

5.   cos θ _______ 1 +  sin θ         1 − sin θ _______ 1 − sin θ      =   cos θ(1 − sin θ)  ____________  1 − sin2 θ    

=   cos θ(1 − sin θ)  ____________ cos2 θ    

=   1 − sin θ _______ cos θ  

Section 7.2

1.    √
—
 2   +  √

—
 6   _________ 4    2.    √

—
 2   –  √

—
 6   _________ 4    3.   1 −  √

—
 3   _______ 1 +  √

—
 3      4. cos    5π ___ 14    

5. tan(π − θ)  =   tan(π) − tan θ  ____________  1 + tan(π)tan θ    

=   0 − tan θ __________  1 + 0 ∙ tan θ    

= −tan θ

Section 7.3

1. cos(2α) =   7 __ 32    

2. cos4 θ − sin4 θ = (cos2 θ + sin2 θ)(cos2 θ − sin2 θ) = cos(2θ)
3. cos(2θ)cos θ = (cos2 θ − sin2 θ)cos θ = cos3 θ − cos θsin2 θ

4. 10cos4 x  = 10(cos2 x)2  

= 10     1 + cos(2x) _________ 2      
2
   Substitute reduction formula for cos2 x. 

=   10 __ 
4

   [1 + 2cos(2x) + cos2(2x)] 

=   10 __ 
4

   +   10 __ 
2

  cos(2x) +   10 __ 
4

      1 + cos2(2x) __________ 2     

=   10 __ 
4

   +   10 __ 
2 

  cos(2x) +   10 __ 
8

   +   10 __ 
8

  cos(4x) 

=   30 __ 
8

   + 5cos(2x) +   10 __ 
8

  cos(4x) 

=   15 __ 
4

   + 5cos(2x) +   5 __ 4  cos(4x)

5. −   2 _ 
 √

—
 5  
   

Section 7.4
1.   1 __ 2  (cos 6θ + cos 2θ)  2.   1 __ 2  (sin 2x + sin 2y)  3.   −2 −  √

—
 3   ________ 4  

4. 2 sin(2θ)cos(θ)  

Substitute 
reduction  
formula for  
cos2 x.



TRY IT ANSWERS B-7

5. tan θ cot θ − cos2 θ  =     sin θ _ 
cos θ

        cos θ _ 
sin θ

     − cos2 θ 

= 1− cos2 θ 
= sin2 θ

Section 7.5

1. x =   7π _ 
6

  ,   11π _ 
6

    2.   π _ 
3

   ± πk  3. θ ≈ 1.7722 ± 2πk and  

θ ≈ 4.5110 ± 2πk  4. cos θ = −1, θ = π  5.   π _ 
2

  ,   2π _ 
3

  ,   4π _ 
3

  ,   3π _ 
2

  

Section 7.6

1. The amplitude is 3, and the period is   2 _ 
3

  .
2. 

3. 

t

y

4 8 12 16 20 24

8
16
24
32
40

 
  y = 8sin    π __ 12  t   + 32; The 

temperature reaches freezing at 
noon and at midnight.

4. initial displacement = 6, damping constant = −6, frequency =   2 __ π  
5. y = 10e −0.5t cos(πt)  6. y = 5cos(6πt)

Chapter 8

Section 8.1
1. α = 98°, a = 34.6; β = 39°, b = 22; γ = 43°, c = 23.8
2.  Solution 1 α = 80°, a = 120; β ≈ 83.2°, b = 121; γ ≈ 16.8°, c ≈ 35.2 

Solution 2 α' = 80°, a' = 120; β' ≈ 96.8°, b' = 121; γ' ≈ 3.2°, c' ≈ 6.8
3. β ≈ 5.7°, γ ≈ 94.3°, c ≈ 101.3  4. Two  
5. About 8.2 square feet  6. 161.9 yd.

Section 8.2
1. a ≈ 14.9, β ≈ 23.8°, γ ≈ 126.2° 2. α ≈ 27.7°, β ≈ 40.5°, γ ≈ 111.8°

3. Area = 552 square feet  4. About 8.15 square feet 

Section 8.3
1. 

y

(0, −9)
(−12, 0) (12, 0)

(15, 0)

(0, 9)

x
(−15, 0)

 2. y

(3, −14)(3, −4)

(3, 6)

(11, −4)(−5, −4)
x

3. (x, y) =     1 _ 
2

  , −   √
—
 3   ____ 2      4. r =  √

—
 3    5. x2 + y2 = 2y or, 

in the standard form for a circle, x2 + (y − 1)2 = 1

Section 8.4
1. The equation fails the symmetry test with respect to the 
line θ =   π _ 

2
   and with respect to the pole. It passes the polar axis 

symmetry test.  2. Tests will reveal symmetry about the 
polar axis. The zero is   θ,   π _ 

2
    , and the maximum value is (3, 0).

3. 

–4–5 –3 –3 –2 –1
–1

1
2
3
4
5
6

–3
–2

–5
–4

–6

1 2 3 4 5 6

   4. The graph is a rose curve,  
n even 

–4 –3 –2 –1
–1

1

2

3

4

–3

–2

–4

1 2 3 4

5. The graph is a rose curve,  
n odd 

y

(9, −3)

(9, 1)

(9, −1)

x
y = −1

x = 7

(8, −1)

(y + 1)2 = −4(x − 8)    6. y

(−4, 2) (4, 2)

(0, 0)
x

y = −2

(0, 2)

x 

2 = 8y

Section 8.5
1. 

y
(−4, 8)

(−4, −8)

(0, 0)
x

x = 4

(−4, 0)

y2 = −16x
 2. 13  3.  ∣ z ∣  =  √

—
 50   = 5 √

—
 2  

  4. z = 3   cos     π _ 
2

     + isin     π _ 
2

      

  5. z = 2   cos     π _ 
6

     + isin     π _ 
6

      

  6. z = 2 √
—
 3   − 2i

7. z1z2 = −4 √
—
 3  ;   

z1 _ z2
   = −   √

—
 3   ____ 2   +   3 _ 

2
  i

8.  z0 = 2(cos(30°) + isin(30°)), z1 = 2(cos(120°) + isin(120°)) 

z2 = 2(cos(210°) + isin(210°)), z3 = 2(cos(300°) + isin(300°))

Section 8.6
1. 

2. x(t) = t3 − 2t, y(t) = t  3. y = 5 −  √ 

_______

   1 __ 2  x − 3  

4. y = ln   √
—
 x        5.   x

2
 _ 4   +   

y2

 _ 
9

   = 1     6. y = x2

x 3sin(3x)
0 0

  π _ 
6

  3

  π _ 
3

  0

  π _ 
2

  −3

  2π _ 
3

  0
–3

–2

–1

1

2

3

π
2

π
3

π
6

2π
3

x

y

y = 3 sin (3x)

t x(t) y(t)

−1 −4 2

0 −3 4

1 −2 6

2 −1 8

y

(−4, 2) (4, 2)

(0, 0)
x

y = −2

(0, 2)

x 2 = 8y
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Section 8.7
1. 

y

(−12, −2) (8, −2)

(−2, 3)

(−2, −2)
x

x = −2

y = 8

(x + 2)2 = −20(y − 3)

  2. y

x
0.25

0.25

0.5 0.75−0.75

−0.25

−0.25

0.5

−0.5

−0.5

3. 

2

y

–1–1–2
–2

–3

–3

–4

–4

–5

–5

1

3

3

2 4

4

5

5

1

 

 
 The graph of the parametric 
equations is in red and the graph 
of the rectangular equation is 
drawn in blue dots on top of the 
parametric equations.

Section 8.8 
1. 

2

x

y

1– –1

1

3
4
5

1 2 3 4 5 6

〈3, 5〉

 2. 3u = 〈15, 12〉 

  3. u = 8i − 11j

  4.  v =  √
—

 34  cos(59°)i +  √
—

 34  sin(59°)j 

 Magnitude =  √
—

 34   

 θ = tan−1    5 _ 
3

     = 59.04°

Chapter 9

Section 9.1
1. Not a solution
2.  

Section 9.2
1. (1, −1, 1)  2. No solution  3. Infinite number of 
solutions of the form (x, 4x − 11, −5x + 18)

Section 9.3

1.   −  1 _ 
2

  ,   1 _ 
2

     and (2, 8) 2. (−1, 3) 3. {(1, 3),(1, −3),(−1, 3),(−1, −3)}

4. 

4

y

–2–2–4
–4

–6

–6

–8–10

2

6

6

4 8

8

10

10

2

(4, 2)(−2, −2) (10, 2)

(0, 2)
(8, 2)

(4, 2 + 2       )

(4, 2 − 2       )

Section 9.4

1.   3 _ 
x − 3

   −   2 _ 
x − 2

    2.   6 _ 
x − 1

   −   5 _ 
(x − 1)2

    3.   3 _ 
x − 1

   +   2x − 4 _ 
x2 + 1

  

4.   x − 2 _ 
x2 − 2x + 3

   +   2x + 1 __  
(x2 − 2x + 3)2

  

Section 9.5

1. A + B =     
2

  
6

  1  0  
1

  
−3

      +      
3

  
−2

  1  5  
−4

  
3

      =      
2 + 3

  
   6 + (−2)

   1 + 1  0 + 5   
1 + (−4)

  
−3 + 3

      =      
5

  
4

  2  5  
−3

  
  0

     

2. −2B =     −8  −2  −6  −4      

Section 9.6

1.    4  −3  3  2        11  4       2. x − y + z = 5   3. (2, 1) 
2x − y + 3z = 1 
       y + z = −9

4.     
1

  
−  5 __ 2  

  
    5 __ 2  

  0  1  5  
0

  
0

  
1

            17 __ 2  
  9   

2 
       5. (1, 1, 1)  

6. $150,000 at 7%, $750,000 at 8%, $600,000 at 10%

Section 9.7

1. AB =      1  4  −1  −3         −3  −4  1  1      =      1(−3) + 4(1)  1(−4) + 4(1)    
−1(−3) + −3(1)  

  −1(−4) + −3(1)       

  =      1  0  0  1      

 BA =     −3  −4  1  1           1  4  −1  −3      =     −3(1) + −4(−1)    −3(4) + −4(−3)    1(1) + 1(−1)  
  1(4) + 1(−3)       

  =     1  0  0  1     

2. A−1 =      
  3 __ 5  

  
  1 __ 5  

  
−  2 __ 5  

  
    1 __ 5  

       3. A−1 =     1  
  1

  
2

  2  4  −3  
3

  
6

  
−5

       4. X =      4
  38  

58
     

Section 9.8
1. (3, −7)  2. −10  3.    −2,   3 _ 5  ,   12 _ 5      

Chapter 10

Section 10.1

1. x2 +    
y2

 _ 
16

    = 1  2.    
(x − 1)2

 _ 
16

    +    
(y − 3)2

 _ 4    = 1

3. Center: (0, 0);  
Vertices: (±6, 0); 
Co-vertices: (0, ±2);  
Foci: (±4  √

—
 2   , 0)

4. Standard form:    x
2
 _ 

16
    +    

y2

 _ 
49

    = 1; 
Center: (0, 0); 
Vertices: (0, ±7);  
Co-vertices: (±4, 0) 
Foci: (0, ±  √

—
 33   )

3. (−2, −5)
4. (−6, −2)
5. (10, −4)
6. No solution. It is an  
inconsistent system.
7. The system is  
dependent so there are 
infinite solutions of the  
form (x, 2x + 5).   
8.  700 children, 950 adults

  The solution to the system is 
the ordered pair(−5, 3).  

2

y

–1–1–2
–2

–3

–3

–4

–4

–5

–5
–6
–7

1

3

3

2 4

4

5

5
6
7

1

(0, 0) (4, 0)(−4, 0)

(0, 7)

(0, −7)
−

2

y

–1–1–2
–2

–3

–3

–4

–4

–5

1

3

3

2 4

4

51

(0, 0) (6, 0)(−6, 0)

(0, 2)

(0, −2)

2

y

–1–1–2
–2

–3

–3

–4

–4

–5

–5
–6
–7

1

3

3

2 4

4

5

5
6
7

1

(0, 0) (4, 0)(−4, 0)

(0, 7)

(0, −7)
−
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5. Center: (4, 2); 
Vertices: (−2, 2) and (10, 2);  
Co-vertices:    4, 2 − 2 √

—
 5      

and    4, 2 + 2 √
—
 5     ; 

Foci: (0, 2) and (8, 2)

6.    
(x − 3)2

 _ 4    +    
(y + 1)2

 _ 
16

    = 1; Center: (3, −1); Vertices: (3, −5) and 

(3, 3); Co-vertices: (1, −1) and (5, −1); Foci:    3, −1 − 2 √
—
 3       

and    3, −1 + 2 √
—
 3       7. a.    x2

 _ 
57,600

    +    
y2

 _ 
25,600

    = 1; b. The 

people are standing 358 feet apart.

Section 10.2

1. Vertices: (±3, 0); Foci:    ± √
—

 34  , 0     2.    
y2

 _ 4    −    x
2
 _ 

16
    = 1

3.    
(y − 3)2

 _ 25    +    
(x − 1)2

 _ 144    = 1  

4.  Vertices: (±12, 0);  
Co-vertices: (0, ±9); 
Foci: (±15, 0); 
Asymptotes: y = ±   3 _ 4   x

5.  Center: (3, −4); Vertices: (3, −14) and (3, 6);  
Co-vertices: (−5, −4) and (11, −4); Foci:    3, −4 − 2 √

—
 41      

and    3, −4 + 2 √
—

 41     ; Asymptotes: y = ±   5 _ 4   (x − 3) − 4 

y

(3, −14)(3, −4)

(3, 6)

(11, −4)(−5, −4)
x

6. The sides of the tower can be modeled by the hyperbolic 

equation.     x2
 _ 

400
    −    

y2

 _ 
3600

    = 1 or    x2
 _ 

202    −    
y2

 _ 
602    = 1. 

Section 10.3

1.  Focus: (−4, 0);  
Directrix: x = 4; 
Endpoints of the latus 
rectum: (−4, ±8) 

2.  Focus: (0, 2);   
Directrix: y = −2;  
Endpoints of the latus  
rectum: (±4, 2) 

3. x2 = 14y  
4.  Vertex: (8, −1);   

Axis of symmetry: y = −1;  
Focus: (9, −1);  
Directrix: x = 7; 
Endpoints of the latus rectum: 
(9, −3) and (9, 1).

5.  Vertex: (−2, 3);   
Axis of symmetry: x = −2;  
Focus: (−2, −2);  
Directrix: y = 8; 
Endpoints of the latus 
rectum: (−12, −2) and  
(8, −2).

6. a. y2 = 1,280x  b. The depth of the cooker is 500 mm.

Section 10.4
1. a. hyperbola b. ellipse  2.    x' 2 _ 4    +    

y' 2
 _ 

1
    = 1

3. a. hyperbola b. ellipse  

Section 10.5
1. ellipse; e =    1 _ 3   ; x = −2   

2. y

x
0.25

0.25

0.5 0.75−0.75

−0.25

−0.25

0.5

−0.5

−0.5

 3. r =    1 _ 
1 − cos θ

   

 4. 4 − 8x + 3x2 − y2 = 0

Chapter 11

Section 11.1
1. The first five terms are {1, 6, 11, 16, 21}.  2. The first five 

terms are    −2, 2, −  3 _ 
2

  , 1, −  5 _ 
8

     .  3. The first six terms are  

{2, 5, 54, 10, 250, 15}.  4. an = (−1)n + 1 9n  5. an = −   3n _ 4n   

6. an = e n − 3   7. {2, 5, 11, 23, 47}  8.    0, 1, 1, 1, 2, 3,   5 _ 
2

  ,   17 _ 
6

     

9. The first five terms are    1,   3 _ 
2

  , 4, 15, 72   .

Section 11.2
1. The sequence is arithmetic. The common difference is −2.
2. The sequence is not arithmetic because 3 − 1 ≠ 6 − 3.
3. {1, 6, 11, 16, 21}  4. a2 = 2  5. a1 = 25;  an = an − 1 + 12, 
for n ≥ 2   6. an = 53 − 3n  7. There are 11 terms in the 
sequence.  8. The formula is Tn = 10 + 4n, and it will take 
her 42 minutes.

4

y

–2–2–4
–4

–6

–6

–8–10

2

6

6

4 8

8

10

10

2

(4, 2)(−2, −2) (10, 2)

(0, 2)
(8, 2)

(4, 2 + 2       )

(4, 2 − 2       )

y

(0, −9)
(−12, 0) (12, 0)

(15, 0)

(0, 9)

x
(−15, 0)

y
(−4, 8)

(−4, −8)

(0, 0)
x

x = 4

(−4, 0)

y2 = −16x

y

(−4, 2) (4, 2)

(0, 0)
x

y = −2

(0, 2)

x 

2 = 8y

y

(9, −3)

(9, 1)

(9, −1)

x
y = −1

x = 7

(8, −1)

(y + 1)2 = −4(x − 8)

y

(−12, −2) (8, −2)

(−2, 3)

(−2, −2)
x

x = −2

y = 8

(x + 2)2 = −20(y − 3)
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Section 11.3
1. The sequence is not geometric because    10 _ 5    ≠    15 _ 

10
   .  

2. The sequence is geometric. The common ratio is    1 _ 5   .

3.    18, 6, 2,   2 _ 
3

  ,   2 _ 
9

       4. a1 = 2;  an =    2 _ 
3

   an − 1 for n ≥ 2

5. a6 = 16,384  6. an = −(−3)n − 1  7. a. Pn = 293 ∙ 1.026an

b. The number of hits will be about 333.

Section 11.4
1. 38  2. 26.4  3. 328  4. −280  5. $2,025
6. ≈ 2,000.00  7. 9,840  8. $275,513.31  9. The sum 
is defined. It is geometric.   10. The sum of the infinite series 
is defined.   11. The sum of the infinite series is defined.   
12. 3   13. The series is not geometric.    14. −   3 _ 

11
   

15. $92,408.18

Section 11.5
1. 7  2. There are 60 possible breakfast specials.  3. 120
4. 60  5. 12  6. P(7, 7) = 5,040  7. P(7, 5) = 2,520
8. C(10, 3) = 120  9. 64 sundaes  10. 840

Section 11.6
1. a. 35 b. 330 2. a. x 5 − 5x 4y + 10x 3y2 − 10x2y3 + 5xy 4 − y 5 

b. 8x 3 + 60x 2y + 150xy 2 + 125y 3  3. −10,206x 4y 5

Section 11.7
1. Outcome Probability

Roll of 1
Roll of 2
Roll of 3
Roll of 4
Roll of 5
Roll of 6

 2.    2 _ 
3

     3.    7 _ 
13

     4.    2 _ 
13

     

 5.    5 _ 
6

     6. a.    1 _ 
91

     b.    5 _ 
91

     c.    86 _ 
91

   

Chapter 12

Section 12.1
1. a = 5, f (x) = 2x2 − 4, and L = 46  2. a. 0 b. 2 c. Does 
not exist  d. −2  e. 0 f. Does not exist g. 4  h. 4  i. 4

3.   lim    
x → 0

      20sin(x)
 __ 4x      = 5

x −0.1 −0.01 −0.001 0 0.001 0.01 0.1
f (x) 4.9916708 4.9999167 4.9999992 Error 4.9999992 4.9999167 4.9916708

    lim    
x → 0−

      20sin(x)
 __ 4x         5 5      lim    

x → 0+
      20sin(x)

 __ 4x      
4. Does not exist

Section 12.2
1. 26  2. 59  3. 10  4. −64  5. −3  6. −   1 _ 

50
   

7. −   1 _ 
8

     8. 2  √
—
 3     9. −1

Section 12.3
1. a. Removeable discontinuity at x = 6 b. Jump discontinuity 
at x = 4  2. Yes  3. No, the function is not continuous at 
x = 3. There exists a removable discontinuity at x = 3. 
4. x = 6 

Section 12.4
1. 3  2. f '(a) = 6a + 7  3. f '(a) =    −15 _ 

 (5a + 4) 2 
     4.    3 _ 

2
   

5. 0   6. −2, 0, 0, −3   7. a. After zero seconds, she 
has traveled 0 feet.   b. After 10 seconds, she has traveled 
150 feet east.   c. After 10 seconds, she is moving eastward 
at a rate of 15 ft/sec.   d. After 20 seconds, she is moving 
westward at a rate of 10 ft/sec.   e. After 40 seconds, she is 
100 feet westward of her starting point.    8. The graph 
of f is continuous on (−∞, 1)∪(1, 3)∪(3, ∞). The graph of f is 
discontinuous at x = 1 and x = 3. The graph offis differentiable 
on(−∞, 1)∪(1, 3)∪(3, ∞). The graph of f is not differentiable at 
x = 1 and x = 3.   9. y = 19x − 16   10. −68 ft/sec, it is 
dropping back to Earth at a rate of 68 ft/s.
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Odd Answers
ChapteR 1

Section 1.1
1. A relation is a set of ordered pairs. A function is a special kind 
of relation in which no two ordered pairs have the same first 
coordinate.   3. When a vertical line intersects the graph of a 
relation more than once, that indicates that for that input there is 
more than one output. At any particular input value, there can be 
only one output if the relation is to be a function.   5. When a 
horizontal line intersects the graph of a function more than once, 
that indicates that for that output there is more than one input. A 
function is one-to-one if each output corresponds to only one input. 
7. Function   9. Function  11. Function  13. Function 
15. Function  17. Function  19. Function  
21. Function  23. Function  25. Not a function
27. f (−3) = −11, f (2) = −1, f (−a) = −2a − 5, −f (a) = −2a + 5, 
f (a + h) = 2a + 2h − 5  29. f (−3) =   √

—
 5    + 5,  f (2) = 5,  

f (−a) =   √
—

 2 + a    + 5, −f (a) = −  √
—

 2 − a    − 5,  f (a + h) =  
√
—

 2 − a − h    + 5  31. f (−3) = 2,  f (2) = −2,   
f (−a) =   ∣ −a − 1 ∣   −   ∣ −a + 1 ∣  , −f (a) = −  ∣ a − 1 ∣   +   ∣ a + 1 ∣  ,  
f (a + h) =   ∣ a + h − 1 ∣   −   ∣ a + h + 1 ∣    
33.    

g(x) − g(a)
 _ x − a    = x + a + 2, x ≠ a 35. a. f (−2) = 14 b. x = 3

37. a. f (5) = 10  b. x = 4 or −1  39. a. r = 6 −    2 __ 3   t  

b. f (−3) = 8 c. t = 6  41. Not a function  43. Function
45. Function   47. Function  49. Function   
51. Function   53. a. f (0) = 1 b. f (x) = −3, x = −2 or 2
55. Not a function, not one-to-one  57. One-to-one function
59. Function, not one-to-one  61. Function  63. Function   
65. Not a function   67. f (x) = 1, x = 2  
69. f (−2) = 14;  f (−1) = 11;  f (0) = 8;  f (1) = 5;  f (2) = 2
71. f (−2) = 4;  f (−1) = 4.414;  f (0) = 4.732;  f (1) = 5;  f (2) = 5.236

73. f (−2) =    1 __ 9   ;  f (−1) =    1 __ 3   ;  f (0) = 1;  f (1) = 3;  f (2) = 9 75. 20 

77. The range for this viewing 
window is [0, 100].

x

y

20

–20
–40
–60
–80

–100

40
60
80

100

–5 5–10 10

79. The range for this viewing 
window is [−0.001, 0.001]. 

x

y

0.0002

–0.0002
–0.0004
–0.0006
–0.0008
–0.001

0.0004
0.0006
0.0008

0.001

–0.05–0.1 0.05 0.1

81. The range for this viewing 
window is [−1,000,000, 
1,000,000]. 

x

y

2.105

–2.105

–4.105

–6.105

–8.105

–10.105

4.105

6.105
8.105

10.105

–50–100 50 100

83. The range for this viewing 
window is [0, 10].

10
8
6
4
2

–20
x

y

20 40 60 80 100

85. The range for this viewing 
window is [−0.1, 0.1].

x

y

0.02
0.04
0.06
0.08

0.1

–0.02
–0.0005–0.0001 0.0001

–0.04
–0.06
–0.08
–0.1

0.0005

87. The range for this viewing  
window is [−100, 100]. 

x

y

20
40
60
80

100

–20–5.105–10.105 5.105 10.105

–40
–60
–80

–100

89. a. g(5000) = 50   b. The number of cubic yards of dirt 
required for a garden of 100 square feet is 1.  91. a. The 
height of the rocket above ground after 1 second is 200 ft. 
b. The height of the rocket above ground after 2 seconds is 350 ft.

Section 1.2
1. The domain of a function depends upon what values of the 
independent variable make the function undefined or imaginary.
3. There is no restriction on x for f (x) =    3

 √
—
 x    because you can 

take the cube root of any real number. So the domain is all real 
numbers, (−∞, ∞). When dealing with the set of real numbers, 
you cannot take the square root of negative numbers. So x-values 
are restricted for f (x) =   √

—
 x    to nonnegative numbers and the 

domain is [0, ∞).  5. Graph each formula of the piecewise 
function over its corresponding domain. Use the same scale for the 
x-axis and y-axis for each graph. Indicate included endpoints with 
a solid circle and excluded endpoints with an open circle. Use an 
arrow to indicate −∞ or ∞. Combine the graphs to find the graph 
of the piecewise function.   7. (−∞, ∞)  9. (−∞, 3]  

11. (−∞, ∞)  13. (−∞, ∞)  15.    −∞, −  1 _ 2     ∪   −  1 _ 2  , ∞     

17. (−∞, −11)∪(−11, 2)∪(2, ∞) 19. (−∞, −3)∪(−3, 5)∪(5, ∞)
21. (−∞, 5)  23. [6, ∞)  25. (−∞, −9)∪(−9, 9)∪(9, ∞)  
27. domain: (2, 8], range: [6, 8) 29. domain: [−4, 4], range: [0, 2]
31. domain: [−5, 3), range: [0, 2] 33. domain: (−∞, 1], range: [0, ∞)
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35. domain:    −6, −  1 _ 
6

      ∪     1 _ 
6

  , 6    , range:    −6, −  1 _ 
6

      ∪     1 _ 
6

  , 6    
37. domain: [−3, ∞), range is [0, ∞)  
39. domain:(−∞, ∞)

x

y

2

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4
5

5

41. domain: (−∞, ∞)

x

y

1
2

–1–2

–2
–3

–1

–4
–5

1 2

4
5

3

43. domain: (−∞, ∞)

1
2

x

y

–1–2

–2
–3

–1

–4
–5

1 2

4
5

3

45. domain: (−∞, ∞)

2

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5

x

y

47. f (−3) = 1; f (−2) = 0; f (−1) = 0; f (0) = 0 
49. f (−1) = −4; f (0) = 6; f (2) = 20; f (4) = 34 
51. f (−1) = −5; f (0) = 3; f (2) = 3; f (4) = 16 
53. (−∞, 1)∪(1, ∞)
55. 

16
24

x

y

8

–8

32

0.1

40
48
56
64
72
80
88
96

104

–0.1–0.2–0.3–0.4–0.5

The viewing window: [−0.5, −0.1]  
has a range: [4, 100]. 

 

16
24

y

x
8

–8–0.1

32
40
48
56
64
72
80
88
96

104

0.1 0.2 0.3 0.4 0.5

The viewing window: [0.1, 0.5] 
has a range: [4, 100]. 

57. [0, 8]  59. Many answers; one function is f (x) =    1 _______ 
 √
—

 x − 2  
    .

61. a. The fixed cost is $500. b. The cost of making 25 items is 
$750. c. The domain is [0, 100] and the range is [500, 1500]. 

Section 1.3
1. Yes, the average rate of change of all linear functions is constant.
3. The absolute maximum and minimum relate to the entire 
graph, whereas the local extrema relate only to a specific region in 
an open interval.  5. 4(b + 1)  7. 3  9. 4x + 2h  

11.    −1 _________ 13(13 + h)     13. 3h2 + 9h + 9  15. 4x + 2h − 3  

7.    4 _ 3     19. Increasing on (−∞, −2.5)∪(1, ∞) and decreasing 

on (−2.5, 1)  21. Increasing on (−∞, 1)∪(3, 4) and decreasing 
on (1, 3)∪(4, ∞)  23. Local maximum: (−3, 50) and local 
minimum: (3, 50)

25. absolute maximum at approximately (7, 150) and absolute 
minimum at approximately (−7.5, −220)
27. a. −3,000 people per year  b. −1,250 people per year
29. −4  31. 27   33. ≈ −0.167   35. local minimum: 
(3, −22), decreasing on (−∞, 3), increasing on (3, ∞) 
37. local minimum: (−2, −2), decreasing on (−3, −2), 
increasing on (−2, ∞)  39. local maximum: (−0.5, 6), local 
minima: (−3.25, −47) and (2.1, −32), decreasing on (−∞, 
−3.25) and (−0.5, 2.1), increasing on (−3.25, −0.5) and (2.1, ∞)
41. A  43. b = 5   45. ≈ 2.7 gallons per minute
47. ≈ −0.6 milligrams per day

Section 1.4
1. Find the numbers that make the function in the denominator g 
equal to zero, and check for any other domain restrictions on f and 
g, such as an even-indexed root or zeros in the denominator.
3. Yes, sample answer: Let f (x) = x + 1 and g(x) = x − 1. 
Then f (g(x)) = f (x − 1) = (x − 1)+ 1 = x and 
g ( f (x)) = g (x + 1) = (x + 1)− 1 = x so f ∘ g = g ∘ f.
5. (f + g)(x) = 2x + 6; domain: (−∞, ∞) 
(f − g)(x) = 2x 2 + 2x − 6; domain: (−∞, ∞) 
(fg)(x) = −x 4 − 2x 3 + 6x 2 + 12x; domain: (−∞, ∞) 

     f _ g     (x) =    x
 2 + 2x ______ 6 − x 2   ; domain: (−∞, −  √

—
 6   )∪(−  √

—
 6   ,   √

—
 6   )∪(  √

—
 6   , ∞)

7. (f + g)(x) =    4x3 + 8x2 + 1  ___________ 2x   ; domain: (−∞, 0)∪(0, ∞) 

(f − g)(x) =    4x3 + 8x2 − 1  ___________ 2x   ; domain: (−∞, 0)∪(0, ∞) 

(fg)(x) = x + 2; domain: (−∞, 0)∪(0, ∞) 

     f _ g     (x) = 4x 3 + 8x 2;  domain: (−∞, 0)∪(0, ∞) 

9. (f + g)(x) = 3x 2 +   √
—

 x − 5   ; domain: [5, ∞) 
(f − g)(x) = 3x 2 −   √

—
 x − 5   ; domain: [5, ∞) 

(fg)(x) = 3x 2  √
—

 x − 5   ; domain: [5, ∞) 

     f _ g     (x) =    3x2
 _ 

 √
—

 x − 5  
   ; domain: (5, ∞)   11. a. f (g(2)) = 3  

b. f ( g(x)) = 18x 2 − 60x + 51  c. g( f (x)) = 6x 2 − 2  
d. ( g ∘ g)(x) = 9x − 20     e. ( f ∘ f )(−2) = 163   

13. f ( g(x)) =   √
—

 x2 + 3   + 2 ; g( f (x)) = x + 4  √
—
 x    + 7 

15. f ( g(x)) =      
3
 √
—

 x + 1   _ x   ;  g( f (x)) =      
3 √

—
 x   + 1 _ x     

17. f ( g(x)) =    x __ 2   , x ≠ 0;  g( f (x)) = 2x − 4, x ≠ 4

19. f ( g(h(x))) =    1 _ 
(x + 3)2

    + 1 

21. a. (g ∘ f )(x) = −   3 _ 
 √
—

 2 − 4x   
    b.    −∞,   1 __ 2     

23. a. (0, 2)∪(2, ∞) except x = −2  b. (0, ∞) c. (0, ∞) 25. (1, ∞) 

27.  Many solutions; one possible answer: f (x) = x3; g(x) = x − 5

29.  Many solutions; one possible answer: f (x) =    4 _ x   ; g(x) = (x + 2)2

31.  Many solutions; one possible answer: f (x) =    3
 √
—
 x   ; g(x) =    1 _____ 2x − 3   

33.  Many solutions; one possible answer: f (x) =    4
 √
—
 x   ; g(x) =    3x − 2 ______ x + 5   

35. Many solutions; one possible answer: f (x) =   √
—
 x   ; g(x) = 2x + 6

37.  Many solutions; one possible answer: f (x) =    3
 √
—
 x   ; g(x) = x − 1

39.  Many solutions; one possible answer: f (x) = x 3; g(x) =    1 _ x − 2   
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41.  Many solutions; one possible answer: f (x) =   √
—
 x   ; g(x) =    2x − 1 _ 3x + 4   

43. 2  45. 5   47. 4  49. 0  51. 2   53. 1
55. 4  57. 4  59. 9  61. 4  63. 2  65. 3  
67. 11  69. 0  71. 7  73. f (g(0)) = 27, g(f (0)) = −94 

75. f (g(0)) =    1 _ 5   , g(f (0)) = 5   77. f (g(x))  = 18x2 + 60x + 51

79. g ∘ g(x) = 9x + 20  81. ( f ∘ g)(x) = 2, (g ∘ f )(x) = 2  
83. (−∞, ∞)  85. False   87. (f ∘ g )(6) = 6; (g ∘ f )(6) = 6   
89. ( f ∘ g )(11) = 11; (g ∘ f )(11) = 11   91. C  

93. A(t) = π    25 √
—

 t + 2     2   and A(2) = π    25 √
—
 4     2   = 2,500π 

square inches  95. A(5) = 121π square units  
97. a. N(T(t)) = 575t 2 + 65t − 31.25 b. ≈ 3.38 hours

Section 1.5
1. A horizontal shift results when a constant is added to or 
subtracted from the input. A vertical shift results when a constant 
is added to or subtracted from the output.   3. A horizontal 
compression results when a constant greater than 1 multiplies the 
input. A vertical compression results when a constant between 0 
and 1 multiplies the output.   5. For a function f, substitute 
(−x) for (x) in f (x) and simplify. If the resulting function is the 
same as the original function, f (−x) = f (x), then the function 
is even. If the resulting function is the opposite of the original 
function, f (−x) = −f (x), then the original function is odd. If 
the function is not the same or the opposite, then the function is 
neither odd nor even.   7. g(x) =   ∣ x − 1 ∣   − 3

9. g(x) =    1 _ 
(x + 4)2

    + 2   11. The graph of f (x + 43) is a 

horizontal shift to the left 43 units of the graph of f.   

13. The graph of f (x − 4) is a horizontal shift to the right 4 units 
of the graph of f.  15. The graph of f (x) + 8 is a vertical shift 
up 8 units of the graph of f.   17. The graph of f (x) − 7 is a 
vertical shift down 7 units of the graph of f.   19. The graph of 
f (x + 4) − 1 is a horizontal shift to the left 4 units and a vertical shift 
down 1 unit of the graph of f.   21. Decreasing on (−∞, −3) and 
increasing on (−3, ∞)  23. Decreasing on (0, ∞)
25. 

h

2

x

y

–1–2–3–4–5–6–7–8–9 –1
–2
–3
–4

1

0 3

3

21 4

4
5
6
7
8
9

10

  27. 

f

2

x

y

–1–2–3–4–5 –1
–2
–3
–4

1

3

3

21

4
5
6
7
8
9

10

29.           31. g(x) = f (x − 1), 
h(x) = f (x) + 1 
33. f (x) =   ∣ x − 3 ∣   − 2
35. f (x) =   √

—
 x + 3    − 1   

37. f (x) = (x − 2)2  
39. f (x) =   ∣ x + 3 ∣   − 2 
41. f (x) = −  √

—
 x   

43. f (x) = −(x + 1)2 + 2
45. f (x) =   √

—
 −x    + 1   

47. Even  49. Odd  
51. Even  53. The graph 
of g is a vertical reflection 
(across the x-axis) of the graph 
of f.   55. The graph of g is 
a vertical stretch by a factor of 
4 of the graph of f.  

k

2

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6
–7
–8
–9

–10
–11
–12
–13
–14

1

3

3

21 4

4

5 6

5
6
7
8
9

57. The graph of g is a horizontal compression by a factor of    1 _ 5    

of the graph of f.  59. The graph of g is a horizontal stretch 
by a factor of 3 of the graph of f.   61. The graph of g is a 
horizontal reflection across the y-axis and a vertical stretch by a 

factor of 3 of the graph of f.   63. g(x) =   ∣ −4x ∣    

65. g(x) =    1 _ 
3(x + 2)2

    − 3  67. g(x) =    1 _ 2   (x − 5)2 + 1   

69. This is a parabola shifted 
to the left 1 unit, stretched 
vertically by a factor of 4, and 
shifted down 5 units.

g

2

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5
6
7
8
9

10

71. This is an absolute value 
function stretched vertically by 
a factor of 2, shifted 4 units to 
the right, reflected across the  
horizontal axis, and then 
shifted 3 units up. 

h
2

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6
–7
–8
–9

–10

1

3

3

21 4

4

5 6

73. This is a cubic function 
compressed vertically by a 
factor of    1 _ 2   .

m
2

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5
–6
–7
–8

1

3

3

21 4

4

5

5
6
7
8

75. The graph of the function 
is stretched horizontally by 
a factor of 3 and then shifted 
downward by 3 units.

p

2

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6
–7
–8

1

3

3

21 4

4

5 6 7

5
6
7
8
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77. The graph of  
f (x) =   √

—
 x    is shifted 

right 4 units and then 
reflected across the 
y-axis.

0.2
0 0.5 1.5 2.5 3.52 3 41

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.2
1.3
1.4
1.5
1.6

a

1.7
1.8
1.9

2

1

y

x

79. 

g2

x

y

–1–2–3–4–5–6–7–8 –1
–2
–3
–4
–5

1

3

3

21 4

4
5

5 6 7 8

81. 

2

x

y

–1–2–3–4–5–6–7–8 –1
–2
–3
–4
–5
–6
–7
–8

1

3

3

21 4

4

5 6 7 8

g

Section 1.6
1. Isolate the absolute value term so that the equation is of the 
form   ∣ A ∣   = B. Form one equation by setting the expression inside 
the absolute value symbol, A, equal to the expression on the 
other side of the equation, B. Form a second equation by setting 
A equal to the opposite of the expression on the other side of the 
equation, −B. Solve each equation for the variable.   3. The 
graph of the absolute value function does not cross the x-axis, 
so the graph is either completely above or completely below the 
x-axis.   5. First determine the boundary points by finding 
the solution(s) of the equation. Use the boundary points to form 
possible solution intervals. Choose a test value in each interval to 
determine which values satisfy the inequality.  7.   ∣ x + 4 ∣   =    1 _ 2     

9.   ∣ f (x) − 8 ∣   < 0.03  11. {1, 11}   13.    −  9 _ 4,     
13 _ 4     

15.      10 _ 3  ,   20 _ 3        17.      11 _ 5  ,   29 _ 5       19.      5 _ 2  ,   7 _ 2       

21. No solution  23. {−57, 27}   25. (0, −8); (−6, 0) and (4, 0) 
27. (0, −7); no x-intercepts.   29. ( −∞, − 8)∪(12, ∞) 

31.    −  4 _ 3  , 4     33.    −∞, −  8 _ 3      ∪[6, ∞) 35.    −∞, −  8 _ 3      ∪[16, ∞) 

37. 

(1, 0)
(0, 1)

(–1, 2)

(2, 1)

(3, 2)

x

y 39. 

(2, 3)

(0, 1)
(1, 2)

(–2, 3)

(–1, 2)

x

y

41. 

2

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5

43. 

2

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5

1

3

3

21 4

4

5 6

5

45. 

2

x

y

–1–2–3–4–5–6–7–8 –1
–2
–3
–4
–5

1

3

3

21 4

4
5
6
7

47. 

2

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5
6
7

49. 

2

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5
6
7

51. 

x
y

–1–2–3–4–5–6–7 –1
–2
–3
–4
–5
–6
–7

321 4 5

53. range: [0, 20]

4

x

y

f

–1–2–3–4 –1
–2

2

3

6

21 4

8

5

10
12
14
16
18
20

55. 

–25–50–75–100

0.5
1

1.5
2

–0.5
–1

–1.5
–2

50 75 10025

y

x

57. (−∞, ∞)   59. There is no value for a that will keep the 
function from having a y-intercept. The absolute value function 
always crosses the y-intercept when x = 0.
61.   ∣ p − 0.08 ∣   ≤ 0.015   63.   ∣ x − 5.0 ∣   ≤ 0.01   

SeCtion 1.7
1. Each output of a function must have exactly one input for the 
function to be one-to-one. If any horizontal line crosses the graph 
of a function more than once, that means that y-values repeat and 
the function is not one-to-one. If no horizontal line crosses the 
graph of the function more than once, then no y-values repeat 
and the function is one-to-one.   
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3. Yes. For example, f (x) =    1 _ x    is its own inverse.  5. y = f −1(x) 

7. f −1(x) = x − 3  9. f −1(x) = 2 − x  11. f −1(x) = −  2x _ x − 1       

13. Domain of f (x): [−7,∞); f −1 (x) =   √
—
 x    − 7  

15. Domain of f (x): [0, ∞); f −1 (x) =   √
—

 x + 5   
17. f ( g(x)) = x and g( f (x)) = x   19. One-to-one 
21. One-to-one  23. Not one-to-one  25. 3  27. 2

4

x

y

f –1

f

–2–4–6–8–10 –2
–4

2

6

6

42 8 

8

10

10

29.  

43. f −1 (x) = (1 + x )   
1 _ 3   

2

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5

f –1
f

 

45. f −1 (x) =    5 _ 9   (x − 32)

47. t(d) =    d _ 50   ; t(180) =    180 _ 50   . The 

time for the car to travel 180 miles 
is 3.6 hours.

Chapter 1 Review exercises
1. Function   3. Not a  function  5. f (−3) = −27;  f (2) = −2;   
f (−a) = −2a2 − 3a;  −f (a) = 2a2 −3a;  
f (a + h) = −2a2 − 4ah − 2h2 + 3a + 3h
7. One-to-one  9. Function  11. Function  

13. 

2

x

y

–1–2–3–4–5 –1
–2
–3

1

3

3

21 4 5

15. 2  17. −1.8 or 1.8  

19.     −64 + 80a − 16a2
  __ 

−1 + a     

= −16a + 64; a ≠ 1

21. (−∞, −2)∪(−2, 6)∪(6, ∞)

23. 

2

x

y

–1–2–3–4–5 –1
–2
–3

1

3

3

21 4 5

25. 31
27. Increasing on (2, ∞), 
decreasing on (−∞, 2)

29. Increasing on (−3, 1), constant on (−∞, −3) and (1, ∞)
31. Local minimum: (−2, −3); local  maximum: (1, 3)
33. Absolute maximum: 10 
35. ( f ∘ g )(x) = 17 − 18x,  ( g ∘ f )(x) = −7 −18x

37. ( f ∘ g )(x) =   √ 
______

   1 _ x   + 2   ; ( g ∘ f )(x) =    1 _ 
 √
—

 x + 2  
      

39. (f ∘ g )(x) =   
  1 ____ 
  1 __ x   + 1

  
 _ 

  1 ____ 
  1 __ x   + 4

  
   =   1 + x _____ 

1 + 4x
  ; Domain:    −∞, −  1 _ 4     ∪   −  1 _ 4  , 0   ∪(0, ∞)

41. ( f ∘ g )(x) =    1 _ 
 √

—
 x  
   ; Domain: (0, ∞)    

43. Many solutions; one possible answer: g(x) =    2x −1 _ 3x + 4    and 

f (x) =   √
—
 x   .  

45. 

2

x

y

–1–2–3–4–5–6 –1
–2

1

3

3

21 4

4

5 6

5
6
7
8

47. 

2

x

y

–1–2–3–4–5–6 –1
–2

1

3

3

21 4

4

5 6

5
6
7
8

49. 

2

x

y

–1–2–3–4–5 –1
–2
–3
–4
–5

1

3

3

21 4

4

5

5
51. 

x

y

–1–2–3–4 –2
–4
–6
–8

–10
–12
–14
–16
–18
–20
–22
–24

2

321 4 5 6 7 8

53. 

2

–1–2–3–4–5–6 –1

1

3

3

21 4

4

5 6

5

x

y

55. f (x) =   ∣ x − 3 ∣  
57. Even  59. Odd   
61. Even  

63. f (x) =    1 _ 2     ∣ x + 2 ∣   + 1  

65. f (x) = −3  ∣ x − 3 ∣   + 3

67. 

2

x

y

–1–2–3–4
–1
–2
–3
–4
–5

1

3

3
4

21 4 5 76

5

69. {−22, 14}   

71.    −  5 _ 3  , 3    

73. f −1(x) =    x − 9 _ 10     

75. f −1(x) =   √
—

 x − 1   

77. The function is one-to-one.

1
2
3
4
5

1 2 3 4 5–1
–2
–3
–4
–5

–1–2–3–4–5
x

y
79. 5

  

Chapter 1 practice test
1. Relation is a function   3. −16   5. The graph is a 
parabola and the graph fails the horizontal line test. 
7. 2a2 − a  9. −2(a + b) + 1; b ≠ a  11.   √

—
 2     

31. [2, 10]  33. 6   
35. −4  37. 0  39. 1  
41.  

x 1 4 7 12 16
f −1(x) 3 6 9 13 14
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13. 

1
2

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5

3

3

21 4

4

5 6

5

15. Even  17. Odd
19. {−7, 10}

21. f −1(x) =    x + 5 _ 3     

23. (−∞, −1.1) and (1.1, ∞)
25. (1.1, −0.9)  27. f (2) = 2 

29. f (x) =  |x| if x ≤ 2 
3 if x > 2

 

31. x = 2  33. Yes  

35. f −1(x) = −   x − 11 _ 2    or    11 − x _ 2   

ChapteR 2

Section 2.1
1. Terry starts at an elevation of 3,000 feet and descends 70 feet 
per second   3. 3 miles per hour   5. d(t) = 100 − 10t 
7. Yes  9. No  11. No  13. No  15. Increasing  
17. Decreasing  19. Decreasing  21. Increasing 

23. Decreasing  25. 3  27. −      1 _ 
3

     29.    4 _ 5     

31. y = −   1 __ 2    x +    7 __ 2     33. y = 2x + 3  35. y = −   1 __ 3   x +    22 __ 3   

37. y =    4 __ 5   x + 4 39. −   5 __ 4     41. y =    2 __ 3   x + 1  43. y = −2x + 3

45. y = 3  47. Linear, g(x) = −3x + 5 
49. Linear, f(x) = 5x − 5  51. Linear, g(x) = −   25 __ 2   x + 6  
53. Linear, f (x) = 10x − 24   55. f (x) = −58x + 17.3

57. 

x

y

−2
−5,000

−10,000
−15,000

−25,000
−30,000

−20,000

−4−6−8−10 642 8 10

15,000
10,000

5,000

20,000
25,000
30,000

 59. a. a = 11,900, b = 1001.1  
 b. q(p) = 1000p − 100

61. 

x

y

10

20

30

0.05 0.1–0.1 –0.05

–10

–20

–30

  
63. x = −   16 __ 3     65. x = a   

67. y =    d ____ c − a   x −    ad ____ c − a     
69. $45 per training session
71. The rate of change is 0.1. For 
every additional minute talked, 
the monthly charge increases 
by $0.1 or 10 cents. The initial 
value is 24. When there are no 
minutes talked, initially the 
charge is $24.

73. The slope is −400. this means for every year between 1960 
and 1989, the population dropped by 400 per year in the city.
75. C 

Section 2.2
1. The slopes are equal; y-intercepts are not equal.   3. The 
point of intersection is (a, a). This is because for the horizontal 
line, all of the y-coordinates are a and for the vertical line, all of 
the x coordinates are a. The point of intersection is on both lines 
and therefore will have these two characteristics.   

5. First, find the slope of the linear function. Then take 
the negative reciprocal of the slope; this is the slope of the 
perpendicular line. Substitute the slope of the perpendicular line 
and the coordinate of the given point into the equation y = mx + 
b and solve for b. Then write the equation of the line in the form 
y = mx + b by substituting in  m  and  b.   7. Neither   
9. Perpendicular  11. Parallel  13. (−2, 0), (0, 4)  

15.      1 __ 5  , 0   , (0, 1)  17. (8, 0), (0, 28)  

19. Line 1: m = 8, Line 2: m = −6, neither
21. Line 1: m = −   1 _ 2   , Line 2: m = 2, perpendicular

23. Line 1: m = −2, Line 2: m = −2, parallel

25. g(x) = 3x − 3  27. p(t) = −   1 __ 3   t + 2  29. (−2, 1)

31.    −  17 _ 5  ,   5 _ 3       33. F  35. C  37. A

39. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

41. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

43. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

45. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

47. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

49. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

51. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

53. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6
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55. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

57. 

x

y

–1–2–3–4–5–6 –1
–2
–3
–4
–5
–6

1
2
3
4
5
6

321 4 5 6

59. a. g(x) = 0.75x − 5.5 b. 0.75 c. (0, −5.5)

61. y = 3  63. x = −3  65. no point of intersection  

67. (2, 7)  69. (−10, −5)  71. y = 100x − 98  

73.  x <    1999 _ 201   , x >    1999 _ 201     75. Greater than 3,000 texts  

Section 2.3
1. Determine the independent variable. This is the variable upon 
which the output depends.  3. To determine the initial value, 
find the output when the input is equal to zero.  5. 6 square 
units.  7. 20.012 square units  9. 2,300  11. 64,170
13. P(t) = 2500t + 75,000  15. (−30, 0) 30 years before the 
start of this model, the town has no citizens. (0, 75,000) Initially, 
the town had a population of 75,000.  17. Ten years after the 
model began.  19. W(t) = 0.5t + 7.5   21. (−15, 0) The 
x-intercept is not a plausible set of data for this model because it 
means the baby weighed 0 pounds 15 months prior to birth. (0, 
7.5) the baby weighed 7.5 pounds at birth.  23. At age 5.8 
months  25. C(t) = 12,025 − 205t  27. (58.7, 0) In 58.7 
years, the number of people afflicted with the common cold 
would be zero (0, 12,025) Initially, 12,025 people were afflicted 
with the common cold  29. 2063  31. y = −2t + 180   
33. In 2070, the company’s profits will be zero 35. y = 30t − 300
37. (10, 0) In the year 1990, the company’s profits were zero  
39. Hawaii  41. During the year 1933  43. $105,620     
45. a. 696 people b. 4 years c. 174 people per year d. 305 people  
e. P(t) = 305 + 174t f. 2,219 people 47. a. C(x) = 0.15x + 10  
b. The flat monthly fee is $10 and there is a $0.15 fee for each 
additional minute used c. $113.05  49. a. P(t) = 190t + 4,360  
b. 6,640 moose  51. a. R(t)= −2.1t + 16   b. 5.5 billion 
cubic feet   c. During the year 2017  53. More than  
133 minutes  55. More than $42,857.14 worth of jewelry  
57. More than $66,666.67 in sales 

Section 2.4
1. When our model no longer applies, after some value in the 
domain, the model itself doesn’t hold.   3. We predict a value 
outside the domain and range of the data.    5. The closer the 
number is to 1, the less scattered the data, the closer the number 
is to 0, the more scattered the data.   7. 61.966 years  

9. No 

0
0

50

1.6 3.2 4.8 6.4 8

75

100

125

150

11. No  

0
0

50

2.5 5 7.5 10 12.5

100

150

200

250

13. Interpolation, about 60° F  15. C 17. B 
  

0
0

44
48

15 20 25 30 35

52

56
60
64

68

19. 

0
0

2

2 4 6 8 10

4

6

8

10

21. 

0
0

2

2 4 6 8 10

4

6

8

10

23. Yes, trend appears linear; during 2016  
25. y = 1.640x + 13.800, r = 0.987 27. y = −0.962x + 26.86, 
r = −0.965  29. y = −1.981x + 60.197; r = −0.998
31. y = 0.121x − 38.841, r = 0.998  33. (−2, −6), (1, −12), 
(5, −20), (6, −22), (9, −28)  35. (189.8, 0) If the company 
sells 18,980 units, its profits will be zero dollars  
37. y = 0.00587x + 1985.41  39. y = 20.25x − 671.5
41. y = −10.75x + 742.50 
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Chapter 2 Review exercises
1. Yes  3. Increasing  5. y = −3x + 26  7. 3  
9. y = 2x − 2 11. Not linear 13. Parallel 15. (−9, 0); (0, −7)
17. Line 1: m −2, Line 2: m = −2, parallel 19. y = −0.2x + 21

21.  

x

y

–1–1
–2
–3

–5
–4

–6

–2–3–4–5–6 321 4 5 6

3
2
1

4
5
6

23. More than 250   
25. 118,000 
27. y = −300x + 11,500
29. a. 800  b. 100 students per 
year  c. P(t) = 100t + 1700
31. 18,500 33. y = $91, 625

35. Extrapolation  37.   

Chapter 2 practice test
1. Yes    3. Increasing   5. y = −1.5x − 6   7. y = −2x − 1
9. No  11. perpendicular  13. (−7, 0); (0, −2)   
15. y = −0.25x + 12

 17. Slope = −1 and  
y-intercept = 6 

 

19. 150   21. 165,000 
23. y = 875x + 10,625
25. a. 375 b. dropped an 
average of 46.875, or about  
47 people per year  
c. y = −46.875t + 1250

27. 29. Early in 2018
31. y = 0.00455x + 1979.5 
33. r = 0.999 

ChapteR 3

Section 3.1
1. Add the real parts together and the imaginary parts together. 
3. i times i equals −1, which is not imaginary. (answers vary) 
5. −8 + 2i 7. 14 + 7i 9. −   23 __ 29    +    15 __ 29   i 11. 2 real and 0 nonreal  

13. 

r

i

−1−1
−2
−3

−5
−4

−2−3−4−5 321 4 5

3
2
1

4
5

15. 

r

i

−1−1
−2
−3

−5
−4

−2−3−4−5 321 4 5

3
2
1

4
5

17. 8 − i  19. −11 + 4i   21. 2 − 5i  23. 6 + 15i  

25. −16 + 32i   27. −4 − 7i  29. 25  31. 2 −    2 __ 3   i  

33. 4 − 6i 35.    2 __ 5    +    11 __ 5   i  37. 15i  39. 1 + i   √
—
 3      

41. 1  43. −1  45. 128i   47.        √—
 3   _ 2   +   1 _ 2  i   

6

   = −1  

49. 3i  51. 0  53. 5 − 5i  55. −2i    57.    9 __ 2    −    9 __ 2   i  

Section 3.2
1. When written in that form, the vertex can be easily identified.
3. If a = 0 then the function becomes a linear function.  
5. If possible, we can use factoring. Otherwise, we can use the 
quadratic formula.  7. g(x) = (x + 1)2 − 4; vertex: (−1, −4)  

9. f (x)=    x +   5 _ 2     
2
 −    33 _ 4   ; vertex:    −  5 _ 2  , −  33 _ 4     

11. k(x) = 3(x − 1)2 − 12; vertex: (1, −12)

13. f (x) = 3   x −  5 _ 
6

     
2
 −    37 _ 12   ; vertex:      5 _ 

6
  , −  37 _ 12     

15. Minimum is −   17 _ 2    and occurs at    5 _ 2   ; axis of symmetry: x =    5 _ 2   

17. Minimum is −   17 _ 
16

    and occurs at −   1 _ 8   ; axis of symmetry: x = −   1 _ 8   

19. Minimum is −   7 _ 2    and occurs at −3; axis of symmetry: x = −3
21. Domain: (−∞, ∞); range: [2, ∞)  23. Domain: (−∞, ∞);  
range: [−5, ∞)  25. Domain: (−∞, ∞); range: [−12, ∞)
27.    2i  √

—
 2  , −2i  √

—
 2       29.    3i  √

—
 3  , −3i √

—
 3       

31. {2 + i, 2 − i}  33. {2 + 3i, 2 − 3i}  35. {5 + i, 5 − i}

37.    2 + 2 √
—
 6  , 2 − 2 √

—
 6       39.    −  1 _ 2   +   3 _ 2  i, −  1 _ 2   −   3 _ 2  i     

41.    −  3 _ 5   +   1 _ 5  i, −  3 _ 5   −   1 _ 5  i    43.    −  1 _ 2   +   1 _ 2   i √
—
 7  , −  1 _ 2   −   1 _ 2  i √

—
 7     

45. f (x) = x 2 − 4x + 4  47. f (x)  = x 2 + 1  

49. f (x) =    6 __ 49   x 2 +    60 __ 49   x +    297 ___ 49     51. f (x)  = −x 2 + 1  

x

y

6,900
6,800
6,700
6,600
6,500
6,400
6,300
6,200
6,100
6,000
5,900
5,800
5,700
5,600

1985 1990 1995 2000
Year

Po
pu

la
tio

n

2005 20100

0
0

20
40
60
80

100
120

2 4 6 8 10
x

y

39. Midway through 2023
41. y = −1.294x + 49.412;  
r = −0.974
43. Early in 2027
45. 7, 660

x

y

–1–1
–2
–3
–4

–2–3 321 4 5 6 7 8 9

3
2
1

4
5
6
7
8

0
0
5

10
15
20
25
30
35

2 4 6 8 10 12
x

y
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53. Vertex: (1, −1), axis of 
symmetry: x = 1, intercepts:  
(0, 0), (2, 0)

x

y

−1−1
−2
−3

−5
−4

−6

−2−3−4−5−6 3210 4 5 6

3
2
1

4
5
6

y = f (x)

55. Vertex:      5 _ 2  , −  49 _ 4     , axis of 

symmetry: x =    5 _ 2   , intercepts:  
(6, 0), (−1, 0)

x

y

−3
−6
−9

−15
−12

−5−10 50 10

9
6
3

12
15

y = f (x)

57. Vertex:      5 _ 4  , −  39 _ 8     , axis of 

symmetry: x =    5 _ 4   , intercept:  
(0, −8)

x

y

−4
−8

−12

−20
−16

−24

−5−10 5 10

12
8
4

y = f (x)

59. f (x) =  x2 − 4x + 1
61. f (x) = −2x 2 + 8x − 1

63. f (x) =    1 __ 2   x 2 − 3x +    7 __ 2   

65. f (x) = x 2 + 1
67. f (x) = 2 − x 2

69. f (x) = 2x 2

71. The graph is shifted up or 
down (a vertical shift). 
73. 50 feet  

75. Domain: (−∞, ∞); range: [−2, ∞)
77. Domain: (−∞, ∞); range: (−∞, 11]  79. f (x)  = 2x 2 − 1
81. f (x)  = 3x 2 − 9   83. f (x)  = 5x 2 − 77  
85. 50 feet by 50 feet  87. 125 feet by 62.5 feet
89. 6 and −6; product is −36   91. 2909.56 meters   93. $10.70

Section 3.3
1. The coefficient of the power function is the real number that 
is multiplied by the variable raised to a power. The degree is the 
highest power appearing in the function.  3. As x decreases 
without bound, so does f (x). As x increases  without bound, so 
does f (x).  5. The polynomial function is of even degree and 
leading  coefficient is negative.  7. Power function  9. Neither   
11. Neither  13. Degree: 2, coefficient: −2  15. Degree: 4, 
coefficient: −2  17. As x → ∞, f (x) → ∞, as x → −∞, f (x) → ∞
19. As x → −∞, f (x) → −∞, as x → ∞, f (x) → −∞
21. As x → −∞, f (x) → −∞, as x → ∞, f (x) → −∞
23. As x → ∞, f (x) → ∞, as x → −∞, f (x) → −∞
25. y-intercept is (0, 12), t-intercepts are (1, 0), (−2, 0), and (3, 0)
27. y-intercept is (0, −16), x-intercepts are (2, 0), and (−2, 0)
29. y-intercept is (0, 0), x-intercepts are (0, 0), (4, 0), and (−2, 0)
31. 3  33. 5  35. 3  37. 5  39. Yes, 2 turning points, 
least possible degree: 3  41. Yes, 1 turning point, least possible 
degree: 2  43. Yes, 0 turning points, least possible degree: 1
45. Yes, 0 turning points, least possible degree: 1
47. As x → −∞, f (x ) → ∞,  
as x → ∞, f (x) → ∞

x f (x)
10 9,500

100 99,950,000
−10 9,500

−100 99,950,000

49. As x → −∞, f (x ) → ∞,  
as x → ∞, f (x) → −∞

x f (x)
10 −504

100 −941,094
−10 1,716

−100 1,061,106

51. y-intercept: (0, 0); 
x-intercepts: (0, 0) and (2, 0); 
as x → −∞, f (x ) → ∞,  
as x → ∞, f (x) → ∞

2

x

y

−1
−1−2

−2

−3

−3

−4

−4

−5−6

−5

1

3

3

21 4

4

5 6

5

53. y-intercept: (0, 0); 
x-intercepts: (0, 0), (5, 0), (7, 0); 
as x → −∞, f (x ) → −∞,  
as x → ∞, f (x) → ∞

80

x

y

−1−2

40

3

120

21 4

160
200

−80
−40

−120
−160
−200

5 6 7 8 9 10

55. y-intercept: (0, 0); 
x-intercepts: (−4, 0), (0, 0), (4, 0); 
as x → −∞, f (x ) → −∞,  
as x → ∞, f (x) → ∞

200

x

y

−2−4−6−8−10

100

6

300

42 8

400
500

10

−200
−100

−300
−400
−500

57. y-intercept: (0, −81); 
x-intercepts: (−3, 0), and (3, 0); 
as x → −∞, f (x ) → ∞,  
as x → ∞, f (x) → ∞

40

x

y

−1−2−3−4−5−6

20

3

60

21 4

80

5 6

100

−40
−20

−60
−80

−100

59. y-intercept: (0, 0); x-intercepts: 
(−3, 0), (0, 0), (5, 0); 
as x → −∞, f (x ) → −∞,  
as x → ∞, f (x) → ∞

61. f (x ) = x 2 − 4  
63. f (x ) = x 3 − 4x 2 + 4x  
65. f (x ) = x 4 + 1  
67. V(m ) = 8m 3 + 36m 2 + 54m + 27
69. V(x ) = 4x 3 − 32x 2 + 64x 

20

x

y

−1−2−3−4−5

10

3

30

21 4

40

5 6

50

−20
−10

−30
−40
−50

Section 3.4
1. The x-intercept is where the graph of the function crosses the 
x-axis, and the zero of the function is the input value for which 
f (x) = 0.  3. If we evaluate the function at a and at b and 
the sign of the function value changes, then we know a zero exists 
between a and b.  5. There will be a factor raised to an even 
power.   7. (−2, 0), (3, 0), (−5, 0)  9. (3, 0), (−1, 0), (0, 0)
11. (0, 0), (−5, 0), (2, 0)  13. (0, 0), (−5, 0), (4, 0)  

15. (2, 0), (−2, 0), (−1, 0)  17. (−2, 0), (2, 0),      1 _ 2  , 0     

19. (1, 0), (−1, 0)  21. (0, 0),     √—
 3  , 0   ,    − √

—
 3  , 0     

23. (0, 0), (1, 0), (−1, 0), (2, 0), (−2, 0)
25. f (2) = −10, f (4) = 28; sign change confirms
27. f (1) = 3, f (3) = −77; sign change confirms
29. f (0.01) = 1.000001, f (0.1) = −7.999; sign change confirms
31. 0 with multiplicity 2, −   3 _ 2    multiplicity 5, 4 multiplicity 2

33.  0 with multiplicity 2, −2 with multiplicity 2
35. −   2 _ 3    with multiplicity 5, 5 with multiplicity 2  
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37. 0 with multiplicity 4, 2 with multiplicity 1, −1 with multiplicity 1  

39.    3 _ 2    with multiplicity 2, 0 with multiplicity 3  41. 0 with 

multiplicity 6,    2 _ 3    with multiplicity 2  
43. x-intercept: (1, 0) with 
multiplicity 2, (−4, 0) with 
multiplicity 1; y-intercept: 
(0, 4); as x → −∞, g (x) → 
−∞, as x → ∞, g (x) → ∞

x

g(x)

−4
−8

−1−2−3−4−5 2 3 4 51

12
16
20

8
4

45. x-intercept: (3, 0) with 
multiplicity 3, (2, 0) with 
multiplicity 2; y-intercept: 
(0, −108); as x → −∞, k (x) → 
−∞, as x → ∞, k (x) → ∞ 

x

k(x)

−12
−24
−36
−48
−60
−72
−84
−96

−108
−120

−1−2−3−4−5−6 2 3 4 5 61

12
24

47. x-intercepts: (0, 0),  
(−2, 0), (4, 0) with 
multiplicity 1; y-intercept: 
(0, 0); as x → −∞, n (x) → ∞,  
as x → ∞, n (x) → −∞ 

x

n(x)

−15

−45
−30

−60
−75

−1−2−3−4−5 2 3 4 51

75
60
45
30
15

49. f (x) = −   2 _ 9   (x − 3)(x + 1)(x + 3) 

51. f (x) =    1 _ 4   (x + 2)2(x − 3)

53. −4, −2, 1, 3 with multiplicity 1

55. −2, 3 each with multiplicity 2  

57. f (x) = −   2 _ 3   (x + 2)(x − 1)(x − 3)

59. f (x) =    1 _ 3   (x − 3)2(x − 1)2(x + 3)

61. f (x) = −15(x − 1)2(x − 3)3 

63. f (x) = −2(x + 3)(x + 2)(x − 1)

65. f (x) = −   3 _ 2   (2x − 1)2(x − 6)(x + 2)  

67. Local max: (−0.58, −0.62); local min: (0.58, −1.38)
69. Global min: (−0.63, −0.47) 71. Global min: (0.75, −1.11)

73. f (x) = (x − 500)2(x + 200)  75. f (x) = 4x 3 − 36x 2 + 80x 

77. f (x) = 4x 3 − 36x 2 + 60x + 100

79. f (x) =    1 _ π   (9x 3 + 45x 2 + 72x + 36) 

Section 3.5
1. The binomial is a factor of the polynomial.  

3. x + 6 +    5 _ x − 1   , quotient: x + 6, remainder: 5  

5. 3x + 2, quotient: 3x + 2, remainder: 0  7. x − 5, quotient: 
x − 5, remainder: 0    9. 2x − 7 +    16 _ x + 2   , quotient: 2x − 7, 

remainder 16  11. x − 2 +    6 _ 3x + 1   , quotient: x − 2, remainder: 6

13. 2x 2 − 3x + 5, quotient: 2x 2 − 3x + 5, remainder: 0

15. 2x 2 + 2x + 1 +    10 _ x − 4     17. 2x 2 − 7x + 1 −    2 _ 2x + 1   

19. 3x 2 − 11x + 34 −    106 _ x + 3      21. x 2 + 5x + 1

23. 4x 2 − 21x + 84 −    323 _ x + 4     25. x 2 − 14x + 49

27. 3x 2 + x +    2 _ 3x − 1     29. x 3 − 3x + 1  31. x 3 − x 2 + 2

33. x 3 − 6x 2 + 12x − 8  35. x 3 − 9x 2 + 27x − 27
37. 2x 3 − 2x + 2   39. Yes, (x − 2)(3x 3 − 5)  41. Yes, 
(x − 2)(4x 3 + 8x 2 + x + 2)  43. No  
45. (x − 1)(x 2 + 2x + 4)  47. (x − 5)(x 2 + x + 1)  
49. Quotient: 4x 2 + 8x + 16, remainder: −1  51. Quotient 
is 3x 2 + 3x + 5, remainder: 0  53. Quotient is x 3 − 2x 2 + 
4x − 8, remainder: −6  55. x 6 − x 5 + x 4 − x 3 + x 2 − x + 1 

57. x 3 − x 2 + x − 1 +    1 _ x + 1     59. 1 +    1 + i _ 
x − i

     61. 1 +    1 − i _ 
x + i 

      

63. x 2 + ix − 1 +    1 − i _ 
x − i

      65. 2x 2 + 3   67. 2x + 3  

69. x + 2   71. x − 3   73. 3x 2 − 2

Section 3.6
1. The theorem can be used to evaluate a polynomial.
3. Rational zeros can be expressed as fractions whereas real 
zeros include irrational numbers.  5. Polynomial functions 
can have repeated zeros, so the fact that number is a zero doesn’t 
preclude it being a zero again.  7. −106  9. 0  11. 255  

13. −1  15. −2, 1,    1 _ 2     17. −2    19. −3  

21. −   5 _ 2   ,   √
—
 6   , −  √

—
 6      23. 2, −4, −   3 _ 2      25. 4, −4, −5  

27. 5, −3, −   1 _ 2     29.    1 _ 2   ,    1 +  √
—
 5   _ 2   ,     1 −  √

—
 5   _ 2     

31.    3 _ 2     33. 2, 3, −1, −2  35.    1 _ 2   ,  −   1 _ 2   , 2, −3  

37. −1, −1,   √
—
 5   , −  √

—
 5      39. −   3 _ 4   , −   1 _ 2     41. 2, 3 + 2i, 3 − 2i

43. −   2 _ 3   ,  1 + 2i, 1 − 2i  45. −   1 _ 2   ,  1 + 4i, 1 − 4i

47. 1 positive,  1  negative 
 

2

x

f (x)

−1
−1−2

−2

−3

−3

−4

−4

−5−6

−5

1

3

3

21 4

4

5 6

5

49. 1 positive, 0 negative 

2

x

f (x)

−1−2−3−4−5−6

1

3

3

21 4

4
5

−2
−1

−3
−4
−5

5 6

51. 0 positive, 3 negative 

40

x

f (x)

−2
−20−4

−40

−6

−60

−8

−80
−100

−10−12−14

20

6

60

42 8

80
100

10

53. 2 positive, 2 negative 

16

x

f (x)

−1−2−3−4−5−6

8

3

24

21 4

32
40

−16
−8

−24
−32
−40

5 6
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55. 2 positive, 2 negative 

6

x

f (x)

−1−2−3−4−5−6

3

3

9

21 4

12
15

−6
−3

−9
−12
−15

5 6

57. ±   1 _ 2   ,  ±1, ±5, ±   5 _ 2    

59. ±1, ±   1 _ 2   , ±   1 _ 3   , ±   1 _ 
6

   

61. 1,    1 _ 2   , −   1 _ 3   

63. 2,    1 _ 4   , −   3 _ 2     65.    5 _ 4    

67. f (x) =    4 _ 9   (x 3 + x 2 − x − 1)

69. f (x) = −   1 __ 5   (4x 3 − x)

71. 8 by 4 by 6 inches

73. 5.5 by 4.5 by 3.5 inches  75. 8 by 5 by 3 inches
77. Radius: 6 meters; height: 2 meters  79. Radius: 2.5 
meters, height: 4.5 meters  

Section 3.7
1. The rational function will be represented by a quotient of 
polynomial functions.  3. The numerator and denominator 
must have a common factor.  5. Yes. The numerator of the 
formula of the functions would have only complex roots and/or 
factors common to both the numerator and denominator.
7. All reals except x = −1, 1   9. All reals except x = −1, 1, −2, 2

11. Vertical asymptote: x = −   2 _ 5   ; horizontal asymptote: y = 0; 

domain: all reals except x = −   2 _ 5     13. Vertical asymptotes: 

x = 4, −9; horizontal asymptote: y = 0; domain: all reals except 
x = 4, −9  15. Vertical asymptotes: x = 0, 4, −4; horizontal 
asymptote: y = 0; domain: all reals except x = 0, 4, −4  
17. Vertical asymptotes: x = −5; horizontal asymptote: y = 0; 
domain: all reals except x = 5, −5  

19. Vertical asymptote: x =    1 _ 3   ; horizontal asymptote: y = −   2 _ 3   ;  

domain: all reals except x =    1 _ 3     21. None  

23. x-intercepts: none, y-intercept:    0,   1 _ 4       

25. Local behavior: x → −   1 _ 2   
+

, f (x) → −∞, x → −   1 _ 2   
−

, f (x) → ∞ 

End behavior: x → ±∞, f (x) →    1 _ 2   

27. Local behavior: x → 6+, f (x) → −∞, x → 6−, f (x) → ∞ 
End behavior: x → ±∞, f (x) → −2

29. Local behavior: x → −   1 _ 3   
+

, f (x) → ∞, x → −   1 _ 3   
−

, f (x) → −∞,  

x → −   5 _ 2   
−

, f (x) → ∞, x → −   5 _ 2   
+

, f (x) → −∞ 

End behavior: x → ±∞,  f (x) →    1 _ 3   

31. y = 2x + 4   33. y = 2x  
35. Vertical asymptote at 
x = 0, horizontal asymptote at 
y = 2

 

4

x

y

−2
−2
−4
−6
−8

−10

−4−6−8−10

2

6

6

42 8

8

10

10

x = 0

y = 2

37. Vertical asymptote at x = 2, 
horizontal asymptote at y = 0

 

4

x

y

−2
−2
−4
−6
−8

−10

−4−6−8−10

2

6

6

42 8

8

10

10

y = 0 x = 2

39. Vertical asymptote at 
x = −4; horizontal asymptote 

at y = 2;      3 _ 2  , 0   ,    0, −  3 _ 4     
 

4

x
−2
−2
−4
−6
−8

−10

−4−6−8−10

2

6

6

42 8

8

10

10

y = 2

x = −4

p(x)

41. Vertical asymptote at x = 2; 
horizontal asymptote at y = 0; 
(0, 1) 

2

x

s(x)

−2
−1
−2

−4−6−8−10

1

6

3

42 8

4

10

5
6
7
8
9

10
12

y = 0

x = 2

43. Vertical asymptote 
at x = −4,    4 _ 3   ; horizontal 
asymptote at y = 1; (5, 0),  
   −  1 _ 3  , 0   ,    0,   5 _ 

16
     

 

4

x

f(x)

−2
−2
−4
−6
−8

−10
−12

−4−6−8−10−12

2

6

6

42 8

8

10 12

10
12

x = 4
3

y = 1

x = −4

45. Vertical asymptote at 
x = −1; horizontal asymptote at 
y = 1; (−3, 0), (0, 3)

 

6

x

a(x)

−3
−3
−6
−9

−12
−15

−6−9−12−15

3

9

9

63 12

12

15

15

y = 1

x =−1

47. Vertical asymptote at 
x = 4; slant asymptote at  
y = 2x + 9; (−1, 0),      1 _ 2  , 0   ,   

 0,   1 _ 4     
 

20

x

h(x)

−10
−10
−20
−30
−40
−50

−20−30−40−50

10

30

10 20 30 40 50

40
50

y = 2x + 9

x = 4

49. Vertical asymptote at x = −2,  
4; horizontal asymptote at y = 1; 
(1, 0), (5, 0), (−3, 0),    0, −  15 _ 

16
     

 

−10

4

x

w(x)

−2
−2
−4
−6
−8

−4−6−8−10−12

2

6

6

42 8

8

10 12

10
12 x = 4

y = 1

x = −2

51. f (x) = 50    x
2 − x − 2 ________ x2 − 25     53. f (x) = 7   x

2 + 2x − 24 __ 
x2 + 9x + 20

     

55. f (x) =    1 _ 2    ⋅    x
2 − 4x + 4 __ x + 1     57. f (x) = 4   x − 3 __ 

x2 − x − 12
      

59. f (x) = −9   x − 2 __ 
x 2 − 9

      61. f (x) =    1 _ 3    ∙    x 2 + x − 6 _ x − 1      

63. f (x) = −6   (x − 1)2
 ____________  (x + 3)(x − 2)2     

65. Vertical asymptote at x = 2; horizontal asymptote at y = 0 

x 2.01 2.001 2.0001 1.99 1.999
y 100 1,000 10,000 −100 −1,000

x 10 100 1,000 10,000 100,000
y 0.125 0.0102 0.001 0.0001 0.00001



ODD ANSWERSC-12

67. Vertical asymptote at x = −4; horizontal asymptote at y = 2
x −4.1 −4.01 −4.001 −3.99 −3.999
y 82 802 8,002 −798 −7998

x 10 100 1,000 10,000 100,000
y 1.4286 1.9331 1.992 1.9992 1.999992

69. Vertical asymptote at x = −1; horizontal asymptote at y = 1
x −0.9 −0.99 −0.999 −1.1 −1.01
y 81 9,801 998,001 121 10,201

x 10 100 1,000 10,000 100,000
y 0.82645 0.9803 0.998 0.9998

71.      3 _ 2  , ∞   

4

x

f(x)

–2–2
–4
–6
–8

–10

–4–6–8–10

2

6

6

42 8

8

10

10

73. (−∞, 1) ∪ (4, ∞)

4

x

f(x)

–2–2
–4
–6
–8

–10

–4–6–8–10

2

6

6

42 8

8

10

10

75. (2, 4)  77. (2, 5)  79. (−1, 1)  81. C(t) =    8 + 2t _ 300 + 20t   

83. After about 6.12 hours  85. 2 by 2 by 5 feet  
87. radius 2.52 meters

Section 3.8
1. It can be too  difficult or impossible to solve for x in terms of y.
3. We will need a restriction on the domain of the 
answer.  5. f −1 (x) =   √

—
 x    + 4  7. f −1(x) =   √

—
 x + 3    −1  

9. f −1(x) = −  √ 
______

   x − 5 _ 3       11. f −1(x) =   √
—

 9 − x    

13. f −1(x) =    3 √
—

 x − 5     15. f −1(x) =    3 √
—

 4 − x     

17. f −1(x) =    x 2 − 1 ______ 2   , [0, ∞)  19. f −1(x) =    (x − 9)2 + 4 __________ 4   , [9, ∞)  

21. f −1(x) =       x − 9 _____ 2     
3
  23. f −1(x) =    2 − 8x ______ x        

25. f −1(x) =    7x − 3 ______ 1 − x     27. f −1(x) =    5x − 4 ______ 4x + 3     

29. f −1(x) =   √
—

 1 + x    − 1  31. f −1(x) =   √
—

 x + 6    + 3

33. f −1(x) =   √
—

 4 − x    

4

x

y

−2−4−6−8−10

2

6

6

42 8

8

10

10

−4
−2

−6
−8

−10

35. f −1(x) =   √
—
 x    + 4

4

x

y

−2−4−6−8−10−12

2

6

6

42 8

8

10 12

10
12

−4
−2

−6
−8

37. f −1(x) =    3 √
—

 1 − x    

x

y

3 4 51 2

3
4
5

2
1

−3−4−5 −2−1

−3
−4
−5

−1
−2

39. f −1 (x)  =   √
—

 x + 8    + 3

6

x

y

−3−6−9−12−15

3

9

9

63 12

12

15

15

−6
−3

−9
−12
−15

41. f −1 (x)  =   √ 
__

   1 _ x       

2

x

y

−1−2−3−4−5

1

3

3

21 4

4

5

5

−2
−1

−3

43. [−2, 1) ∪ [3, ∞) 

8

x

y

−4−8−12−14−16

4

12

12

84 14

14

16

16

−8
−4

−12
−14
−16

45. [−4, 2) ∪ [5, ∞) 

4

x
2

6
8

10

42 6 8 10

−4
−2

−6
−8

−10

−4−2−6−8−10

f (x)
47. (−2, 0), (4, 2), (22, 3) 

x

y

3 4 51 2

24
32
40

16
8

−3−4−5 −2 –1

−24
−32
−40

−8
−16

49. (−4, 0), (0, 1), (10, 2) 

x

y

3 4 51 2

24
32
40

16
8

−3−4−5 −2 –1

−24
−32
−40

−8
−16

51. (−3, −1), (1, 0), (7, 1) 

x

y

3 4 51 2

24
32
40

16
8

−3−4−5 −2 –1

−24
−32
−40

−8
−16

53. f −1(x) = −   b _ 2      +    √
—

 b2 + 4x   _ 2        55. f −1(x) =    x 3 − b _ a   

57. t(h)  =   √ 
________

   200 − h _ 4.9     , 5.53 seconds

59. r(V) =    
3
 √
—

   3V _ 4π     , ≈ 3.63 feet 61. n(C) =    100C − 25 _ 
0.6 − C

   , 250 mL  

63. r(V) =   √ 

___

   V _ 
6π

      , ≈ 3.99 m  65. r(V)  =   √ 
___

   V _ 4π     , ≈ 1.99 inches

Section 3.9
1. The graph will have the appearance of a power function.
3. No. Multiple variables may jointly vary.  5. y = 5x 2  

7. y = 10x 3  9. y = 6x 4  11. y =    18 _ 
x 2

     13. y =    81 _ 
x 4

     

15. y =    20 _ 
  3 √

—
 x  
      17. y = 10xzw   19. y = 10x  √

—
 z     

21. y = 4   xz _ w     23. y = 40    xz _ 
 √

—
 w  t2

     25. y = 256  

27. y = 6  29. y = 6  31. y = 27  33. y = 3  
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35. y = 18  37. y = 90  39. y =    81 _ 2     

41. y =    3 _ 4   x 2 

30

x

y

−2−4−6−8−10

15

6

45

42 8

60

10

75

−30
−15

−45
−60
−75

43. y =    1 __ 3     √
—
 x    

4

x

y

−5−10−15−20−25

2

15

6

105 20

8

25

10

−4
−2

−6
−8

−10

45. y =    4 __ x2    

4

x

y

−2−4−6−8−10

2

6

6

42 8

8

10

10

−4
−2

−6
−8

−10

47. ≈ 1.89 years  
49. ≈ 0.61 years  
51. 3 seconds
53. 48 inches
55. ≈ 49.75 pounds 
57. ≈ 33.33 amperes
59. ≈ 2.88  

Chapter 3 Review exercises
1. 2 − 2i  3. 24 + 3i  5. {2 + i, 2 − i}  

7. f (x) = (x − 2)2 −9;  
vertex: (2, −9);  
intercepts: (−1, 0), (5, 0), (0, −5) 

x

f(x)

−1
−2
−4
−6

−10
−8

−2−3−4−5 321 4 5 6 7

6
4
2

8
10

9. f (x) =    3 _ 25   (x + 2)2 + 3  

11. 300 meters by 150 meters, 
the longer side parallel to the 
river
13. Yes; degree: 5, leading 
coefficient: 4
15. Yes; degree: 4; leading 
coefficient: 1

17. As x → −∞, f (x) → −∞, 
as x → ∞, f (x) → ∞

19. −3 with multiplicity 2, −   1 _ 2    with multiplicity 1, −1 with 
multiplicity 3  21. 4 with multiplicity 1  23.    1 _ 2    with 
multiplicity 1, 3 with multiplicity 3
25. x 2 + 4 with remainder 12  27. x 2 − 5x + 20 −    61 _____ x + 3   

29. 2x 2 − 2x − 3, so factored form is (x + 4)(2x 2 − 2x − 3)

31.    −2, 4, −  1 _ 2       33.    1, 3, 4,   1 _ 2       

35. 2 or 0 positive, 1 negative  

37. Intercepts: (−2, 0),    0, −  2 _ 5     , 
asymptotes: x = 5 and y = 1

x
−5

−10
−15

−25
−20

5 10 15 20 25 30−5−10−15−20−25

15
10

5

20
25

y

y = 1

x = 5

39. Intercepts: (3, 0), (−3, 0),  
   0,   27 _ 2     ; asymptotes: x = 1, −2  
and y = 3

y

x
−8

−16
−24

−40
−32

3 6 9 12 15−3−6−9−12−15

24
16

8

32
40

x = −2

y = 3

x = 1

41. y = x − 2 43. f −1(x) =   √
—
 x    + 2 45. f −1(x) =   √

—
 x + 11    − 3

47. f −1(x) =    
(x + 3)2 − 5

 __ 4   , x ≥ −3  49. y = 64   51. y = 72

53. ≈ 148.5 pounds  

Chapter 3 practice test
1. 20 − 10i  3. {2 + 3i, 2 − 3i}
5. As x → −∞, f (x) → −∞, as x → ∞, f (x) → ∞
7. f (x) = (x + 1)2 − 9, vertex: 
(−1, −9), intercepts: (2, 0), 
(−4, 0)(0, −8)

40

x

y

–2–4–6–8–10
–20
–40
–60
–80

–100

20

0 6

60

42 8

80

10

100

g(x) = 2x3 – 50x

9. 60,000 square feet

11. 0 with multiplicity 4,  
3 with multiplicity 2

13. 2x 2 − 4x + 11 −    26 _ x + 2   

15. 2x 2 − x − 4, so factored 
form is (x + 3)(2x 2 − x − 4)

17.  −  1 _ 2   (has multi plicity 2),   −1 ± i  √
—

 15   __ 2   

19. −2 (multiplicity 3), ±i  21. f(x) = 2(2x − 1)3(x + 3)
23. Intercepts: (−4, 0),    0, −  4 _ 3     ; 
asymptotes: x = 3, −1 and y = 0

y

x
−2
−4
−6

−10
−8

2 4 6 8 10−2−4−6−8−10

6
4
2

8
10

x = −1 x = 3

y = 0

25. y = x + 4 

27. f −1(x) =    
3
 √
—

   x + 4 _ 3       

29. y = 18  31. 4 seconds

ChapteR 4

Section 4.1
1. Linear functions have a constant rate of change. Exponential 
functions increase based on a percent of the original.
3. When interest is compounded, the percentage of interest earned 
to principal ends up being greater than the annual percentage rate 
for the investment account. Thus, the annual percentage rate does 
not necessarily correspond to the real interest earned, which is the 
very definition of nominal.  5. Exponential; the population 
decreases by a proportional rate.  7. Not exponential; 
the charge decreases by a constant amount each visit, so the 
statement represents a linear function.  9. Forest B  
11. After 20 years forest A will have 43 more trees than forest B.   
13. Answers will vary. Sample response: For a number of years, 
the population of forest A will increasingly exceed forest B, but 
because forest B actually grows at a faster rate, the population will 
eventually become larger than forest A and will remain that way 
as long as the population growth models hold. Some factors that 
might influence the long-term validity of the exponential growth 
model are drought, an epidemic that culls the population, and 
other environmental and biological factors.  
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15. Exponential growth; the growth factor, 1.06, is greater than 1.  
17. Exponential decay; the decay factor, 0.97, is between 0 and 1.  
19. f (x) = 2000(0.1)x   

21. f (x) =      1 __ 6      
− 35–      1 __ 6      

x
5– ≈ 2.93(0.699)x   23. Linear  

25. Neither  27. Linear  29. $10,250  31. $13,268.58
33. P = A(t) ⋅     1 +   r _ n     

−nt  
   35. $4,569.10   37. 4%  

39. Continuous growth; the growth rate is greater than 0.
41. Continuous decay; the growth rate is less than 0.
43. $669.42  45. f (−1) = −4  47. f (−1) ≈ −0.2707
49. f (3) ≈ 483.8146  51. y = 3 ⋅ 5x  53. y ≈ 18 ⋅ 1.025x

55. y ≈ 0.2 ⋅ 1.95x

57. APY =    
A(t) − a

 _ a    =         
a  1 +   r ___ 365    

365(1)
 − a    
  ___   a    

    =          
a    1 +   r ___ 365    

365
 − 1       

   ___   a    =    1 +   r _ 
365

     
365

 − 1; 
I(n) =    1 +   r _ n     

n
 − 1

59. Let f be the exponential decay function f (x) = a ⋅      1 _ 
b

     
x
  

such that b > 1. Then for some number n > 0,  
f (x) = a ⋅      1 _ 

b
     

x
 = a(b−1)x = a ((en)−1 )x = a(e−n)x = a(e)−nx.

61. 47,622 foxes  63. 1.39%; $155,368.09  65. $35,838.76
67. $82,247.78; $449.75    

Section 4.2
1. An asymptote is a line that the graph of a function approaches, 
as x either increases or decreases without bound. The horizontal 
asymptote of an exponential function tells us the limit of the 
function’s values as the independent variable gets either extremely 
large or extremely small.  3. g(x) = 4(3)−x; y-intercept: (0, 4); 
domain: all real numbers; range: all real numbers greater than 0.
5. g(x) = −10x + 7; y-intercept: (0, 6); domain: all real numbers; 
range: all real numbers less than 7.  

7. g(x) = 2     1 _ 4     
x
; y-intercept: (0, 2); domain: all real numbers; 

range: all real numbers greater than 0.  

9. y-intercept: (0, −2) 

2

x
−1
−1−2

−2

−3

−3

−4

−4
−5

−5

1

3

3

21 4

4

5

5

g(−x) = −2(0.25)−x

g(x) = −2(0.25)x

y
11. 

y

2

x
−1

−1−2

−2

−3

−3

−4

−4
−5

−5

1

3

3

21 4

4

5

5

f (x) = 3 1
4( )x

g(x) = 3(2)x

h(x) = 3(4)x

13. B   15. A  17. E  19. D   21. C  

23. y
5

2

x
−1

−1−2

−2

−3

−3

−4

−4
−5

−5

1

3

3

21 4

4

5

5

f(x) = 1
2(4)x

−f(x) = −1
2 (4)x

25. y
5

2

x
−1

−1−2

−2

−3

−3

−4

−4
−5

−5

1

3

3

21 4

4

5

5

−f (x) = 4(2)x − 2

f (x) = −4(2)x + 2

27. Horizontal asymptote:  
h(x) = 3; domain: all real 
numbers; range: all real 
numbers strictly greater than 3. 

2

x

h(x)

−1−2−3−4−5

1

3

3

21 4

4

5

5
6
7
8

29. As x → ∞, f (x) → −∞;  
as x → −∞, f (x) → −1 
31. As x → ∞, f (x) → 2;  
as x → −∞, f (x) → ∞
33. f (x) = 4x − 3
35. f (x) = 4x − 5  
37. f (x) = 4−x

39. y = −2x + 3  
41. y = −2(3)x + 7  
43. g(6) ≈ 800.3  

45. h(−7) = −58  47. x ≈ −2.953    49. x ≈ −0.222    

51. The graph of g(x) =       1 _ 
b

     
x
   is the reflection about the y-axis 

of the graph of f (x) = bx; for any real number b > 0 and function 
f (x) = bx, the graph of       1 _ 

b
     

x
   is the reflection about the y-axis, f (−x).   

53. The graphs of g(x) and h(x) are the same and are a horizontal 
shift to the right of the graph of f (x). For any real number n, real 

number b > 0, and function f (x) = bx, the graph of      1 _ 
bn

     bx is the 

horizontal shift f (x − n).  

Section 4.3
1. A logarithm is an exponent. Specifically, it is the exponent 
to which a base b is raised to produce a given value. In the 
expressions given, the base b has the same value. The exponent, 
y, in the expression by can also be written as the logarithm, log

b
x, 

and the value of x is the result of raising b to the power of y. 
3. Since the equation of a logarithm is equivalent to an 
exponential equation, the logarithm can be converted to the 
exponential equation b y = x, and then properties of exponents can 
be applied to solve for x.  5. The natural logarithm is a special 
case of the logarithm with base b in that the natural log always has 
base e. Rather than notating the natural logarithm as loge(x), the 
notation used is ln(x).
7. ac = b  9. x y = 64  11. 15b = a  13. 13a = 142
15. e n = w   17. logc(k) = d   19. log19 (y) = x 
21. logn(103) = 4    23. logy      39 _ 100      = x   25. ln(h) = k  

27. x =    1 _ 8     29. x = 27  31. x = 3  33. x =    1 _ 
216

      

35. x = e2   37. 32   39. 1.06   41. 14.125   43.    1 _ 2     
45. 4  47. −3  49. −12  51. 0  53. 10  
55. ≈ 2.708  57. ≈ 0.151  59. No, the function has no 
defined value for x = 0. To verify, suppose x = 0 is in the domain 
of the function f (x) = log(x). Then there is some number n such 
that n = log(0). Rewriting as an exponential equation gives:  
10n = 0, which is impossible since no such real number n exists. 
Therefore, x = 0 is not the domain of the function f (x) = log(x).  
61. Yes. Suppose there exists a real number, x such that ln(x) = 2. 
 Rewriting as an exponential equation gives x = e2, which is a real 
number (x = e2 ≈ 7.389056099). To verify, let x = e 2. Then, by 

definition, ln(x) = ln(e2) = 2.  63. No; ln(1) = 0, so    
ln(e1.725)

 _ 
ln(1)

    
is undefined.   65. 2  
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Section 4.4
1. Since the functions are inverses, their graphs are mirror 
images about the line y = x. So for every point (a, b) on the graph 
of a logarithmic function, there is a corresponding point (b, a) on 
the graph of its inverse exponential function.   3. Shifting the 
function right or left and reflecting the function about the y-axis 
will affect its domain.  5. No. A horizontal asymptote would 
suggest a limit on the range, and the range of any logarithmic 
function in general form is all real numbers.

7. Domain:    −∞,    1 _ 2     ; range: (−∞, ∞)  

9. Domain:    −  17 _ 4  , ∞   ; range: (−∞,  ∞ )   

11. Domain: (5, ∞); vertical asymptote: x = 5

13. Domain:    −  1 _ 3  , ∞   ; vertical asymptote: x = −   1 _ 3   

15. Domain: (−3, ∞); vertical asymptote: x = −3

17. Domain:      3 _ 
7

  , ∞   ; vertical asymptote: x =    3 _ 7   ; end behavior: 

as x →       3 _ 7     
+
  , f (x) → −∞ and as x → ∞, f (x) → ∞

19. Domain: (−3, ∞); vertical asymptote: x = −3; end behavior: 
as x → −3+, f (x) → −∞ and as x → ∞, f (x) → ∞ 
21. Domain: (1, ∞); range: (−∞, ∞); vertical asymptote: x = 1; 

x-intercept:      5 _ 4  , 0   ; y-intercept: DNE

23. Domain: (−∞, 0); range: (−∞, ∞); vertical asymptote: 
x = 0; x-intercept: (−e2, 0); y-intercept: DNE
25. Domain: (0, ∞); range: (−∞, ∞) vertical asymptote: x = 0; 
x-intercept: (e3, 0); y-intercept: DNE

27. B  29. C  31. B  33. C  

35. 

2

−1
−1
−2
−3
−4
−5

1

3

3

21 4

4

5 876 9 10

5

f(x) = log(x)

g(x) = log    (x)l
2

x

y 37. 

2

−1
−1−2

−2

−3

−3

−4

−4
−5

−5

1

3

3

21 4

4

5

5

f (x) = e 
x

g(x) = ln(x)

x

y          39. C

41. 

2

x

f(x)

−1
−1−2

−2

−3

−3

−4

−4
−5

−5

1

3

3

21 4

4

5

5

43. 

2

x

y

−1
−1−2

−2

−3−4−5−6−7−8

−3
−4
−5

1

3

21

4
5

45. 

2

x

g(x)

−1
−1−2

−2

−3−4−5−6

−3
−4
−5

1

3

3

21 4

4
5

47. f (x) = log2(−(x − 1))  
49. f (x) = 3log4(x + 2)   
51. x = 2  
53. x ≈ 2.303   
55. x ≈ −0.472   

57. The graphs of f (x) =   log 
  1 _ 2  

  (x) and g(x) = −log 2(x) appear to be 

the same; conjecture: for any positive base b ≠ 1, logb(x) = −log   1 _ b   (x).

59. Recall that the argument of a logarithmic function must be  

positive, so we determine where    x + 2 _ x − 4    > 0. From the graph of 

the function f (x) =    x + 2 _ x − 4   , note that the graph lies above the 

x-axis on the interval (−∞, −2) and again to the right of the vertical 
asymptote, that is (4, ∞). Therefore, the domain is (−∞, −2)∪(4, ∞).

Section 4.5
1. Any root expression can be rewritten as an expression with a 
rational exponent so that the power rule can be applied, making 

the logarithm easier to calculate. Thus, logb(x   
1
 

_
 n   ) =    1 _ n   logb(x).

3. logb (2) + logb (7) + logb(x) + logb(y)
5. logb(13) − logb(17)  7. −kln(4)  9. ln(7xy)  

11. logb(4)  13. logb(7)  15. 15log(x) + 13log(y) − 19log(z) 

17.    3 _ 2    log(x) − 2log(y)  19.    8 _ 3   log(x) +    14 _ 3   log(y)  21. ln(2x7)

23. log     xz3
 _ 

 √
—
 y  
       25. log7(15) =    

ln(15)
 _ 

ln(7)
     

27. log11(5) =    1 _ 
b

     29. log11     6 _ 11      =    a − b _ 
b

    or    a _ 
b − 1

     31. 3

33. ≈ 2.81359  35. ≈ 0.93913  37. ≈ −2.23266
39. x = 4, By the quotient rule:
    log6(x + 2) − log6(x − 3) = log6      x + 2 _____ x − 3      = 1
    Rewriting as an exponential equation and solving for x:
    61 =    x + 2 _____ x − 3   

  0 =    x + 2 _____ x − 3    − 6

  0 =    x + 2 _____ x − 3    −    6(x − 3) _______ (x − 3)   

  0 =    x + 2 − 6x + 18  _____________ x − 3   

  0 =    x − 4 _____ x − 3   

  x = 4  
     Checking, we find that log6(4 + 2) − log6 (4 − 3) =  

log6(6) − log6(1) is defined, so x = 4.
41. Let b and n be positive integers greater than 1. Then, by the 

change-of-base formula, logb(n) =    
logn(n)

 _ 
logn(b)

    =    1 _ 
logn(b)

   .

Section 4.6
1. Determine first if the equation can be rewritten so that each 
side uses the same base. If so, the exponents can be set equal to 
each other. If the equation cannot be rewritten so that each side 
uses the same base, then apply the logarithm to each side and use 
properties of logarithms to solve.  3. The one-to-one property 
can be used if both sides of the equation can be rewritten as a 
single logarithm with the same base. If so, the arguments can be 
set equal to each other, and the resulting equation can be solved 
algebraically. The one-to-one property cannot be used when each 
side of the equation cannot be rewritten as a single logarithm with 
the same base.  5. x = −   1 _ 3       7. n = −1  9. b =    6 _ 5         

11. x = 10  13. No solution  15. p = log      17 _ 8      − 7  

17. k = −   
ln(38)

 _ 3     19. x =      
ln     38 _ 3     − 8

  __ 9     21. x = ln(12) 
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23. x =     

ln     3 _ 5     − 3
 __ 8     25. No solution  27. x = ln(3)  

29. 10−2 =    1 _ 100     31. n = 49 33. k =    1 _ 
36

     35. x =    9 − e _ 8     

37. n = 1   39. No solution  41. No solution  

43. x = ±   10 _ 3     45. x = 10  47. x = 0  49. x =    3 _ 4     

51. x = 9 

x

y

−1
−2
−3
−4
−5
−6
−7

1

321 4 5 6 7 8 9 10 11 12

53. x =    e
2
 _ 3    ≈ 2.5 

2

x

y

−1
−1−2

−2
−3
−4
−5

1

3

3

21 4

4

5

5

55. x = −5 

x

y

3
4

2
1

−1−1 –1−2−3−4−5−6−7−8

−2
−3

5

57. x =    e + 10 _ 4    ≈ 3.2 

x

y

−1
−1
−2
−3
−4
−5
−6

1

321 4 5 6 7 8 9 10

59. No solution

2

x

y

−1
−1−2

−2

−3

−3

−4

−4
−5
−6
−7
−8

1

3

3

21 4 5 6 7 8 9 10

61. x =    11 _ 5    ≈ 2.2 

2

x

y

−1
−1−2

−2

−3

−3

−4

−4
−5

−5

1

3

3

21 4

4

5

5

63. x =    101 _ 11    ≈ 9.2 

2

x

y

−1
−2

−2

1

6

3

42 8

4

10 12 14

5
6

65. About $27,710.24

35,000
(20, 27710.24)

f(x) = 6500e0.0725x

30,000
25,000
20,000
15,000
10,000

5,000

−1
−1

20 4 6 8 10 12 14 16 18 20 22 24
x

y

67. About 5 years

25,000
20,000 (5, 20,000)

15,000
10,000

5,000

0 1 2 3 4 5 6
x

y
69. ≈ 0.567  71. ≈ 2.078
73. ≈ 2.2401
75. ≈ −44655.7143
77. About 5.83

79. t =  ln (     y ______ A     
  1 _ 
k

  
   )  

81. t =  ln (     
T − Ts ______ T0 − Ts

     
−  1 _ 

k
  

   )  
Section 4.7
1. Half-life is a measure of decay and is thus associated with 
exponential decay models. The half-life of a substance or quantity 
is the amount of time it takes for half of the initial amount of that 
substance or quantity to decay.  3. Doubling time is a measure 
of growth and is thus associated with exponential growth models. 
The doubling time of a substance or quantity is the amount of 
time it takes for the initial amount of that substance or quantity 
to double in size.  5. An order of magnitude is the nearest 
power of ten by which a quantity exponentially grows. It is also 
an approximate position on a logarithmic scale; Sample response: 
Orders of magnitude are useful when making comparisons 
between numbers that differ by a great amount. For example, the 
mass of Saturn is 95 times greater than the mass of Earth. This is 
the same as saying that the mass of Saturn is about 102 times, or 2 
orders of  magnitude greater, than the mass of Earth.  
7. f (0) ≈ 16.7; the amount initially present is about 16.7 units.  
9. 150  11. Exponential; f (x) = 1.2x

13. Logarithmic

x

f(x)

1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 8 9 100

15. Logarithmic 

x

y

9

10

11

12

13

4 5 6 7 8 9 10 11 12 130

17.  

200

t

P(t)

−2
−100−4−6−8−10−12−14−16−18−20

100

6

300

42 8

400

10 12 14 16 18 20

500
600
700
800
900

1,000



ODD ANSWERS C-17

19. About 1.4 years  21. About 7.3 years  
23. Four half-lives; 8.18 minutes

25. M =    2 _ 3    log      S _ 
S0

       

     3 _ 2   M = log      S _ 
S0

      

  10   
3M

 
__

 2    =      S _ 
S0

      

  S010   
3M

 
__

 2    = S

27. Let y = b x for some non-negative 
real number b such that b ≠ 1. Then,

   ln (y) = ln (b x)
   ln (y) = x ln (b)
   e ln(y) = e xln(b)

   y = e xln(b)

29. A = 125e (−0.3567t); A ≈ 43mg  31. About 60 days
33. f (t) = 250e −0.00914t; half-life: about 76 minutes
35. r ≈ − 0.0667; hourly decay rate: about 6.67%
37. f (t) = 1350 e 0.034657359t; after 3 hours; P (180) ≈ 691,200  
39. f (t) = 256 e (0.068110t); doubling time: about 10 minutes  
41. About 88minutes  43. T(t) = 90 e (−0.008377t) + 75, where t is 
in minutes 45. About  113  minutes 47. log10x = 1.5; x ≈ 31.623
49. MMS Magnitude: ≈ 5.82  51. N(3) ≈ 71  53. C

Section 4.8
1. Logistic models are best used for situations that have limited 
values. For example, populations cannot grow indefinitely since 
resources such as food, water, and space are limited, so a logistic 
model best describes populations.   3. Regression analysis is 
the process of finding an equation that best fits a given set of data 
points. To perform a regression analysis on a graphing utility, first 
list the given points using the STAT then EDIT menu. Next graph 
the scatter plot using the STAT PLOT feature. The shape of the data 
points on the scatter graph can help determine which regression 
feature to use. Once this is determined, select the appropriate 
regression analysis command from the STAT then CALC menu.   
5. The y-intercept on the graph of a logistic equation corresponds 
to the initial population for the population model.   
7. C  9. B  11. P (0) = 22; 175  
13. p ≈ 2.67  15. y-intercept: (0, 15)  17. 4 koi
19. About 6.8 months.
21. y

x

100
150

50

200
250
300
350
400
450
500
550
600

5 10 15 200

23. About 38 wolves
25. About 8.7 years
27. f (x) = 776.682 (1.426)x

29. y

x

2,000
3,000

1,000

4,000
5,000
6,000
7,000

1 2 3 4 5 6 70

31. y

x

150
200

100

250
300
350
400
450
500
550
600

1 2 3 4 5 6 70

33. f (x) = 731.92e −0.3038x

35. When f (x) = 250, x ≈ 3.6
37. y = 5.063 + 1.934 log(x)
39.  y

x

5
6

4

7
8
9

10

1 2 3 4 5 6 70

41. y

x
1
2
3
4
5
6
7
8
9

10

1 2 3 4 5 6 7 80

43. f (10) ≈ 2.3
45. When f (x) = 8, x ≈ 0.82

47. f (x) =    25.081 __  
1 + 3.182e−0.545x

   

49. About 25

51. y

x

20
30

10

40
50
60
70
80
90

100
110
120
130
140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

53. y

x

20
30

10

40
50
60
70
80
90

100
110
120
130
140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 180

55. When f (x) = 68, x ≈ 4.9  57. f (x) = 1.034341(1.281204) x; 
g (x) = 4.035510; the regression curves are symmetrical about 
y = x, so it  appears that they are inverse functions.

59. f −1(x) =       
ln (a) − ln     c _ x   − 1  

  __ 
b

    

Chapter 4 Review exercises
1. Exponential decay; the growth factor, 0.825, is between 0 and 1. 
3. y = 0.25(3) x  5. $42,888.18   7. Continuous decay; the 
growth rate is negative 
9. Domain: all real numbers; 
range: all real numbers 
strictly greater than zero; 
y-intercept: (0, 3.5)

x

y

1
2
3
4
5
6
7
8
9

10

−1−1−2−3−4−5−6−7−8 1 2 3 4
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11. g(x) = 7(6.5)−x; y-intercept: (0, 7); domain: all real numbers; 
range: all real numbers greater than 0.   13. 17x = 4,913   
15. loga b = −   2 _ 5     17. x = 4  19. log(0.000001) = −6    
21. ln(e−0.8648) = −0.8648    

23. 

x

g(x)
1

−1−1−2−3−4−5 1 2 3 4 5

−2
−3
−4
−5
−6
−7
−8

25. Domain: x > −5; vertical 
asymptote: x = −5; end 
behavior: as x → −5+,   
f (x) → −∞ and as  
x → ∞,  f (x) → ∞
27. log 8(65xy)

29. ln      z _ xy      

31. logy(12)   

33. ln(2) + ln(b) +    
ln(b + 1) − ln(b − 1)

  __ 2         35. log 7      v 3w 6 _ 
  3

 √
—

 u  
        

37. x =    5 _ 3      39. x = −3   41. No solution  43. No solution  

45. x = ln(11)   47. a = e4 − 3   49. x = ±   9 __ 5     

51. About 5.45 years   53. f −1(x) =    3
 √
—

 24x − 1     

55. f (t) = 300(0.83)t ; f (24) ≈ 3.43 g  57. About 45 minutes   

59. About 8.5 days  
61. Exponential 63. y = 4(0.2)x; y = 4e–1.609438x  

65. About 7.2 days 
67. Logarithmic 
y = 16.68718 − 9.71860ln(x) 

y

x

4
6

2

8
10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40

0.5 1 1.5 2 2.5 3 3.5 40

Chapter 4 practice test
1. About 13 dolphins  3. $1,947
5. y-intercept: (0, 5) 

x

y

1
2
3
4
5
6
7
8

−1−1−2−3−4−5 1 2 3 4 5

f(x) = 5(0.5)−x f(−x) = 5(0.5)−x

7. 8.5a = 614.125  9. x =    1 _ 49   
11. ln(0.716) ≈ − 0.334 
13. Domain: x < 3; vertical 
asymptote: x = 3; end behavior:   
as x → 3−, f (x) → −∞ and as  
x → −∞, f (x) → ∞

15. log t(12)  

17. 3ln(y) + 2ln(z) +    
ln(x − 4)

 _ 3    

 
19. x =    

  ln(1000) _______ ln(16)   + 5
  __ 

3 
    ≈ 2.497   21. a =    ln (4) + 8 ________ 10     

23. No solution  25. x = ln(9)  27. x = ±   3 √
—
 3   ____ 2     

29. f (t) = 112e−0.019792t; half-life: about 35 days 
31. T(t) = 36 e−0.025131t + 35; T(60) ≈ 43° F  

33. Logarithmic
y

x

2
3

1

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

1 2 3 4 5 6 7 8 9 10 110

35. Exponential; 
y = 15.10062(1.24621)x

y

x

20
30

10

40
50
60
70
80
90

100
110
120
130
140
150

1 2 3 4 5 6 7 8 9 100

37. Logistic; 

y =    18.41659  __  
1 + 7.54644 e−0.68375x

   

y

x

2
3

1

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

1 2 3 4 5 6 7 8 90

ChapteR 5

Section 5.1
1. 

Terminal
side

Vertex
Initial side

3. Whether the angle is positive or negative determines the 
direction. A positive angle is drawn in the counterclockwise 
direction, and a negative angle is drawn in the clockwise direction.  

x

y

10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 110
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5. Linear speed is a measurement found by calculating distance of 
an arc compared to time. Angular speed is a measurement found by 
calculating the angle of an arc compared to time. 

7. 9. 

11. 13. 

15. 17. 240°  

19.    4π ___ 3     21.    2π ___ 3     

23.    7π ___ 2    ≈ 11.00 in2  25.    81π ____ 20    ≈ 12.72 cm2  27. 20°  

29. 60°  31. −75°  33.    π __ 2    radians   35. −3π radians  

37. π radians  39.    5π ___ 6    radians  41.    5.02π _____ 3    ≈ 5.26 miles

43.    25π ___ 9    ≈ 8.73 centimeters  45.    21π ___ 10    ≈ 6.60 meters

47. 104.7198 cm2  49. 0.7697 in2  51. 250°  53. 320°

55.    4π ___ 3     57.    8π ___ 9     59. 1320 rad/min 210.085 RPM

61. 7 in/s, 4.77 RPM, 28.65 deg/s 
63. 1,809,557.37 mm/min = 30.16 m/s  65. 5.76 miles   
67. 120°  69. 794 miles per hour 71. 2,234 miles per hour
73. 11.5 inches

Section 5.2
1. The unit circle is a circle of radius 1 centered at the origin.
3. Coterminal angles are angles that share the same terminal side. 
A reference angle is the size of the smallest acute angle, t, formed 
by the terminal side of the angle t and the horizontal axis. 

5. The sine values are equal. 7. I  9. IV 11.     √
—
 3   _ 2     13.    1 __ 2     

15.     √
—
 2   _ 2     17. 0  19. −1  21.     √

—
 3   _ 2     23. 60°  

25. 80°  27. 45°  29.    π __ 3     31.    π __ 3     33.    π __ 8     

35. 60°, Quadrant IV, sin(300°) = −    √
—
 3   _ 2   , cos (300° ) =    1 __ 2   

37. 45° , Quadrant II, sin(135°) =     √
—
 2   _ 2   , cos (135° ) = −    √

—
 2   _ 2   

39. 60°, Quadrant II, sin(120°) =     √
—
 3   _ 2   , cos (120° ) = −   1 __ 2   

41. 30°, Quadrant II, sin(150°) =    1 __ 2   , cos (150° ) = −    √
—
 3   ____ 2   

43.    π __ 6   , Quadrant III, sin     7π ___ 6      = −   1 __ 2   , cos      7π ___ 6       = −    √
—
 3   _ 2   

45.    π __ 4   , Quadrant II, sin      3π ___ 4      =     √
—
 2   ____ 2   , cos      3π ___ 4      = −    √

—
 2   _ 2   

47.    π __ 3   , Quadrant II, sin      2π ___ 3      =     √
—
 3   ____ 2   , cos      2π ___ 3      = −   1 __ 2   

49.    π __ 4   , Quadrant IV, sin      7π ___ 4      = −    √
—
 2   ____ 2   , cos      7π ___ 4      =     √

—
 2   ____ 2   

51.     √
—

 77   ____ 9     53. −    √
—

 15   ____ 4     55.    −10, 10  √
—
 3      

57. (−2.778, 15.757) 59. [−1, 1] 61. sin t =    1 __ 2   ,  cos t = −    √
—
 3   ____ 2   

63. sin t = −    √
—
 2   ____ 2   ,  cos t = −    √

—
 2   ____ 2     65. sin t =     √

—
 3   ____ 2   , cos t = −   1 __ 2   

67. sin t = −    √
—
 2   ____ 2   ,  cos t =     √

—
 2   ____ 2     69. sin t = 0,  cos t = −1

71. sin t = −0.596, cos t = 0.803  73. sin t =    1 __ 2   , cos t =     √
—
 3   ____ 2   

75. sin t = −   1 _ 2   , cos t =     √
—
 3   _ 2     77. sin t = 0.761, cos t = −0.649

79. sin t = 1, cos t = 0  81. −0.1736  83. 0.9511
85. −0.7071  87. −0.1392  89. −0.7660  91.     √

—
 2   _ 4     

93. −    √
—
 6   _ 4     95.     √

—
 2   _ 4     97.     √

—
 2   _ 4     99. 0  101. (0, −1)

103. 37.5 seconds, 97.5 seconds, 157.5 seconds, 217.5 seconds, 
277.5 seconds, 337.5 seconds

Section 5.3
1. Yes, when the reference angle is    π _ 4    and the terminal side of the 

angle is in quadrants I or III. Thus, at x =    π _ 4   ,    5π _ 4   , the sine and 

cosine values are equal.   3. Substitute the sine of the angle 
in for y in the Pythagorean Theorem x 2+ y 

2 = 1. Solve for x and 
take the negative solution.   5. The outputs of tangent and 
cotangent will repeat every π units. 

7.    2  √
—
 3   _____ 3     9.   √

—
 3     11.   √

—
 2     13. 1  15. 2  

17.     √
—
 3   ____ 3     19. −   2 √

—
 3   ____ 3     21.   √

—
 3     23. −   √

—
 2     25. −1  

27. −2  29. −    √
—
 3   ____ 3     31. 2  33.     √

—
 3   ____ 3     35. −2   37. −1
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39. sin t = −   2 √
—
 2   ____ 3   , sec t = − 3, csc t = −   3 √

—
 2   ____ 4   ,  

tan t = 2  √
—
 2   , cot t =     √

—
 2   ____ 4      41. sec t = 2, csc t =    2 √

—
 3   ____ 3   , 

tan t =   √
—
 3   , cot t =     √

—
 3   ____ 3     43. −    √

—
 2   ____ 2      45. 3.1  

47. 1.4  49. sin t =     √
—
 2   ____ 2   ,  cos t =     √

—
 2   ____ 2   ,  tan t = 1,  cot t = 1,  

sec t =   √
—
 2   ,  csc  t =   √

—
 2      51. sin t = −    √

—
 3   ____ 2   , cos t = −   1 __ 2   , tan 

t =   √
—
 3   , cot  t =     √

—
 3   ____ 3   , sec t = − 2, csc  t = −   2 √

—
 3   ____ 3   

53. −0.228  55. −2.414   57. 1.414  59. 1.540
61. 1.556  63. sin(t) ≈ 0.79  65. csc(t) ≈ 1.16  67. Even

69. Even  71.    sin t _ cos t    = tan t 73. 13.77 hours, period: 1000π

75. 7.73 inches

Section 5.4

1. 
Opposite
side

Adjacent side

Hypotenuse

3. The tangent of an angle is the ratio 
of the opposite side to the adjacent 
side.   5. For example, the sine of 
an angle is equal to the cosine of its 
complement; the cosine of an angle is 
equal to the sine of its complement. 

7.    π _ 
6

     9.    π _ 4     11. b =    20  √
—
 3   ______ 3   , c =    40  √

—
 3   ______ 3   

13. a = 10,000, c = 10,000.5   15. b =    5 √
—
 3   ____ 3   , c =    10 √

—
 3   _____ 3   

17.    5 √
—

 29   _____ 29      19.    5 __ 2      21.     √
—

 29   ____ 2      23.    5 √
—

 41   _____ 41   

25.    5 __ 4     27.     √
—

 41   ____ 4     29. c = 14, b = 7  √
—
 3     

31. a = 15, b = 15  33. b = 9.9970, c = 12.2041   
35. a = 2.0838, b = 11.8177  37. a = 55.9808, c = 57.9555   
39. a = 46.6790, b = 17.9184  41. a = 16.4662, c = 16.8341
43. 188.3159  45. 200.6737  47. 498.3471 ft.  
49. 1,060.09 ft.  51. 27.372 ft.  53. 22.6506 ft.  
55. 368.7633 ft.  

Chapter 5 Review exercises
1. 45°  3. −   7π ___ 6     5. 10.385 meters  7. 60°  9.    2π ___ 11     

11. 13.

15. 1,036.73 miles per hour   17.     √
—
 3   ____ 2     19. −1  21.    π __ 4     

23. −    √
—
 2   ____ 2      25. [−1, 1]   27. 1   29.   √

—
 2     

31.   √
—
 2      33. 0.6   35.     √

—
 2   ____ 2    or −     √

—
 2   ____ 2   

37. Sine, cosecant, tangent, cotangent

39.     √
—
 3   ____ 3      41. 0       43. b = 8, c = 10      45.    11 √

—
 157   _______ 157   

47. a = 4, b = 4   49. 14.0954 ft.   

Chapter 5 practice test
1. 150°  3. 6.283 centimeters  5. 15°  
7. 9. 3.351 feet per second,    2π _ 75    

radians per second

11. −    √
—
 3   ____ 2     13. [–1, 1]

15.   √
—
 3     17.     √

—
 3   _ 3   

19.     √
—
 3   ____ 2     21.    π __ 3   

23. a =    9 __ 2    , b =    9  √
—
 3   _____ 2    

ChapteR 6
Section 6.1
1. The sine and cosine functions have the property that  
f (x + P) = f (x) for a certain P. This means that the function 
values repeat for every P units on the x-axis.  3. The absolute 
value of the constant A (amplitude) increases the total range and 
the constant D (vertical shift) shifts the graph vertically.   
5. At the point where the terminal side of t intersects the unit 
circle, you can determine that the sin t equals the y-coordinate of 
the point.   
7. Amplitude:    2 _ 3   ; period: 2π; 
midline: y = 0; maximum: 
y =    2 _ 3    occurs at x = 0; 
minimum: y = −   2 _ 3    occurs 
at x = π; for one period, the 
graph starts at 0 and ends at 2π.  

1

0 x

f(x)

−1

−2π 2π−π π2
π− 3

1−

3
1

3
2−

3
2

2
π

2
3π− 2

3π

9. Amplitude: 4; period: 2π; 
midline: y = 0; maximum: 
y = 4 occurs at x =    π _ 2   ; 
minimum: y = −4 occurs at 
x =    3π _ 2   ; for one period, the 
graph starts at 0 and ends at 2π.  

1
2
3

0 x

f(x)

4

−2
−1

−3
−4

−2π 2π−π π2
π− 2

π
2

3π− 2
3π

11. Amplitude: 1; period: π; 
midline: y = 0; maximum: 
y = 1 occurs at x = π; 
minimum: y = −1 occurs at 
x =    π _ 2   ; for one period, the 
graph starts at 0 and ends at π.  

1

0 t

f(t)

−1
−π π4

π−2
π− 4

π
2
π

4
3π− 4

3π

13. Amplitude: 4; period: 2; 
midline: y = 0; maximum: 
y = 4 occurs at x = 0; 
minimum: y = −4 occurs at 
x = 1; for one period, the graph 
starts at 0 and ends at π.

1
2
3

0 t

f(t)

4

−1
−2
−3
−4

−2−1.5−1−0.5 20.5 1 1.5
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15. Amplitude: 3; period:    π _ 4   ; 
midline: y = 5; maximum: 
y = 8 occurs at x = 0.12; 
minimum: y = 2 occurs at x = 
0.516; horizontal shift: −4;  
vertical translation: 5; for one 
period, the graph starts at 0 
and ends at    π _ 4   . 

1

−2
−1

−3

2
3

0 x

y

4
5
6
7
8

16
3π− 16

3π
16
π− 16

π
8
π− 8

π
4
π− 4

π

17. Amplitude: 5; period:    2π _ 5   ;  
midline: y = −2; maximum: y = 3 
occurs at x = 0.08; minimum: 
y = −7 occurs at x = 0.71; phase 
shift: −4; vertical translation: −2; 
for one period, the graph starts at 
0 and ends at    2π _ 5   .

1
2
3

0 x

y

−2
−1

−3
−4
−5
−6
−7

4
5

10
3π−5

2π− 10
3π

5
2π

10
π− 10

π
5
π− 5

π

19. Amplitude: 1; period:  2π ; midline: y = 1; maximum: y = 2 
occurs at t = 2.09; minimum: y = 0 occurs at t = 5.24; phase shift: 
−   π _ 3   ; vertical translation: 1; for one period, the graph starts at 0 and 

ends at  2π .  

1
2

0 t

f(t)

−2
−1

−3
−4
−5

3
4
5

3
2π−3

4π−3
5π−−2π−3π π 2π 3π−π3

7π−3
8π−

3
2π

3
4π

3
5π

3
7π

3
8π3

π−
3
π

21. Amplitude: 1; period: 4π;  
midline: y = 0; maximum: y = 1 
occurs at t = 11.52; minimum: 
y = −1 occurs at t = 5.24; phase 
shift: −   10π _ 3   ; vertical shift: 0; for 
one period, the graph starts at 0 
and ends at 4π.

1

0 t

f(t)

2
3
4
5
6

−1
−2
−3
−4
−5
−6

−2π−4π 2π 4π 6π 8π

23. Amplitude: 2, midline: y = −3; period: 4; equation: 
f (x) = 2sin      π _ 2  x    −3  25. Amplitude: 2, midline: y = 3; 

period: 5; equation: f (x) = −2cos      2π _ 5  x    + 3

27. Amplitude: 4, midline: y = 0; period: 2; equation: 

f (x) = −4cos    π  x −   π _ 2          29. Amplitude: 2, midline: y = 1; 

period: 2; equation: f (x) = 2cos(πx) + 1  31. 0, π   

33. sin     π _ 2      = 1  35.    π _ 2     37. f (x) = sin x is symmetric 

with respect to the origin.  39.    π _ 3   ,    5π _ 3     

41. Maximum: 1 at x = 0; minimum: −1 at x = π

43. A linear function is added to a 
periodic sine function. The graph 
does not have an amplitude because 
as the linear function  increases 
without bound the combined 
function h(x) = x + sin x will 
increase without bound as well. The 
graph is bounded between the graphs 
of y = x + 1 and y = x − 1 because 
sine oscillates between −1 and 1.

1
2
3

0 t

h(t)

−2
−1

−3
−4
−5
−6

4
5
6

2
3π−π−2π π 2π2

π
2
π−2

3π−

45. There is no amplitude because 
the function is not bounded.

1
2

x

f (x)

−2
−1

−3
−4
−5

3
4
5

2
3π−− 2

3π 2π2π π−π 2
π−2

π

47. The graph is symmetric 
with respect to the y-axis 
and there is no amplitude 
because the function’s bounds 
decrease as |x| grows. There 
appears to be a horizontal 
asymptote at y = 0.

1

0

2
3
4
5

−1
−2
−3
−4
−5

−4π−5π −3π−2π−π 4π 5ππ 2π 3π

y

x

Section 6.2
1. Since y = csc x is the reciprocal function of y = sin x, you can 
plot the reciprocal of the coordinates on the graph of y = sin x  
to  obtain the y-coordinates of y = csc x. The x-intercepts of 
the graph y = sin x are the vertical asymptotes for the graph of 
y = csc x.  3. Answers will vary. Using the unit circle, one can 
show that tan (x + π) = tan x.  5. The period is the same: 2π  
7. IV   9. III  11. Period: 8; horizontal shift: 1 unit to the left
13. 1.5  15. 5  17. −cot x cos x − sin x 

19. Stretching factor: 2; 
period:    π _ 4   ; asymptotes:  

x =    1 _ 4        π _ 2   + πk    + 8, where 

k is an integer

16
3π

16
π

8
π

4
π

8
π−4

π− 16
3π− 16

π−

2
4

6

x

f (x)

−4
−2

−6
−8

8

21. Stretching factor: 6;  
period: 6; asymptotes: x = 3k, 
where k is an integer

4
8

12

0 x

m(x)

−4−3 3 6−6
−8

−12
−16

16

23. Stretching factor: 1;  
period: π; asymptotes: x = πk, 
where k is an integer

2
4
6

0 x

p(x)

−4
−6
−8

8

4
3π

2
π

4
π

2
π− 4

π−−p π4
3π−
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25. Stretching factor: 1;  
period: π; asymptotes:  
x =    π _ 4    + πk, where k is an 
integer

4
8

12

0 x

f(x)

−8
−12
−16

16

4
3π

4
5π

2
π

4
π

2
π− 4

π−−π π4
3π−

27. Stretching factor: 2;  
period: 2π; asymptotes: x = πk, 
where k is an integer

4
8

12

0 x

f(x)

−8
−12
−16

16

2
3π

2
π

2
π−−2π 2π−π π2

3π−

29. Stretching factor: 4;  

period:    2π _ 3   ; asymptotes: x =    π _ 
6

   k,  

where k is an integer

4
8

12

0 x

f (x)

−8
−4

−12
−16

16

3
2π

3
π

2
π

6
π

2
π− 3

π− 6
π−3

2π−

31. Stretching factor: 7;  

period:    2π _ 5   ; asymptotes: x =    π _ 10   k,  

where k is an integer

7

0 x

f(x)

−7

−14

14

10
3π

5
2π

10
π

5
π

5
π−10

3π−5
2π− 10

π−

33. Stretching factor: 2; period:  2π ; asymptotes: x = −   π _ 4    + πk,  

where k is an integer

1

0 x

f(x)

−2
−1

−3
−4
−5
−6
−7
−8
−9

2
3
4
5
6
7

4
3π

4
5π

4
7π

2
3π

2
π

4
π

2
π− 4

π−−π−2π π4
3π−4

5π−4
7π−4

9π− 2
3π−

35. Stretching factor:    7 _ 5   ; period:  2π ; asymptotes: x =    π _ 4    + πk,  

where k is an integer

1

0 x

f (x)

−1
−2
−3
−4
−5
−6
−7

2
3
4
5
6
7

4
3π

4
5π

4
7π

4
9π

4
π

4
π−4

3π−4
5π−4

7π−

37. y =     tan 3  x −   π _ 4        + 2

2
4
6

0 x

y

−4
−2

−6
−8

8

12
5π

12
π

6
π

4
π

3
π

3
π− 4

π− 6
π−12

5π− 12
π−

49. 

2
4
6

0 x

f(x)

−4
−2

−6
−8

8

4
3π

2
π

4
π

2
π− 4

π−−π π4
3π−

39. f (x) = csc(2x)  
41. f (x) = csc(4x)
43. f (x) = 2csc x

45. f (x) =    1 _ 2   tan(100πx) 

47. 

2
4
6

0 x

f (x)

−4
−2

−6
−8

8

4
3π

2
π

4
π

2
π− 4

π−−π π4
3π−

51. 

  

1
2
3

0 x

f (x)

−1
−2
−3
−4
−5
−6
−7
−8

4
5
6
7
8

−1000π−1500π−2000π −500π 500π 1000π 1500π 2000π

53. 

1
2
3

0 x

y

−2
−1

−3
−4

4

2
3π

2
π

2
π−−2π 2π 2

5π−π π2
3π−2

5π−

55. a.    −  π _ 2  ,   π _ 2     ; 

b. 

2
4
6

x

f(x)

−4
−2

−6
−8

8
10
12
14
16

3
π

2
π

6
π

3
π−2

π− 6
π−

c. x = −   π _ 2    and x =    π _ 2   ; the distance 

grows without bound as   ∣ x ∣    
approaches    π _ 2   –i.e., at right angles 
to the line representing due north, 
the boat would be so far away, the 
fisherman could not see it d. 3; when 
x = −   π _ 3   , the boat is 3 km away  

e. 1.73; when x =    π _ 
6

   , the boat is about 

1.73 km away f. 1.5 km; when x = 0
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57. a. h(x) = 2 tan     π _ 120  x   

b. 

10
20
30

0 x

f (x)

−10 5−5 10 15
−20

40
50
60
70
80
90

100

20 25 30 35 40 45 50 55 60

c. h(0) = 0: after 0 seconds, 
the rocket is 0 mi above the 
ground; h(30) = 2: after 30 
seconds, the rockets is 2 mi 
high;  d. As x approaches 
60 seconds, the values of 
h(x) grow increasingly large. 
As x → 60 the model breaks 
down, since it assumes that the 
angle of elevation continues 
to increase with x. In fact, the 
angle is bounded at 90 degrees.

Section 6.3
1. The function y = sin x is one-to-one on    −  π _ 2  ,   π _ 2      ; thus, this 

interval is the range of the inverse function of y = sin x,  
f (x) = sin−1 x. The function y = cos x is one-to-one on [0, π]; 
thus, this interval is the range of the inverse function of  
y = cos x, f (x) = cos−1 x.  3.    π _ 

6
    is the radian measure of an 

angle between −   π _ 2    and    π _ 2    whose sine is 0.5.  5. In order for 

any function to have an inverse, the function must be one-to-one 
and must pass the horizontal line test. The regular sine function 
is not one-to-one unless its domain is  restricted in some way. 
Mathematicians have agreed to restrict the sine function to the 
interval    −  π _ 2  ,   π _ 2       so that it is one-to-one and possesses an 

inverse.  7. True. The angle, θ1 that equals arccos (−x),  
x > 0, will be a second quadrant angle with reference angle, θ2, 
where θ2 equals arccos x, x > 0. Since θ2 is the reference angle for 
θ1, θ2 = π − θ1 and arccos(−x) = π − arccos x  9. −   π _ 

6
    

11.     3π _ 4     13. −   π _ 3     15.    π _ 3     17. 1.98  19. 0.93 
21. 1.41  23. 0.56 radians  25. 0  27. 0.71 radians
29. −0.71 radians  31. −   π _ 4    radians  33.    4 _ 5      35.    5 _ 13      

37.    x − 1 __  
 √
—

 − x 2 + 2x  
     39.     √

—
 x 2 − 1   _ x     41.    x + 0.5 __  

 √
—

  − x 2 − x +   3 _ 4    
   

43.      √
—

 2x + 1   _ x + 1     45.     √
—

 2x + 1   _ x     47. t
49. Domain: [−1, 1]; range: [0, π]

x

y

−1 1

−π

π

51. x = 0
53. 0.395 radians
55. 1.11 radians
57. 1.25 radians
59. 0.405 radians
61. No. The angle the ladder 
makes with the horizontal is 
60 degrees.  

Chapter 6 Review exercises
1. Amplitude: 3; period: is 2π; midline: 
y = 3; no asymptotes

1
2
3

x

f (x)

−2
−3
−4
−5
−6

4
5
6

2
3π

2
π−−2π 2π−π π2

3π− 2
π

3. Amplitude: 3; period: is 2π; midline: y = 0; no asymptotes

1
x

f (x)

−2
−1

−3
−4

2
3
4

3
2π

3
5π

3
4π

3
7π

3
8π

3
10π

3
11π

3
π3

π−−π−2π−3π−4π 2π 3ππ3
2π−3

5π− 3
4π−3

7π−3
8π−3

10π−3
11π−3

13π−

5. Amplitude: 3; period: is 2π; midline: y = −4; no asymptotes

1
x

f(x)

−2
−1

−3
−4
−5
−6
−7

4
3π

4
5π

4
7π

4
9π

2
3π

2
π

4
π

2
π− 4

π−−π −2ππ4
3π−4

5π−4
7π− 2

3π−

7. Amplitude: 6; period: is    2π _ 3   ; 

midline: y = −1; no asymptotes

1

0 x

f(x)

−2
−1

−3
−4
−5
−6
−7

2
3
4
5

9
2π

3
2π

9
5π

9
4π

9
π

3
π9

π−
3
π− 9

2π−3
2π− 9

4π−9
5π−

9. Stretching factor: none; 
period: π; midline: y = −4; 
asymptotes: x =    π _ 2    + πk, 
where k is an integer

2
4
6

x

f(x)

−4
−2

−6
−8

−10

8
10

−π π2
π

2
π−

11. Stretching factor: 3;  
period:    π _ 4   ; midline: y = −2; 
asymptotes: x =    π _ 8    +    π _ 4   k,  
where k is an integer

1
2
3

0 x

f(x)

−2
−1

−3
−4
−5
−6
−7
−8
−9

−10

4
5
6
7
8
9

10

16
3π

16
π

8
π

4
π

8
π−4

π− 16
3π− 16

π−

13. Amplitude: none; period: 2π; 
no phase shift; asymptotes:  
x =    π _ 2   k, where k is an odd integer

1
2
3

0 x

f(x)

−2
−1

−3
−4
−5

4
5

2
3π

2
π

2
π−−2π 2π−π π2

3π−
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15. Amplitude: none; period:    2π _ 5   ;  
no phase shift; asymptotes:  
x =    π _ 5   k, where k is an integer

2

0 x

f(x)

−2
−4
−6
−8

−10

4
6
8

10

10
π

10
3π

5
π

5
π− 10

π−10
3π−

17. Amplitude: none; period:  4π ;  
no phase shift; asymptotes:  
x =  2π k, where k is an integer

1
2
3

0 x

f(x)

−1−2π−3π −π 2π 4π3ππ−4π
−2
−3
−4
−5

4
5

19. Largest: 20,000; smallest: 4,000  21. Amplitude: 8,000; 
period: 10; phase shift: 0  23. In 2007, the predicted population 
is 4,413. In 2010, the population will be 11,924.  25. 5 in.  

27. 10 seconds  29.    π _ 
6

     31.    π _ 4     33.    π _ 3     

35. No solution  37.    12 _ 5    

39. The graphs are not 
symmetrical with respect 
to the line y = x. They are 
symmetrical with respect to  
the y-axis. 1

2
3

0 x

y

−2
−1

−3
−4
−5

4
5

2
3π

2
π

2
π−−2π 2π−π π2

3π−

41. The graphs appear to be identical.

0.2
0.4
0.6

0 x

y

−0.2−0.2−0.6 0.2 0.6 1−1
−0.4
−0.6
−0.8

−1

0.8
1

0.2
0.4
0.6

0 x

y

−0.2
−0.2−0.6 0.2 0.6 1−1

−0.4
−0.6
−0.8

−1

0.8
1

Chapter 6 practice test
1. Amplitude: 0.5; period:  2π ;  
midline: y = 0

0.25

0 x

y

−0.25

−0.5

0.5

2
3π

2
π

2
π−−2π 2π−π π2

3π−

3. Amplitude: 5; period:  2π ;  
midline: y = 0

2
1
0 x

y

−2
−1

−4
−3

−5
−6

4
3

5
6

2
3π

2
π

2
π−−2π 2π−π π2

3π−

5. Amplitude: 1; period:  2π ;  
midline: y = 1 

0.5
x

f(x)

−1
−1.5

−0.5

−2

1
1.5

2

3
2π

3
5π

3
4π

3
π3

π−−π−2π π3
2π−3

4π−3
5π−3

7π−

7. Amplitude: 3; period:  6π ; midline: y = 0
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7π− −3π

2
π−2

π

9. Amplitude: none; period: π; 
midline: y = 0; asymptotes:  
x =    2π _ 3    + πk, where k is some 
integer
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11. Amplitude: none; period:    2π _ 3   ; 
midline: y = 0; asymptotes:  
x =    π _ 3   k, where k is some integer
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13. Amplitude: none; period: 2π; midline: y = −3

1
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15. Amplitude; 2;  
period: 2; midline: y = 0; 
f (x) = 2sin(π(x − 1))
17. Amplitude; 1;  
period: 12; phase shift: −6; 
midline: y = −3
19. D(t) = 68 − 12sin      π _ 12   x   

21. Period:    π _ 
6

   ; horizontal 
shift: −7
23. f (x) = sec(πx);  
period: 2; phase shift: 0  
25. 4  

27. The views are different because the period of the wave is    1 _ 25   . 
Over a bigger domain, there will be more cycles of the graph.
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29.    3 _ 5     

31.      π _ 
6

  ,   π _ 3     ,      π _ 2  ,   2π _ 3     ,      5π _ 
6

  , π   ,      7π _ 
6

  ,   4π _ 3     ,      3π _ 2  ,   5π _ 3     ,      11π _ 
6

  , 2π   

33. f (x) = 2 cos    12   x +   π _ 4        + 3

1
2
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x

f (x)
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24
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12
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8
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6
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5π− 24
π−

12
π−

35. This graph is periodic  
with a period of 2π.

0.5

−0.5

1
1.5
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y

−1
−1.5

−2

2
2.5

3
3.5

4

2
π2

π−−2π 2π−π π2
3π− 2

3π

37.    π _ 3     39.    π _ 2     41.   √
—

  1 − (1 − 2x)2      43.    1 _ 
 √
—

 1 + x 4  
    

45. csc t =    x + 1 _ x      47. False  49. 0.07 radians

ChapteR 7

Section 7.1
1. All three functions, F, G, and H, are even. This is because  
F(−x) = sin(−x)sin(−x) = (−sin x)(−sin x) = sin 2 x = F(x), 
G(−x) = cos(−x)cos(−x) = cos x cos x = cos 2 x = G(x) and 
H(−x) = tan(−x)tan(−x) = (−tan x)(−tan x) = tan 2 x = H(x).

3. When cos t = 0, then sec t =   1 _ 0  , which is undefined.

5. sin x  7. sec x  9. csc t  11. −1  13. sec 2 x

15. sin 2 x + 1  17.   1 _ 
sin x

    19.   1 _ cot x    21. tan x

23. −4sec x tan x   25. ±  √ _________

   1 _____ 
cot 2 x

   + 1     27. ±    √
—

 1 − sin 2 x   ___________ sin x  

29. Answers will vary. Sample proof:  
cos x − cos 3x = cos x(1 − cos 2 x) = cos x sin 2 x  
31. Answers will vary. Sample proof:  

    1 + sin 2 x _ 
cos 2 x

    =    1 _ 
cos 2 x

    +    sin 2 x _ 
cos 2 x

    = sec 2 x + tan 2 x  

= tan 2 x + 1 + tan 2 x = 1 + 2tan 2 x
33. Answers will vary. Sample proof: 
  cos 2 x − tan 2 x  = 1 − sin 2 x −(sec 2 x − 1)  

= 1 − sin 2 x − sec 2 x + 1 = 2 − sin 2 x − sec 2 x
35. False  37. False  
39. Proved with negative and Pythagorean identities  
41. True  3 sin 2 θ + 4 cos 2 θ  = 3 sin 2 θ + 3 cos 2 θ + cos 2 θ  

= 3(sin 2 θ + cos 2 θ)+ cos 2 θ  
= 3 + cos 2 θ

Section 7.2
1. The cofunction identities apply to complementary angles. 
Viewing the two acute angles of a right triangle, if one of those 
angles measures x, the second angle measures   π _ 2   − x. Then 

sin x = cos    π _ 2   − x   . The same holds for the other cofunction 

identities. The key is that the angles are  complementary.
3. sin(−x) = −sin x, so sin x is odd.  
cos(−x) = cos(0 − x ) = cos x, so cos x is even.

 
5.    √

—
 2   +  √

—
 6   _________ 

4
    7.    √

—
 6   −  √

—
 2   _________ 

4
    9. −2 −  √

—
 3  

11. −   √
—
 2   _ 2  sin x −    √

—
 2   _ 2  cos x  13. −  1 _ 2  cos x −    √

—
 3   _ 2  sin x

15. csc θ  17. cot x  19. tan     x ___ 
10

     

21. sin(a − b)  

=     4 _ 5         1 _ 3      −     3 _ 5         2  √
—
 2   _ 3       

=   4 − 6  √
—
 2   _ 15   

cos(a + b)  

=     3 _ 5          1 _ 3      −     4 _ 5         2  √
—
 2   _ 3       

=   3 − 8 √
—
 2   _ 15  

23.    √
—
 2   −  √

—
 6   _________ 4  

25. sin x   

2
π

2
π−−2π 2π−π π2

3π− 2
3π

0.2
0.4
0.6

x

y

−0.4

−0.8
−1

−0.6

0.8
1

27. cot     π _ 
6

   − x    

2
4

y

x
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−8

−10

6
8

10

3
2π−3

4π−3
5π−−2π π 2π−π 3

3π
3

4π
3

5π
3
π− 3

π

29. cot     π _ 4   + x     

2
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31.     √
—
 2   _ 2   (sin x + cos x) 

0.2
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33. They are the same.  35. They are the different, try  
g(x) = sin(9x) − cos(3x) sin(6x)  37. They are the same.

39. They are the different, try g(θ) =   2tan θ _ 
1 − tan 2 θ

  

41. They are different, try g(x) =   
tan x − tan(2x)

  __  
1 + tan x tan(2x)

  

43. −   √
—
 3   − 1 _______ 

2 √
—
 2  
   or − 0.2588  45.   1 +  √

—
 3   _ 

2 √
—
 2  
  , or 0.9659

47.  tan   x +   π _ 4       =      
tan x + tan     π _ 4     

  _________________  
1 − tan x tan     π _ 4     

      

=    tan x + 1 __ 
1 − tan x(1)

   =    tan x + 1 _ 1 − tan x  
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49.   

cos(a + b)
 _ 

cos a cos b
   =   cos a cos b _ 

cos a cos b
   −   sin a sin b _ 

cos a cos b
   = 1 − tan a tan b

51.    
cos (x + h) − cos x

  __ 
h

   =   cos x cos h − sin x sin h − cos x   ___  
h

   =  

  
cos x(cos h − 1) − sin x sin h

   ___  
h

   = cos x   cos h − 1 _ 
h

   − sin x   sin h _ 
h

  

53. True  55. True. Note that sin(α + β) = sin(π − γ) and 
expand the right hand side.

Section 7.3
1. Use the Pythagorean identities and isolate the squared term.

3.    1 − cos x ________ 
sin x

  ,   sin x ________ 
1 + cos x

  , multiplying the top and bottom by 

 √
—

 1 − cos x   and  √
—

 1 + cos x  , respectively.

5. a.   3 √
—
 7   _ 32   b.   31 _ 32   c.   3 √

—
 7   _ 31    7. a.    √

—
 3   ____ 

2
   b. −   1 __ 

2
   c. − √

—
 3  

9. cos θ = −  2 √
—
 5   _ 5  , sin θ =    √

—
 5   _ 5  , tan θ = −  1 _ 2  , csc θ =  √

—
 5  ,  

sec θ = −   √
—
 5   _ 2  , cot θ = −2  11. 2sin    π __ 

2
       13.      √

—
 2 −  √

—
 2     __ 2     

15.     √
—

 2 −  √
—
 3     __ 2     17. 2 +  √

—
 3     19. −1 −  √

—
 2    

21. a.   3 √
—

 13   _ 13   b. −   2 √
—

 13   _ 13   c. −   3 __ 
2

  

23. a.    √
—

 10   _ 4   b.    √
—
 6   _ 4   c.    √

—
 15   _ 3    25.   120 _ 

169
  , −  119 _ 

169
  , −  120 _ 119  

27.   2 √
—

 13   _ 13  ,   3 √
—

 13   _ 13  ,   2 _ 3   29. cos(74°) 31. cos(18x) 33. 3sin(10x)

35. −2sin(−x)cos(−x) = −2(−sin(x)cos(x)) = sin(2x)

37.   
sin(2θ)

 __ 
1 + cos(2θ)

  tan 2(θ ) =   
2sin(θ )cos(θ )

  __  
1 + cos 2(θ ) − sin 2(θ )

  tan 2(θ ) = 

    
2sin(θ )cos(θ )

  __ 
2cos 2(θ )

  tan 2(θ ) =   
sin(θ )

 _ 
cos(θ )

  tan 2(θ ) = cot(θ )tan 2(θ ) = tan(θ )

39.   
1 + cos(12x)

 __ 2    41.   
3 + cos(12x) − 4cos(6x)

  ___ 8  

43.   
2 + cos(2x) − 2cos(4x) − cos(6x)

   ____  32  

45.   
3 + cos(4x) − 4cos(2x)

  ___  
3 + cos(4x) + 4cos(2x)

    47.   
1 − cos(4x)

 __ 8  

49.   
3 + cos(4x) − 4cos(2x)

  ___  
4(cos(2x) + 1)

    51.   
(1 + cos(4x)) sin x

  __ 2  

53. 4sin x cos x (cos 2 x − sin 2 x)

55.   2tan x _ 
1 + tan 2 x

    =    
  2sin x _ cos x  

 _ 
1 +   sin 2 x _ 

cos 2 x
  
    =    

  2sin x _ cos x  
 __  

  cos 2 x + sin 2 x  __ 
cos 2 x

  

    

=   2sin x _ cos x   .   cos 2 x _ 1   = 2sin x cos x = sin(2x)

57.   2sin x cos x __ 
2cos 2 x − 1

   =   
sin(2x)

 _ 
cos(2x)

   = tan(2x)

59. sin(x + 2x)  = sin x cos(2x) + sin(2x)cos x 
= sin x(cos 2 x − sin 2 x) + 2sin x cos x cos x 
= sin x cos 2 x − sin 3 x + 2sin x cos 2 x 
= 3sin x cos 2 x − sin 3 x

61.    
1 + cos(2t)

 __  
sin(2t) − cos t

     =   1 + 2cos 2 t − 1  __  
2sin t cos t − cos t

   

=   2cos 2 t __  
cos t(2sin t − 1)

   

=   2cos t _ 
2sin t − 1

  

63.  (cos 2 (4x) − sin 2(4x) − sin(8x))(cos 2(4x) − sin 2(4x) + sin(8x)) 
   = (cos(8x) − sin(8x))(cos(8x) + sin(8x))
   = cos 2(8x) − sin 2(8x)
   = cos(16x)

Section 7.4
1. Substitute α into cosine and β into sine and evaluate.
3. Answers will vary. There are some equations that involve a 
sum of two trig expressions where when converted to a 

product are easier to solve. For example:   
sin(3x) + sin x

  __ cos x   = 1. 

When converting the numerator to a product the equation 

becomes:   
2sin(2x)cos x

 __ cos x   = 1.  5. 8(cos(5x) − cos(27x))  

7. sin(2x) + sin(8x)  9.   1 _ 2  (cos(6x) − cos(4x))  

11. 2cos(5t)cos t  13. 2cos(7x)  15. 2cos(6x)cos(3x)  

17.   1 _ 4  (1 +  √
—
 3  )  19.   1 _ 4  ( √

—
 3   − 2)   21.   1 _ 4  ( √

—
 3   − 1)   

23. cos(80°) − cos(120°)  25.   1 _ 2  (sin(221°) + sin(205°))  

27.   √
—
 2   cos(31°)  29. 2cos(66.5°)sin(34.5°)

31. 2sin(−1.5°)cos(0.5°)
33. 2sin(7x) − 2sin x = 2sin(4x + 3x) − 2sin(4x − 3x) = 
= 2(sin(4x)cos(3x) + sin(3x)cos(4x)) − 2(sin(4x)cos(3x) − sin(3x)cos(4x)) 
= 2sin(4x)cos(3x) + 2sin(3x)cos(4x)) − 2sin(4x)cos(3x) + 2sin(3x)cos(4x)) 
= 4sin(3x)cos(4x)
35.  sin x + sin(3x)  = 2sin     4x ___ 2     cos     −2x ____ 

2
      = 2sin(2x)cos x  

= 2(2sin x cos x)cos x = 4sin x cos 2 x

37. 2tan x cos(3x)  =   
2sin x cos(3x)

  __ cos x    

=   
2(0.5 (sin (4x) − sin (2x)))

  ___  cos x    

=   1 _ cos x  (sin(4x) − sin(2x))  
= sec x (sin(4x) − sin(2x))

39. 2cos(35°)cos(23°), 1.5081 41. −2sin(33°)sin(11°), − 0.2078

43.   1 __ 2  (cos(99°) − cos(71°)), −0.2410  45. It is an identity.  

47. It is not an identity, but 2cos 3 x is.
49. tan(3t)  51. 2cos(2x)  53. −sin(14x)
55. Start with cos x + cos y. Make a substitution and let 
x = α + β and let y = α − β, so cos x + cos y becomes 
cos(α + β) + cos(α − β) =  
  = cos α cos β − sin α sin β + cos α cosβ + sin α sin β  
  = 2cos α cos β 
Since x = α + β and y = α − β, we can solve for α and β in terms 
of x and y and substitute in for 2cos α cos β and get  

2cos     x + y
 _ 2     cos     x − y

 _ 2     .
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57.   

cos(3x) + cos x
  __  

cos(3x) − cos x
   =   

2cos(2x) cos x
  __  

−2sin(2x) sin x
   = −cot(2x) cot x

59.   
cos(2y) − cos(4y)

  __  
sin(2y) + sin(4y)

    =   
−2sin(3y) sin(−y)

  __  
2sin(3y) cos y

    

=   
2sin(3y) sin(y)

  __  
2sin(3y) cos y

   = tan y

61. cos x − cos(3x)  = −2sin(2x)sin(−x) = 2(2sin x cos x)sin x  
= 4sin2 x cos x

63. tan     π _ 4   − t    =    
tan     π _ 4      − tan t

  __  
1 + tan     π _ 4     tan(t)

    =   1 − tan t ________ 
1 + tan t

  

Section 7.5
1. There will not always be solutions to trigonometric function 
equations. For a basic example, cos(x) = −5.  3. If the sine 
or cosine function has a coefficient of one, isolate the term on 
one side of the equals sign. If the number it is set equal to has 
an absolute value less than or equal to one, the equation has 
solutions, otherwise it does not. If the sine or cosine does not 
have a coefficient equal to one, still isolate the term but then 
divide both sides of the equation by the leading coefficient. Then, 
if the number it is set equal to has an absolute value greater than 
one, the equation has no solution.

5.   π _ 3  ,   2π _ 3    7.   3π _ 4  ,   5π _ 4    9.   π _ 4  ,   5π _ 4    11.   π _ 4  ,   3π _ 4  ,   5π ____ 4  ,   7π _ 4  

13.   π _ 4  ,   7π _ 4    15.   7π _ 
6

  ,   11π _ 
6

    17.   π _ 18  ,   5π _ 18  ,   13π _ 18  ,   17π _ 18  ,   25π _ 18  ,   29π _ 18  

19.   3π ___ 
12

  ,   5π ___ 
12

  ,   11π ____ 
12

  ,   13π ____ 
12

  ,   19π ____ 
12

  ,   21π ____ 
12

    21.   1 __ 
6

  ,   5 __ 
6

  ,   13 ___ 
6

  ,   17 ___ 
6

  ,   25 ___ 
6

  ,   29 ___ 
6

  ,   37 ___ 
6

  

23. 0,   π __ 
3

  , π,   5π ___ 
3

    25.   π __ 
3

  , π,   5π ___ 
3

    27.   π __ 
3

  ,   3π ___ 
2

  ,   5π ___ 
3

    29. 0, π

31. π − sin−1  −  1 __ 4     ,   7π ___ 
6

  ,   11π ____ 
6

  , 2π + sin−1  −  1 __ 4     
33.   1 _ 3    sin−1     9 _ 10        ,   π _ 3   −   1 _ 3    sin−1     9 _ 10        ,   2π _ 3   +   1 _ 3    sin−1     9 _ 10        ,  
π −   1 _ 3    sin−1     9 _ 10        ,   4π _ 3   +   1 _ 3    sin−1     9 _ 10        ,   5π _ 3   −   1 _ 3    sin−1     9 _ 10        ,
35. 0   37. θ = sin−1     2 _ 3     , π − sin−1     2 _ 3     , π + sin−1     2 _ 3     ,  

2π − sin−1     2 _ 3       39.   3π ___ 
2

  ,   π __ 
6

  ,   5π ___ 
6

    41. 0,   π __ 
3

  , π,   4π ___ 
3

    

43. There are no solutions.  

45. cos−1     1 __ 3    1 −  √
—
 7       , 2π − cos−1     1 __ 3    1 −  √

—
 7       

47. tan−1    1 _ 2     √
—

 29   − 5     , π + tan−1    1 _ 2    − √
—

 29   − 5     ,  
π + tan−1    1 _ 2     √

—
 29   − 5     , 2π + tan−1    1 _ 2    − √

—
 29   − 5     

49. There are no solutions.  51. There are no solutions.

53. 0,   2π _ 3  ,   4π _ 3    55.   π _ 4  ,   3π _ 4  ,   5π _ 4  ,   7π _ 4   

57. sin−1     3 _ 5     ,   π _ 2  , π − sin−1     3 _ 5     ,   3π _ 2  

59. cos−1  −  1 _ 4     , 2π − cos−1  −  1 _ 4     
61.   π _ 3  , cos−1  −  3 _ 4     , 2π − cos−1  −  3 _ 4     ,   5π _ 3  

63. cos−1    3 _ 4     , cos−1  −  2 _ 3     , 2π − cos−1  −  2 _ 3     , 2π − cos−1    3 _ 4     

65. 0,   π _ 2  , π,   3π _ 2    67.   π _ 3  , cos−1  −  1 _ 4     , 2π − cos−1  −  1 _ 4     ,   5π _ 3  

69. There are no solutions.    71. π + tan−1(−2),  
π + tan−1  −  3 _ 2     , 2π + tan−1(−2), 2π + tan−1  −  3 __ 2     
73. 2πk + 0.2734, 2πk + 2.8682  75. πk − 0.3277
77. 0.6694, 1.8287, 3.8110, 4.9703  79. 1.0472, 3.1416, 5.2360

81. 0.5326, 1.7648, 3.6742, 4.9064 83. sin−1    1 _ 4     , π − sin−1    1 _ 4     ,   3π _ 2    

85.   π _ 2  ,   3π _ 2     87. There are no solutions.  89. 0,   π _ 2  , π,   3π _ 2  

91. There are no solutions.  93. 7.2°  95. 5.7°  97. 82.4°
99. 31.0°  101. 88.7°  103. 59.0°  105. 36.9°

Section 7.6
1. Physical behavior should be periodic, or cyclical.  3. Since 
cumulative rainfall is always increasing, a sinusoidal function 
would not be ideal here.  5. y = −3cos     π _ 

6
  x    − 1  

7. 5sin(2x) + 2  9. y = 4−6cos     xπ ___ 2       11. y = tan       xπ ___ 8     

13. Answers will vary. 
Sample answer: This 
function could model 
the average monthly 
temperatures for a 
city in the northern 
hemisphere.
15. Answers will 
vary. Sample answer:  
This function 
could model the 
population of an 
invasive fish species 
in thousands over 
the next 80 years. x

0 2

20

40

60

80

100

4 6 8 10 12

y

17. 75 °F  19. 8 a.m.  21. 2:49  23. 4:30  
25. From June 15 to November 16  27. Floods: April 16 to 
July 15. Drought: October 16 to January 15.  
29. Amplitude: 8, period:    1 _ 3   , frequency: 3 Hz  

31. Amplitude: 4, period: 4, frequency:    1 _ 4    Hz

33. P(t) = −19cos       π _ 
6

   t    + 800 +    160 _ 12   t

35. P(t) = −33cos      π _ 
6

   t    + 900(1.07)t 

37. D(t) = 10(0.85)t cos(36πt)  39. D(t) = 17(0.9145)tcos(28πt)
41. 6 years  43. 15.4 seconds  45. Spring 2 comes to rest 
first after 8.0 seconds.   47. 234.3 miles, at 72.2°
49. y = 6(4)x + 5sin      π _ 2 x        51. y = 4(−2)x + 8sin      π _ 2  x   

53. y = 3 (2)xcos      π _ 2   x    + 1

Chapter 7 Review exercises

1. sin−1     √
—
 3   _ 3     , π − sin−1     √

—
 3   _ 3     , π + sin−1     √

—
 3   _ 3     , 2π − sin−1     √

—
 3   _ 3     

3.    7π ___ 
6

  ,   11π ____ 
6

    5. sin−1    1 _ 4     , π − sin−1    1 _ 4      7. 1  9. Yes

11. −2 −  √
—
 3       13.    √

—
 2   ____ 

2
  

x0 8

20

40

60

16 24 32 40 48 56 64 72 80

y
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15. cos(4x) − cos(3x)cosx = cos(2x + 2x) − cos(x + 2x)cos x
   =  cos(2x)cos(2x) − sin(2x)sin(2x) − cos x cos(2x)cos x +  

sin x sin(2x) cos x
   =  (cos 2 x − sin 2 x) 2 − 4cos 2 x sin 2 x − cos 2 x(cos 2 x − sin 2 x) 

+ sin x (2)sin x cos x cos x
   =  (cos 2 x − sin 2 x)2 − 4cos 2 x sin 2 x − cos 2 x(cos 2 x − sin 2 x) 

+ 2 sin 2 x cos 2 x
   =  cos 4 x − 2cos 2 x sin 2 x + sin 4 x − 4cos 2 x sin 2 x − cos 4 

x + cos 2 x sin 2 x + 2 sin 2 x cos 2 x
   = sin 4 x − 4 cos 2 x sin 2 x + cos 2 x sin 2 x
   = sin 2 x (sin 2 x + cos 2 x) − 4 cos 2 x sin 2 x
   = sin 2 x − 4 cos 2 x sin 2 x

17. tan    5 _ 8  x     19.    √
—
 3   _ 3    21. −  24 _ 25  , −  7 _ 25  ,   24 _ 7  

23.  √
—

  2  2 +  √
—
 2        25.    √

—
 2   _ 10  ,   7 √

—
 2   _ 10  ,   1 _ 7  ,   3 _ 5  ,   4 _ 5  ,   3 _ 4  

27. cot x cos(2x)  = cot x (1 − 2sin 2 x) 
= cot x −   cos x _ 

sin x
  (2)sin 2 x 

= −2sin x cos x + cot x 
= −sin (2x) + cot x

29.   
10sin x − 5sin(3x) + sin(5x)

   ___  
8(cos(2x) + 1)

    31.    √
—
 3   _ 2    33. −   √

—
 2   _ 2  

35.   1 __ 2  (sin(6x) + sin(12x))  37. 2sin     13 _ 2  x   cos     9 _ 2  x   

39.   3π ___ 
4

  ,   7π ___ 
4

    41. 0,   π __ 
6

  ,   5π ___ 
6

  , π  43.   3π ___ 
2

    45. No solution

47. 0.2527, 2.8889, 4.7124  49. 1.3694, 1.9106, 4.3726, 4.9137

51. 3sin     xπ _ 2      − 2  53. 71.6°  55. P(t) = 950 − 450sin     π _ 
6

  t   
57. Amplitude: 3, period: 2, frequency:   1 _ 2  Hz
59. C(t) = 20sin(2πt) + 100(1.4427)t 

Chapter 7 practice test

1. 1   3.    √
—
 2   −  √

—
 6   _ 4     5. −  √

—
 2    −   √

—
 3      7. 0, π   9.    π _ 2   ,    3π _ 2     

11. 2cos(3x)cos(5x)  13. x = cos−1     1 __ 5       15.    3 __ 5   ,−   4 __ 5   ,−   3 __ 4    

17. tan3 x−tan x sec2 x  = tan x (tan2 x − sec2 x) 
= tan x (tan2 x − (1 + tan2 x)) 
= tan x (tan2 x − 1 − tan2 x) 
= −tan x = tan(−x) = tan(−x)

19.    
sin(2x)

 _ 
sin x

   −   
cos(2x)

 _ cos x     =    2sin xcos x _ 
sin x

    −   2 cos2 x−1 _ cos x     

= 2cos x−2cos x +    1 _ cos x     

=    1 _ cos x    = sec x = sec x

21. Amplitude:    1 __ 4   , period    1 __ 60   , frequency: 60 Hz

23. Amplitude: 8, fast period:    1 ___ 500   , fast frequency: 500 Hz, slow 

period:    1 __ 10   , slow frequency: 10 Hz  25. D(t) = 20 (0.9086)t 

cos (4πt), 31 second  

ChapteR 8
Section 8.1
1. The altitude extends from any vertex to the opposite side or to 
the line containing the opposite side at a 90° angle.  3. When 
the known values are the side opposite the missing angle and 
another side and its opposite angle.  5. A triangle with two 
given sides and a non-included angle.  7. β = 72°, a ≈ 12.0,  
b ≈ 19.9  9. γ = 20°, b ≈ 4.5, c ≈ 1.6  11. b ≈ 3.78  
13. c ≈ 13.70  15. One triangle, α ≈ 50.3°, β ≈ 16.7°, a ≈ 26.7
17. Two triangles, γ ≈ 54.3°, β ≈ 90.7°, b ≈ 20.9 or γ′ ≈ 125.7°,  
β′ ≈ 19.3°, b′ ≈ 6.9  19. Two triangles, β ≈ 75.7°, γ ≈ 61.3°,  
b ≈ 9.9 or β′ ≈ 18.3°, γ′ ≈ 118.7°, b′ ≈ 3.2  21. Two triangles, 
α ≈ 143.2°, β ≈ 26.8°, a ≈ 17.3 or α′ ≈ 16.8°, β′ ≈ 153.2°, a′ ≈ 8.3
23. No triangle possible  25. A ≈ 47.8° or A′ ≈ 132.2°
27. 8.6  29. 370.9  31. 12.3  33. 12.2  35. 16.0
37. 29.7°  39. x = 76.9°or x = 103.1°  41. 110.6°
43. A ≈ 39.4, C ≈ 47.6, BC ≈ 20.7  45. 57.1  47. 42.0
49. 430.2  51. 10.1  53. AD ≈ 13.8  55. AB ≈ 2.8
57. L ≈ 49.7, N ≈ 56.1, LN ≈ 5.8  59. 51.4 feet
61. The distance from the satellite to station A is approximately 
1,716 miles. The satellite is approximately 1,706 miles above the 
ground.  63. 2.6 ft  65. 5.6 km  67. 371 ft  69. 5,936 ft
71. 24.1 ft 73. 19,056 ft 2 75. 445,624 square miles 77. 8.65 ft 2

Section 8.2
1. Two sides and the angle opposite the missing side. 3. s is the 
semi-perimeter, which is half the perimeter of the triangle.
5. The Law of Cosines must be used for any oblique (non-right) 
triangle.  7. 11.3  9. 34.7  11. 26.7  13. 257.4    
15. Not possible  17. 95.5° 19. 26.9°  21. B ≈ 45.9°,  
C ≈ 99.1°, a ≈ 6.4  23. A ≈ 20.6°, B ≈ 38.4°, c ≈ 51.1
25. A ≈ 37.8°, B ≈ 43.8°, C ≈ 98.4° 27. 177.56 in 2 29. 0.04 m 2

31. 0.91 yd 2  33. 3.0  35. 29.1  37. 0.5  39. 70.7°  
41. 77.4°  43. 25.0  45. 9.3  47. 43.52  49. 1.41  
51. 0.14      53. 18.3      55. 48.98     57. 

6 5

x

52859. 7.62  61. 85.1  63. 24.0 km  
65. 99.9 ft  67. 37.3 miles  69. 2,371 miles
71. PH

150.28
DC
20.78

BO
9.18

73. 599.8 miles  75. 65.4 cm 2  77. 468 ft 2

Section 8.3
1. For polar coordinates, the point in the plane depends on the 
angle from the positive x-axis and distance from the origin, while 
in Cartesian coordinates, the point represents the  horizontal 
and vertical distances from the origin. For each point in the 
coordinate plane, there is one representation, but for each point 
in the polar plane, there are infinite representations.
3. Determine θ for the point, then move r units from the pole 
to plot the point. If r is negative, move r units from the pole 
in the opposite direction but along the same angle. The point 
is a distance of r away from the origin at an angle of θ from the 

polar axis.  5. The point   −3,   π __ 2      has a positive angle but a 
negative radius and is plotted by moving to an angle of   π __ 2   and 
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then moving 3 units in the negative direction. This places the 
point 3 units down the negative y-axis. The point   3, −  π _ 2      has a 
negative angle and a positive radius and is plotted by first moving 
to an angle of −  π __ 2   and then moving 3 units down, which is the 
positive direction for a negative angle. The point is also 3 units 
down the negative y-axis.  

7. (−5, 0)  9.   −  3 √
—
 3   _____ 2  , −  3 __ 2       11. (2 √

—
 5  , 0.464)

13.     √
—

 34  , 5.253     15.   8 √
—
 2  ,   π __ 4       17. r = 4csc θ

19. r =   
3
 √
—

   sin θ _ 
2cos 4 θ

      21. r = 3cos θ  23. r =   3sin θ _ 
cos (2θ)

  

25. r =   9sin θ _ 
cos 2 θ

    27. r =   √ __________

   1 __________ 
9cos θ sin θ

     

29. x 2 + y 2 = 4x or   (x − 2)2

 _______ 4   +   y 2 ___ 4   = 1; circle

31. 3y + x = 6; line   33. y = 3; line  35. xy = 4; hyperbola
37. x 2 + y 2 = 4; circle  39. x − 5y = 3; line

41.   3,   3π ___ 4       43. (5, π)

45. 47. 

49. 51. 

53. 55. r =   6 __  
5cos θ − sin θ

   

2 4 6 8 10

57. r = 2sin θ

1 2 3 4

59. r =   2 _ 
cos θ

   

2 4 6 8

61. r = 3cosθ

1 2 3 4 5

63. x 2 + y 2 = 16

2
4
6

x

y

−4
−2

−2 2 4 6 8−4−6−8

−8
−6

8

65. y = x

2
4
6

x

y

−4
−2

−2 2 4 6 8−4−6−8

−8
−6

8

67. x 2 + (y + 5)2 = 25

2
4
6

x

y

−4
−2

−2 2 4 6 8 10−4−6−8−10

−8
−10

−6

8
10

69. (1.618, −1.176) 71. (10.630, 131.186°) 73. (2, 3.14) or (2, π)
75. A vertical line with a units left of the y-axis.
77. A horizontal line with a units below the x-axis.
79. 81. 

u = 4
p

83. 

Section 8.4
1. Symmetry with respect to the polar axis is similar to  symmetry 
about the x-axis, symmetry with respect to the pole is similar to 
symmetry about the origin, and symmetric with respect to the 

line θ =   π __ 2   is similar to symmetry about the y-axis.
3. Test for symmetry; find zeros, intercepts, and maxima; make 
a table of values. Decide the general type of graph, cardioid, 
limaçon, lemniscate, etc., then plot points at θ = 0,   π __ 2  , π and   3π ___ 2  ,  
and sketch the graph.  5. The shape of the polar graph is 
determined by whether or not it includes a sine, a cosine, and 
constants in the equation.  7. Symmetric with respect to 
the polar axis  9. Symmetric with respect to the polar axis, 
symmetric with respect to the line θ =   π __ 2  , symmetric with respect 

to the pole  11. No symmetry  13. No symmetry
15. Symmetric with respect to the pole  
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17. Circle

1 2 3 4 5 6

(θ from 0 to 2π)
19. Cardioid 

1 2 3 4

(θ from 0 to 2π)

21. Cardioid

1 2 3 4 5 6

(θ from 0 to 2π)

23. One-loop/dimpled limaçon

1 3 5 7 9 11

(θ from 0 to 2π)

25. One-loop/dimpled limaçon

1 3 5 7 9

(θ from 0 to 2π)
27. Inner loop/two-loop 
limaçon

1 2 3 4

29. Inner loop/two-loop limaçon

2 4 6 8 9 12

(θ from 0 to 2π)
31. Inner loop/two-loop limaçon

1 3 5 7 9 11

(θ from 0 to 2π)

33. Lemniscate

1 2 3 4

(θ from −π to π)
35. Lemniscate

1 2 3

(θ from −π to π)

37. Rose curve

1 2 3 4

39. Rose curve

1 2 3 4

(θ from 0 to 2π)

41. Archimedes’ spiral

2 4 6 8 10

(θ from 0 to 3π)

43. Archimedes’ spiral

10 20 30

(θ from 0 to 3π)

45. 

0.5 1 1.5 2

(θ from 0 to 8) 47. 

0.5 1 1.5 2

(θ from −π to π)

49. 

1 2 3

(θ from 0 to 2π) 51. 

2 4 6 8 10

(θ from 0 to 3π)

53. 

1 2 3 4 5 6 7

(θ from 0 to 2π) 55. They are both spirals, but 
not quite the same.
57. Both graphs are curves with 
2 loops. The equation with a 
 coefficient of θ has two loops 
on the left, the equation with a 
coefficient of 2 has two loops 
side by side. Graph these from 0 
to 4π to get a better picture.

59. When the width of the domain is increased, more petals of 
the flower are visible.  61. The graphs are three-petal, rose 
curves. The larger the  coefficient, the greater the curve’s distance 
from the pole.  63. The graphs are spirals. The smaller the 

coefficient, the tighter the spiral.  65.   4,   π __ 3     ,   4,   5π ___ 3       

67.     3 __ 2  ,   π __ 3     ,     3 __ 2  ,   5π ___ 3       69.   0,   π __ 2     , (0, π) ,   0,   3π ___ 2     , (0, 2π)

71.       
4
 √
—
 8   ____ 2  ,   π __ 4     ,       

4
 √
—
 8   ____ 2  ,   5π ___ 4      and at θ =   3π ___ 4  ,   7π ___ 4   since r is squared

Section 8.5
1. a is the real part, b is the imaginary part, and i =  √

—
 −1  

3. Polar form converts the real and imaginary part of the 
 complex number in polar form using x = r cos θ and y = r sin θ.
5. zn = rn(cos (nθ) + i sin (nθ)) It is used to simplify polar form 
when a number has been raised to a power.     7. 5 √

—
 2    

9.  √
—

 38    11.  √
—

 14.45    13. 4 √
—
 5  cis(333.4°)  

15. 2cis     π __ 6       17.   7 √
—
 3   _____ 2   +   7 __ 2  i  19. −2 √

—
 3   − 2i

21. −1.5 −    3 √
—
 3   ____ 2  i  23. 4 √

—
 3  cis(198°)  25.   3 __ 4  cis(180°)
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27. 5 √
—
 3   cis     17π ____ 24       29. 7cis(70°)  31. 5cis(80°)

33. 5cis     π __ 3       35. 125cis(135°)  37. 9cis(240°)

39. cis     3π ___ 4      41. 3cis(80°), 3cis(200°), 3cis(320°)

43. 2  3 √
—
 4  cis     2π ___ 9     , 2  3 √

—
 4  cis     8π ___ 9     , 2  3 √

—
 4  cis     14π ____ 9     

45. 2 √
—
 2  cis     7π ___ 8     , 2 √

—
 2  cis     15π ____ 8     

47. 

1
2
3

Real

Imaginary

−2
−1

−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3

4
5
6

49. 

1
2
3

Real

Imaginary

−2
−1

−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3

4
5
6

51. 

1
2
3

Real

Imaginary

−2
−1

−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3

4
5
6

53. 

1
2
3

Real

Imaginary

−2
−1

−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3

4
5
6

55. Plot of 1 − 4i in the complex plane (1 along the real axis, −4 
along the imaginary axis).  57. 3.61e−0.59i  
59. −2 + 3.46i  61. −4.33 − 2.50i

Section 8.6
1. A pair of functions that is dependent on an external factor. 
The two functions are written in terms of the same parameter. For 
example, x = f (t) and y = f (t).   3. Choose one equation to 
solve for t, substitute into the other equation and simplify.
5. Some equations cannot be written as functions, like a circle. 
However, when written as two parametric equations,  separately 
the equations are functions.  7. y = −2 + 2x  

9. y = 3 √ 

______

   x − 1 _____ 2      11. x =  2e   
1 − y _____ 5    or y = 1 − 5ln     x _ 2       

13. x = 4log     y − 3
 _ 2       15. x =      y _ 2      

3
  −   y __ 2    17. y = x 3  

19.      x __ 4      
2
  +      y __ 5      

2
  = 1  21. y 2 = 1 −   1 __ 2  x  23. y = x 2 + 2x + 1

25. y =      x + 1 _____ 2      
3
  − 2  27. y = −3x + 14  29. y = x + 3

31.      x(t) = t
         

y(t) = 2sin t + 1
          33.      x(t) =  √

—
 t   + 2t

          
y(t) = t

         

35.    x(t) = 4 cos t
       

y(t) = 6 sin t
      ; Ellipse  37.    x(t) =  √

—
 10   cos t

           
y(t) =  √

—
 10   sin t

      ; Circle

39.    x(t) = − 1 + 4t
          

y(t) = − 2t
       41.    x(t) = 4 + 2t

       
y(t) = 1 − 3t

     

43. Yes, at t = 2      45. t 1 2 3
x −3 0 5
y 1 7 17

47. Answers may vary:

      x(t) = t − 1
       

y(t) = t 2
       

and    x(t) = t + 1
        

y(t) = (t + 2)2
    

49. Answers may vary: ,

      x(t) = t
          

y(t) = t 2 − 4t + 4
     and    x(t) = t + 2

       
y(t) = t 2

     

Section 8.7
1. Plotting points with the orientation arrow and a graphing 
calculator  3. The arrows show the orientation, the direction 
of motion  according to increasing values of t.  5. The 
parametric equations show the different vertical and horizontal 
motions over time. 

7. 

1
2
3

x

y

−2
−1

−1 1 2 3 4 5 6−2−3−4−5−6

4
5
6
7
8
9

10

9. 

1
2
3

x

y

−2
−3
−4
−5
−6

−1
−1 1 2 3 4 5 6−2−3−4−5−6

4
5
6

11. 

1
2
3

x

y

−2
−3
−4
−5
−6

−1
−1 1 2 3 4 5 6−2−3−4−5−6

4
5
6

13. 

1
2
3

x
(t from −1 to 5)

y

−2
−3
−4
−5
−6

−1
−0.5 0.5 1.5 2.5−1.5−2.5

4
5
6

15. 

1
2
3

x

(t from −5 to 5)

y

−2
−3
−4
−5
−6

−1
−1−2 1 2 3 4 5 6 7 8−3−4

4
5
6

17. 

1
2
3

x

y

−2
−3
−4
−5
−6

−1
−1−2 1 2 3 4 5 6−3−4−5−6

4
5
6

19.  

0 x

y

−0.5

−1.0

−1.5

−2.0

−2.5

−3.0

0.5 1.0 1.5 2.0 2.5 3.0
(t from 0 to 360)

21. 

5

x

y

−1 1 2 3 4 5 6−2−3−4−5−6

10

15

20

25

30

(t from
0 to 360)



ODD ANSWERSC-32

23. 

1
2
3

x

y

−2
−3
−4
−5
−6

−1
−1 1 2 3 4 5 6−2−3−4−5−6

4
5
6

25. 

0.5
1.0
1.5

x

(t from 0 to 2π)

y

−1.0
−1.5
−2.0
−2.5
−3.0

−0.5−1 1 2 3−2−3

2.0
2.5
3.0

27. 

x

y

−40
−20

20
40
60
80

100

−60
−80

−100
−120
−140

1000−1000 2000 3000 4000 5000

(t from −1 to 5)

29. 

5
10
15

x

y

−10
−15
−20
−25
−30

−5
5 10 15−5−10−15

20
25
30

(t from
−5 to 5)

31. 

5
10
15

x

y

−5
−10
−15
−20
−25

200−200−400−600−800−1000

20
25
30
35

(t from 0
to 1000)

33. 

1
2
3

x

y

−2
−3
−4
−5
−6

−1
−1 1 2 3 4 5−2−3−4−5−6−7

4
5
6

(t from −   to   )2
π

2
π

35. 

1

x

y

−1

−2

−3

1 2 3
(t from −π to 0)

−1−2−3

2

3

37. 

2

x

y

−2

−4

−6

2 4 6

(t from−π to 0)

−2−4−6

4

6

39. There will be 100 back-and-forth motions.   41. Take the 
opposite of the x(t) equation.   43. The parabola opens up.

45.    x(t) = 5 cos t
       

y(t) = 5 sin t
         

47. 

0.5

x

y

−0.5

−1

−1.5

0.5 1 1.5−0.5−1−1.5

1

1.5

49. 

0.5

x

y

−0.5

−1

−1.5

0.5 1 1.5−0.5−1−1.5

1

1.5

(t from
0 to 2π)

51. 

0.5

x

y

−0.5

−1

−15.

0.5 1 1.5−0.5−1−1.5

1

1.5

53. a = 4, b = 3, c = 6, d = 1

55. a = 4, b = 2, c = 3, d = 3
57.

1
2
3

x

(t from
0 to 2π)

y

−2
−3
−4
−5
−6

−1
−0.5 0.5 1−1−1.5−2

4
5
6

57. (cont.)

 

5

x

y

−5

−10

0.5 1−0.5−1−1.5−2

10

15

20

(t from
−4π to 6π)

59.  

0.5

x

y

−0.5

−1.5

−2

−1

5 10 15 20−5−10

1

(t from
−4π to 6π)

59. (cont.)

0.5

x

y

−0.5

−1.5

−2

−1

5 10 15 20−5−10

1

(t from
−4π to 6π)

 
61. The y-intercept changes.

63. y(x) = −16      x _ 15     2   + 20     x _ 15     

65.     x(t) = 64cos(52°)
              

y(t) = −16t2 + 64tsin(52°)
     

67. Approximately 3.2 seconds
69. 1.6 seconds

71. 

2
4
6

x

y

−4
−6
−8

−10
−12

−2 5 10−5−10

8
10
12

(t from 0 to 2π)

73. 

2

x

y

−2

−4

−6

2 4 6

(t from 0 to 2π)

−2−4−6

4

6

0.5
1

1.5

x

y

−1
−1.5

−2
−2.5

−3

−0.5
−1 1 2 3 4 5 6 7−2−3−4−5

2
2.5

3

(t from 0 to 2π) 0.5
1

1.5

x

y

−1
−1.5

−2
−2.5

−3

−0.5
−1 1 2 3 4 5 6 7−2−3−4−5

2
2.5

3

(t from 0 to 2π)
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Section 8.8
1. Lowercase, bold letter, usually u, v, w  3. They are unit 
vectors. They are used to represent the horizontal and vertical 
components of a vector. They each have a magnitude of 1.  
5. The first number always represents the coefficient of the i, and 
the second represents the j.  7. 〈7, − 5〉  9. Not equal  
11. Equal  13. Equal  15. −7i − 3j  17. −6i − 2j
19. u + v = 〈−5, 5〉, u − v = 〈−1, 3〉, 2u − 3v = 〈0, 5〉

21. −10i − 4j    23. −   2 √
—

 29   _ 29   i +    5 √
—

 29   _ 29   j 

25. −   2 √
—

 229   _ 229   i +    15 √
—

 229   _ 229   j  27.  −    7 √
—
 2   _ 10   i +     √

—
 2   _ 10   j

29. |v| = 7.810, θ = 39.806°  31. |v| = 7.211, θ = 236.310°
33. −6  35. −12
37. yy

x

y

v

x

3v

x

v1
2

 

39. 

2u
u + v

u − v

41. 

u + v 2u

u − v

43. 45. 

47. 〈4, 1〉        49. v = −7i + 3j
51. 3  √

—
 2   i + 3  √

—
 2   j

53. i −   √
—
 3   j

55. a. 58.7; b. 12.5
57. x = 7.13 pounds,  
y = 3.63 pounds
59. x = 2.87 pounds,  
y = 4.10 pounds
61. 4.635 miles, 17.764° N of E
63. 17 miles, 10.071 miles
65. Distance: 2.868, Direction: 
86.474° North of West, or 3.526° West of North  
67. 4.924°, 659 km/hr   69. 4.424°  71. (0.081, 8.602)
73. 21.801°, relative to the car’s forward direction
75. Parallel: 16.28, perpendicular: 47.28 pounds
77. 19.35 pounds, 51.65° from the horizontal
79. 5.1583 pounds, 75.8° from the horizontal

Chapter 8 Review exercises
1. Not possible  3. C = 120°, a = 23.1, c = 34.1
5. Distance of the plane from point A: 2.2 km, elevation of the 
plane: 1.6 km  7. B = 71.0°, C = 55.0°, a = 12.8  9. 40.6 km
11. 13. (0, 2)  

15. (9.8489, 203.96°)  
17. r = 8
19. x 2 + y 2 = 7x

21. y = − x 

1
2
3

x

y

−2
−1

−1 1 2 3 4 5 6 7−2−3−4−5−6−7

−4
−5
−6
−7

−3

4
5
6
7

23.  Symmetric with respect to 
the line θ =   π __ 2  

25. 

1 2 3 4 5 6

(θ from 0 to 2π) 27. 

1 2 3 4 5 6

(θ from 0 to 2π)

29. 5  31. cis   −  π __ 3       33. 2.3 + 1.9i  35. 60cis     π __ 2     
37. 3cis     4π ___ 3      39. 25cis     3π ___ 2       41. 5cis     3π ___ 4     , 5cis     7π ___ 4     
43. 

1
2
3

Real

Imaginary

−2
−1

−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3

4
5
6

45. x 2 +   1 __ 2  y = 1

47.    x(t) = −2 + 6t
          

y(t) = 3 + 4t
     

49. y = −2x 5

x

y

−20

20

−40

−60

−80

−100

0.5 1.0 1.5 2.0

(t from −1 to 1)

51. a.  

  x(t) = (80 cos (40°))t
                  

y(t) = − 16t 2 + (80 sin (40°))t + 4
    

b. The ball is 14 feet high and 184 
feet from where it was launched.
c. 3.3 seconds
53. Not equal  55. 4i  

57. −  3 √
—

 10   _ 10  i, −   √
—

 10   _ 10  j

59. Magnitude: 3  √
—
 2   , Direction: 225°

61. 16
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63. 

3v

u + vu − v

Chapter 8 practice test
1. α = 67.1°, γ = 44.9°, a = 20.9 3. 1,712 miles  5.    1,  √

—
 3     

7. y = −3

1
2
3

x

y

−2
−3
−4
−5
−6

−1
−1 1 2 3 4 5 6−2−3−4−5−6

4
5
6

9. 

1 2 3 4 5 6

(θ from 0 to 2π)

11.  √
—

 106    13. −   5 __ 2   +    5 √
—
 3   _____ 2  i  15. 4cis (21°)

17. 2 √
—
 2   cis(18°), 2 √

—
 2   cis(198°)  19. y = 2(x − 1)2

21. 

1
2
3

x

y

−2
−1

−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3

4
5
6

(θ from 0
to 2π)

23. −4i − 15j 

25.   2 √
—

 13   ______ 13   i +   3 √
—

 13   ______ 13   j

ChapteR 9

Section 9.1
1. No, you can either have zero, one, or infinitely many.  Examine 
graphs.  3. This means there is no realistic  break-even point. 
By the time the company produces one unit they are already 
making profit.  5. You can solve by substitution (isolating x or 
y ), graphically, or by addition.  7. Yes  9. Yes  11. (−1, 
2)  13. (−3, 1)

15.    −  3 _ 5  , 0     17. No solutions exist  19.     72 _ 5  ,   132 _ 5     
21. (6, −6)  23.   −  1 __ 2  ,   1 ___ 10       25. No solutions exist.

27.   −  1 __ 5  ,   2 __ 3      29.   x,   x + 3 _ 2       31. (−4, 4)

33.     1 _ 2  ,   1 _ 8       35.     1 _ 
6

  , 0     37. ( x, 2(7x − 6))

39.   −  5 __ 6  ,   4 __ 3       41. Consistent with one solution

43. Consistent with one solution
45. Dependent with infinitely many solutions
47. (−3.08, 4.91)  49. (−1.52, 2.29)    51.     A + B _ 2  ,   A − B _ 2       

53.    −  1 _ 
A − B

  ,   A _ 
A − B

       55.      EC − BF _ 
AE − BD

  ,   DC − AF _ 
BD − AE

      

57. They never turn a profit.  59. (1,250, 100,000)
61. The numbers are 7.5 and 20.5.  63. 24,000
65. 790 sophomores, 805 freshman  67. 56 men, 74 women
69. 10 gallons of 10% solution, 15 gallons of 60% solution
71. Swan Peak: $750,000, Riverside: $350,000  73. $12,500 in 
the first account, $10,500 in the second  account   75. High-
tops: 45, Low-tops: 15  77. Infinitely many solutions. We need 
more information.

Section 9.2
1. No, there can be only one, zero, or infinitely many solutions.
3. Not necessarily. There could be zero, one, or infinitely many 
solutions. For example, (0, 0, 0) is not a solution to the  system 
below, but that does not mean that it has no solution.  
2x + 3y − 6z = 1      −4x − 6y + 12z = −2      x + 2y + 5z = 10
5. Every system of equations can be solved graphically, by 
substitution, and by addition. However, systems of three equations 
become very complex to solve graphically so other methods are 
usually preferable.  7. No    9. Yes    

11. (−1, 4, 2)    13.   −  85 ____ 107  ,   312 ____ 107  ,   191 ____ 107       15.   1,   1 _ 2  , 0      

17. (4, −6, 1) 19.    x,   65 − 16x _______ 27  ,   28 + x ______ 27       21.   −  45 ___ 13  ,   17 ___ 13  , −2   
23. No solutions exist  25. (0, 0, 0)  27.     4 __ 7  , −  1 __ 7  , −   3 __ 7       

29. (7, 20, 16)  31. (−6, 2, 1)  33. (5, 12, 15)  

35. (−5, −5, −5)  37. (10, 10, 10)  39.     1 __ 
2

  ,   1 __ 
5

  ,   4 __ 
5

       

41.     1 __ 
2

  ,   2 __ 
5

  ,   4 __ 
5

        43. (2, 0, 0)  45. (1, 1, 1)

47.     128 ____ 
557

  ,   23 ____ 
557

  ,   28 ____ 
557

       49. (6, −1, 0)  51. 24, 36, 48

53. 70 grandparents, 140 parents, 190 children  55. Your share 
was $19.95, Sarah’s share was $40, and your other roommate’s share 
was $22.05.  57. There are infinitely many solutions; we need 
more information.  59. 500 students, 225 children, and 450 
adults  61. The BMW was $49,636, the Jeep was $42,636, and 
the Toyota was $47,727.  63. $400,000 in the account that pays 
3% interest, $500,000 in the account that pays 4% interest, and 
$100,000 in the account that pays 2% interest.  65. The United 
States consumed 26.3%, Japan 7.1%, and China 6.4% of the world’s 
oil.  67. Saudi Arabia imported 16.8%, Canada imported 
15.1%, and Mexico 15.0%  69. Birds were 19.3%, fish were 
18.6%, and mammals were 17.1% of endangered species

Section 9.3
1. A nonlinear system could be representative of two circles that 
overlap and intersect in two locations, hence two solutions. A 
nonlinear system could be representative of a parabola and a circle, 
where the vertex of the parabola meets the circle and the branches 
also intersect the circle, hence three solutions.   3. No. There 
does not need to be a feasible region. Consider a system that is 
bounded by two parallel lines. One inequality represents the region 
above the upper line; the other  represents the region below the 
lower line. In this case, no points in the plane are located in both 
regions; hence there is no feasible region.   



ODD ANSWERS C-35

5. Choose any number between each solution and plug into C(x) 
and R(x). If C(x) < R(x), then there is profit.

7. (0, −3), (3, 0)  9.   −   3 √
—
 2   _____ 

2
  ,   3 √

—
 2   _____ 

2
     ,     3 √

—
 2   _____ 

2
  , −   3 √

—
 2   _____ 

2
     

11. (−3, 0), (3, 0)  13.     1 __ 
4

  , −    √
—

 62   _____ 
8

     ,     1 __ 
4

  ,    √
—

 62   _____ 
8

     

15.   −    √
—

 398   ______ 
4

  ,   199 ____ 
4

     ,      √
—

 398   ______ 
4

  ,   199 ____ 
4

       17. (0, 2), (1, 3)

19.   − √ 

__________

   1 __ 2  ( √
—
 5   − 1)  ,   1 __ 2  (1 −  √

—
 5  )   ,    √ 

__________

   1 __ 2  ( √
—
 5   − 1)  ,   1 __ 2  (1 −  √

—
 5  

)   
21. (5, 0)  23. (0, 0)  25. (3, 0)  27. No solutions exist
29. No solutions exist

31.   −    √
—
 2   ____ 

2
  , −    √

—
 2   ____ 

2
     ,   −    √

—
 2   ____ 

2
  ,    √

—
 2   ____ 

2
     ,      √

—
 2   ____ 

2
  , −    √

—
 2   ____ 

2
     ,      √

—
 2   ____ 

2
  ,    √

—
 2   ____ 

2
     

33. (2, 0)  35. (− √
—
 7  , −3), (− √

—
 7  , 3), ( √

—
 7  , −3), ( √

—
 7  , 3)

37.

39. 

2
4
6

x

y

−4
−2−1 1 2 3 4 5−2−3−4−5

−8
−10

−6

8
10

41. 

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−4
−5

−3

4
5

43. 45. 

2
4
6

x

y

−4
−2−2 2 4 6 8−4−6−8

−8
−10

−6

8

47. 

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−4
−5

−3

4
5

49.    −2 √ ____

   70 ____ 
383

    , −2 √ ___

   35 ___ 
29

       ,  
  −2 √ 

____

   70 ____ 383    , 2 √ 

___

   35 ___ 29       ,  
  2 √ 

____

   70 ____ 383    , −2 √ 

___

   35 ___ 29       , 
   2 √ ____

   70 ____ 
383

    , 2 √ ___

   35 ___ 
29

       

51. No solution exists

53. x = 0, y > 0 and 0 < x < 1,  √
—
 x   < y <   1 _ x    55. 12,288  

57. 2–20 computers

Section 9.4
1. No, a quotient of polynomials can only be decomposed if the 
denominator can be factored. For example,   1 _ 

x 2 + 1
   cannot be 

decomposed because the denominator cannot be factored.
3. Graph both sides and ensure they are equal.
5. If we choose x = −1, then the B-term disappears, letting us 
immediately know that A = 3. We could alternatively plug in  
x = −  5 _ 3   giving us a B-value of −2.

7.   8 _____ 
x + 3

   −   5 _____ 
x − 8

    9.   1 _____ 
x + 5

   +   9 _____ 
x + 2

  

11.   3 ______ 
5x − 2

   +   4 ______ 
4x − 1

    13.   5 ________ 
2(x + 3)

   +   5 _______ 
2(x − 3)

  

15   3 _____ 
x + 2

   +   3 _____ 
x − 2

    17.   9 ________ 
5(x + 2)

   +   11 ________ 
5(x − 3)

  

19.   8 _____ 
x − 3

   −   5 _____ 
x − 2

    21.   1 _____ 
x − 2

   +   2 _______ 
(x − 2) 2

  

23. −   6 ______ 
4x + 5

   +   3 ________ 
(4x + 5) 2

    25. −   1 _____ 
x − 7

   −   2 _______ 
(x − 7) 2

  

27.   4 __ 
x

   −   3 ________ 
2(x + 1)

   +   7 ________ 
2(x + 1) 2

  

29.    4 __ 
x

   +   2 ___ 
x 2

   −   3 ______ 
3x + 2

   +   7 _________ 
2(3x + 2) 2

  

31.   x + 1 _________ 
x 2 + x + 3

   +   3 _____ 
x + 2

    33.   4 − 3x __________ 
x 2 + 3x + 8

   +   1 _____ 
x − 1

  

35.   2x − 1 __________ 
x 2 + 6x + 1

   +   2 _____ 
x + 3

    37.   1 _________ 
x 2 + x + 1

   +   4 _____ 
x − 1

  

39.   2 _________ 
x 2 −3x + 9

   +   3 _____ 
x + 3

    41. −   1 ___________ 
4x 2 + 6x + 9

   +   1 ______ 
2x − 3

  

43.   1 __ 
x

   +   1 _____ 
x + 6

   −   4x __ 
x 2 − 6x + 36

    45.   x + 6 ______ 
x 2 + 1

   +   4x + 3 _______ 
(x 2 + 1) 2

  

47.   x + 1 _____ 
x + 2

   +   2x + 3 _______ 
(x + 2) 2

    49.   1 ___________ 
x 2 + 3x + 25

   −   3x _____________  
(x 2 + 3x + 25) 2

  

51.   1 ___ 
8x

   −   x ________ 
8(x 2 + 4)

   +   10 − x _________ 
2(x 2 + 4) 2

   

53. −   16 ___ 
x

   −   9 ___ 
x 2

   +   16 _____ 
x − 1

   −   7 _______ 
(x − 1) 2

  

55.   1 _____ 
x + 1

   −   2 _______ 
(x + 1) 2

   +   5 _______ 
(x + 1)3

  

57.   5 _____ 
x − 2

   −   3 _________ 
10(x + 2)

   +   7 _____ 
x + 8

   −   7 _________ 
10(x − 8)

  

59. −   5 ___ 
4x

   −   5 ________ 
2(x + 2)

   +   11 ________ 
2(x + 4)

   +   5 _______ 
4(x − 4)

  

Section 9.5
1. No, they must have the same dimensions. An example would 
include two matrices of different dimensions. One cannot add the 
following two matrices because the first is a 2×2 matrix and the 

second is a 2×3 matrix.     1  2
    

3  4
     +    6  5  4

      
3  2  1

     has no sum.

3. Yes, if the dimensions of A are m × n and the dimensions of B 
are n × m, both products will be defined  5. Not necessarily. 
To find AB, we multiply the first row of A by the first column of B 
to get the first entry of AB. To find BA, we multiply the first row of 
B by the first column of A to get the first entry of BA. Thus, if those 
are unequal, then the matrix multiplication does not commute.

   − √ 

___________

   1 _ 2  ( √—
 73   −5)  ,   1 _ 2  (7 −  √—

 73  )      √ 

___________

   1 __ 2  ( √—
 73   − 5)  ,   1 __ 2  (7 −  √—

 73  )   

2
4
6

x

y

−4
−2−2 2 4 6 8 10−4−6−8−10

−8
−10

−6

8
10
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7.    

11  19
 

   
 15  94     

17  67
      9.    −4  2     

8  1
     

11. Undefined; dimensions do not match

13.     
9    27

 
   

 63    36     
0  192

      15.     −64  −12  −28    −72                
−360  −20  −12  −116

    

17.    
1,800  1,200  1,300

  
         

  800  1,400      600             
700      400  2,100

      19.    20  102     
28    28

    

21.     60   41          2           
−16  120  −216

     23.     
−68     24  136

  
       

  −54  −12    64           
−57     30  128

    
25. Undefined; dimensions do not match.

27.    
−8      41    −3

  
       

  40  −15  −14           
4      27      42

      29.    
−840  650  −530

  
       

  330  360      250           
−10  900      110

    
31.    −350  1,050       

350       350
    

33. Undefined; inner dimensions do not match.

35.     1,400  700       
−1,400  700

      37.     332,500  927,500            
−227,500    87,500

    
39.    490,000               0          

0  490,000
      41.     −2  3     4       

−7  9  −7
    

43.     −4    29  21          
−27  −3     1

      45.     
−3  −2  −2

  
      

  −28     59  46          
−4     16    7

    
47.     

1  −18   −9
  

       
  −198    505  369           

−72    126     91
      49.     0  1.6     

9  −1
    

51.     
2  24  −4.5

  
      

  12  32     −9          
−8  64       61

      53.    
0.5  3  0.5

 
     

 2  1     2       
10  7   10

    
55.    

1  0  0
 

    
 0  1  0      

0  0  1
      57.    

1  0  0
 

    
 0  1  0      

0  0  1
    

59. Bn =       1  0  0
 

    
 0  1  0      

0  0  1
    , n even,

           

   
1  0  0

 
    

 0  0  1      
0  1  0

    , n odd.

    

Section 9.6
1. Yes. For each row, the coefficients of the variables are written 
across the corresponding row, and a vertical bar is placed; then 
the constants are placed to the right of the vertical bar.
3. No, there are numerous correct methods of using row 
 operations on a matrix. Two possible ways are the following:  
(1) Interchange rows 1 and 2. Then R 2 = R 2 − 9R 1.  
(2) R 2 = R 1 −9R 2. Then divide row 1 by 9.
5. No. A matrix with 0 entries for an entire row would have 
either zero or infinitely many solutions.

7.    0    16     
9  −1

  |      
4   
2

      9.     1  5  8
 

    
 12  3  0      

3  4  9
  |   
 
   
19

 
  

 4    
−7

    

11. −2x + 5y = 5 
  6x − 18y = 26

13.  3x + 2y = 13 
 −x − 9y + 4z = 53 
 8x + 5y + 7z = 80

15. 4x + 5y − 2z = 12
  y + 58z = 2
  8x + 7y − 3z = −5

17. No solutions
19. (−1, −2)  
21. (6, 7)  

23. (3, 2)   25.     1 __ 
5

  ,   1 __ 
2

        27.   x,   4 ___ 
15

  (5x + 1)      29. (3, 4)  

31.     196 ____ 39  , −   5 ___ 13       33. (31, −42, 87)  35.     21 ___ 
40

  ,   1 ___ 
20

  ,   9 __ 
8

       

37.     18 ___ 13  ,   15 ___ 13  , −  15 ___ 13       39.    x, y,   1 _ 2   − x −   3 _ 2  y     

41.   x, −  x __ 2  , −1     43. (125, −25, 0)  45. (8, 1, −2) 

47. (1, 2, 3)  49.    −4z +   17 __ 7  , 3z −   10 __ 7  , z    

51. No solutions exist.  53. 860 red velvet, 1,340 chocolate
55. 4% for account 1, 6% for account 2  57. $126
59. Banana was 3%, pumpkin was 7%, and rocky road was 2%
61. 100 almonds, 200 cashews, 600 pistachios

Section 9.7
1. If A−1 is the inverse of A, then AA−1 = I, the identity  matrix. 
Since A is also the inverse of A−1, A−1 A = I. You can also check 
by proving this for a 2 × 2 matrix.  3. No, because ad and bc 
are both 0, so ad − bc = 0, which requires us to divide by 0 in the 

formula.  5. Yes. Consider the matrix    0  1
    

1  0
    . The inverse is 

found with the following calculation:

   A−1 =   1 __________ 
0(0) − 1(1)

       0  −1      
−1      0

     =     0  1
    

1  0
    .

7. AB = BA =    1  0
    

0  1
     = I  9. AB = BA =    1  0

    
0  1

     = I

11. AB = BA =    
1  0  0

 
    

 0  1  0      
0  0  1

     = I  13.   1 ___ 
29

      9  2     
−1  3

        

15.   1 ___ 
69

      −2  7     
9  3

      17. There is no inverse  19.   4 __ 
7

      0.5     1.5      
1  −0.5

      

21.   1 ___ 
17

      
−5      5  −3

  
      

  20  −3    12         
1  −1      4

      23.   1 ____ 
209

       
47  −57  69

  
      

  10  19  −12          
−24  38  −13

      

25.     
18        60  −168

  
        

  −56  −140      448            
40        80  −280

      27. (−5, 6)  29. (2, 0) 

31.     1 __ 
3

  , −   5 __ 
2

       33.   −  2 __ 3  , −  11 ___ 6       35.   7,   1 __ 
2

  ,   1 __ 
5

       

37. (5, 0, −1)  39.    −  35 __ 34  , −  97 __ 34  , −  77 __ 17      

41.      13 _ 
138

  , −  568 ___ 345  , −  229 _ 
690

        43.   −   37 ___ 
30

  ,   8 ___ 
15

     

45.     10 ____ 
123

  , −1,   2 __ 
5

       47.   1 __ 
2

         
2     1  −1  −1

  
       

  0     1      1  −1           
0  −1      1      1

 
           

0      1  −1      1
    

49.   1 ___ 
39

         
3       2        1  −7

  
        

  18  −53      32   10            
24  −36      21     9

 
            

−9      46  −16  −5
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51.      
1     0      0      0      0  0

   
          

   0     1      0      0      0  0                
0     0      1      0      0  0

 
                 

  
0     0      0      1      0  0

   
           

   0      0      0     0      1  0                 
−1  −1  −1  −1  −1  1

 

     53. Infinite solutions

55. 50% oranges, 25% bananas, 20% apples
57. 10 straw hats, 50 beanies, 40 cowboy hats
59. Tom ate 6, Joe ate 3, and Albert ate 3
61. 124 oranges, 10 lemons, 8 pomegranates

Section 9.8
1. A determinant is the sum and products of the entries in the 
matrix, so you can always evaluate that product—even if it does 
end up being 0.  3. The inverse does not exist.  5. −2  
7. 7  9. −4  11. 0  13. −7, 990.7  15. 3  17. −1  

19. 224  21. 15  23. −17.03  25. (1, 1)  27.     1 __ 
2

  ,   1 __ 
3

     
29. (2, 5)  31.   −1, −  1 __ 3       33. (15, 12)  35. (1, 3, 2)

37. (−1, 0, 3)  39.     1 __ 
2

  , 1, 2     41. (2, 1, 4)

43. Infinite solutions  45. 24  47. 1  49. Yes; 18, 38  
51. Yes; 33, 36, 37  53. $7,000 in first account, $3,000 in 
second account  55. 120 children, 1,080 adult  57. 4 gal 
yellow, 6 gal blue  59. 13 green tomatoes, 17 red tomatoes
61. Strawberries 18%, oranges 9%, kiwi 10%  63. 100 for the 
first movie, 230 for the second movie, 312 for the third movie
65. 20–29: 2,100, 30–39: 2,600, 40–49: 825  67. 300 almonds, 
400 cranberries, 300 cashews

Chapter 9 Review exercises
1. No  3. (−2, 3)  5. (4, −1)  7. No solutions exist
9. (300, 60)  11. (10, −10, 10)  13. No solutions exist 

15. (−1, − 2, 3)  17.   x,   8x ___ 5  ,   14x ____ 5       19. 11, 17, 33  

21. (2, − 3), (3, 2)  23. No solution  25. No solution

27. 

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−4
−5

−3

4
5

29. 

1
2
3

x

y

−2
−1−1 1 2 3 4 5 6 7−2−3

−4
−5

−3

4
5

31. −   10 _ x + 2    +    8 _ x + 1      33.     7 _ x + 5    −    15 _ 
(x + 5)2

   

35.    3 _ x − 5    +    −4x + 1 __ 
x 2 + 5x + 25

     37.    x − 4 _ 
x 2 − 2

    +    5x + 3 _ 
(x2 − 2)2

    

39.    −16       8      
−4  −12

      41. Undefined; dimensions do not match

43. Undefined; inner dimensions do not match

45.    
113  28      10

  
      

  44  81  −41          
84  98  −42

      47.    
−127  −74  176

  
       

  −2      11    40           
28      77    38

    
49. Undefined; inner dimensions do not match

51. x − 3z = 7 
        y + 2z = − 5 with infinite solutions

53.    −2       2    1
  

      
 2    −8    5          

19  −10  22
  |   
 
  
7

 
 

 0   
3

      55.     1  0  3
 

    
 −1  4  0      

0  1  2
  |   
 
   
12

 
  

 0    
−7

    
57. No solutions exist  59. No solutions exist

61.   1 __ 
8

     2  7    
6  1

      63. No inverse exists  65. (−20, 40)

67. (−1, 0.2, 0.3)  69. 17% oranges, 34% bananas, 39% apples

71. 0  73. 6   75.   6,   1 __ 2       77. ( x, 5x + 3)  79.   0, 0, −   1 __ 
2

     

Chapter 9 practice test
1. Yes  3. No solutions exist  5.      1 _ 2  ,   1 _ 4  ,   1 _ 5      

7.   x,   16x ____ 5  , −   13x ____ 5      
9. (−2 √

—
 2  , −   √

—
 17   ), (−2 √

—
 2  ,   √

—
 17   ), (2 √

—
 2  , −   √

—
 17   ), (2 √

—
 2  ,   √

—
 17   )

11. 

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−4
−5

−3

4
5

13.   5 ______ 
3x + 1

   −   2x + 3 ________ 
(3x + 1)2

    

15.     17  51     
−8  11

    

17.     12  −20      
−15      30

      

19. −   1 __ 
8

    

21.     14  −2    13
  

      
  −2      3  −6         

1  −5    12
  |   
 
  
140

 
  

 −1    
11

      23. No solutions exist.  

25. (100, 90) 27.     1 ____ 100  , 0    29. 32 or more cell phones per day

ChapteR 10

Section 10.1
1. An ellipse is the set of all points in the plane the sum of whose 
distances from two fixed points, called the foci, is a constant.

3. This special case would be a circle.  5. It is symmetric about 

the x-axis, y-axis, and the origin.  

7. Yes;   x 2 ___ 
32

   +   y 2 ___ 
22

   = 1  9. Yes;   x 2 ______ 
     1 __ 

2
      

2
 
   +   

y 2
 ______ 

     1 __ 
3

      
2
 
   = 1  

11.   x 2 ___ 
22

   +   y 2 ___ 
72

   = 1; endpoints of major axis: (0, 7) and (0, −7); 

endpoints of minor axis: (2, 0) and (−2, 0); foci: (0, 3 √
—
 5   ), (0, −3 √

—
 5  )  

13.   x 2 _ 
(1)2

   +   
y 2
 _ 

     1 __ 
3

      
2
 
    = 1; endpoints of major axis: (1, 0) and (−1, 0);  

endpoints of minor axis:   0,   1 _ 3     ,   0, −  1 _ 3     ; foci:     2 √
—
 2   _ 3  , 0   ,  

 −  2 √
—
 2   _ 3  , 0     15.   

(x − 2)2

 _ 
72

   +   
(y − 4)2

 _ 
52

   = 1; endpoints of major 

axis: (9, 4), (−5, 4); endpoints of minor axis: (2, 9), (2, − 1); foci: (2 

+ 2 √
—
 6  , 4), (2 − 2 √

—
 6  , 4)    
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17.   
(x + 5)2

 _ 22   +   
(y − 7)2

 _ 32   = 1; endpoints of major axis: (−5, 10), 

(−5, 4); endpoints of minor axis: (−3, 7), (−7, 7); foci: (−5, 7 +  √
—
 5   ), 

(−5, 7 − √
—
 5   )   19.   

(x − 1)2

 _ 32   +   
(y − 4)2

 _ 22   = 1; endpoints of 

major axis: (4, 4), (−2, 4); endpoints of minor axis: (1, 6), (1, 2); 

foci: (1 +  √
—
 5  , 4), (1 −  √

—
 5  , 4)  21.    

(x − 3)2

 _ 
    3 √

—
 2      2 

     +    
(y − 5)2

 _ 
      √

—
 2     2 

      = 1;  

endpoints of major axis: (3 + 3 √
—
 2  , 5 ), (3 − 3 √

—
 2  , 5); endpoints of 

minor axis: (3, 5 +  √
—
 2   ), (3, 5 −  √

—
 2   ); foci: (7, 5), (−1, 5)  

23.   (x + 5)2
 _______ 52   +   (y − 2)2

 _______ 22   = 1; endpoints of major axis: (0, 2), (−10, 2);  
endpoints of minor axis: (−5, 4), (−5, 0); foci: (−5 +  √

—
 21  , 2), 

(−5 −  √
—

 21  , 2)  25.   (x + 3)2
 _______ 52   +   (y + 4)2

 _______ 22   = 1; endpoints of 

major axis (2, −4), (−8, −4); endpoints of minor axis (−3, −2), 

(−3, − 6); foci: (−3 +  √
—

 21  , −4), (−3 −  √
—

 21  , −4).  

27. Foci: (−3, −1 +  √
—

 11  ), (−3, −1 −  √
—

 11  )     29. Focus: (0, 0)  
31. Foci: (−10, 30), (−10, −30)  

33. Center: (0, 0); vertices:  
(4, 0), (−4, 0), (0, 3), (0, −3); 

foci: ( √
—
 7  , 0), (− √

—
 7  , 0)

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−4
−5

−3

4
5

35. Center (0, 0); vertices:     1 __ 9  , 0   ,  
  −  1 __ 9  , 0   ,   0,   1 __ 

7
     ,   0, −  1 __ 7     ;  

foci   0,   4 √
—
 2   _____ 

63
     ,   0, −   4 √

—
 2   _____ 

63
     

.1

.2

.3

x

y

−.2
−.1−.1 .1 .2 .3−.2−.3

−.3

37. Center (−3, 3); vertices  
(0, 3), (−6, 3), (−3, 0), (−3, 6); 
focus: (−3, 3). Note that this 
ellipse is a circle. The circle has 
only one focus, which coincides 
with the center.

2.5
5

7.5

x

y

−5
−2.5
−2.5 2.5 5 7.5 10−5−7.5−10

−10
−7.5

10

39. Center: (1, 1); vertices: (5, 1), 
(−3, 1), (1, 3), (1, −1); foci:  
(1, 1 + 4 √

—
 3   ), (1, 1 − 4 √

—
 3   )

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−4
−5

−3

4
5

41. Center: (−4, 5); vertices: 
(−2, 5), (−6, 5), (−4, 6), (−4, 4);  
foci: (−4 +  √

—
 3  , 5), (−4 −  √

—
 3  , 5)

2.5

−2.5

−7.5
−5

5
7.5

x

y

−2.5 2.5 5 7.5−5−7.5−10

10

43. Center: (−2, 1); vertices:  
(0, 1), (−4, 1), (−2, 5), (−2, −3);  
foci: (−2, 1 + 2 √

—
 3  ), (−2, 1 − 2 √

—
 3  )

.25
.5

.75

x

y

−.5
−.25
−.25 .25 .5 .75−.5−.75

−.75

45. Center: (−2, − 2); vertices: 
(0, − 2), (−4, −2), (−2, 0),  
(−2, −4); focus: (−2, −2)

1
2

x

y

−2
−1−1 1 2−2−3−4−5

−4
−5

−3

47.   x 2 ___ 
25

   +   y 2 ___ 
29

   = 1  

49.   (x − 4)2

 _______ 
25

   +   (y − 2)2

 _______ 
1

   = 1

51.   (x + 3)2

 _______ 
16

   +   (y − 4)2

 _______ 
4

   = 1  

53.   x 2 ___ 
81

   +   y 2 ___ 
9

   = 1

55.   (x + 2)2

 _______ 
4

   +   (y − 2)2

 _______ 
9

   = 1  

57. Area = 12π square units  59. Area = 2  √
—
 5   π square units

61. Area = 9π square units  63.   x 2 ____ 
4h 2

   +    
y 2

 _ 
  1 __ 4  h 2

    = 1 

65.   x 2 ____ 
400

   +   y 2 ____ 
144

   = 1, distance: 17.32 feet 

67. Approximately 51.96 feet

Section 10.2
1. A hyperbola is the set of points in a plane the difference of 
whose distances from two fixed points (foci) is a positive constant.
3. The foci must lie on the transverse axis and be in the interior of 
the hyperbola.  5. The center must be the midpoint of the line 

segment joining the foci.  7. Yes   x 2 _ 
62

   −   
y 2

 _ 
32

    = 1  

9. Yes   x 2 ___ 
42

    −   y 2 ___ 
52

    = 1  11.   x 2 ___ 
52

    −   y 2 ___ 
62

    = 1; vertices: (5, 0), (−5, 0); 

foci: ( √
—

 61  , 0), (− √
—

 61  , 0); asymptotes: y =   6 _ 5  x, y = −  6 _ 5  x

13.   
y 2

 _ 
22

   −   x 2 _ 
92

   = 1; vertices: (0, 2), (0, − 2); foci: (0,  √
—

 85   ),  

(0, − √
—

 85   ); asymptotes: y =   2 _ 9  x, y = −  2 _ 9  x

15.   (x − 1)2

 _______ 
32

   −   (y − 2)2

 _______ 
42

    = 1; vertices: (4, 2), (−2, 2); foci: (6, 2), 

(−4, 2); asymptotes: y =   4 __ 
3

  (x − 1) + 2, y = −  4 __ 
3

  (x − 1) + 2

17.   (x − 2)2

 _______ 
72

   −   (y + 7)2

 _______ 
72

   = 1; vertices: (9, −7), (−5, −7); foci:  

(2 + 7 √
—
 2  , −7), (2 − 7 √

—
 2  , −7); asymptotes: y = x − 9, y = −x − 5

19.   (x + 3)2

 _______ 
32

   −   (y − 3)2

 _______ 
32

   = 1; vertices: (0, 3), (−6, 3); foci:  

(−3 + 3 √
—
 2  , 3), (−3 − 3 √

—
 2  , 3); asymptotes: y = x + 6, y = −x

21.   
(y − 4)2

 _ 
22

   −   
(x − 3)2

 _ 
42

   = 1; vertices: (3, 6), (3, 2); foci: (3, 4 + 2 √
—
 5  ),  

(3, 4 −2 √
—
 5  ); asymptotes: y =   1 __ 

2
  (x − 3) + 4, y = −   1 __ 

2
  (x − 3) + 4

23.   (y + 5)2
 _______ 72   −   (x + 1)2

 _______ 702   = 1; vertices: (−1, 2), (−1, − 12);  

foci: (−1, −5 + 7 √
—

 101  ), (−1, −5 − 7 √
—

 101  ); asymptotes:  

y =   1 ___ 10  (x + 1) − 5, y = −   1 ___ 10  (x + 1) − 5  

25.   (x + 3)2

 _______ 
52

   −   (y − 4)2

 _______ 
22

   = 1; vertices: (2, 4), (−8, 4); foci:  

(−3 +  √
—

 29  , 4), (−3 −  √
—

 29  , 4); asymptotes: y =   2 __ 
5

  (x + 3) + 4,  

y = −   2 __ 5  (x + 3) + 4  27. y =   2 __ 5  (x − 3) − 4, y = −   2 __ 5  (x − 3) − 4

29. y =   3 __ 
4

  (x − 1) + 1, y = −   3 __ 
4

  (x − 1) + 1
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31. 

5

10

x

y
Vertex (−7, 0) Vertex (7, 0)

Focus (8.06, 0)Focus (−8.06, 0)

−5

5 10 15 20−5−10−15−20

−10

33. 

5

10

x

y

Vertex (0, 3)

Vertex (0, −3)

Focus (0, −5.83)

Focus (0, 5.83)

−5

5 10 15 20−5−10−15−20

−10

35. 

8

16

x

y

Focus (4, −10.83)

Focus (4, 0.83)

−8

−16

−24

8 16 24 32−8−16−24−32
Vertex (4, −2) Vertex (4, −8)

37. 

8

16

24

x

y

Focus
(3, −1.24)

Focus
(3, 7.24)

−8

−16

−24

8 16 24 32−8−16−24−32

Vertex (3, 6)Vertex (3, 0)

39. 
5

x

y

Focus (9.1, −2)

Focus (−1.1, −2)
−5

5 10 15 20−5−10−15−20

−10

Vertex (−1, −2)

Vertex (9, −2)

41. 

5

10

x

y

Vertex 
(−4, −4)

Vertex 
(2, −4)

Focus 
(7.54, −4)

Focus 
(−9.54, −4)

−5

5 10−5−10

−10

45.    x 2 ___ 
9

   −   y 2 ___ 
16

   = 1  

47.   (x − 6)2

 _______ 
25

   −   (y − 1)2

 _______ 
11 

  = 1

43. 

8

16

24

x

y

Focus
(5, 15.05)

Focus
(5, −5.05)−8

−16

−24

8 16−8−16

Vertex
(5, −5)

Vertex
(5, 15)

 
49.   (x − 4)2

 _______ 
25

   −   (y − 2)2

 _______ 
1

   = 1  51.   y 2 ___ 
16

   −   x 2 ___ 
25

   = 1

53.    y 2 ___ 
9

   −   (x + 1)2

 _______ 
9

   = 1  55.   (x + 3)2

 _______ 
25

   −   (y + 3)2

 _______ 
25

   = 1

57. y(x) = 3 √
—

 x 2 + 1  ,  
y(x) = −3 √

—
 x 2 + 1   

4
6

2

8
10

x

y

−2 2 4 6 8 10−2−4−8−6−10

−4
−6
−8

−10

59. y(x) = 1 + 2 √
—

 x 2 + 4x + 5  , 
y(x) = 1 − 2 √

—
 x 2 + 4x + 5   

4
6

2

8
10

x

y

−2 2 4 6 8 10−2−4−8−6−10

−4
−6
−8

−10

61.   x 2 ___ 
25

   −   y 2 ___ 
25

   = 1

5

10

15

x

y

Fountain

−5

−10

−15

5 10 15−5−10−15

63.    x 2 ____ 
100

   −   y 2 ___ 
25

   = 1

8

16

x

y

Fountain

−8

−16

8 16 24−8−16−24

65.   x 2 ____ 
400

   −   y 2 ____ 
225

   = 1

8
16
24

x

y
Fountain

−8
−16
−24

8 3216 24 40−8−16−24−32−40

67.   (x − 1)2

 _______ 
0.25

   −   y 2 ____ 
0.75

   = 1  

69.   (x − 3)2

 _______ 
4

   −   y 2 ___ 
5

   = 1

Section 10.3
1. A parabola is the set of points in the plane that lie equidistant 
from a fixed point, the focus, and a fixed line, the  directrix. 
3. The graph will open down.
5.  The distance between the focus and directrix will increase.
7. Yes y = 4(1)x 2  9. Yes (y − 3)2 = 4(2)(x − 2)

11. y 2 =   1 _ 8  x, V: (0, 0); F:     1 _ 32  , 0   ; d: x = −  1 _ 32  

13. x 2 = −  1 _ 4  y, V: (0, 0); F:   0, −  1 _ 
16

     ; d: y =   1 _ 
16

  

15. y 2 =   1 _ 
36

  x, V: (0, 0); F:     1 _ 144  , 0   ; d: x = −  1 _ 144  

17. (x − 1)2 = 4(y − 1), V: (1, 1); F: (1, 2); d: y = 0

19. (y − 4)2 = 2(x + 3), V: (−3, 4); F:  −  5 _ 2  , 4   ; d: x = −   7 _ 2   

21. (x + 4)2 = 24(y + 1), V: (−4, −1); F: (−4, 5); d: y = −7
23. (y − 3)2 = −12(x + 1), V: (−1, 3); F: (−4, 3); d: x = 2

25. (x − 5)2 =   4 _ 5  (y + 3), V: (5, −3); F:   5, −  14 _ 5      ; d: y = −  16 _ 5  

27. (x − 2)2 = −2(y − 5), V: (2, 5); F:   2,   9 _ 2     ; d: y =   11 _ 2  

29. (y − 1)2 =   4 _ 3  (x − 5), V: (5, 1); F:     16 _ 3  , 1   ; d: x =   14 _ 3  
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31. 
x = −2

4
6

2

8

x

y

−2 2 4 6 8−2−4−8−6

−4
−6
−8

Focus
(2, 0)

33. 

35. 

2.5

5

7.5

x

y

−2.5

2.5−2.5−5−7.5−10

x −5
3

7
3

37. 

2.5

x

y

−2.5

2.5 5−2.5−5−7.5−10

−5

−7.5

−10

x = 25
6

25
6

39. 

5

x

y

Focus
(−4, −2)

y = 0

−5

−10

−15

−20

5−5−10−15−20

41. 

5

10

x

y

Focus (0, −5)

x = −4

−5

−10

−15

5 10 15−5−10

43. 

5

10

15

x

y

Focus (8, −1)

x = 2

−5

−10

−15

5 10 15 20−5

45. x 2 = −16y  

47. (y − 2)2 = 4 √
—
 2  (x − 2)

49. (y +  √
—
 3  )2 = −4 √

—
 2  (x −  √

—
 2  )

51. x 2 = y
53. (y − 2)2 =   1 __ 

4
  (x + 2)

55. (y −  √
—
 3  )2 = 4 √

—
 5  (x +  √

—
 2  )

57. y 2 = −8x
59. (y + 1)2 = 12(x + 3)
61. (0, 1)  

63. At the point 2.25 feet above the vertex  65. 0.5625 feet  
67. x 2 = −125(y − 20), height is 7.2 feet  69. 0.2304 feet

Section 10.4
1. The xy term causes a rotation of the graph to occur.
3. The conic section is a hyperbola.  5. It gives the angle of 
rotation of the axes in order to eliminate the xy term.
7. AB = 0, parabola  9. AB = −4 < 0, hyperbola
11. AB = 6 > 0, ellipse  13. B 2 − 4AC = 0, parabola
15. B 2 − 4AC = 0, parabola   17. B 2 − 4AC = −96 < 0, ellipse
19. 7x′2 + 9y′2 − 4 = 0  21. 3x′2 + 2x′y′ − 5y′2 + 1 = 0
23. θ = 60°, 11x′2 − y′2 +   √

—
 3   x′ + y′ − 4 = 0

25. θ = 150°, 21x′2 + 9y′2 + 4x′ − 4  √
—
 3   y′ − 6 = 0

27. θ ≈ 36.9°, 125x′2 + 6x′ − 42y′ + 10 = 0
29. θ = 45°, 3x′2 − y′2 −   √

—
 2   x′ +   √

—
 2   y′ + 1 = 0

31.    √
—
 2   ____ 2  (x′ + y′ ) =    1 __ 2  (x′ − y′ )2  

5

10

x

y

−5

−10

5 10−5−10

33.   (x′ − y′ )2

 ________ 
8

   +   (x′ + y′ )2

 ________ 
2

   = 1  

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−3

35.   (x′ + y′ )2
 ________ 2   −   (x′ − y′ )2

 ________ 2   = 1  

2.5

5

x

y

−2.5

2.5 5 7.5−2.5−5−7.5

−5

37.     √
—
 3   ____ 

2
   x′ −   1 __ 

2
   y′ = 

     1 __ 2   x′ +    √
—
 3   ____ 2   y′ − 1    

2

   

5

10

x

y

−5

5 10 15 20

−10

39. 

4

x

y

−4

4 8

(3, 3)θ = 45º

(−3, −3)

−4−8

−8

8

41. 

4

x

y

−4

4 8

θ = 45º

(0, −2)

(0, 2)

−4−8

−8

8

43. 

1
2
3

x

y

−2
−1−1 1 2 3 4−2−3−4

−4

4

θ = 30º 45. 

47. 
4

x

y

(0, 0)

−4

4 8

θ = 37º

−4−8

−8

49. 

4

x

y

(0, 0)

−4

4 8 12 16

θ = 63º
−4

−8

8

51. θ = 45°

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−3

x'y'

53. θ = 60°

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−3

x'y'

55. θ ≈ 36.9°

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−3

x'y'

57. −4 √
—
 6   < k < 4 √

—
 6    

59. k = 2

8

16

24

x

y

Focus (0, 9)

−8

−16

−24

8 16 24 32−8−16−24−32

y = −9

0.5
1

1.5

x

y

−1
−0.5
−0.2 0.2 0.6 1 1.4−0.6−1−1.4

−1.5

θ = 30º
(0, 1)

(0, −1)
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Section 10.5
1. If eccentricity is less than 1, it is an ellipse. If eccentricity is 
equal to 1, it is a parabola. If eccentricity is greater than 1, it is a 
hyperbola.  3. The directrix will be parallel to the polar axis.
5. One of the foci will be located at the origin. 7. Parabola with 
e = 1 and directrix   3 _ 4   units below the pole.  9. Hyperbola 

with e = 2 and directrix   5 _ 2   units above the pole.  11. Parabola 

with e = 1 and directrix   3 _ 10   units to the right of the pole.  

13. Ellipse with e =   2 _ 7   and directrix 2 units to the right of the pole.

15. Hyperbola with e =   5 _ 3   and directrix   11 _ 5   units above the pole.

17. Hyperbola with e =   8 _ 7   and directrix   7 _ 8   units to the right of 

the pole.   19. 25x 2 + 16y 2 − 12y − 4 = 0 
21. 21x 2 − 4y 2 − 30x + 9 = 0  23. 64y 2 = 48x + 9  
25. 25x 2 − 96y 2 − 110y − 25 = 0   27. 3x 2 + 4y 2 − 2x − 1 = 0  
29. 5x 2 + 9y 2 − 24x − 36 = 0  
31. 

2.5

5

x

y

Vertex
(−5, 0)

Vertex 
(−1.67, 2.89)

Vertex
(−1.67, −2.89)

Focus (0, 0)

−2.5

5 7.5−2.5−5−7.5

5
3

Vertex

33. 

2
4
6

x

y

−4
−2−2 2 4 6 8 10−4−6−8−10

−6

8
10
12
14
16 Vertex (0, 10)

Focus
(0, 0)

35. 

5

10

15

x

y

Focus (0, 0)

−5

−10

−15

5 10 15−5−10−15−20

Vertex
(−8, 0)

 37. 

1
2
3

x

y

−2
−1−1 1 2 3 4 5−2−3−4−5

−3

Vertex (0, −1)

Focus (0, 0)

y = −2

39.

4
6

2

8
10
12
14

x

y

x = 5

−2
2 4 6−2−4−8−6−10−12−14−16

−4
−6
−8

−10
−12
−14

Focus (0, 0)

41. 

2.5

5

7.5

x

y

Vertex
(−2.68, 2.4)

Vertex (0, 6)

Vertex
(2.68, 2.4)

Focus (0, 0)

−2.5

2.5 5 7.5−2.5−5−7.5

43. r =   4 _________ 
5 + cos θ

  

45. r =   4 _ 
1 + 2sin θ

     47. r =   1 _ 
1 + cos θ

     49. r =   7 __ 
8 − 28cos θ

     

51. r =   12 _ 
2 + 3sin θ

     53. r =   15 _ 
4 − 3cos θ

       55. r =   3 _ 
3 − 3cos θ

  

57. r = ±    2 __  
 √
—

  1 + sin θ cos θ  
     59. r = ±   2 __  

4cos θ + 3sin θ
  

Chapter 10 Review exercises

1.   x 2 ___ 
52

   +   y 2 ___ 
82

   = 1; center: (0, 0); vertices: (5, 0), (−5, 0), (0, 8),  

(0, −8); foci: (0,  √
—

 39  ), (0, − √
—

 39  )  3.   
(x + 3)2

 _ 
12

   +   
(y − 2)2

 _ 
32

   = 1  

(−3, 2); (−2, 2), (−4, 2), (−3, 5), (−3, −1); (−3, 2 + 2 √
—
 2  ),  

(−3, 2 − 2 √
—
 2  )  

5. Center: (0, 0); vertices: (6, 0), 
(−6, 0), (0, 3), (0, −3);  
foci: (3 √

—
 3  , 0), (−3 √

—
 3  , 0) 

2.5
5

7.5

x

y

−5
−2.5
−2.5 2.5 5 7.5 10−5−7.5−10

−7.5

7. Center: (−2, −2); vertices:  
(2, −2), (−6, −2), (−2, 6),  
(−2, −10); foci: (−2, − 2 + 4 √

—
 3  ), 

(−2, − 2 − 4 √
—
 3  )

5
10
15

x

y

−10
−5
−5 5 10 15 20−10−15−20

−15

9.   x 2 ___ 
25

   +   y 2 ___ 
16

   = 1  11. Approximately 35.71 feet

13.   
(y + 1)2

 _ 42   −   
(x − 4)2

 _ 
62    = 1; center: (4, −1); vertices: (4, 3),  

(4, −5); foci: (4, −1 + 2 √
—

 13  ), (4, −1 − 2 √
—

 13  )

15.   (x − 2)2

 _______ 
22

   −    
(y + 3)2

 _ 
   2 √

—
 3     2 

      = 1; center: (2, −3); vertices: (4, −3),  

(0, −3); foci: (6, −3), (−2, −3)
17. y

5
10
15

Vertex
(−1, 8)

Vertex
(−1, −6)

Focus
(−1, 8.28)

Focus
(−1, −6.28)

−10
−5
−5 5 10 15 20−10−15−20

−15

20

x

−20

19. 

5
10
15
20

x

y

Vertex
(0, −0.46)

Vertex
(0, 6.46)

Focus
(0, −3)

Focus
(0, 9)

−10
−5
−5 5 10 15 20−10−15−20

−15
−20

21.   
(x − 5)2

 _ 1   −   
(y − 7)2

 _ 3   = 1   23. (x + 2)2 =   1 _ 2  (y − 1); 

vertex: (−2, 1); focus:   −2,   9 _ 8     ; directrix: y =   7 _ 8  

25. (x + 5)2 = (y + 2); vertex: (−5, −2); focus:   −5, −  7 _ 4     ; 
directrix: y = −  9 _ 4  

27.  

1
2
3

x

y

Vertex (−3, 1)

−2
−1−1 1 2 3 4 5−2−3−4−5

−3

x = −25
8

31. (x − 2)2 =     1 __ 
2

     (y − 1)

29.  

5

10

x

y

−5

−10

−15

5 10−5−10−15

x = 5
4

1
2

1
4

33. B 2 − 4AC = 0, parabola    35. B 2 − 4AC = − 31 < 0, ellipse
37. θ = 45°, x′ 2 + 3y′ 2 − 12 = 0



ODD ANSWERSC-42

39. θ = 45° 41. Hyperbola with e = 5 and directrix 2 
units to the left of the pole.

43. Ellipse with e =   3 _ 4   and directrix   1 _ 3   
unit above the pole.

45. 

2.5
5

7.5

x

y

−5
−2.5
−2.5 2.5 5 7.5 10−5−7.5−10

−7.5
y = −3

Focus
(4, 0)

Vertex

49. r =   3 _ 
1 + cos θ

  

47. 

8

16

24

x

y

Focus (0, 0)

Vertex
(10, 0)

−8

−16

−24

8 16 24 32−8−16−24−32

Chapter 10 practice test

1.   x 2 ___ 
32

   +   y 2 ___ 
22

   = 1; center: (0, 0); vertices: (3, 0), (−3, 0), (0, 2),  

(0, −2); foci: ( √
—
 5  , 0), (− √

—
 5  , 0)

3. Center: (3, 2); vertices: (11, 2),  
(−5, 2), (3, 8), (3, −4); foci:  
(3 + 2 √

—
 7  , 2), (3 − 2 √

—
 7  , 2)

5
10
15

x

y

−10
−5
−5 5 10 15−10−15

−15

5.   (x − 1)2

 _______ 
36

   +   (y −2)2

 ______ 
27

   = 1

7.   x 2 _ 
72

   −   
y 2

 _ 
92

   = 1; center: (0, 0); 

vertices (7, 0), (−7, 0);  

foci: ( √
—

 130  , 0), (− √
—

 130  , 0); 

asymptotes: y = ±   9 __ 
7

  x

9. Center: (3, −3); vertices: (8, −3), (−2, −3); foci: (3 +  √
—

 26  , −3),  
(3 −  √

—
 26  , −3); asymptotes: y = ±   1 _ 5  (x − 3) − 3

5

x

y

−5

5 10 15 20−5−10−15−20

−10

Vertex (−2, −3)

Vertex (8, −3)

Center (3, −3)
Focus

Focus

11.   (y − 3)2

 _______ 
1

   −   (x − 1)2

 _______ 
8

   = 1  13. (x − 2)2 =   1 _ 3  (y + 1); vertex: 

(2, −1); focus:   2, −  11 ___ 12     ; directrix: y = −  13 ___ 
12

  

15. 

5

10

15

x

y

Focus (−5, 4)

x = −1−5

−10

5 10−5−10−15−20

Vertex (−3, 4)

17. Approximately 8.48 feet
19. Parabola; θ ≈ 63.4°

21. x′ 2 − 4x′ + 3y′ = 0

1
2
3

x

y

−2
−1−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3


2,   3

4

23. Hyperbola with e =   3 _ 2  , 
and directrix   5 _ 

6
   units to the 

right of the pole.

25.  

0.4

0.8

x

y

−0.4

0.4 0.8 1.2 1.6−0.4−0.8−1.2−1.6

−0.8

−1.2

−1.6

−2

Vertex 0,   4
1

y = 2
1

Focus
(0, 0)

ChapteR 11

Section 11.1
1. A sequence is an ordered list of numbers that can be either 
 finite or infinite in number. When a finite sequence is defined 
by a formula, its domain is a subset of the non-negative integers. 
When an infinite sequence is defined by a formula, its domain is 
all positive or all non-negative integers.  3. Yes, both sets go on 
indefinitely, so they are both infinite sequences.
5. A factorial is the product of a positive integer and all the 
positive integers below it. An exclamation point is used to indicate 
the operation. Answers may vary. An example of the benefit of 
using factorial notation is when indicating the product It is much 
easier to write than it is to write out 
13 ∙ 12 ∙ 11 ∙ 10 ∙ 9 ∙ 8 ∙ 7 ∙ 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1.

7. First four terms: −8, −  16 _ 3  , − 4, −  16 _ 5    9. First four terms: 

2,   1 _ 2  ,   8 _ 27  ,   1 _ 4    11. First four terms: 1.25, −5, 20, −80

13. First four terms:   1 _ 3  ,   4 _ 5  ,   9 _ 7  ,   16 _ 9     15. First four terms:  

−  4 _ 5  , 4, −20, 100  17.   1 _ 3  ,   4 _ 5  ,   9 _ 7  ,   16 _ 9  ,   25 _ 11  , 31, 44, 59

19. −0.6, −3, −15, −20, −375, −80, −9375, −320

21. an = n 2 + 3  23. an =   2
n
 _ 2n   or   2

n − 1
 _ n    25. an =    −  1 _ 2      

n − 1
 

27. First five terms: 3, −9, 27, −81, 243  29. First five terms: 

−1, 1, −9,   27 _ 11  ,   891 _ 5    31.   1 _ 24  , 1,   1 _ 4  ,   3 _ 2  ,   9 _ 4  ,   81 _ 4  ,   2187 _ 8  ,   531,441 _ 
16

  

33. 2, 10, 12,   14 _ 5  ,   4 _ 5  , 2, 10, 12  35. a 1 = −8, an = an − 1 + n

37. a 1 = 35, an = an − 1 + 3  39. 720  41. 665,280

43. First four terms: 1,   1 _ 2  ,   2 _ 3  ,   3 _ 2  

45. First four terms: −1, 2,   6 _ 5  ,   24 _ 11  

1
2
3

x

y

−2
−1−1 1 2 3 4

(2, 0)(−2, 0)
−2−3−4

−4
−3

4
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47. 

1
2
3

n

an

−2
−1−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3

4
5
6

(1, 0)

49. 

1
2
3

n

an

−2
−1−1 1 2 3 4 5 6−2−3−4−5−6

−4
−5
−6

−3

4
5
6

(1, 2)

(5, 0)

(4, 1)(2, 1)

(3, 0)

51. 

6
12
18

n

an

−12
−6−1 1

(1, 2)

(2, 6)
(3, 12)

(4, 20)
(5, 30)

2 3 4 5 6 7−2−3−4−5

−24
−30
−36

−18

24
30
36

53. an = 2n − 2  

55. a 1 = 6, an = 2an − 1 − 5

57. First five terms:  

  29 ___ 
37

  ,   152 ____ 
111

  ,   716 ____ 
333

  ,   3188 _____ 
999

  ,   13724 ______ 
2997

  

59. First five terms: 2, 3, 5, 17, 
65537  

61. a 10 = 7,257,600

63. First six terms: 0.042, 0.146, 0.875, 2.385, 4.708
65. First four terms: 5.975, 32.765, 185.743, 1057.25, 6023.521
67. If an = −421 is a term in the sequence, then solving the 
 equation −421 = −6 − 8n for n will yield a non-negative integer. 
However, if −421 = −6 − 8n, then n = 51.875 so  
an = −421 is not a term in the sequence.
69. a 1 = 1, a 2 = 0, an = an − 1 − an − 2

71.   (n + 2)! _______ 
(n − 1)!

   =   (n + 2) · (n + 1) · (n) · (n − 1) · ... · 3 · 2 · 1    ___________________________________   
(n − 1) · ... · 3 · 2 · 1

   

    = n(n + 1)(n + 2) = n 3 + 3n 2 + 2n

Section 11.2

1. A sequence where each successive term of the sequence 
increases (or decreases) by a constant value.  3. We find 
whether the difference between all consecutive terms is the 
same. This is the same as saying that the sequence has a common 
difference.  5. Both arithmetic sequences and linear functions 
have a constant rate of change. They are different because their 
domains are not the same; linear functions are defined for all 
real numbers, and arithmetic sequences are defined for natural 
numbers or a subset of the natural numbers.  7. The common 
difference is   1 _ 2     9. The sequence is not arithmetic because 

16 − 4 ≠ 64 − 16.  11. 0,   2 _ 3  ,   4 _ 3  , 2,   8 _ 3    13. 0, −5, −10, −15, −20

15. a 4 = 19  17. a 6 = 41  19. a 1 = 2  21. a 1 = 5  
23. a 1 = 6 25. a 21 = −13.5 27. −19, −20.4, −21.8, −23.2, −24.6
29. a 1 = 17; an = an − 1 + 9; n ≥ 2 31. a 1 = 12; an = an − 1 + 5; n ≥ 2

33. a 1 = 8.9; an = an − 1 + 1.4; n ≥ 2 35. a 1 =   1 __ 5  ; an = an − 1 +   1 __ 4  ; n ≥ 2

37. a 1 =   1 __ 6  ; an = an − 1 −  13 ___ 12  ; n ≥ 2 39. a 1 = 4; an = an − 1 + 7; a 14 = 95

41. First five terms: 20, 16, 12, 8, 4  43. an = 1 + 2n
45. an = −105 + 100n   47. an = 1.8n   49. an = 13.1 + 2.7n

51. an =   1 _ 3  n −   1 _ 3     53. There are 10 terms in the sequence.

55. There are 6 terms in the sequence.
57.  The graph does not represent an arithmetic sequence.

59. 

5
10

n

an

−5
−10
−15
−20
−25
−30
−35

−0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

(1, 9)
(2, −1)

(3, −11)

(4, −21)

(5, −31)

65. 

1
2
3

n

an

−1−1 1 2 3 4 5 6−2−3−4−5−6

4
5
6
7
8
9

10

(1, 5.5)
(3, 6.5)

(4, 7) (4, 7.5)
(2, 6)

61. 1, 4, 7, 10, 13, 16, 19
63. 

1
2
3

n

an

−1−1 1 2 3 4 5 6−2−3−4−5−6

4
5
6
7
8
9

10
11
12
13
14

(1, 1)

(2, 4)

(3, 7)

(4, 10)

(5, 13)

67. Answers will vary. 
Examples: an = 20.6n and  
an = 2 + 20.4n
69. a 11 = −17a + 38b

71. The sequence begins to have negative values at the 13th 

term, a 13 = −   1 _ 3     73. Answers will vary. Check to see that the 

sequence is  arithmetic. Example: recursive formula: a 1 = 3,  
an = an − 1 − 3. First 4 terms: 3, 0, −3, −6; a 31 = −87

Section 11.3
1. A sequence in which the ratio between any two consecutive 
terms is constant.  3. Divide each term in a sequence by 
the preceding term. If the resulting quotients are equal, then 
the sequence is geometric.  5. Both geometric sequences 
and exponential functions have a constant ratio. However, their 
domains are not the same.  Exponential functions are defined for 
all real numbers, and  geometric sequences are defined only for 
positive integers.  Another difference is that the base of a geometric 
sequence (the common ratio) can be negative, but the base of an 
exponential function must be positive.  7. The common ratio 
is −2  9. The sequence is geometric. The common ratio is 2.
11. The sequence is geometric. The common ratio is −  1 _ 2  .
13. The sequence is geometric. The common ratio is 5.

15. 5, 1,   1 _ 5  ,   1 _ 25  ,   1 _ 125    17. 800, 400, 200, 100, 50

19. a 4 = −  16 _ 27    21. a 7 = −  2 _ 729    23. 7, 1.4, 0.28, 0.056, 0.0112

25. a = −32, an =   1 _ 2  an − 1  27. a 1 = 10, an = −0.3 an − 1

29. a 1 =   3 _ 5  , an =   1 _ 
6

  an − 1  31. a 1 =   1 _ 512  , an = −4an − 1

33. 12, −6, 3, −  3 _ 2  ,   3 _ 4    35. an = 3n − 1

37. an = 0.8 ∙ (−5)n − 1   39. an =  −    4 __ 5      
n − 1

 

41. an = 3 ∙    −  1 __ 3      
n − 1

       43. a 12 =   1 ________ 
177, 147

  

45. There are 12 terms in the sequence.
47. The graph does not represent a geometric sequence.
49. 

12
24
36

n

an

−1−0.5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

(1, 3) (2, 6) (3, 12)
(4, 24)

(5, 48)
48
60

51. Answers will vary. Examples: 
a 1 = 800, an = 0.5an − 1 and  
a 1 = 12.5, an = 4an − 1

53. a 5 = 256b
55. The sequence exceeds 100  
at the 14th term, a 14 ≈ 107.
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57. a 4 = −  32 ___ 
3

   is the first non-integer value

59. Answers will vary. Example: explicit formula with a decimal 
common ratio: an = 400 ∙ 0.5n − 1; first 4 terms: 400, 200, 100, 50; 
a 8 = 3.125

Section 11.4
1. An nth partial sum is the sum of the first n terms of a 
 sequence.  3. A geometric series is the sum of the terms in a 
geometric sequence.  5. An annuity is a series of regular 
equal payments that earn a constant compounded interest.

7.  ∑ 
n = 0

  
4

  5n    9.  ∑ 
k = 1

  
5

  4     11.  ∑ 
k = 1

  
20

  8k + 2    13. S 5 =    25 _ 2   

15. S 13 = 57.2   17.  ∑ 
k = 1

  
7

  8 ∙ 0.5k − 1   

19. S 5 =      
9  1 −      1 _ 3      

5
    
  __ 

1 −   1 _ 3  
   =   121 _ 9   ≈ 13.44

21. S 11 =   
64(1 − 0.211)

 __ 1 − 0.2   =   781,249,984 __ 
9,765,625

   ≈ 80

23. The series is defined. S =   2 _ 1 − 0.8  

25. The series is defined. S =   −1 __________ 
1 −   −  1 __ 2     

  

27. 

250
500
750

0 x

y

1 2 3 4 5 6 7 8 9 10 11 12

1000
1250
1500
1750
2000

Su
m

 o
f D

ep
os

its

Month

29. Sample answer: The 
graph of Sn seems to be 
approaching 1. This makes 

sense because  ∑ 
k = 1

  
∞

       1 _ 2      k   is a 

defined infinite  geometric 

series with S =   
  1 __ 2  
 _________ 

1 −     1 __ 2     
     = 1.

31. 49  33. 254  35. S 7 =   147 _ 2    37. S 11 =   55 _ 2  

39. S 7 = 5208.4  41. S 10 = −  1023 _ 
256

    43. S = −  4 _ 3  

45. S = 9.2  47. $3,705.42  49. $695,823.97
51. ak = 30 − k  53. 9 terms  55. r =   4 _ 5  
57. $400 per month  59. 420 feet 61. 12 feet

Section 11.5
1. There are m + n ways for either event A or event B to occur.
3. The addition principle is applied when determining the total 
possible of outcomes of either event occurring. The  multiplication 
principle is applied when determining the  total possible 
outcomes of both events occurring. The word “or” usually 
implies an addition problem. The word “and”  usually implies a 
multiplication problem.  5. A combination;  
C(n, r) =   n! _ 

(n − r)!r!
    7. 4 + 2 = 6  9. 5 + 4 + 7 = 16  

11. 2 × 6 = 12  13. 103 = 1,000  15. P(5, 2) = 20  
17. P(3, 3) = 6  19. P(11, 5) = 55,440  21. C(12, 4) = 495  
23. C(7, 6) = 7  25. 210 = 1,024  27. 212 = 4,096  

29. 29 = 512  31.   8! _ 
3!

   = 6,720  33.   12! _ 
3!2!3!4!

    35. 9

37. Yes, for the trivial cases r = 0 and r = 1. If r = 0, then  
C(n, r) = P(n, r) = 1. If r = 1, then r = 1, C(n, r) = P(n, r) = n.

39.   6! ___ 
2!

   × 4! = 8,640   41. 6 − 3 + 8 − 3 = 8  43. 4 × 2 × 5 = 40

45. 4 × 12 × 3 = 144  47. P(15, 9) = 1,816,214,400
49. C(10, 3) × C(6, 5) × C(5, 2) = 7,200  51. 211 = 2,048

53.   20! ______ 
6!6!8!

   = 116,396,280

Section 11.6
1. A binomial coefficient is an alternative way of denoting the 

combination C(n, r). It is defined as    n   r      = C(n, r) =   n! _________ 
r !(n − r)!

  .

3. The Binomial Theorem is defined as (x + y)n =  ∑ 
k = 0

  
n

     n   
k
     x n − ky k  and 

can be used to expand any binomial.
5. 15  7. 35  9. 10  11. 12,376
13. 64a3 − 48a2b + 12ab2 − b3  15. 27a3 + 54a2b + 36ab2 + 8b3

17.  1024x5 + 2560x4y + 2560x3y2 + 1280x2y3 + 320xy4 + 32y5

19. 1024x5 − 3840x4y + 5760x3y2 − 4320x2y3 + 1620xy4 − 243y5

21.   1 ___ 
x4

   +   8 ___ 
x3y

   +   24 ____ 
x2y2

   +   32 ___ 
xy3

   +   16 ___ 
y4

    23. a17 + 17a16b + 136a15b2

25. a15 − 30a14b + 420a13b2

27. 3,486,784,401a20 + 23,245,229,340a19b + 73,609,892,910a18b2

29. x 24 − 8x 21  √
—
 y    + 28x 18y  31. −720x 2y 3

33. 220,812,466,875,000y 7  35. 35x 3y 4

37. 1,082,565a 3b 16  39.    
1152y2

 _ 
x7   

41. f2(x) = x 4 + 12x 3

1
2
3

x

f2(x)y

−2
−1−1 1 2−2−3−4−5

−4
−5

−3

4
5
6
7

45. 590,625x 5y 2  

47. k − 1

43. f4(x) = x 4 + 12x 3 + 54x 2 + 108x

10
20
30

x

f4(x)
y

−20
−10−1 1 2−2−3−4−5−6−7−8−9

−40
−50
−60
−70
−80
−90

−30

40
50
60
70
80
90

49. The expression (x3 + 2y2 − z)5 cannot be expanded using the 
Binomial Theorem because it cannot be rewritten as a binomial.

Section 11.7
1. Probability; the probability of an event is restricted to values 
between 0 and 1, inclusive of 0 and 1.
3. An experiment is an activity with an observable result.
5. The probability of the union of two events occurring is a 
 number that describes the likelihood that at least one of the 
events from a probability model occurs. In both a union of sets 
A and B and a union of events A and B, the union includes either 
A or B or both. The difference is that a union of sets results in 
another set, while the union of events is a probability, so it is 

always a numerical value between 0 and 1.   7.   1 __ 
2

    

9.   5 __ 
8

    11.   5 __ 8    13.   3 __ 
8

    15.   1 __ 
4

    17.    3 __ 4    19.   3 __ 
8

    

21.   1 __ 
8

    23.   15 ___ 
16

    25.    5 __ 
8

    27.   1 ___ 
13

   29.    1 ___ 
26

    31.   12 ___ 
13

  



ODD ANSWERS C-45

33. 1 2 3 4 5 6

1 (1, 1) 
2

(1, 2) 
3

(1, 3) 
4

(1, 4) 
5

(1, 5) 
6

(1, 6) 
7

2 (2, 1) 
3

(2, 2) 
4

(2, 3) 
5

(2, 4) 
6

(2, 5) 
7

(2, 6) 
8

3 (3, 1) 
4

(3, 2) 
5

(3, 3) 
6

(3, 4) 
7

(3, 5) 
8

(3, 6) 
9

4 (4, 1) 
5

(4, 2) 
6

(4, 3) 
7

(4, 4) 
8

(4, 5) 
9

(4, 6) 
10

5 (5, 1) 
6

(5, 2) 
7

(5, 3) 
8

(5, 4) 
9

(5, 5) 
10

(5, 6) 
11

6 (6, 1) 
7

(6, 2) 
8

(6, 3) 
9

(6, 4) 
10

(6, 5) 
11

(6, 6) 
12

35.   5 ___ 
12

    37. 0.  39.    4 __ 
9

    41.    1 __ 
4

    43.    3 __ 
4

  

45.    21 ___ 26     47.   C(12, 5) ________ 
C(48, 5)

   =   1 _____ 
2162

    49.   C(12, 3)C(36, 2)  ______________ 
C(48, 5)

   =   175 _____ 
2162

  

51.   C(20, 3)C(60, 17)  _______________  
C(80, 20)

   ≈ 12.49% 53.   C(20, 5)C(60, 15)  _______________  
C(80, 20)

   ≈ 23.33%

55. 20.50 + 23.33 − 12.49 = 31.34%

57.   C(40000000, 1)C(277000000, 4)   ___________________________  
C(317000000, 5)

   = 36.78%

59.   C(40000000, 4)C(277000000, 1)   ___________________________  
C(317000000, 5)

   = 0.11%

Chapter 11 Review exercises
1. 2, 4, 7, 11  3. 13, 103, 1003, 10003
5. The sequence is arithmetic. The common difference is d =   5 _ 3  .
7. 18, 10, 2, −6, −14  9. a 1 = −20, an = an − 1 + 10

11. an =   1 _ 3  n +   13 _ 24    13. r = 2  15. 4, 16, 64, 256, 1024

17. 3, 12, 48, 192, 768  19. an = −  1 _ 5   ∙      1 _ 3      
n − 1

 

21.  ∑ 
m = 0

  
5

      1 __ 2  m + 5      23. S 11 = 110  25. S9 ≈ 23.95

27. S =   135 ____ 
4

    29. $5,617.61  31. 6  33. 104 = 10,000

35. P(18, 4) = 73,440  37. C(15, 6) = 5,005

39. 250 = 1.13 × 1015  41.   8! ____ 
3!2!

   = 3,360  43. 490,314

45. 131,072a 17 + 1,114,112a 16b + 4,456,448a 15b 2

47. 
  1 2 3 4 5 6

1 1, 1 1, 2 1, 3 1, 4 1, 5 1, 6
2 2, 1 2, 2 2, 3 2, 4 2, 5 2, 6
3 3, 1 3, 2 3, 3 3, 4 3, 5 3, 6
4 4, 1 4, 2 4, 3 4, 4 4, 5 4, 6
5 5, 1 5, 2 5, 3 5, 4 5, 5 5, 6
6 6, 1 6, 2 6, 3 6, 4 6, 5 6, 6

49.   1 __ 
6

    51.   5 __ 
9

    53.   4 __ 
9

    55. 1 −   C(350, 8) ________ 
C(500, 8

  ) ≈ 94.4%

57.   C(150, 3)C(350, 5)  ________________  
C(500, 8)

   ≈ 25.6%

Chapter 11 practice test
1. −14, −6, −2, 0  3. The sequence is arithmetic. The 
common difference is d = 0.9.  
5. a 1 = −2, an = an − 1 −  3 _ 2  ; a 22 = −  67 _ 2    

7. The sequence is geometric. The common ratio is r =   1 _ 2  .  

9. a 1 = 1, an = −  1 _ 2   ∙ an −1  11.  ∑ 
k = −3

  
15

     3k 2 −   5 __ 6  k    
13. S 7 = −2,604.2  15. Total in account: $140,355.75; Interest 
earned: $14,355.75  17. 5 × 3 × 2 × 3 × 2 = 180  

19. C(15, 3) = 455  21.   10! _ 
2!3!2!

   = 151,200  23.   429x 14
 _ 

16
    

25.   4 _ 7    27.    5 _ 7    29.   C(14, 3)C(26, 4)  ______________ 
C(40, 7)

   ≈ 29.2%

ChapteR 12
Section 12.1
1. The value of the function, the output, at x = a is f (a). When 
the   lim    

x → a
  f (x) is taken, the values of x get infinitely close to a but 

never equal a. As the values of x approach a from the left and 
right, the limit is the value that the function is  approaching.
3. −4  5. −4  7. 2  9. Does not exist  11. 4
13. Does not exist  15. Answers will vary  17. Answers 
will vary  19. Answers will vary  21. Answers will vary  
23. 7.38906  25. 54.59815
27. e 6 ≈ 403.428794, e 7 ≈ 1096.633158, en

29.   lim    
x → −2

  f (x) = 1  31.   lim    
x → 3

      x 2 − x − 6 _________ 
x 2 − 9

      =   5 _ 
6

   ≈ 0.83

33.   lim    
x → 1

      x 2 − 1 __ 
x 2 − 3x + 2

      = −2.00 35.   lim    
x → 1

      10 − 10x 2 __ 
x 2 − 3x + 2

     = 20.00

37.   lim    
x → −  1 _ 2  

      x __ 
4x 2 + 4x + 1

     does not exist. Function values decrease 

without bound as x approaches −0.5 from either left or right.

39.   lim    
x → 0

    7tan x _ 3x   =   7 _ 3    41.   lim    
x → 0

    2sin x _ 4tan x   =   1 _ 2   

x f(x)

−0.1 2.34114234     lim    
x → 0−    

7tan x _ 3x   
↓
   7 _ 3   

   7 _ 3   
↑

    lim    
x → 0+

    7tan x _ 3x   

−0.01 2.33341114

−0.001 2.33333411

0 Error

0.001 2.33333411

0.01 2.33341114

0.1 2.34114234

 x f(x)

−0.1 0.49750208     lim    
x → 0−

    2sin x _ 4tan x   
↓
   1 _ 2   

   1 _ 2   
↑

    lim    
x → 0+

    2sin x _ 4tan x   

−0.01 0.49997500

−0.001 0.49999975

0 Error

0.001 0.49999975

0.01 0.49997500

0.1 0.49750208

43.   lim    
x → 0

   e 
 e 

−  1 ___ 
x 2

  
 
  = 1.0   45.   lim     

x → −1−
    |x + 1| _______ 

x + 1
   =   −(x + 1) ________ 

(x + 1)
   = −1 

and   lim     
x → −1+

    |x + 1| _______ 
x + 1

   =   (x + 1) _______ 
(x + 1)

   = 1 since the right-hand limit does 

not equal the left-hand limit,   lim    
x → −1

    |x + 1| _______ 
x + 1

    does not exist.

47.   lim    
x → −1

    1 _______ 
(x + 1)2

   does not exist. The function increases without 

bound as x approaches −1 from either side.  

49.   lim    
x → 0

    5 _______ 
1 −  e   

2 _ x   
   does not exist. Function values approach 5 from 

the left and approach 0 from the right.
51. Through examination of the postulates and an understanding 
of relativistic physics, as v → c, m → ∞. Take this one step 

further to the solution,   lim    
v → c−  m =   lim    

 v → c −
     

mo __ 

 √ _________

 1 −     v 2 _ c2       

      = ∞
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Section 12.2
1. If f is a polynomial function, the limit of a polynomial  function 
as x approaches a will always be f (a).  3. It could mean either 
(1) the values of the function increase or decrease without bound 
as x approaches c, or (2) the left and right-hand limits are not 
equal.  5. −  10 _ 3    7. 6  9.   1 _ 2    11. 6  

13. Does not exist  15. −12  17. −   √
—
 5   _ 10    19. −108  

21. 1  23. 6  25. 1  27. 1  29. Does not exist 

31. 6 +  √
—
 5    33.   3 _ 5    35. 0  37. −3  39. Does not 

exist; right-hand limit is not the same as the  left-hand limit.
41. 2  43. Limit does not exist; limit approaches infinity.

45. 4x + 2h  47. 2x + h + 4   49.   
cos (x + h) − cos(x)

  __ 
h

  

51.   −1 ________ 
x(x + h)

    53.    −1 __  
 √
—

 x + h   +  √
—
 x  
     55. f (x) =   x 2 + 5x + 6 __________ 

x + 3
  

57. Does not exist  59. 32 

Section 12.3
1. Informally, if a function is continuous at x = c, then there is no 
break in the graph of the function at f (c), and f (c) is defined.
3. Discontinuous at a = −3; f (−3) does not exist  
5. Removable discontinuity at a = −4; f (−4) is not defined
7. Discontinuous at a = 3;   lim    

 x → 3
  f (x) = 3, but f (3) = 6, which is 

not equal to the limit.     9.   lim    
 x → 2

  f (x) does not exist

11.   lim    
 x → 1−

  f (x) = 4;   lim    
 x → 1+

  f (x) = 1, therefore,   lim    
x → 1

  f (x) does not exist.

13.   lim    
x → 1−

  f (x) = 5 ≠   lim    
x → 1+

  f (x) = −1, thus   lim    
x → 1

  f (x) does not exist.

15.   lim     
x → −3−

  f (x) = −6,   lim     
x → −3+

  f (x) = −   1 _ 3   , therefore,   lim    
x → −3

  f (x) does 

not exist.   17. f (2) is not defined   19. f (−3) is not defined.
21. f (0) is not defined.  23. Continuous on ( −∞, ∞)
25. Continuous on ( − ∞, ∞)  27. Discontinuous at x = 0 
and x = 2  29. Discontinuous at x = 0  31. Continuous 
on (0, ∞)  33. Continuous on [4, ∞)  35. Continuous on 
( −∞, ∞)  37. 1, but not 2 or 3  39. 1 and 2, but not 3
41. f (0) is undefined   43. ( −∞, 0) ∪ (0, ∞)
45. At x = −1, the limit does not exist. At x = 1, f (1) does not 
exist. At x = 2, there appears to be a vertical asymptote, and the 

limit does not exist.  47.   x 3 + 6x 2 − 7x  _____________  
(x + 7)(x − 1)

    

49. The function is discontinuous at x = 1 because the limit as x 
approaches 1 is 5 and f (1) = 2.

Section 12.4
1. The slope of a linear function stays the same. The derivative 
of a general function varies according to x. Both the slope of a 
line and the derivative at a point measure the rate of change of 
the function.  3. Average velocity is 55 miles per hour. The 
instantaneous velocity at 2:30 p.m. is 62 miles per hour. The 
instantaneous velocity measures the velocity of the car at an 
instant of time whereas the average velocity gives the velocity of 
the car over an interval.  5. The average rate of change of the 
amount of water in the tank is 45 gallons per minute. If f (x) is 
the function giving the amount of water in the tank at any time t, 
then the average rate of change of f (x) between t = a and t = b is 
f (a) + 45(b − a).  7. f ′(x) = −2  9. f ′(x) = 4x + 1  

11. f ′(x) =   1 _______ (x − 2)2    13. −  16 ________ (3 + 2x)2    15. f ′(x) = 9x 2 − 2x + 2

17. f ′(x) = 0  19. −   1 _ 3         21. Undefined  

23. f ′(x) = −6x − 7 25. f ′(x) = 9x 2 + 4x + 1 27. y = 12x − 15
29. k = −10 or k = 2  31. Discontinuous at x = −2 and 
x = 0. Not differentiable at −2, 0, 2.  33. Discontinuous at 
x = 5. Not differentiable at −4, −2, 0, 1, 3, 4, 5.    35. f (0) = −2  
37. f (2) = −6 39. f ′(−1) = 9 41. f ′(1) = −3 43. f ′(3) = 9
45. Answers vary. The slope of the tangent line near x = 1 is 2. 
47. At 12:30 p.m., the rate of change of the number of gallons  
in the tank is −20 gallons per minute. That is, the tank is  
losing 20 gallons per minute.  49. At 200 minutes after  
noon, the volume of gallons in the tank is changing at the rate of 
30 gallons per minute.  51. The height of the projectile after 
2 seconds is 96 feet.  53. The height of the projectile at t = 3 
seconds is 96 feet.  55. The height of the projectile is zero at 
t = 0 and again at t = 5. In other words, the projectile starts on 
the ground and falls to earth again after 5 seconds.  57. 36π
59. $50.00 per unit, which is the instantaneous rate of change of 
revenue when exactly 10 units are sold.  61. $21 per unit  
63. $36  65. f ′(x) = 10a − 1  67.   4 _ 

(3 − x)2
  

Chapter 12 Review exercises
1. 2  3. Does not exist    5. Discontinuous at x = −1 
(  lim    

 x → a
  f (x) does not exist), x = 3 (jump discontinuity), and x = 7 

(  lim    
 x → a

  a f (x) does not  exist).  7.   lim    
 x → 1

  f (x) = 0  

9. Does not exist  11. −   3 _ 5     13. 1  15. 6  17. 500  

19. −   6 _ 7     21. At x = 4, the function has a vertical asymptote.

23. At x = 3, the function has a vertical asymptote.
25. Removable discontinuity at a = 9  27. Removable 
discontinuity at x = 5  29. Removable discontinuity at x = 5,  
discontinuity at x = 1  31. Removable discontinuity at x = −2,  

discontinuity at x = 5  33. 3  35.    1 __  
(x + 1)(x + h + 1)

     

37.    e 2x + 2h − e 2x
 __ 

h
     39. 10x − 3   41. The function would 

not be differentiable at however, 0 is not in its domain. So it is 
differentiable everywhere in its domain.

Chapter 12 practice test
1. 3  3. 0  5. −1  7.   lim    

 x → 2−
  f (x) = −  5 _ 2  a and   lim    

 x → 2+
  f (x) = 9 

thus, the limit of the function as x approaches 2 does not exist.  

9. −  1 _ 50    11. 1  13. Removable discontinuity at x = 3  

15. f '(x) = −   3 ____ 
2 a   

3 _ 2   
    17. Discontinuous at −2, 0, not 

differentiable at −2, 0, 2 19. Not differentiable at x = 0 (no limit)
21. The height of the projectile at t = 2 seconds  
23. The average velocity from t = 1 to t = 2  
25.   1 _ 3      27. 0    29. 2    31. x = 1   33. y = −14x − 18

35. The graph is not differentiable at x = 1 (cusp).  

37. f '(x) = 8x  39. f '(x) = −   1 _______ 
(2 + x)2

    

41. f '(x) = −3x 2   43. f '(x) =   1 _ 
2 √
—

 x − 1  
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Index
A
AAS (angle-angle-side) 644
absolute maximum 47, 113
absolute minimum 47, 113
absolute value 31, 89
absolute value equation 92, 113
absolute value function 29, 89,  

92
absolute value inequality 94, 113
addition method 762, 767, 854
Addition Principle 982, 1008
adjacent side 486, 498
altitude 644, 747
ambiguous case 646, 747
amplitude 509, 510, 552, 617, 

629
angle 440, 458, 498
angle of depression 492, 498
angle of elevation 492, 498, 644
angle of rotation 913, 931
angular speed 453, 498
annual interest 977
annual percentage rate (APR)  

336, 429
annuity 977, 1008
apoapsis 922
arc 443
arc length 444, 450, 458, 498
arccosine 552
arccosine function 542
Archimedes’ spiral 693, 747
arcsine 552
arcsine function 542
arctangent 552
arctangent function 542
area of a circle 224
area of a sector 451, 498
argument 700, 747
arithmetic sequence 951, 952, 

954, 955, 970, 971, 1008
arithmetic series 971, 1008
arrow notation 278, 317
ASA (angle-side-angle) 644
asymptote 880
augmented matrix 816, 820, 

821, 833, 854
average rate of change 38, 113, 

1052, 1070
axis of symmetry 208, 211, 317, 

880, 902, 903

B
binomial 259, 1008
binomial coefficient 992
binomial expansion 993, 995, 

1008

Binomial Theorem 993, 994, 
1008

break-even point 769, 854

C
cardioid 686, 747
carrying capacity 408, 429
Cartesian equation 676
Celsius 100
center of a hyperbola 880, 931
center of an ellipse 865, 931
central rectangle 880
change-of-base formula 387, 

429
circle 787, 789
circular motion 517
circumference 443
coefficient 224, 268, 317
coefficient matrix 816, 818, 

835, 854
cofunction 578
cofunction identities 491, 578
column 805, 854
column matrix 806
combination 987, 992, 1008
combining functions 52
common base 391
common difference 951, 970, 

1008
common logarithm 358, 429
common ratio 961, 973, 1008
commutative 53
complement of an event 1003, 

1008
complex conjugate 202, 317
Complex Conjugate Theorem  

272
complex number 198, 317, 697
complex plane 199, 317, 697
composite function 51, 52, 53, 

113
compound interest 336, 429
compression 146, 348, 370
conic 864, 879, 928
conic section 714, 931
conjugate 1032
conjugate axis 880, 931
consistent system 758, 854
constant function 29
constant of variation 311, 317
constant rate of change 162
continuity 1040
continuous 239, 1040
continuous function 234, 317, 

1037, 1070
convex limaçon 687, 747
coordinate plane 897

correlation coefficient 180, 187
cosecant 473, 498, 528
cosecant function 529, 562
cosine 561, 596, 597
cosine function 458, 498, 507, 

508, 510, 517, 528
cost function 51, 768, 854
cotangent 473, 498, 534
cotangent function 534, 562
coterminal angles 448, 450, 498
co-vertex 865, 867, 880
Cramer’s Rule 843, 846, 850, 

854
cube root 225
cube root function 30
cubic function 29, 302
curvilinear path 708

D
damped harmonic motion 625, 

634
decompose a composite 

function  59
decomposition 795
decreasing function 43, 113, 

128
decreasing linear function 129, 

187
degenerate conic sections 909
degree 229, 317, 441, 498
De Moivre 697, 702
De Moivre’s Theorem 703, 704, 

747
dependent system 759, 767, 

779, 854
dependent variable 2, 113
derivative 1053, 1054, 1055, 

1056, 1060, 1070
Descartes 697
Descartes’ Rule of Signs 273, 317
determinant 843, 845, 846, 854
difference formula 571
difference quotient 1053
differentiable 1060, 1070
dimpled limaçon 687, 747
directrix 897, 900, 902, 923, 

927, 928, 931
direct variation 311, 317
discontinuou 1040
discontinuous function 1038, 

1070
displacement 452
distance formula 881, 897
diverge 974, 1008
dividend 258
Division Algorithm 258, 259, 

266, 317

divisor 258
domain 2, 10, 22, 23, 113
domain and range 22
domain and range of inverse 

functions 104
domain of a composite function  

58
domain of a rational function  

283
dot product 739, 747
double-angle formulas 584, 

585, 634
doubling time 401, 405, 429
Dürer 688

E
eccentricity 923, 931
electrostatic force 41
elimination 788
ellipse 721, 788, 865, 866, 867, 

869, 872, 896, 923, 927, 931
ellipsis 938
end behavior 226, 287, 317
endpoint 40, 440
entry 805, 854
equation 8
Euler 697
even function 75, 113, 477, 561
even-odd identities 561, 563, 

634
event 999, 1008
experiment 999, 1008
explicit formula 939, 955, 964, 

1008
exponential 344
exponential decay 328, 334, 

343, 401, 403, 406, 416
exponential equation 390
exponential function 328
exponential growth 328, 331, 

401, 405, 407, 416, 429
exponential regression 417
extraneous solution 394, 429
extrapolation 177, 178, 187

F
factorial 946
Factor Theorem 267, 317
Fahrenheit 100
feasible region 791, 854
finite arithmetic sequence 956
finite sequence 939, 1008
foci 865, 867, 880, 931
focus 865, 897, 900, 902, 922, 

927, 928
focus (of an ellipse) 931
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focus (of a parabola) 931
formula 8
function 2, 31, 113
function notation 4
Fundamental Counting 

Principle 984, 1008
Fundamental Theorem of 

Algebra 271, 272, 317

G
Gauss 697, 774, 816
Gaussian elimination 774, 819, 

854
general form 209
general form of a quadratic 

function 209, 317
Generalized Pythagorean 

Theorem 658, 747
geometric sequence 961, 963, 

973, 1008
geometric series 973, 1008
global maximum 251, 252, 317
global minimum 251, 252, 317
Graphical Interpretation of a 

Linear Function 145
gravity 724
growth 344

H
half-angle formulas 589, 634
half-life 397, 401, 403, 429
harmonic motion 624
Heaviside method 797
Heron of Alexandria 663
Heron’s formula 663
horizontal asymptote 280, 281, 

286, 317
horizontal compression 79, 

113, 611
horizontal line 150, 151, 187
horizontal line test 15, 113
horizontal reflection 71, 72, 113
horizontal shift 67, 113, 346, 

367, 507
horizontal stretch 79, 113
hyperbola 879, 882, 883, 884, 

887, 888, 891, 897, 924, 926, 
931

hypotenuse 486, 498

I
identities 468, 479, 498
identity function 29
identity matrix 829, 833, 854
imaginary number 198, 317
inconsistent system 759, 766, 

778, 854
increasing function 43, 113, 128
increasing linear function 129, 

187
independent system 758, 759, 

854

independent variable 2, 113
index of summation 969, 970, 

1008
inequality 790
infinite geometric series 974
infinite sequence 939, 1008
infinite series 974, 1008
initial point 729, 732, 747
initial side 441, 498
inner-loop limaçon 688, 747
input 2, 113
instantaneous rate of change  

1053, 1070
instantaneous velocity 1065, 

1070
Intermediate Value Theorem  

249, 317
interpolation 177, 187
intersection 1001
interval notation 22, 26, 43, 113
inverse cosine function 542, 

552
inverse function 101, 113, 299, 

302
inversely proportional 312, 317
inverse matrix 833, 835
inverse of a radical function  

305
inverse of a rational function  

307
inverse sine function 542, 552
inverse tangent function 542, 

552
inverse trigonometric functions  

541, 542, 544, 548
inverse variation 312, 317
invertible function 301, 317
invertible matrix 829, 843

J
joint variation 314, 317
jump discontinuity 1040, 1070

K
Kronecker 697

L
latus rectum 897, 902, 931
Law of Cosines 659, 747
Law of Sines 645, 659, 747
leading coefficient 229, 317
leading term 229, 318
least common denominator 

(LCD) 1032
least squares regression 178, 187
left-hand limit 1021, 1040, 1070
lemniscate 689, 747
limaçon 687, 688
limit 1018, 1019, 1023, 1029, 

1030, 1031, 1070
Linear Factorization Theorem  

272, 318

linear function 126, 143, 147, 
162, 187

linear growth 328
linear model 163, 175
linear relationship 175
linear speed 452, 453, 498
local extrema 42, 113
local maximum 42, 113, 252
local minimum 42, 113, 252
logarithm 356, 429
logarithmic equation 395
logarithmic model 419
logistic growth model 408, 429
logistic regression 422
long division 257
lower limit 1008
lower limit of summation 969, 

970

M
magnitude 31, 66, 698, 729, 

731, 747
main diagonal 818, 854
major and minor axes 867
major axis 865, 869, 931
marginal cost 1059
matrix 805, 806, 810, 816, 854
matrix multiplication 810, 830, 

835
matrix operations 806
maximum value 208
measure of an angle 441, 498
midline 509, 510, 552, 617
minimum value 208
minor axis 865, 869, 931
model breakdown 177, 187
modeling 162
modulus 31, 700, 747
Multiplication Principle 983, 

984, 1008
multiplicative inverse 831
multiplicative inverse of a 

matrix   829, 854
multiplicity 243, 318
mutually exclusive events 1002, 

1008

N
natural logarithm 360, 393, 429
natural numbers 2
negative angle 441, 448, 467, 

498
Newton’s Law of Cooling 406, 

429
n factorial 946, 1008
nominal rate 336
nondegenerate conic section  

909, 911, 931
nonlinear inequality 790, 854
non-right triangles 644
nth partial sum 969, 1008

nth root of a complex number  
704

nth term of a sequence 939, 
1008

O
oblique triangle 644, 747
odd function 75, 113, 477, 561
one-loop limaçon 687, 747
one-to-one 299, 344, 356, 381, 

387
one-to-one function 12, 103, 

113, 541
opposite side 486, 498
ordered pair 2, 23
ordered triple 774
order of magnitude 402, 429
origin 90
outcomes 999, 1008
output 2, 113

P
parabola 208, 214, 720, 791, 

896, 901, 903, 922, 925, 931
parallel lines 151, 152, 187
parallelograms 733
parameter 708, 747
parametric equation 709, 719, 

721
parametric form 722
parent function 367
partial fraction 795, 854
partial fraction decomposition  

795, 854
Pascal 688
Pascal’s Triangle 994
periapsis 922
period 481, 498, 507, 523, 525, 

603, 617
periodic function 481, 507, 552
periodic motion 617, 624
permutation 984, 1008
perpendicular lines 152, 153, 187
pH 380
phase shift 511, 552
piecewise function 31, 113, 942, 

1041, 1044, 1046
point-slope form 131, 187
point-slope formula 885
polar axis 670, 747
polar coordinates 670, 672, 673, 

674, 681, 747
polar equation 676, 682, 683, 

747, 923, 931
polar form 698
polar form of a complex number 

699, 747
polar form of a conic 928
polar grid 670
pole 670, 747
polynomial 268, 1044
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polynomial function 228, 239, 
246, 250, 318

position vector 729, 731
positive angle 441, 448, 498
power function 224, 318
power rule for logarithms 383, 

387, 429
probability 999, 1008
probability model 999, 1008
product of two matrices 810
product rule for logarithms  

381, 383, 429
product-to-sum formula 596, 

598, 634
profit function 769, 854
properties of determinants 849
properties of limits 1029, 1070
Proxima Centauri 402
Pythagoras 697
Pythagorean identities 560, 563, 

634
Pythagorean Identity 460, 461, 

480, 498, 571
Pythagorean Theorem 585, 612, 

658, 723

Q
quadrantal angle 442, 498
quadratic 799, 801
quadratic equation 607
quadratic formula 219, 607
quadratic function 29, 211, 213
quotient 258
quotient identities 562, 563, 634
quotient rule for logarithms  

382, 429

R
radian 444, 445, 498
radian measure 445, 450, 498
radical functions 301
radiocarbon dating 404
range 2, 113, 542
rate of change 38, 114, 126
rational expression 795, 801
rational function 282, 289, 292, 

318, 1028
Rational Zero Theorem 268, 

318
ray 440, 498
reciprocal 101, 225
reciprocal function 30, 278
reciprocal identities 562, 563, 

634
reciprocal identity 528, 534
reciprocal squared function 30
rectangular coordinates 670, 

672, 673, 674
rectangular equation 676, 713
rectangular form 699, 722
recursive formula 944, 954, 

963, 1009

reduction formulas 588, 634
reference angle 448, 466, 467, 

468, 476, 498
reflection 349, 372
regression analysis 416, 419, 422
relation 2, 114
relative 42
remainder 258
Remainder Theorem 266, 318
removable discontinuity 285, 

318, 1041, 1070
Restricting the domain 108
resultant 733, 748
revenue function 768, 854
Richter Scale 355
right-hand limit 1021, 1040, 

1070
right triangle 486, 541
roots 209
rose curve 691, 748
row 805, 854
row-echelon form 818, 820, 854
row-equivalent 818, 854
row matrix 806
row operations 818, 822, 832, 

833, 834, 854

S
sample space 999, 1009
SAS (side-angle-side) triangle  

658
scalar 734, 748, 808
scalar multiple 808, 854
scalar multiplication 734, 748, 

808
scatter plot 175
secant 473, 498, 528
secant function 528
secant line 1052, 1070
sector of a circle 451
sequence 938, 951, 1009, 1018
series 969, 1009
set-builder notation 25, 26, 114
sigma 969
simple harmonic motion 624, 

634
sine 561, 597, 598
sine function 458, 477, 498, 

506, 511, 516, 518
sinusoidal function 508, 552, 

617
slope 127, 128, 130, 187
slope-intercept form 127, 187
slope of the curve 1051
slope of the tangent 1051
smooth curve 234, 318
solution set 775, 854
solving systems of linear 

equations 760, 762
special angles 464, 489, 570
square matrix 806, 843
square root function 30

SSA (side-side-angle) 644
SSS (side-side-side) triangle  

658
standard form of a quadratic 

function 210, 318
standard position 441, 498, 

729, 748
stepwise function 1038
stretch 348
stretching/compressing factor  

524, 525
substitution method 761, 854
sum and difference formulas for 

cosine 572
sum and difference formulas for 

sine 573
sum and difference formulas for 

tangent 575
summation notation 969, 970, 

1009
sum-to-product formula 599, 

634
surface area 299
symmetry test 682
synthetic division 261, 270, 318
system of equations 817, 818, 

820, 821, 835
system of linear equations 168, 

758, 760, 761, 855
system of nonlinear equations  

785, 855
system of nonlinear inequalities  

791, 855
System of Three Equations in 

Three Variables 846

T
tangent 473, 498, 523
tangent function 524, 525, 526, 

536, 562
tangent line 1051, 1070
term 938, 952, 1009
terminal point 729, 732, 748
terminal side 441, 498
term of a polynomial function  

228, 318
transformation 64, 146
translation 901
transverse axis 880, 931
trigonometric equations 713, 

714
trigonometric functions 486
trigonometric identities 659
turning point 232, 247, 318
two-sided limit 1021, 1053, 

1070

U
union of two events 1001, 1009
unit circle 445, 458, 461, 465, 

477, 486, 498, 604
unit vector 736, 748

upper limit of summation 969, 
970, 1009

upper triangular form 774

V
varies directly 311, 318
varies inversely 312, 318
vector 729, 748
vector addition 733, 748
velocity 1053, 1065
vertex 208, 318, 440, 498, 865, 

897, 903
vertex form of a quadratic 

function 210, 318
vertical asymptote 280, 283, 

287, 318, 542
vertical compression 76, 114
vertical line 151, 187
vertical line test 13, 114
vertical reflection 71, 72, 114
vertical shift 64, 65, 114, 146, 

345, 368, 406, 511
vertical stretch 76, 114, 146, 370
vertical tangent 1062
vertices 865, 867
volume of a sphere 224

X
x-intercept 149, 187

Y
y-intercept 127, 128, 145, 187

Z
zeros 209, 240, 243, 268, 318, 

684
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