Linear Algebra UTM






Linear Algebra UTM

XINLI WANG



©@OSO

Linear Algebra UTM by Xinli Wang is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License, except where
otherwise noted.


https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Contents

Introduction

System of Linear Equations

1.1 Solutions and elementary operations

1.2 Gaussian elimination

1.3 Homogeneous equations

. Matrix Algebra

Introduction

2.1 Matrix Addition, Scalar Multiplication, and
Transposition

2.2 Matrix-Vector Multiplication

2.3 Matrix Multiplication

2.4 Matrix Inverse

. Determinants and Diagonalization

Introduction

3.1 The Cofactor Expansion

3.2 Determinants and Matrix Inverses

3.3 Diagonalization and Eigenvalues

. Vector Geometry

4.1 Vectors and Lines

4.2 Projections and Planes

4.3 More on the Cross Product

13
13

24
38

38
39

60
86

105
129

129
129
148

166
177

177
196
206



5. Vector Space [latex size
="40"\mathbb{R}"n[ /latex

5.1 Subspaces and Spanning

5.2 Independence and Dimension

5.3 Orthogonalit
5.4 Rank of a Matrix

5.5 Similarity and Diagonalization

Appendix

207

207
207
207
207
207

209



Introduction

This book is an adaptation from the textbook: Linear Algebra with
Applications by W. Keith Nicholson. The book can be found here:
https: /lyryx.com /linear-algebra-applications /
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1. System of Linear Equations

L.1 Solutions and elementary operations

Practical problems in many fields of study—such as biology,
business, chemistry, computer science, economics, electronics,
engineering, physics and the social sciences—can often be reduced
to solving a system of linear equations. Linear algebra arose from
attempts to find systematic methods for solving these systems, so it
is natural to begin this book by studying linear equations.

If a, b, and C are real numbers, the graph of an equation of the
form

ar +by =c

is a straight line (if @ and b are not both zero), so such an equation

is called a linear equation in the variables ' and Y. However, it

is often convenient to write the variables as Z'1,X9,..., Ty,
particularly when more than two variables are involved. An equation
of the form
a1z1 + agre + -+ apTn =b
is called a linear equation in the 77 variables 1, X9, ..., Tp.
Here ai, ag, . .., Gy denote real numbers (called the coefficients
of £1,X2, ..., Iy, respectively) and b is also a number (called

the constant term of the equation). A finite collection of linear
equations in the variables X1, T2, ..., Iy is called a system of
linear equations in these variables. Hence,
201 —3x9 + 523 =7
is a linear equation; the coefficients of 21, T9, and '3 are 2, —3,
and 5, and the constant term is 7. Note that each variable in a linear
equation occurs to the first power only.
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@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub /linearalgebrautm /?p=5

Given a linear equation @11 + asx9 + -+ - + anTy, = b,
a sequence S1, S92, ..., Sp of 72 numbers is called a solution to
the equation if

a1s1 + agsy + -+ apsp = b

that is, if the equation is satisfied when the substitutions
xr1 = 81,2 = S9,...,Ty = Sy, are made. A sequence of
numbers is called a solution to a system of equations if it is a
solution to every equation in the system.

A system may have no solution at all, or it may have a unique
solution, or it may have an infinite family of solutions. For instance,
the system & + Yy = 2.+ Yy = 3 has no solution because the
sum of two numbers cannot be 2 and 3 simultaneously. A system
that has no solution is called inconsistent; a system with at least
one solution is called consistent.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub/linearalgebrautm /?p=5
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Show that, for arbitrary values of S and ¥,

r1=t—s+1
To=t+s+2
T3 =358
T4 =1

is a solution to the system

T —2x0 +3x3 +14=—3
201 — x9+3x3—x4= 0

Simply substitute these values of 11, T2, I3, and X4 in each
equation.

1 —2x9+3r3+x4=(t—5+1)—2(t+s+2)+3s+t=-3
201 —xo+ 33— =2t —s+1)—(t+s5+2)+3s—t=0

Because both equations are satisfied, it is a solution for all choices
of Sand .

The quantities S and 7 in this example are called parameters, and
the set of solutions, described in this way, is said to be given in
parametric form and is called the general solution to the system. It
turns out that the solutions to every system of equations (if there
are solutions) can be given in parametric form (that is, the variables
1, L2, - .. are given in terms of new independent variables S, ¢,
etc.).
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@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub /linearalgebrautm /?p=5

When only two variables are involved, the solutions to systems of
linear equations can be described geometrically because the graph
of a linear equation ax + by = C is a straight line if @ and b
are not both zero. Moreover, a point P (S, t) with coordinates S
and t lies on the line if and only if @S + bt = c-that is when
L = S,y = tisasolution to the equation. Hence the solutions to
a system of linear equations correspond to the points P (S, t) that
lie on all the lines in question.

In particular, if the system consists of just one equation, there
must be infinitely many solutions because there are infinitely many
points on a line. If the system has two equations, there are three
possibilities for the corresponding straight lines:

* The lines intersect at a single point. Then the system has a
unique solution corresponding to that point.

* The lines are parallel (and distinct) and so do not intersect.
Then the system has no solution.

* The lines are identical. Then the system has infinitely many
solutions—one for each point on the (common) line.

With  three variables, the graph of an equation
axr + by + ¢z = d can be shown to be a plane and so again
provides a “picture” of the set of solutions. However, this graphical
method has its limitations: When more than three variables are
involved, no physical image of the graphs (called hyperplanes) is
possible. It is necessary to turn to a more “algebraic” method of
solution.

6 | System of Linear Equations


https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=5#pb-interactive-content

Before describing the method, we introduce a concept that

simplifies the computations involved. Consider the following system
31+ 2x9 — 3+ x4=-—1
211 — 234+ 2x4= 0
3r1+ x9+2rx3+5dr4= 2

of three equations in four variables. The array of numbers
3 2 -1 1|~-1
2 0 -1 2| 0
31 2 5| 2

occurring in the system is called the augmented matrix of the
system. Each row of the matrix consists of the coefficients of the
variables (in order) from the corresponding equation, together with
the constant term. For clarity, the constants are separated by a
vertical line. The augmented matrix is just a different way of
describing the system of equations. The array of coefficients of the
variables

3 2 -1 1
2 0 -1 2
3 1 2 5

is called the coefficient matrix of the system and
—1
0 | is called the constant matrix of the system.

2

Elementary Operations

The algebraic method for solving systems of linear equations is
described as follows. Two such systems are said to be equivalent if
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they have the same set of solutions. A system is solved by writing
a series of systems, one after the other, each equivalent to the
previous system. Each of these systems has the same set of
solutions as the original one; the aim is to end up with a system
that is easy to solve. Each system in the series is obtained from the
preceding system by a simple manipulation chosen so that it does
not change the set of solutions.

As an illustration, we solve the system T + 2y = —2,
2x 4+ y = 7 in this manner. At each stage, the corresponding
augmented matrix is displayed. The original system is

T+ 2y =—2 {1 2 —2]
7

204+ y= 7 2 1
First, subtract twice the first equation from the second. The

resulting system is

T+ 2y =—2 1 2|-2
—3y= 11 0 -3/ 11
which is equivalent to the original. At this stage we obtain
Yy=— %1 by multiplying the second equation by — % The result is
the equivalent system
T+2y= —2 [12}—2}
__u 1
y=-—3 0 1 3

Finally, we subtract twice the second equation from the first to
get another equivalent system.

_ 16 16
T= 3 Lo 3
_ 1 11
y=-3 0 1]-3

Now this system is easy to solve! And because it is equivalent to
the original system, it provides the solution to that system.
Observe that, at each stage, a certain operation is performed
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on the system (and thus on the augmented matrix) to produce an
equivalent system.

Definition 1.1 Elementary Operations

The following operations, called elementary operations,
can routinely be performed on systems of linear equations
to produce equivalent systems.

1. Interchange two equations.

2. Multiply one equation by a nonzero number.
3.  Add a multiple of one equation to a different
equation.

Theorem 1.1.1

Suppose that a sequence of elementary operations is
performed on a system of linear equations. Then the
resulting system has the same set of solutions as the
original, so the two systems are equivalent.

Elementary operations performed on a system of equations produce
corresponding manipulations of the rows of the augmented matrix.
Thus, multiplying a row of a matrix by a number k& means
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multiplying every entry of the row by k. Adding one row to another
row means adding each entry of that row to the corresponding
entry of the other row. Subtracting two rows is done similarly. Note
that we regard two rows as equal when corresponding entries are
the same.

E An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub/linearalgebrautm/2p=5

In hand calculations (and in computer programs) we manipulate the
rows of the augmented matrix rather than the equations. For this
reason we restate these elementary operations for matrices.

Definition 1.2 Elementary Row Operations

The following are called elementary row operations on a
matrix.

1. Interchange two rows.
2. Multiply one row by a nonzero number.
3.  Add a multiple of one row to a different row.

In the illustration above, a series of such operations led to a matrix
of the form
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1 0| =%
0 1=

where the asterisks represent arbitrary numbers. In the case of

three equations in three variables, the goal is to produce a matrix of

the form
1 0 0]
0 1 0=
0 0 1/=*

This does not always happen, as we will see in the next section.
Here is an example in which it does happen.

Example 1.1.3 Find all solutions to the following system of equations.

3r+4y+z= 1
2z + 3y = 0
dx+ 3y —z2=-2

Solution:
The augmented matrix of the original system is
3 4 1 1
2 3 0 0
4 3 —1|-2

To create a 1 in the upper left corner we could multiply row 1
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through by % However, the 1 can be obtained without introducing
fractions by subtracting row 2 from row 1. The result is

11 1 1
23 0 O
4 3 —-1|-2

The upper left 1 is now used to “clean up” the first column, that is
create zeros in the other positions in that column. First subtract 2
times row 1 from row 2 to obtain

11 1 1
01 —-2|-2
4 3 —-1|-=-2

Next subtract 4 times row 1 from row 3. The result is
1 1 1 1
0 1 -2] -2
0 -1 —-5|—-6

This completes the work on column 1. We now use the 1 in the
second position of the second row to clean up the second column
by subtracting row 2 from row 1 and then adding row 2 to row 3. For
convenience, both row operations are done in one step. The result
is

10 3| 3
01 —-2|-2
0 0 —=7|-8

Note that the last two manipulations did not affect the first
column (the second row has a zero there), so our previous effort
there has not been undermined. Finally we clean up the third

column. Begin by multiplying row 3 by — % to obtain
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Now subtract 3 times row 3 from row 1, and then add 2 times row
3 to row 2 to get

3
10 0|2
2
01 0| 2
8
00 1| &
. . 3.2 _ 8
The corresponding equationsare T = —=, Y = = and 2 = =

, which give the (unique) solution.

1.2 Gaussian elimination

The algebraic method introduced in the preceding section can be
summarized as follows: Given a system of linear equations, use a
sequence of elementary row operations to carry the augmented
matrix to a “nice” matrix (meaning that the corresponding equations
are easy to solve). In Example 1.1.3, this nice matrix took the form
1 0 0=
0 1 0=«
0 01

x

The following definitions identify the nice matrices that arise in
this process.
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Definition 1.3 row-echelon form (reduced)

A matrix is said to be in row-echelon form (and will be
called a row-echelon matrix if it satisfies the following
three conditions:

1.  All zero rows (consisting entirely of zeros) are at
the bottom.

2. The first nonzero entry from the left in each
nonzero row is a 1, called the leading 1 for that row.

3. Eachleading 1 is to the right of all leading 1s in the
rows above it.

A row-echelon matrix is said to be in reduced row-
echelon form (and will be called a reduced row-echelon
matrix if, in addition, it satisfies the following condition:

4. Eachleading 1 is the only nonzero entry in its
column.

@ An interactive or media element has been excluded

from this version of the text. You can view it online
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here:

https: //ecampusontario.presshooks.pub/linearalgebrautm/2p=5

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub/linearalgebrautm /?p=5

The row-echelon matrices have a “staircase” form, as indicated by

the following example (the asterisks indicate arbitrary numbers).

oS O O O O

The leading 1s proceed “down and to the right” through the matrix.
Entries above and to the right of the leading 1s are arbitrary, but
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all entries below and to the left of them are zero. Hence, a matrix
in row-echelon form is in reduced form if, in addition, the entries
directly above each leading 1 are all zero. Note that a matrix in
row-echelon form can, with a few more row operations, be carried
to reduced form (use row operations to create zeros above each
leading one in succession, beginning from the right).

The importance of row-echelon matrices comes from the
following theorem.

Theorem 1.2.1

Every matrix can be brought to (reduced) row-echelon
form by a sequence of elementary row operations.

In fact we can give a step-by-step procedure for actually finding a
row-echelon matrix. Observe that while there are many sequences
of row operations that will bring a matrix to row-echelon form, the
one we use is systematic and is easy to program on a computer.
Note that the algorithm deals with matrices in general, possibly with
columns of zeros.

Gaussian Algorithm

Step 1. If the matrix consists entirely of zeros, stop—it is
already in row-echelon form.

Step 2. Otherwise, find the first column from the left
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containing a nonzero entry (call it @), and move the row
containing that entry to the top position.

Step 3. Now multiply the new top row by 1 / a to create a
leading 1.

Step 4. By subtracting multiples of that row from rows
below it, make each entry below the leading 1 zero. This
completes the first row, and all further row operations are
carried out on the remaining rows.

Step 5. Repeat steps 1-4 on the matrix consisting of the
remaining rows.

The process stops when either no rows remain at step 5
or the remaining rows consist entirely of zeros.

Observe that the gaussian algorithm is recursive: When the first
leading 1 has been obtained, the procedure is repeated on the
remaining rows of the matrix. This makes the algorithm easy to use
on a computer. Note that the solution to Example 1.1.3 did not use
the gaussian algorithm as written because the first leading 1 was not
created by dividing row 1 by 3. The reason for this is that it avoids
fractions. However, the general pattern is clear: Create the leading 1
s from left to right, using each of them in turn to create zeros below
it. Here is one example.

Example 1.2.2 Solve the following system of equations.
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Solution:

The corresponding augmented matrix is

3 1
1 0
4 1

—4
10
6

—1

5
1

Create the first leading one by interchanging rows 1 and 2

10
31
4 1

10
—4
6

5

-1

1

Now subtract 3 times row 1 from row 2, and subtract 4 times row

1 from row 3. The result is

10
0 1
0 1

10
—34
—34

5
—16
—-19

Now subtract row 2 from row 3 to obtain

10
0 1
0 0

10
—34
0

5
—16
-3

This means that the following reduced system of equations

18 | System of Linear Equations



r +10z= 5
y—34z=-16
0= -3

is equivalent to the original system. In other words, the two have
the same solutions. But this last system clearly has no solution
(the last equation requires that X, Yy and 2 satisfy
Oz + Oy 4+ 0z = —3, and no such numbers exist). Hence the
original system has no solution.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub/linearalgebrautm/2p=5

To solve a linear system, the augmented matrix is carried to reduced
row-echelon form, and the variables corresponding to the leading
ones are called leading variables. Because the matrix is in reduced
form, each leading variable occurs in exactly one equation, so that
equation can be solved to give a formula for the leading variable
in terms of the nonleading variables. It is customary to call the
nonleading variables “free” variables, and to label them by new
variables S, 7,..., called parameters. Every choice of these
parameters leads to a solution to the system, and every solution
arises in this way. This procedure works in general, and has come to
be called

Gaussian Elimination
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To solve a system of linear equations proceed as follows:

1. Carry the augmented matrix\index{augmented
matrix}\index{matrix!augmented matrix} to a
reduced row-echelon matrix using elementary row
operations.

2. Ifarow[ O 00 --- 0 1 ]occurs,the
system is inconsistent.

3. Otherwise, assign the nonleading variables (if any)
as parameters, and use the equations corresponding
to the reduced row-echelon matrix to solve for the
leading variables in terms of the parameters.

There is a variant of this procedure, wherein the augmented matrix
is carried only to row-echelon form. The nonleading variables are
assigned as parameters as before. Then the last equation
(corresponding to the row-echelon form) is used to solve for the
last leading variable in terms of the parameters. This last leading
variable is then substituted into all the preceding equations. Then,
the second last equation yields the second last leading variable,
which is also substituted back. The process continues to give the
general solution. This procedure is called back-substitution. This
procedure can be shown to be numerically more efficient and so is
important when solving very large systems.

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

20 | System of Linear Equations



https: //ecampusontario.pressbooks.pub/linearalgebrautm /?p=5

Rank

It can be proven that the reduced row-echelon form of a matrix A
is uniquely determined by A. That is, no matter which series of row
operations is used to carry A to a reduced row-echelon matrix,
the result will always be the same matrix. By contrast, this is not
true for row-echelon matrices: Different series of row operations
can carry the same matrix A to different row-echelon matrices.

. 1 -1 4 ,
Indeed, the matrix 4 = 9 1 9 can be carried (by one
1 -1 4
,a
0 1 -6
then by another row operation to the (reduced) row-echelon matrix
1 0 -2
01 -6

1s must be the same in each of these row-echelon matrices (this will

row operation) to the row-echelon matrix nd

} . However, it is true that the number 7 of leading

be proved later). Hence, the number 7" depends only on A and not
on the way in which A is carried to row-echelon form.

Definition 1.4 Rank of a matrix

The rank of matrix A is the number of leading 1s in any
row-echelon matrix to which A can be carried by row
operations.
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Example 1.2.5

1 1 -1 4
Compute therankof A = | 2 1 3 0
01 -5 8
Solution:
The reduction of A to row-echelon form is
11 -1 4 1 1 -1 4 11 -1 4
A=1]12 1 3 0(—=1]10 -1 5 8| -0 1 -5 8
01 -5 8 0 1 -5 8 0 0 0 0

Because this row-echelon matrix has two leading 1s, rank A = 2

Suppose that rank A = 7, where A is a matrix with 1 rows
and 7 columns. Then 7 < 77 because the leading 1s lie in different
rows, and " < 7 because the leading 1s lie in different columns.
Moreover, the rank has a useful application to equations. Recall that
a system of linear equations is called consistent if it has at least one
solution.

Theorem 1.2.2

22 | System of Linear Equations



Suppose a system of 717 equations in 7? variables is
consistent, and that the rank of the augmented matrix is 7.

1. The set of solutions involves exactly 70 — T°
parameters.

2. If7 < N, the system has infinitely many solutions.

3. Ifr = m, the system has a unique solution.

Proof:

The fact that the rank of the augmented matrix is 77 means there
are exactly 7T leading variables, and hence exactly T — T
nonleading variables. These nonleading variables are all assigned
as parameters in the gaussian algorithm, so the set of solutions
involves exactly 0 — T parameters. Hence if 77 << 72, there is at
least one parameter, and so infinitely many solutions. If ' = 1,
there are no parameters and so a unique solution.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub /linearalgebrautm /?p=5

Theorem 1.2.2 shows that, for any system of linear equations,
exactly three possibilities exist:

1. No solution. This occurs when a row [ O o0 --- 01 }
occurs in the row-echelon form. This is the case where the
system is inconsistent.
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2. Unique solution. This occurs when every variable is a leading
variable.

3. Infinitely many solutions. This occurs when the system is
consistent and there is at least one nonleading variable, so at
least one parameter is involved.

Many important problems involve linear inequalities rather than
linear equations For example, a condition on the variables & and Yy
might take the form of an inequality 22z — 5y < 4 rather than an
equality 2 — 5y = 4. There is a technique (called the simplex
algorithm) for finding solutions to a system of such inequalities that
maximizes a function of the form p = ax + by where a and b
are fixed constants.

L3 Homogeneous equations

A system of equations in the variables =1, X2, ..., Iy is called
homogeneous if all the constant terms are zero—that is, if each
equation of the system has the form
a1r1 +asxo + -+ apxr,y, =0

Clearlyx1 = 0,29 = 0, ..., 2, = Oisasolution to such a
system,; it is called the trivial solution. Any solution in which at least
one variable has a nonzero value is called a nontrivial solution.
Our chief goal in this section is to give a useful condition for a
homogeneous system to have nontrivial solutions. The following
example is instructive.

Example 1.3.1
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Show that the following homogeneous system has
nontrivial solutions.

r1— X2+ 2x3—x4=0
2x1 + 229 +x4=0
31+ x9+2x3—2x24=0

Solution:
The reduction of the augmented matrix to reduced row-echelon
form is outlined below.

= o O

o O O

| |

—

o O =

S = O
I

O = =

[==Ren Rl en)
_

The leading variables are g1, 2, and T4, so I3 is assigned as

a parameter—say 3 = t. Then the general solution is x1 = —{%
, X9 =t,x3 = t, x4 = 0. Hence, taking t = 1 (say), we get a
nontrivial solution: 11 = —1, 22 = 1,23 = 1,24 = 0.

The existence of a nontrivial solution in Example 1.3.1 is ensured
by the presence of a parameter in the solution. This is due to the fact
that there is a nonleading variable ('3 in this case). But there must
be a nonleading variable here because there are four variables and
only three equations (and hence at most three leading variables).
This discussion generalizes to a proof of the following fundamental
theorem.
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Theorem 1.3.1

If a homogeneous system of linear equations has more
variables than equations, then it has a nontrivial solution (in
fact, infinitely many).

Proof:

Suppose there are 1 equations in 71 variables where n > m
m" title="Rendered by QuickLaTeX.com" height="11" width="49"
style="vertical-align: Opx;">, and let R denote the reduced row-
echelon form of the augmented matrix. If there are 7 leading
variables, there are 70 — T nonleading variables, and so @ — T
parameters. Hence, it suffices to show that 7 < 1. But r < m
because [? has T leading 1s and ™M rows, and M < Tv by
hypothesis. So 7 < 1M < n, which gives " < 7.

Note that the converse of Theorem 1.3.1 is not true: if a
homogeneous system has nontrivial solutions, it need not have
more variables than equations (the system x7 + x9 = 0,
221 + 229 = () has nontrivial solutions but M, = 2 = n.)

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub/linearalgebrautm/2p=5

Theorem 1.3.1 is very useful in applications. The next example
provides an illustration from geometry.
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Example 1.3.2

We call the graph of an equation
2 2 _ o g
ax® + bxy + cy® + dx + ey + f = 0 aconicif
the numbers a, b, and C are not all zero. Show that there is
at least one conic through any five points in the plane that
are not all on a line.

Solution:

Let the coordinates of the five points be (pl, Q1), (pg, q2),
(ps3,q3), (P1,q4), and (ps5,g5). The graph of
ax? +bry+cy? +dr+ey+ f =0 passes through
(pi7 %) if .

ap; + bpigi + cq; +dpi +eqi+ f =0

This gives five equations, one for each 7, linear in the six variables
a,b,c d, e, and f. Hence, there is a nontrivial solution by Theorem
113. 1f a = b = ¢ = (), the five points all lie on the line with
equation dx + ey + f = (0, contrary to assumption. Hence,
one of @, b, C is nonzero.

Linear Combinations and Basic Solutions

As for rows, two columns are regarded as equal if they have the
same number of entries and corresponding entries are the same.
Let & and Yy be columns with the same number of entries. As for
elementary row operations, their sum 2 + { is obtained by adding
corresponding entries and, if k is a number, the scalar product kx
is defined by multiplying each entry of ' by k. More precisely:
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1 Y1 1+ kxq

T2 Yo T2+ Y2 ko
Ifx = . landy = . | then z4+y = . and kz = .

In Yn Tn + Yn kay,

A sum of scalar multiples of several columns is called a linear
combination of these columns. For example, S + Y is a linear
combination of : and 9/ for any choice of numbers S and 7.

Example 1.3.3

NEE

then 2 + 5y = [ _Z]+[_§]: { i ]

Example 1.3.4
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Solution:

For v, we must determine whether numbers 7", S, and ¥ exist such
that v = rx + Sy + {z, that is, whether

0 1 2 3 r+2s+ 3t
-1 |=7r|0|+s| 1| +t|1]|= s+t
2 1 0 1 r+t

Equating corresponding entries gives a system of linear equations
r+2s+3t=0,s+t=—1,andr +¢t = 2forr, s,and
t. By gaussian elimination, the solution is 7 = 2 — k‘,
s =—1—k, andt = k where k is a parameter. Taking k=20
,we see that v = 21 — 1/ is a linear combination of T, 9, and 2.

Turning to W, we again look for 7, S, and © such that
w = rx + sy + tz; thatis,
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1 1 2 3 r+2s+ 3t
1)1 =r]10|+s| 1|+t 1]|= s+t
1 1 0 1 r4+t

leading to equations r+2s+ 3t =1, s+t =1, and
r -+t = 1 for real numbers 7, S, and t. But this time there is
no solution as the reader can verify, so W is not a linear combination
of ,y,and z.

Our interest in linear combinations comes from the fact that they
provide one of the best ways to describe the general solution of a
homogeneous system of linear equations. When

solving such a system with 70 variables X1, X9, . .., Iy, write the
x1
T2
variables as a column matrix: » — . . The trivial solution is
xn
0
0 . . -
denoted () — . As an illustration, the general solution in
0
Example 13.1is x1 = —t, X9 = t,x3 = t,and x4 = 0, where
1 is a parameter, and we would now express this by
—t
saying that the general solution is p — i , where © is
0
arbitrary.

Now let & and ¥y be two solutions to a homogeneous system
with 72 variables. Then any linear combination ST + ty of these
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solutions turns out to be again a solution to the system. More
generally:

Any linear combination of solutions to a homogeneous system is again a solution.
In fact, suppose that a typical equation in the system is
aixi + asxs + - - - + apxy, = 0, and suppose that

z1 Y1
T2 Y2 .

T = . Yy = . are  solutions.  Then
T

a1x1 +asxo + - -+ anazn = (an
a1y1 + agys + - + apyn = 0.
sx1 + tyy

ST + ty2

Hence s + ty = is also a solution because

ST, + tYn

ay(sry +ty1) + az(sze +tyz) + - + an(szy + tyn)
= [a1(sz1) + az(sza) + - - + an(szp)] + [a1(ty1) + a2(ty2) + - - - + an(tys)]
= s(a121 + aga + -+ + apTp) +t(aryr + agyz + -+ anyn)
=s(0) + t(0)
=0

A similar argument shows that Statement 1.1 is true for linear
combinations of more than two solutions.

The remarkable thing is that every solution to a homogeneous
system is a linear combination of certain particular solutions and,
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in fact, these solutions are easily computed using the gaussian
algorithm. Here is an example.

Example 1.3.5

Solve the homogeneous system with coefficient matrix

1 -2 3 -2
A= -3 6 1 0
-2 4 4 -2

Solution:
The reduction of the augmented matrix to reduced form is

1
1 -2 3 —2]0 1 =20 -50
-3 6 1 00| =10 01_g0
—2 4 4 —21|0
0 00 00

so the solutions are 1 = 25 + %t, T9 = 8, I3 = % and
T4 = t by gaussian elimination. Hence we can write the general
solution X in the matrix form
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1 2s + %t [ 2 %
1
T = L2 = ; =3 +t 2 = sx1 + txo.
T4 t L 0 1
2 [ 5
1 0 . .
Here p; = 0 and po = 3 | are particular solutions
5
0 1

determined by the gaussian algorith;n.
The solutions g and 9 in Example 1.3.5 are denoted as follows:

Definition 1.5 Basic Solutions

The gaussian algorithm systematically produces solutions
to any homogeneous linear system, called basic solutions,
one for every parameter.

Moreover, the algorithm gives a routine way to express every
solution as a linear combination of basic solutions as in Example
1.3.5, where the general solution . becomes
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+1

O O =N
— ol O Ul
O O =N
U] —
Tt W O

Hence by introducing a new parameter 7 = ¢ / O we can multiply
the original basic solution 9 by 5 and so eliminate fractions.
For this reason:

Convention:

Any nonzero scalar multiple of a basic solution will still be
called a basic solution.

In the same way, the gaussian algorithm produces basic solutions
to every homogeneous system, one for each parameter (there are
no basic solutions if the system has only the trivial solution).
Moreover every solution is given by the algorithm as a linear
combination of
these basic solutions (as in Example 1.3.5). If A has rank 7", Theorem
1.2.2 shows that there are exactly 7? — 7" parameters,andso 70 — T
basic solutions. This proves:

Theorem 1.3.2
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Let A be an M X M matrix of rank 7', and consider the
homogeneous system in 72 variables with A as coefficient
matrix. Then:

1. The system has exactly 72 — T basic solutions, one
for each parameter.

2. Every solution is a linear combination of these
basic solutions.

Example 1.3.6

Find basic solutions of the homogeneous system with
coefficient matrix A, and express every solution as a linear
combination of the basic solutions, where

1 -3 0 2 2

—2 6 1 2 -5
A= 3 -9 -1 0 7
-3 9 2 6 -8
Solution:

The reduction of the augmented matrix to reduced row-echelon

form is
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1 -3 02 2|0 1 -3 0 2 20
-2 6 1 2 —-5|0 . 0 016 —-1]0
3 -9 -1 0 7|0 0 0 0O0 0]0
-3 9 2 6 -8|0 0 000 0]0

so the general solution is 1 = 3r — 2s — 2t, xo =,
T3 = —6s+1t, x4 = S, and x5 =t where 7, S, and  are
parameters. In matrix form this is

1 3r—2s—2t 3 -2 -2
To r 1 0 0
r=| x3 | = —6s+t =r|{0|+s| —6 |+t 1
T4 s 0 1 0
T5 t 0 0 1
Hence basic solutions are
3 —2 —2
1 0 0
r1 = 0 , L9 = —6 , 3 = 1
0 1 0
| 0 0 | 1
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a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub /linearalgebrautm /?p=5
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2. Matrix Algebra

Introduction

In the study of systems of linear equations in Chapter 1, we found
it convenient to manipulate the augmented matrix of the system.
Our aim was to reduce it to row-echelon form (using elementary
row operations) and hence to write down all solutions to the system.
In the present chapter we consider matrices for their own sake.
While some of the motivation comes from linear equations, it turns
out that matrices can be multiplied and added and so form an
algebraic system somewhat analogous to the real numbers. This
“matrix algebra” is useful in ways that are quite different from the
study of linear equations. For example, the geometrical
transformations obtained by rotating the euclidean plane about the
origin can be viewed as multiplications by certain 2 X 2 matrices.
These “matrix transformations” are an important tool in geometry
and, in turn, the geometry provides a “picture” of the matrices.
Furthermore, matrix algebra has many other applications, some of
which will be explored in this chapter. This subject is quite old and
was first studied systematically in 1858 by Arthur Cayley.

Arthur Cayley (1821-1895) showed his mathematical
talent early and graduated from Cambridge in 1842 as
senior wrangler. With no employment in mathematics in
view, he took legal training and worked as a lawyer while
continuing to do mathematics, publishing nearly 300
papers in fourteen years. Finally, in 1863, he accepted
the Sadlerian professorship in Cambridge and remained
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there for the rest of his life, valued for his administrative
and teaching skills as well as for his scholarship. His
mathematical achievements were of the first rank. In
addition to originating matrix theory and the theory of
determinants, he did fundamental work in group theory,
in higher-dimensional geometry, and in the theory of
invariants. He was one of the most prolific
mathematicians of all time and produced 966 papers.

2.1 Matrix Addition, Scalar Multiplication,
and Transposition

A rectangular array of numbers is called a matrix (the plural is
matrices), and the numbers are called the entries of the matrix.
Matrices are usually denoted by uppercase letters: A, B, (', and so

on. Hence,
1 2 -1 1 -1 1
A:lo 5 6] B:lo 2] ¢= ;)

are matrices. Clearly matrices come in various shapes depending
on the number of rows and columns. For example, the matrix A
shown has 2 rows and 3 columns. In general, a matrix with 772 rows
and M columns is referred to as an 770 X T matrix or as having
size 0 X M. Thus matrices A, B, and (' above have sizes 2x3
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, 2 X 2, and 3 X 1, respectively. A matrix of size 1 X niscalled a
row matrix, whereas one of size 770 X 1 is called a column matrix.
Matrices of size 70 X T for some T are called square matrices.

Each entry of a matrix is identified by the row and column in
which it lies. The rows are numbered from the top down, and the
columns are numbered from left to right. Then the (4, j )-entry of
a matrix is the number lying simultaneously in row 2 and column 7 .
For example,

The (1,2)-entry of { é _1 } is — 1.

1 2 —-17.
The (2, 3)-entry of { 05 6 ] is 6.

A special notation is commonly used for the entries of a matrix. If
A'is an ™M X 1 matrix, and if the (%, j )-entry of A is denoted as
Qjj, then A is displayed as follows:

air] a2 a3 -+ Qlp

a1 G2 423 - A2p
A=

aml Aam2 am3 - - Amn

This is usually denoted simply as A = [aij]~ Thus @;; is the
entry in row % and column ] of A. For example, a 3 X 4 matrix in
this notation is written

ail a2 a3 a4
A= | a21 a2 a3 axu
asy asz as3 as4
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It is worth pointing out a convention regarding rows and columns:

Rows are mentioned before columns. For example:

 If a matrix has size 770 X N, it has 111 rows and 72 columns.

» If we speak of the (i, J )—entry of a matrix, it lies in row 2 and
column 7.

* Ifanentry is denoted @, the first subscript 1 refers to the
row and the second subscript ] to the column in which a; ;
lies.

Two points (:U1, yl) and (332, yz) in the plane are equal if and
only if they have the same coordinates, that is ;1 = 19 and
Y1 = Yo. Similarly, two matrices A and B are called equal
(written A = B)if and only if:

1. They have the same size.
2. Corresponding entries are equal.

If the entries of A and B are written in the form A = [aij]»
B = [bij], described earlier, then the second condition takes the

following form:

A = [a;;] = [bij] means a;; = b;; for all i and j

Example 2.1.1

c d 3 0 1
1 0
¢= { 1 2
discuss the possibility that A=B B=CA=0C.

GivenA:la b],B:ll 2 _1]and
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Solution:

A = B is impossible because A and B are of different sizes:
Ais2 X 2whereas Bis2 X 3. Similarly, B = ('is impossible.
But A = (' is possible provided that corresponding entries are
equal:

2 a]= [ o]

meansqg = 1,b = 0,¢c = —1,andd = 2.

An interactive or media element has

been excluded from this version of the

text. You can view it online here:
https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66

Matrix Addition

Definition 2.1 Matrix Addition

If A and B are matrices of the same size, their sum
A + B is the matrix formed by adding corresponding
entries.

If A = [aj;] and B = [b;;], this takes the form
A+ B = [aij + bij]

Note that addition isnot defined for matrices of different sizes.
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Example 2.1.2

2 1 3
f —
FA=1_1 9 ¢
1 1 —1
and B = 9 0 6 |
compute A + B.
Solution:
_ 2+1 141 3-1| |3 2 2
ATB=1 142 240 0+61_{1 2 6]

Example 2.1.3

Find a, b, and C if
[a b c]—l—[c a b]:[3 2 —1].

Solution:
Add the matrices on the left side to obtain

[a+c b+a c+b]=[3 2 —1]

Because corresponding entries must be equal, this gives three
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equations: @ +¢c = 3, b+ a = 2, and ¢ + b = —1. Solving
theseyieldsa = 3,b = —1,¢ = (.

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=66

If A, B, and C are any matrices of the same size, then

(commutative law)
A+B=B+A
A+ (B+C)=(A+B)+C (associative law)

In fact, if A = [a;;] and B = [b;;], then the (4, j)-entries of
A + Band B + A are, respectively, a;j + bij and bij + a;j

. Since these are equal for all % and 7, we get

A+B=[ajj+b; |=[bj+aj | =B+A

The associative law is verified similarly.

The T X T matrix in which every entry is zero is called the
M X T zero matrix and is denoted as () (or 0,,,,, if it is important
to emphasize the size). Hence,

0+X =X

holds for all 772 X 7 matrices X . The negative of an 172 X N
matrix A (written —A) is defined to be the 7 X T matrix
obtained by multiplying each entry of Aby —1.1f A = [aij], this
becomes —A = [_aij]- Hence,
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A+ (—A) =0
holds for all matrices A where, of course, () is the zero matrix of
the same size as A.

A closely related notion is that of subtracting matrices. If A and
B are two M X T matrices, their difference A — B is defined
by

A—B=A+ (—-B)
Note thatif A = [aij] and B = [bij], then
A — B = ag] + [=bi] = [aij — bij]

is the ™M X M matrix formed by subtracting corresponding

entries.

Example 2.1.4

3 —1 0
LetA—l1 9 _4],

I -1 1 1 0 —2
B_l—2 06}0_l31 1}

Compute —A,A — B, and A+ B —C.

Solution:
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-1 -2 4

SRR I N

3+41-1 -1-1-0 0+17(72)}:{ 3 -2 3}

R

A+B_C:[17273 2401 —4+6-1 4 11

Example 2.1.5

Solve

EHESEH

where X is a matrix.

We solve a numerical equation @ + & = b by subtracting the
number @ from both sides to obtain £ = b — Q. This also works
for matrices. To solve

Bl

simply subtract the matrix
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]

from both sides to get

A Iy B g B vty B ey

The reader should verify that this matrix X does indeed satisfy
the original equation.

The solution in Example 2.1.5 solves the single matrix equation
A + X = B directly via matrix subtraction: X=B-A
This ability to work with matrices as entities lies at the heart of
matrix algebra.

It is important to note that the sizes of matrices involved in some
calculations are often determined by the context. For example, if

1 3 -1
ave=|y 571

then A and (' must be the same size (so that A + C' makes
sense), and that size must be 2 X 3 (so that the sum is 2 X 3). For
simplicity we shall often omit reference to such facts when they are
clear from the context.

Scalar Multiplication

In gaussian elimination, multiplying a row of a matrix by a number &
means multiplying every entry of that row by k.

Definition 2.2 Matrix Scalar Multiplication
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More generally, if A is any matrix and & is any number,
the scalar multiple k£ A is the matrix obtained from A by
multiplying each entry of A by k.

The term scalar arises here because the set of numbers from which
the entries are drawn is usually referred to as the set of scalars. We
have been using real numbers as scalars, but we could equally well
have been using complex numbers.

Example 2.1.6

3 -1 4
fA=19 ¢ 1

1 2 -1
and B = 0 3 9 |

compute DA, %B, and 3A — 2B,

Solution:
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_[15 =5 20 1, i1 -4
5’4_[10 030}’ o [og 1
9 -3 12 2 4 -2 7 -7 14
3A_ZB_[6 018}_[06 4]_{6 —6 14]

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=66

If A is any matrix, note that kA is the same size as A for all
scalars k. We also have
0A=0 and k0=0
because the zero matrix has every entry zero. In other words,
kA =0 if either k=0 or A = 0. The converse of this
statement is also true, as Example 2.1.7 shows.

Example 2.1.7
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it kA = (), show that either k = O or A = ().

Solution:

write A = [a;;] so that kA = () means ka;; = 0 for all 7
and j.1f k = (), there is nothing to do. If k = (, then kaij =0
implies that a;; = 0 for all ¢ and J; thatis, A = 0.

For future reference, the basic properties of matrix addition and
scalar multiplication are listed in Theorem 2.1.1.

a An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=66

Theorem 2.1.1

Let A, B, and C denote arbitrary 70 X 70 matrices
where 1M and 7 are fixed. Let k£ and P denote arbitrary
real numbers. Then

. A+B=B+ A
> A+(B+C)=(A+B)+C
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3. There is an 7? X 1 matrix (), such that
0+ A = Aforeach A.
For each A there is an 70 X T matrix, —A, such
that A+ (—A) = 0.
k(A+ B) = kA + kB.
(k+p)A=kA+pA
(kp)A = k(pA).
1A = A

Ee

S

Proof:
Properties 1-4 were given previously. To check Property 5, let
A= [az’j] and B = [bij] denote matrices of the same size. Then
A+ B= [aij + bij], as before, so the (i,7j)-entry of
k?(A + B ) is

k(aij + bij) = ka;; + kb;;

But this is just the (¢, j)-entry of kA + kB, and it follows that
k(A + B) = kA + kB. The other Properties can be similarly
verified; the details are left to the reader.

The Properties in Theorem 2.1.1 enable us to do calculations with
matrices in much the same way that
numerical calculations are carried out. To begin, Property 2 implies
that the sum

(A+B)+C=A+(B+C)

is the same no matter how it is formed and so is written as

A + B + (. Similarly, the sum
A+B+C+D

is independent of how it is formed; for example, it equals both
(A+B)+(C+D) and A+ [B+(C+D)]
Furthermore, property 1 ensures that, for example,

B+D+A+C=A+B+C+D

In other words, the order in which the matrices are added does

Matrix Algebra | 51



not matter. A similar remark applies to sums of five (or more)
matrices.

Properties 5 and 6 in Theorem 2.1.1 are called distributive
laws for scalar multiplication, and they extend to sums of more than
two terms. For example,

k(A+ B—C)=kA+kB—kC
(k+p—m)A=kA+pA—mA

Similar observations hold for more than three summands. These
facts, together with properties 7 and 8, enable us to simplify
expressions by collecting like terms, expanding, and taking common
factors in exactly the same way that algebraic expressions involving
variables and real numbers are manipulated. The following example
illustrates these techniques.

Example 2.1.8

Simplify
2(A+3C)—-3(2C - B) —3[2(2A+ B —4C) — 4(A - 20)]
where A, B and C are all matrices of the same size.

Solution:
The reduction proceeds as though A, B, and (' were variables.
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2(A +3C) —3(2C — B) — 3[2(2A + B — 4C) — 4(A — 2C)]
= 2A+6C —6C + 3B — 3[4A + 2B — 8C — 44 + 8C]
= 2A+ 3B — 3[2B]

—2A4-3B

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

Transpose of a Matrix

Many results about a matrix A involve the rows of A, and the
corresponding result for columns is derived in an analogous way,
essentially by replacing the word row by the word column
throughout. The following definition is made with such applications
in mind.
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Definition 2.3 Transpose of a Matrix

If A is an 770 X 7 matrix, the transpose of A, written
AT, is the @ X 1 matrix whose rows are just the
columns of A in the same order.

In other words, the first row of AT is the first column of A (that is
it consists of the entries of column 1 in order). Similarly the second

row of AT is the second column of A, and so on.

Example 2.1.9

Write down the transpose of each of the following

matrices.
1 1 2 3 1 —1
A=|3| B=[526] C=[34| D=| 13 2
2 5 6 -1 2 1
Solution:
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AT=[1 3 2],B"=] 2 ,CT:{l 3 5},andDT:D.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=66

IfA= [az‘j] is a matrix, write AT = [bij]. Then bij is the jth
element of the ith row of A” and so is the Jth element of the 7th
column of A. This means bij = @, so the definition of AT can
be stated as follows:

@y I A =lay], then AT = az].

This is wuseful in verifying the following properties of
transposition.

Theorem 2.1.2
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Proof:

Property 1is part of the definition of AT, and Property 2 follows
from (2.1). As to Property 3: If A = Qjj, then kA = kaij, so (2.1)
gives

(kAT = [kazi] = k[az] = kAT

Finally, if B = [bij], then A+ B = [cij] where

Cij = ajj + bij Then (2.1) gives Property 4:

(A+B)T = [ey]" = [esi] = lagi + bji] = [aza] + [bys] = AT+ BT
There is another useful way to think of transposition. If
A=1Ja;;] is an MXMN matrix, the elements
aii, as2,ass, . .. are called the main diagonal of A. Hence the
main diagonal extends down and to the right from the upper left
corner of the matrix A; it is shaded in the following examples:

a3 faz
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Thus forming the transpose of a matrix A can be viewed as
“flipping” A about its main diagonal, or as “rotating” A through
180° about the line containing the main diagonal. This makes
Property 2 in Theorem~?? transparent.

Example 2.1.10

Solve for A if
T
1 2 2 3
T _ =
s 1 1)) =1 23]
Solution:

Using Theorem 2.1.2, the left side of the equation is

O ST EH ST
Hence the equation becomes

S EREH
Thus

2 3 1 -1 5 0
2’4:{—1 21+3[2 1]_[5 51’ *

finally

1|5 0] _5110
=4[5 5 ]=5 V)

Note that Example 2.1.10 can also be solved by first transposing
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both sides, then solving for AT, and so obtaining A= (AT)T.
The reader should do this.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

1 2
2

The matrix D) = l
that D) = DT. Such matrices are important; a matrix A is called

‘| in Example 2.1.9 has the property

symmetric if A= AT. A symmetric matrix A is necessarily
square (if Aism X N, then AT s X M, s0 A = AT forces
1. = ). The name comes from the fact that these matrices exhibit
a symmetry about the main diagonal. That is, entries that are
directly across the main diagonal from each other are equal.

a b c
For example, b d e is symmetric when b= b/,
d e f

c=c ande =€

Example 2.1.11

If A and B are symmetric 72 X 7 matrices, show that
A+ Bis symmetric.

Solution:
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We have AT A and BT B, so, by Theorem 2.1.2, we
have(A—l—B) AT—I—BT A 4+ B.Hence A + Bis

symmetric.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: /ecampusontario.presshooks.pub

linearalgebrautm /?p=66

Example 2.1.12

Suppose a square matrix A satisfies A= QAT. Show
that necessarily A = 0.

Solution:
If we iterate the given equation, Theorem 2.1.2 gives

A =247 = 2[247]" = 2[2(4T)7] =44
Subtracting A from both sides gives 3A=0, so

A=1(0)=0.
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@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=66

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub

linearalgebrautm/?p=66

2.2 Matrix-Vector
Multiplication

Up to now we have used matrices to solve systems of linear
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equations by manipulating the rows of the augmented matrix. In this
section we introduce a different way of describing linear systems
that makes more use of the coefficient matrix of the system and
leads to a useful way of “multiplying” matrices.

Vectors

It is a well-known fact in analytic geometry that two points in the
plane with coordinates (al, az) and (bl, bg) are equal if and only
ifa; = bjandag = b2. Moreover, a similar condition applies to
points (al, az, CL3) in space. We extend this idea as follows.

An ordered sequence (al, as, ..., Cbn) of real numbers is
called an ordered 7l -tuple. The word “ordered” here reflects our
insistence that two ordered 7-tuples are equal if and only if
corresponding entries are the same. In other words,

(a1,a2,...,a,) = (b1,ba,...,by) if and only if a; =by,a2 = bo,..., and a, = by,.
Thus the ordered 2-tuples and 3-tuples are just the ordered pairs
and triples familiar from geometry.

Definition 2.4 The set of ordered  -tuples of real numbers

Let R denote the set of all real numbers. The set of all
ordered 7-tuples from R hasa special notation:
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R™ denotes the set of all ordered n-tuples of real numbers.

There are two commonly used ways to denote the 71-tuples in
™1

R™: Asrows (71,72, ..., Ty) orcolumns | 72 |;

7“’I’L
the notation we use depends on the context. In any event they are
called vectors or Tl—-vectors and will be denoted using bold type
such as x or v. For example, an 77 X 70 matrix A will be written as
a row of columns:

A= [ a; ay --- a, ] where a; denotes column j of A for each j.

If X and Y are two Ti-vectors in R, it is clear that their matrix
sum X + ¥ is also in R" as is the scalar multiple kx for any
real number k. We express this observation by saying that R is
closed under addition and scalar multiplication. In particular, all
the basic properties in Theorem 2.1.1 are true of these 7-vectors.
These properties are fundamental and will be used frequently below
without comment. As for matrices in general, the 72 X 1 zero
matrix is called the zero T-vector in R™ and, if X is an 71-vector,
the M -vector —X is called the negative X.

Of course, we have already encountered these 7Ti-vectors in
Section 1.3 as the solutions to systems of linear equations with
N, variables. In particular we defined the notion of a linear
combination of vectors and showed that a linear combination of
solutions to a homogeneous system is again a solution. Clearly, a
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linear combination of T.-vectors in R is again in Rn, a fact that
we will be using.

Martrix-Vector Multiplication

Given a system of linear equations, the left sides of the equations
depend only on the coefficient matrix A and the column X of
variables, and not on the constants. This observation leads to a
fundamental idea in linear algebra: We view the left sides of the
equations as the “product” AX of the matrix A and the vector X.
This simple change of perspective leads to a completely new way of
viewing linear systems—one that is very useful and will occupy our
attention throughout this book.

To motivate the definition of the “product” AX, consider first the
following system of two equations in three variables:

ari + bxro+ cr3=0b;

2) ad'x1+Vx+r3="0b

a b c 1 b
andletA:la, Y C,],x: T | :lbil

x3
denote the coefficient matrix, the variable matrix, and the constant
matrix, respectively. The system (2.2) can be expressed as a single
vector equation

ar1 + brg+ cxz| | by
a'ri+bxo+cxs| | b

which in turn can be written as follows:
a 4z b 4z c b1
x —_—
Lo 21y 31 ¢ by

Now observe that the vectors appearing on the left side are just
the columns
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a b c
a] = a/ a2 = b/ ) and az = C/

of the coefficient matrix A. Hence the system (2.2) takes the form

2.3) Tia1 + Toas + r3az = b

This shows that the system (2.2) has a solution if and only if the
constant matrix b is a linear combination of the columns of A, and
that in this case the entries of the solution are the coefficients 1,
X9, and I3 in this linear combination.

Moreover, this holds in general. If A is any 7% X T matrix, it
is often convenient to view A as a row of columns. That is, if

ai,as, ..., a,are the columns of A, we write
A:[a1 as --- an}
and say that A = [ ay az -+ AQp } is given in terms

of its columns.
Now consider any system of linear equations with 777 X 70
coefficient matrix A. If b is the constant matrix of the system, and
x1

1)
if x —

T
is the matrix of variables then, exactly as above, the system can be
written as a single vector equation
24) T1a1 +T2a2 + - +wpa, =b

Example 2.2.1

Write the system
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3r1+ 229 —4x3= 0
r1—3r2+ 3= 3
o — 5:173 =-1

in the form given in (2.4).

Solution:
3 2 —4 0
1| 1 | +a22| =3 | +x3 1| = 3
0 1 —5 —1

As mentioned above, we view the left side of (2.4) as the product of
the matrix A and the vector X. This basic idea is formalized in the
following definition:

Definition 2.5 Matrix-Vector Multiplication

Let A = [ ay as -+ ap ]beanmx’n
matrix, written in terms of its columns a1, &2, . . . , &y If
L1
L2
X =
Ln
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is any n-vector, the product AX is defined to be the m,
-vector given by:
Ax = zmar +zoaz + - + Tpap

In other words, if A is 772 X M and X is an T-vector, the product
AX is the linear combination of the columns of A where the
coefficients are the entries of X (in order).

Note that if A is an 772 X 7 matrix, the product AX is only
defined if X is an 72-vector and then the vector AX is an mm-vector
because this is true of each column a; of A. But in this case the
system of linear equations with coefficient matrix A and constant
vector b takes the form of asingle matrix equation

Ax=Db
The following theorem combines Definition 2.5 and equation (2.4)
and summarizes the above discussion. Recall that a system of linear

equations is said to be consistent if it has at least one solution.

Theorem 2.2.1

1. Every system of linear equations has the form
Ax = b where A is the coefficient matrix, b is the
constant matrix, and X is the matrix of variables.

2. The system Ax = bis consistent if and only if b
is a linear combination of the columns of A.

3. Ifaj,as,...,a,arethe columns of A and if
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Z1

Z2
X = , then X is a solution to the linear

Ln
system Ax = bifand onlyif 1, Z9,...,Tyare
a solution of the vector equation
xria; +xaz + -+ xna, =b

A system of linear equations in the form Ax = basin (1) of
Theorem 2.2.1 is said to be written in matrix form. This is a useful
way to view linear systems as we shall see.

Theorem 2.2.1 transforms the problem of solving the linear system
Ax = b into the problem of expressing the constant matrix /3
as a linear combination of the columns of the coefficient matrix A
. Such a change in perspective is very useful because one approach
or the other may be better in a particular situation; the importance
of the theorem is that there is a choice.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub

linearalgebrautm/?p=66
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Example 2.2.2

2 —1 3 5
fA = 0 2 —3 1 | and
-3 4 1 2
2
1
X = , compute Ax.
0
-2
Solution:
By Definition 2.5:
2 -1 3 5 -7
Ax =2 01]+1 21 +0| -3 | -2]|1]|= 0
-3 4 1 2 —6

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=66

Example 2.2.3
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Given columns a1, &2, &3, and &4 in Rd, write
2a; — 3ay + bag + ay in the form AX where A is a
matrix and X is a vector.

Solution:
Here the column of coefficients is
2
< — -3
5!
1

Hence Definition 2.5 gives
Ax = 2a1 — 332 + 5a3 + ay
where A = [ aj; as as ay } is the matrix with a{, 9

, 3, and &4 as its columns.

Example 2.2.4

Let A = [ a; a; az3 ay ]bethe3 x 4
matrix given in terms of its columns

2 1 3
a; = 0 |, az = 1 |.a3 = —1 |,and
—1 1 -3
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Solution:

By Theorem 2.2.1, b is a linear combination of aj, a2, ay, and
a4 if and only if the system Ax = b is consistent (that is, it has
a solution). So in each case we carry the augmented matrix [A|b] of
the system AX = b to reduced form.

1. Here
2 1 3 3|1 1 0 2 110
01 -1 1|2 =101 -1 1|0 (,s0
-1 1 -3 0|3 00 0 0]1

the system Ax = b has no solution in this case. Hence b is
\textit{not} a linear combination of a1, &9, &3, and &4.
2. Now

70 | Matrix Algebra



21 3 3|4
01 -1 1|2

-1 1 -3 01
the system Ax = bis consistent.

, SO

S =N
O = =
O N =

10
- 10 1 —
0 0

Thus b is a linear combination of aj, A, a3, and A4 in this
case. In fact the general solution is 171 =1 — 25 — ¢,
T9o=2+s—1t x3=S5, and x4 = ¢ where S and t are
arbitrary parameters. Hence

4
xr1a1 + xoaz + x3a3 +xr4a4 = b = | 2

—_

for any choice of s and t. If we take $ = () and ¢ = (), this
becomes aj + 2a9 — b, whereas taking s = 1 =t gives
—2a; +2as +a3+a4 = b.

Example 2.2.5

Taking A to be the zero matrix, we have )X = O for all
vectors X by Definition 2.5 because every column of the
zero matrix is zero. Similarly, AQ = O for all matrices A
because every entry of the zero vector is zero.

Example 2.2.6
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1 0 0
If] = 0O 1 0 ,showthatIX:Xforany
0 0 1
vector X in R3.
Solution:
T
fx = X9 | ,then Definition 2.5 gives
xs3

0
1
0

1
Ix—x1[0:|+x2 +x3
0

The matrix [ in Example 2.2.6 is called the 3 %3 identity
matrix, and we will encounter such matrices again in future. Before

proceeding, we develop some algebraic properties of matrix-vector
multiplication that are used extensively throughout linear algebra.

Theorem 2.2.2

Let A and B be M X M matrices, and let 2 and 1 be 1,
-vectors in ". Then:

1. Ax+y) =Ax+ Ay.
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2. A(ax) = a(Ax) = (CLA)X for all scalars a.
3. (A+ B)x=Ax+ Bx.

Proof:

We prove (3); the other verifications are similar and are left as
exercises. Let A= [ a; ay --- a, } and
B = [ b; by --- b, } be given in terms of their

columns. Since adding two matrices is the same as adding their
columns, we have

A—I—B:[al—l—bl as+by --- an+bn}
I

)
If we write X —

Ln
Definition 2.5 gives

(A+ B)x = z1(a; + b1) + z2(ag + b)) + -+ - + zn(an, + by,)
= (z1a1 + x2az + - - - + Tpay) + (x¥1b1 + 2b2 + - - + 2,by)
= Ax + Bx

Theorem 2.2.2 allows matrix-vector computations to be carried
out much as in ordinary arithmetic. For example, for any 777 X 70
matrices A and B and any 72-vectors X and Y, we have:

A(2x — by) =2Ax — 54y and (3A—7B)x=3Ax—7Bx
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We will use such manipulations throughout the book, often
without mention.

Linear Equations

Theorem 2.2.2 also gives a useful way to describe the solutions to a

system
Ax=Db
of linear equations. There is a related system
Ax =0

called the associated homogeneous system, obtained from the
original system AX = b by replacing all the constants by zeros.
Suppose X1 is a solution to Ax = b and X is a solution to
Ax = 0 (thatis Ax; = b and Axg = 0). Then X1 + Xq is
another solution to AX = b. Indeed, Theorem 2.2.2 gives

A(X1+X0)=AX1+AX0:b—|-0:b

This observation has a useful converse.

Theorem 2.2.3

Suppose X is any particular solution to the system
Ax = b oflinear equations. Then every solution X9 to

Ax = D has the form
X2 = X0 + X1

for some solution X() of the associated homogeneous
system Ax = 0.

Proof:
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Suppose X9 is also a solution to Ax = b, so that Axo =Db
Write Xy = X9 — X3. Then X9 = Xy + X7 and, using
Theorem 2.2.2, we compute
AX():A(XQ—Xl) :AXQ—Axl =b-b=0
Hence X() is a solution to the associated homogeneous system
Ax = 0.

Note that gaussian elimination provides one such representation.

Example 2.2.7

Express every solution to the following system as the
sum of a specific solution plus a solution to the associated
homogeneous system.

1 — X9 — x3+3r4=2
201 — 1o — 3x3+ 414 =06
X1 —2x3+ x4=4

Solution:

Gaussian elimination gives r1 =4+ 2s —t,
To =2+ s+ 2t 3 =5, and x4 = t where S and t are
arbitrary parameters. Hence the general solution can be written
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1 4425 -1 4 2 -1
Sl a | | 24s+2t 2 1 2
| T s “lo T[T o
T4 t 0 0 1
Thus
4
2
X1 =
o
0
is a particular solution (where s = () = t), and
2 -1
1 . ,
Xg =S 1 +1 0 gives all solutions to the
0 1

associated homogeneous system. (To see why this is so, carry out
the gaussian elimination again but with all the constants set equal
to zero.)

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66
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The following useful result is included with no proof.

Theorem 2.2.4

Let AX = bbea system of equations with augmented
matrix [ A ‘ b ].Write rankA = r.

1. rank [ A | b ] is either 7 or 7 + 1.

2. The system is consistent if and only if
rank[ A|b } =r.

3. The system is inconsistent if and only if

rank[A|b]:r—|—1.

The Dot Product

Definition 2.5 is not always the easiest way to compute a matrix-
vector product AX because it requires that the columns of A be
explicitly identified. There is another way to find such a product
which uses the matrix A as a whole with no reference to its
columns, and hence is useful in practice. The method depends on
the following notion.

Definition 2.6 Dot Product in
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To see how this relates to matrix products, let A denote a 3 x4
matrix and let X be a 4-vector. Writing

1
ail a2 @13 a4
T2
X = . and A= | a1 asx asz ag
3
a3l a3z a33 a34
T4

in the notation of Section 2.1, we compute
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xy
aip a2 a3 ayg oo ail a2 a3 aiq
Ax=| an a2 a3 axn 23 =x1 | a1 | +a2| ax | +x3| a3 | +x4 | a4
agzy a2 a3 a4 asy asz ass asq

[ @111 + a1222 + a1323 + 1424 }

2171 + a22x2 + a23T3 + 2474
a3121 + azx2 + azzr3 + 34y

From this we see that each entry of AX is the dot product of the
corresponding row of A with X. This computation goes through in
general, and we record the result in Theorem 2.2.5.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=66

Theorem 2.2.5 Dot Product Rule

Matrix Algebra | 79


https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content
https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content

Let A be an 77 X 7 matrix and let X be an 72-vector.
Then each entry of the vector AX is the dot product of the
corresponding row of A with X.

This result is used extensively throughout linear algebra.

If Ais 70 X 71 and X is an Ty-vector, the computation of AX by
the dot product rule is simpler than using Definition 2.5 because the
computation can be carried out directly with no explicit reference
to the columns of A (as in Definition 2.5. The first entry of AX is
the dot product of row 1 of A with X. In hand calculations this is
computed by going across row one of A, going down the column
X, multiplying corresponding entries, and adding the results. The
other entries of AX are computed in the same way using the other
rows of A with the column X.

A X Ax In general, compute entry 1
of AX as follows (see the
St i diagram):
/ : Go across row 7 of A and
k : / ) down column X, multiply
row / entry i

corresponding entries, and add
the results.

As an illustration, we rework Example 2.2.2 using the dot product
rule instead of Definition 2.5.

Example 2.2.8
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Solution:
The entries of AX are the dot products of the rows of A with X:

] f { 2.2 + (-DL +  3-0 + 5(-2)} [—7}
ol = 0-2 + 2:1 + (=30 + 1(-2) | = 0
2

(32 + 4-1 + 1.0 + 2(-2) -6

Of course, this agrees with the outcome in Example 2.2.2.

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.pressbooks.pub

T T p=
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Example 2.2.9

Write the following system of linear equations in the form
Ax = b.
9r1 — X9 +2x3+ x4 —3x5= 8

T+ T2+ 3x3 — 0Ty + 225 = —2
-1 +x9 — 223+ —3x5= 0

Solution:

Write A= 1 1 3 -5 2 1,

ua
8 9
b= | —2 |,and x = | g4 |- Then the dot product rule
0 x4
T5
51 — $Q_+ 2$—3 + x4 — 35
gives Ax = T1+x2+ 3x3 — dxry + 225 |, so the
—x1 + 19 — 223 — 3x5

entries of AX are the left sides of the equations in the linear
system. Hence the system becomes Ax = b because matrices are
equal if and only corresponding entries are equal.
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a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

Example 2.2.10

If A is the zero 70 X 7 matrix, then AX = O for each
T -vector X.

Solution:
For each k, entry k of AX is the dot product of row k of A with
X, and this is zero because row k of A consists of zeros.

Definition 2.7 The Identity Matrix

For each m > 2 2" title="Rendered by QuickLaTeX.com"
height="12" width="42" style="vertical-align: Opx;">, the
identity matrix [, is the 2 X 70 matrix with Is on
the main diagonal (upper left to lower right), and zeros
elsewhere.
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The first few identity matrices are

O OO =
o O = O
o = OO
= O O O

In Example 2.2.6 we showed that [3X = X for each 3-vector X
using Definition 2.5. The following result shows that this holds in
general, and is the reason for the name.

Example 2.2.11

For each . > 2 we have [,,X = X for each N-vector
xin R™

Solution:
T
We verify the case 11 = 4. Given the 4-vector x — | 2
z3
L4

the dot product rule gives
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1 0 0 0 T x1+0+0+0 T

Lix = 01 00 T9 _ O+224+0+0 _ ) —
0010 xs 04+0+234+0 T3
00 01 T4 0+0+0+JJ4 T4

In general, [,,X = X because entry k of I,,x is the dot product
of row k of I,, with X, and row k of I}, has 1 in position k& and zeros
elsewhere.

Example 2.2.12

Let A = [ a; asg -+ ap ]beanym Xn
matrix with columns a1, ag, . . ., ap. If €; denotes
column ] of the 0 X 70 identity matrix I, then
Aej = ajforeachy = 1,2,...,n.

Solution:
i1
. t2
Write e =
tn

wheret; = 1,butt; = Oforallé # j. Then Theorem 2.2.5 gives

Aej:t1a1+...+tjaj+...+tnan:0+...+aj+...+0:aj

Example 2.2.12will be referred to later; for now we use it to prove:
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Theorem 2.2.6

Let A and B be M X M matrices. If AX = BX for all
Xin R" then A = B.

Proof:
Write A= [ ai az -+ Qp } and
B = [ b; by --- b, ] and in terms of their columns.

It is enough to show that aj = by, holds for all k. But we are
assuming that Aej, = Bey, which gives a, = by by Example
2.2.12.

We have introduced matrix-vector multiplication as a new way
to think about systems of linear equations. But it has several other
uses as well. It turns out that many geometric operations can be
described using matrix multiplication, and we now investigate how
this happens. As a bonus, this description provides a geometric
“picture” of a matrix by revealing the effect on a vector when it is
multiplied by A. This “geometric view” of matrices is a fundamental
tool in understanding them.

2.3 Matrix Multiplication

In Section 2.2 matrix-vector products were introduced. If A is an
™M X M matrix, the product AX was defined for any 7T-column
2 in R"™ as follows: If A = [ a; az -+ ay ] where the
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a; are the columns of A, and if X = ) ,

Definition 2.5 reads

@5) Ax = x1a1 + 1082 + - + TpaA,

This was motivated as a way of describing systems of linear
equations with coefficient matrix A. Indeed every such system has
the form AX = b where b is the column of constants.

In this section we extend this matrix-vector multiplication to a
way of multiplying matrices in general, and then investigate matrix
algebra for its own sake. While it shares several properties of
ordinary arithmetic, it will soon become clear that matrix arithmetic
is different in a number of ways.

Definition 2.9 Matrix Multiplication

Let A be an 70 X T matrix, let B be an 7 X K matrix,
and write B = [ b bg -+ by } where b ; is
column ] of B for each j. The product matrix A B is the
m X k matrix defined as follows:

AB=A[b; by -+ by ]=[Ab Aby --- Aby |

Thus the product matrix A B is given in terms of its columns
Abq, Absg, ..., Ab,;: Column ] of AB is the matrix-vector
product Abj of A and the corresponding column bj of B. Note
that each such product Ab ; makes sense by Definition 2.5 because
Ais™ X N and each bj isin R" (since B has 71 rows). Note also
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that if BB is a column matrix, this definition reduces to Definition 2.5
for matrix-vector multiplication.

Given matrices A and B , Definition 2.9 and the above
computation give

A(BR) = | Aby Aby - Ab, |7=(AB)7

for all  in Rk. We record this for reference.

Theorem 2.3.1

Let A be an M X 7 matrix and let Bbeann X k
matrix. Then the product matrix A B is M X k and
satisfies

A(BZ) = (AB)Z for all Z in R”

Here is an example of how to compute the product AB of two
matrices using Definition 2.9.

Example 2.3.1

2 3 5
Compute ABif A= |1 4 7
0 1 8

and
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™

Il
Sy 3 o
— N O

Solution:
The columns of B are
8 9
51 = 7 | and 52 = 2 |, so Definition 2.5 gives
6 1
2 3 5 8 67 2 35 9 29
A51{1 4 7] [7][78] andAl;gll 4 7] {2]{24]
01 8 6 55 01 8 1 10
Hence Definition 2.9 above gives
67 29
AB = [ Aby A, ] — | 78
55 10

While Definition 2.9 is important, there is another way to
compute the matrix product A B that gives a way to calculate each
individual entry. In Section 2.2 we defined the dot product of two
N-tuples to be the sum of the products of corresponding entries.
We went on to show (Theorem 2.2.5) that if A is an 77 X 70 matrix
and T is an Ti-vector, then entry 4 of the product AZ is the dot
product of row ] of A with Z. This observation was called the
“dot product rule” for matrix-vector multiplication, and the next
theorem shows that it extends to matrix multiplication in general.
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Theorem 2.3.2 Dot Product Rule

Let A and B be matrices of sizes 70 X T and 12 X k,
respectively. Then the (%, j )-entry of A B is the dot
product of row 7 of A with column 7} of B.

Proof:
write B = | by by --- by, ] in terms of its columns.

Then Ab is column J of AB for each j. Hence the (i, j)-entry

of AB is entry % of Al; :, which is the dot product of row 7 of A
with Ej. This proves the theorem.

Thus to compute the (i, J ) -entry of AB, proceed as follows (see
the diagram):

Go across row % of A, and down column ] of B, multiply
corresponding entries, and add the results.

r

row i column § (i, j)-entry

Note that this requires that the rows of A must be the same length

as the columns of /3. The following rule is useful for remembering

this and for deciding the size of the product matrix A B.
Compatibility Rule
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Let A and B denote matrices. If Ais M X M and Bisn’ X k
, the product A B can be formed if and only if 7. = n/. In this case
the size of the product matrix A B is 1M X k, and we say that A B
is defined, or that A and B3 are compatible for multiplication.

A B

mx(n n'\xk

The diagram provides a useful mnemonic for remembering this. We
adopt the following convention:

Whenever a product of matrices is written, it is tacitly assumed
that the sizes of the factors are such that the product is defined.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=66

To illustrate the dot product rule, we recompute the matrix product
in Example 2.3.1.
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Example 2.3.3

2 3 5
Compute ABif A= | 1 4 7
0 1 8
8 9
andB= |7 2
6 1
Solution:

Here Ais 3 X 3and Bis 3 X 2, so the product matrix A B is
defined and will be of size 3 X 2. Theorem 2.3.2 gives each entry
of AB as the dot product of the corresponding row of A with the
corresponding column of Bj that s,

2 35 8 9 2:843-7+5-6 2-94+3-2+5-1 67 29
AB=|1 4 7 7 2|=| 18447476 1-94+44-247-1 | =|T78 24
018 6 1 0-8+1-7+8-6 0-9+1-2+8-1 55 10

Of course, this agrees with Example 2.3.1.

Example 2.3.4

Compute the (1, 3)— and (2, 4)—entries of AB where
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Solution:

The (1, 3)—entry of AB is the dot product of row 1 of A and
column 3 of B3 (highlighted in the following display), computed by
multiplying corresponding entries and adding the results.

[ ] [ I 4] (1, Ap-eatry =3-64+{—1)-3+2.5=15

Similarly, the (2, 4)-entry of AB involves row 2 of A and column
4of B.

Sira 21 6
[_] _? g ; (2, dreniry=0-04+1-44+4-B=730

Since Ais 2 X 3and Bis 3 X 4, the productis 2 X 4.
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| -4 2 23 36

3 —1 2
AB_[O 1 4}

0
L[ 4125 12
8

@ An interactive or media element has been excluded from
this version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=66

Example 2.3.5

5)
IfA:[l 3 2]andB: 6 ,computeA2
4
,AB,BA,and B . when they are defined.

Solution:
Here, Aisa 1l X 3 matrix and B isa 3 X 1 matrix, so A2 and
B? are not defined. However, the compatibility rule reads

A B 1 B A
1x3 3x1 ™ 3x1 1x3

so both AB and B A can be formed and these are 1 X 1 and
3 %3 matrices, respectively.
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AB=[1 3 2]|6 |=[15+3-64+2-4]=31]

4
5 5-1 5-3 5-2 5 15 10
BA=|6|[132]={6-16-36-2|=|6 18 12
4 4-1 4.3 4.2 4 12 8

@ An interactive or media element has been excluded

from this version of the text. You can view it online

here:
https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=66

Unlike numerical multiplication, matrix products AB and BA
need not be equal. In fact they need not even be the same size,
as Example 2.3.5 shows. It turns out to be rare that AB = BA
(although it is by no means impossible), and A and B are said to

commute when this happens.
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@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

Example 2.3.6

6 9 1 2
LetA—l_4 _6]andB—|:_1 01.

Compute Az, AB . BA.

Solution:

6 9 6 9 0 0
2 _ —
4 _{—4 —6“—4 —6}_l0 0}’ ”
A? = () can occur even if A # 0. Next,
6 9 1 2 -3 12
= 4 ][4 0]-[ R
1 2 6 9 -2 -3
BA_{—l O}{—él —6}_l—6 —91
Hence AB # B A, even though AB and B A are the same

size.
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@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=66

Example 2.3.7

If Ais any matrix, then IA = Aand Al = A, and
where I denotes an identity matrix of a size so that the
multiplications are defined.

Solution:

These both follow from the dot product rule as the reader should
verify. For a more formal proof, write
A= [ a, ds -+ dp } where @; is column ] of A. Then

Definition 2.9 and Example 2.2.1 give

IA:[Ial 162 Ic_in]:[al ag v an}:A

If €; denotes column ] of I, then Aé} = 6]’ for each j by
Example 2.2.12. Hence Definition 2.9 gives:

AT=A[& & - & |=[A8 Ad - Ad, |=[a d@ - d,|=A
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The following theorem collects several results about matrix
multiplication that are used everywhere in linear algebra.

Theorem 2.3.3

Assume that @ is any scalar, and that A, B ,and C are
matrices of sizes such that the indicated matrix products
are defined. Then:

1. IA = Aand AI = A where I denotes an identity
matrix.

2 A(BC) = (AB)C.

3 A(B+C) = AB+ AC,

4 (B+C)A=BA+CA

5 a(AB) = (aA)B = A(aB).
6.(AB)T = BT AT

Proof:

Condition (1) is Example 2.3.7; we prove (2), (4), and (6) and leave
(3) and (5) as exercises.
LifC = [ Cl Cy -+ Ck } in terms of its columns, then
BC = [ B¢, Bé, -+ Beg } by Definition 2.9, so
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A(BC)

(B+C)A

= [ A(B&) A(B&) --- A(B&) | Definition 2.9
= [ (AB)& (AB)é& --- (AB)&) ]  Theorem 2.3.1

= (AB)C Definition 2.9

know (Theorem 2.2.) that (B + C)CIJ‘ =B+ C*Z
—

for every column x. If we write
— — — . .

ai ds -+ dp } in terms of its columns, we get
= [(B+Q)d (B+C)ax -+ (B+C)dy, | Definition 2.9
= [ Bay+Ca, Bay+Cay -+ Bay+Cay, | Theorem 2.2.2
= [ Ba, Bds --- Ba, } + [ Ca, Cdy --- Cay, } Adding Columns
= BA+CA Definition 2.9

6. As in Section 2.1, write A = [a;;] and B = [b”] so that
AT = [a ] and BT = [b' ]Wherea = a;; and b = b;j

Matrix Algebra | 99



for all % and 7. If ¢;j denotes the (i, j)-entry of B T AT then Cij
is the dot product of row 7 of B” with column 7 of AT Hence

/ !/ / ! / !/
Cij = bilalj + bi2a2j + -+ bimamj = bliajl + bgiajg 4+ 4 bm,’ajm

= a;1bi; + ajoby + - + ajmbmi

But this is the dot product of row ] of A with column ¢ of B;
that is, the (7, ©)-entry of A B; that is, the (4, J)-entry of (AB)T
. This proves (6).

Property 2 in Theorem 2.3.3 is called the associative law of matrix
multiplication. It asserts that the equation A(B C ) = (AB )C
holds for all matrices (if the products are defined). Hence this
product is the same no matter how it is formed, and so is written
simply as ABC'. This extends: The product ABCD of four
matrices can be formed several ways—for example, (AB ) (C D)
, [A(BC)]D, and A[B(CD)] —but the associative law implies
that they are all equal and so are written as ABCD. A similar
remark applies in general: Matrix products can be written
unambiguously with no parentheses.

However, a note of caution about matrix multiplication must be
taken: The fact that AB and B A need not be equal means that
the order of the factors is important in a product of matrices. For

example ABCD and ADCB may not be equal.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=66
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Warning:
If the order of the factors in a product of matrices is changed, the
product matrix may change (or may not be defined). Ignoring this
warning is a source of many errors by students of linear algebra'}
Properties 3 and 4 in Theorem 2.3.3 are called distributive laws.

They assert that A(B+C)=AB+ AC and
(B + C)A = BA+ CA hold whenever the sums and

products are defined. These rules extend to more than two terms
and, together with Property 5, ensure that many manipulations
familiar from ordinary algebra extend to matrices. For example

A(2B—3C + D —5E) = 2AB — 3AC + AD — 5AE
(A+3C —2D)B = AB +3CB — 2DB
Note again that the warning is in effect: For example

A(B — C) need not equal AB — CA. These rules make

possible a lot of simplification of matrix expressions.

Example 2.3.8

Simplify the expression

A(BC — CD) + A(C — B)D — AB(C — D)

Solution:
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A(BC — CD) + A(C — B)D — AB(C — D) = A(BC) — A(CD) + (AC — AB)D — (AB)C + (AB)D
= ABC — ACD + ACD — ABD — ABC + ABD
=0

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

Example 2.3.9 and Example 2.3.10 below show how we can use
the properties in Theorem 2.3.2to deduce other facts about matrix
multiplication. Matrices A and B are said to commute if

AB = BA.

Example 2.3.9

Suppose that A, B, and C are ™ X T matrices and that
both A and B commute with C'; that is, AC' = C'A and
BC' = (' B. show that A B commutes with C.

102 | Matrix Algebra


https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content
https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content

Solution:

Showing that AB commutes with ' means verifying that
(AB )C =C (AB ) The computation uses the associative law
several times, as well as the given facts that AC = CA and

BC =CB.

(AB)C = A(BC) = A(CB) = (AC)B = (CA)B = C(AB)

Example 2.3.10

Show that AB = B A ifand only if
(A- B)(A+B) = A% — B

Solution:
The following always holds:

(2.6)
(A-B)(A+B)=A(A+B)—B(A+B)=A?>+ AB— BA—B?
Hence if AB = BA, then

(A - B) (A + B ) = A% — B? follows. Conversely, if this
last equation holds, then equation (2.6 becomes
A*-B*=A*+ AB—- BA- B’
This gives 0= AB — BA and AB = BA follows.
In Section 2.2 we saw (in Theorem 2.2.1 ) that every system of
linear equations has the form
A7 =1
where A is the coefficient matrix, T is the column of variables,
and b is the constant matrix. Thus the system of linear equations
becomes a single matrix equation. Matrix multiplication can yield
information about such a system.
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a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

Example 2.3.11

Consider a system AT = b of linear equations where
Aisan M X 7 matrix. Assume that a matrix (' exists

such that C'A = I,. If the system AT = b hasa

5
solution, show that this solution must be Cb.Givea

condition guaranteeing that Cb isin fact a solution.

Solution:

—

Suppose that T is any solution to the system, so that Ar =0
. Multiply both sides of this matrix equation by (' to obtain,
successively,

C(AZ)=Cb, (CA)Z=Cb, I,i=Cbh Z=Cb

This shows that if the system has a solution I, then that solution

must be & = Cb, as required. But it does not guarantee that the

system has a solution. However, if we write fl = (b, then

-

Az = A(Ch) = (AC)b
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Thus (fl = Z; will be a solution if the condition AC' = I, is
satisfied.

The ideas in Example 2.3.11 lead to important information about
matrices; this will be pursued in the next section.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=66

2.4 Matrix Inverse

Three basic operations on matrices, addition, multiplication, and
subtraction, are analogs for matrices of the same operations for
numbers. In this section we introduce the matrix analog of
numerical division.

To begin, consider how a numerical equation A = b is solved
when @ and b are known numbers. If @ = (), there is no solution

(unless b= 0). But if @ 75 0, we can multiply both sides by the

. -1
inverse 4

= % to obtain the solution = @~ 'b. Of course
multiplying by alis just dividing by a, and the property of a !
that makes this work is that (L_la = 1. Moreover, we saw in
Section~?? that the role that 1 plays in arithmetic is played in matrix
algebra by the identity matrix /. This suggests the following
definition.
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Definition 2.11 Matrix Inverses

If A is a square matrix, a matrix B is called an inverse of
A if and only if
AB=1 and BA=1
A matrix A that has an inverse is called an
invertible matrix.

Note that only square matrices have inverses. Even though it is
plausible that nonsquare matrices A and B could exist such that
AB =1,, and BA = 1,,, where A is M XN and B is
1, X M, we claim that this forces 7 = M. Indeed, if M < N

there exists a nonzero column & such that AZ = 6 (by Theorem
131), so & = 1,7 = (BA)Z = B(A%) = B(0) =0, a
contradiction. Hence 10 2> n. Similarly, the condition AB =1,
implies that 72 > 1. Hence M = N, so A is square.}

Example 2.4.1

Show that B = [ _} é
0 1
. . FA—
is an inverse of A [ 11
Solution:
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Compute AB and BA.

as=[ [ A]=[8 0] ma= [ R][0 H)- 0 ¢

Hence AB = I = BA, so B is indeed an inverse of A.

Example 2.4.2

Show that 4 = [ g) g ]

has no inverse.

Solution:

LetB:lZ 21

denote an arbitrary 2 X 2 matrix. Then

a0 0][a 0]_[ o© 0
1 3 c d a+3c b+ 3d
so A B has a row of zeros. Hence A B cannot equal [ for any B
The argument in Example 2.4.2 shows that no zero matrix has an
inverse. But Example 2.4.2 also shows that, unlike arithmetic, it is

possible for a nonzero matrix to have no inverse. However, if a matrix
does have an inverse, it has only one.
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Theorem 2.4.1

If B and C are both inverses of A, then B = C.

Proof:
Since B and (' are both inverses of A, we have

C'A =1 = AB.Hence
B=1IB=(CAB=C(AB)=CI=C
If A is an invertible matrix, the (unique) inverse of A is denoted
A" Hence A™1 (when it exists) is a square matrix of the same
size as A with the property that
AAT =T and A'A=1]
These equations characterize A linthe following sense:
Inverse Criterion: If somehow a matrix /3 can be found such that
AB =1and BA=1 , then A is invertible and B is the inverse
of A;in symbols, B = A_l.}
This is a way to verify that the inverse of a matrix exists. Example
2.3.3 and Example 2.3.4 offer illustrations.

Example 2.4.3

0 -1 ‘
IfA = [ 1 1 , Show that A‘)' = [ and so find
A—l
Solution:
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0 -1 0 —1 -1 1
2 _
WehaveA—l1 11l1 11—[ 101

, and so

3 2. | 11 0O -1 (1 0]
A_AA_l—1 0“1—11‘[01 =1

Hence A3 =17 , as asserted. This can be written as
A2A =] = AAZ, so it shows that A2 is the inverse of A. That

is,A_1:A2: |: -1 1

-1 0
The next example presents a useful formula for the inverse of
a
a2 X 2matrix A = d when it exists. To state it, we
C

define the determinant det A and the adjugate adj A
of the matrix A as follows:

a b | a b d —b
det[c d]—ad—bc, and adj[c d]_[ ]

Example 2.4.4

a
IfA =
l c d
only if det A 7 (), and in this case

] , show that A has an inverse if and
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11
" detA

adj A

Solution:
For convenience, write € = detA = ad — be and
: d —b
BzadeZl . Then AB =el = BA as
—C a
the readelr can verify. So ifle 75 0, scalar multiplication by  gives
A(=B)=1=(-B)A
(& (&

Hence A is invertible and A~1 = %B . Thus it remains only to
show that if A1 exists, then e # 0.

We prove this by showing that assuming € = () leads to a
contradiction. In fact, if € = (), then AB = el = (), so left
multiplication by A1 gives ATAB = A_l(); that is,
IB = 0, so B = (. But this implies that a, b, C, and d are
all zero, so A= 0, contrary to the assumption that A_l exists.

2 4
-3 8
then detA =2-8—4-(—3) =28 #0. Hence A is

, 8 —4
invertible and A~ = ﬁade =" l , as the

As an illustration, if A =

2813 2
reader is invited to verify.
The determinant and adjugate will be defined in Chapter 3 for any
square matrix, and the conclusions in Example 2.4.4 will be proved
in full generality.
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@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

Inverse and Linear systems

Matrix inverses can be used to solve certain systems of linear
equations. Recall that a system of linear equations can be written
as a single matrix equation

AZ =0

where A and l_; are known and & is to be determined. If A is

invertible, we multiply each side of the equation on the left by A1
to get

A Az =A%
It = A1
Z=A"1p

This gives the solution to the system of equations (the reader

should verify that & = A71p really does satisty AT = b).
Furthermore, the argument shows that if T is anysolution, then

necessarily T = A_lb, so the solution is unique. Of course the
technique works only when the coefficient matrix A has an inverse.
This proves Theorem 2.4.2.
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Theorem 2.4.2

Suppose a system of 72 equations in 72 variables is written
in matrix form as

AZ =0
If the I X M coefficient matrix A is invertible, the
system has the unique solution

7=A1p

Example 2.4.5

Use Example 2.4.4 to solve the system

{5%1 — 3:172 =—4

Tx1+4x9= &
Solution:
. A= _T 5 =3
In matrix form this is AZ = b where A4 = % 4|
— x T -
T = 1 , and b= 4 . Then
xT9 8

detA=5-4— (—3) -7=41, so A is invertible and
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. 43
Al:ﬁl—? 5]

by Example 2.4.4. Thus Theorem 2.4.2 gives

. 1 43)1[-4] 1] 8
S _
r=A 6_41[—7 5” 81 41[681

so the solutionis 11 = % and 9 = %

An interactive or media element has

been excluded from this version of the

text. You can view it online here:
https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66

a An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=66

An inversion method

If a matrix A is 7 X 1 and invertible, it is desirable to have an
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efficient technique for finding the inverse. The following procedure
will be justified in Section 2.5.

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a
sequence of elementary row operations that carry A to the
identity matrix I of the same size, written A — [. This
same series of row operations carries I to A_l; that is,

I — A1 The algorithm can be summarized as follows:

[A T]|—>[1I A1

where the row operations on A and I are carried out
simultaneously.

Example 2.4.6

Use the inversion algorithm to find the inverse of the
matrix

A=

— = N
W o~
I
—_
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Solution:
Apply elementary row operations to the double matrix

2 7 1|10 0
[A IT]=|14 -1|0 1 0
13 0[001

so as to carry A to . First interchange rows 1 and 2.

1 4 -1(0 1 0
27 1|1 0 0
13 010 0 1

Next subtract 2 times row 1 from row 2, and subtract row 1 from
row 3.

1 4 -11]0 1 0
0 -1 31 -2 0
0 -1 110 -1 1

Continue to reduced row-echelon form.

(10 11| 4 -7 0
01 =3[-1 20
00 —2|-1 11

-3 -3 11
o1o0 & 3 3
001 & F F
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-3 -3 11
Hence A~1 = % 1 1 —3 |,asisreadily verified.
1 -1 -1
Given any 70 X 7 matrix A, Theorem 1.2.1 shows that A can be
carried by elementary row operations to a matrix R in reduced
row-echelon form. If R = I, the matrix A is invertible (this will
be proved in the next section), so the algorithm produces AL
R 75 I, then R has a row of zeros (it is square), so no system of
linear equations A = bcanhavea unique solution. But then A is
not invertible by Theorem 2.4.2. Hence, the algorithm is effective in
the sense conveyed in Theorem 2.4.3.

Theorem 2.4.3

If Aisan” X 7 matrix, either A can be reduced to 1
by elementary row operations or it cannot. In the
first case, the algorithm produces A_l; in the second case,
A~ does not exist.
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An interactive or media element has

been excluded from this version of the

text. You can view it online here:
https://ecampusontario.pressbooks.pub/
linearalgebrautm/?p=66

a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub

linearalgebrautm/?p=66

Properties of inverses

The following properties of an invertible matrix are used

everywhere.

Example 2.4.7: Cancellation Laws

Let A be an invertible matrix. Show that:

1 AB = AC then B = C.
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21 BA =CA,then B = C.

Solution:

Given the equation AB = AC, left multiply both sides by
A1 to obtain ATAB = A_lAC. Thus [ B = IC, thatis
B = C. This proves (1) and the proof of (2) is left to the reader.

Properties (1) and (2) in Example 2.4.7 are described by saying that
an invertible matrix can be “left cancelled” and “right cancelled”,
respectively. Note however that “mixed” cancellation does not hold
in general: If A is invertible and AB = C' A, then B and C' may
10t be equal, even if both are 2 X 2. Hereisa specific example:

U S N N I

o 1|7 1207 |11
Sometimes the inverse of a matrix is given by a formula. Example
2.4.4 is one illustration; Example 2.4.8 and Example 2.4.9 provide two
more. The idea is the Inverse Criterion: If a matrix B can

be found such that AB = I = BA, then A is invertible and
Al =B

Example 2.4.8

If A is an invertible matrix, show that the transpose AT
is also invertible. Show further that the inverse of AT is
just the transpose of A_l; in symbols,

(AT)—l _ (A—l)T'

Solution:
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A7 exists (by assumption). Its transpose (A_l)T is the
candidate proposed for the inverse of AT, Using the inverse
criterion, we test it as follows:

AT(A N = (A TAT =TT =T
(A—l)TAT: (AA_l)T:IT:I

Hence (A_l)T is indeed the inverse of AT; that is,
(AT)—l — (A—I)T‘

E An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66

Example 2.4.9

If A and B are invertible 70 X T matrices, show that
their product A B is also invertible and

(AB)"! = B—1A~1

Solution:
We are given a candidate for the inverse of A, namely
B A~ we test it as follows:
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(B'A™YAB) =B YA 'AB=B"'IB=B'B=1
(AB)(B'A™ Y= ABB YAl =ATA = A4 =T

Hence B 1A-1 is the inverse of ADB: in symbols,
(AB)"' =B71A-1

a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub

linearalgebrautm/?p=66

We now collect several basic properties of matrix inverses for
reference.

Theorem 2.4.4

All the following matrices are square matrices of the
same size.

1. I isinvertibleand [ 1 = I.
2.1f A is invertible, sois A~1 and (A_l)_l = A

3.1f A and B are invertible, so is A B, and
(AB)_1 =B 1AL
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Proof:

1. This is an immediate consequence of the fact that I?=1

2. The equations AA™Y =T = A7 A show that A is the
inverse of A1 in symbols, (A_l)_l =A

3. This is Example 2.4.9.

4. Use induction on k. If &k = 1, there is nothing to prove, and
if K = 2, the result is property 3. If k > 2 2" title="Rendered by
QuickLaTeX.com" height="13" width="41" style="vertical-align:
0px;">, assume inductively that
(A1Ay--- Ak_l)_l = ];_11 e Az_lAl_l. We apply this

fact together with property 3 as follows:
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(A1 Ag - Ap 1 Ap) ™ = [(A1Ag - Ap_y) A
At (A Ay Apy) !
A (AL AT AT

So the proof by induction is complete.

5. This is property 4 with A] = Ay = -+ = A = A.

6. The readers are invited to verify it.

7. This is Example 2.4.8.

The reversal of the order of the inverses in properties 3 and
4 of Theorem 2.4.4 is a consequence of the fact that matrix
multiplication is not
commutative. Another manifestation of this comes when matrix
equations are dealt with. If a matrix equation B = Cis given,
it can be left-multiplied by a matrix A to yield AB = AC.
Similarly, right-multiplication gives BA = C A. However,
we cannot mix the two: If B = (' , it need notbe the case that
AB =CA even if A is invertible, for example,

11 0 0
A:[01}B_{10]_G

Part 7 of Theorem 2.4.4 together with the fact that (AT)T =A
gives

Corollary 2.4.1
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A square matrix A is invertible if and only if AT i
invertible.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=66

Example 2.4.10

FindAif(AT—2I)_1:l 2 1 ]

Solution:
By Theorem 2.4.2 (2) and Example 2.4.4, we have

(AT —21) = [(AT—QI)‘l}_lz [ b H_l— [(1) _;]

Matrix Algebra | 123


https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content
https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=66#pb-interactive-content

Hence AT =2J + 0 -1 ]

1 2
2 1
e

by Theorem 2.4.4(7).

9 —1
1 4 %

a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.presshooks.pub

linearalgebrautm/?p=66

The following important theorem collects a number of conditions all
equivalent to invertibility. It will be referred to frequently below.

Theorem 2.4.5 Inverse Theorem

The following conditions are equivalent for an 72 X 7
matrix A:

1. A is invertible.
2. The homogeneous system AZ = () has only the
trivial solution & = ().

3. A can be carried to the identity matrix I, by
elementary row operations.
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4. The system AZ = b has at least one solution & for

every choice of column b.

5. There exists an 70 X 7T matrix C such that

AC = I,

Proof:

We show that each of these conditions implies the next, and that
(5) implies (1).

1 = @ I A1 exists, then AT = 6 gives
F=1,7=A1A7=A"10=0.

(2) — (3). Assume that (2) is true. Certainly A — R by row
operations where R is a reduced, row-echelon matrix. It suffices
to show that R = I,,. Suppose that this is not the case. Then R
has a row of zeros (being square). Now consider the augmented
matrix [ A ‘ 0 } of the system AZ¥ = 0. Then
[ A ‘ 6} — [ R’(j] is the reduced form, and [ R’G}
also has a row of zeros. Since I is square there must be at least one
nonleading variable, and hence at least one parameter. Hence the

system AT = 0 has infinitely many solutions, contrary to (2). So
R = I, after all.

(3) — (4). Consider the augmented matrix [ A ‘ 5 ] of the

system ArX =0b. Using (3), let A — I,, by a sequence of row
operations. Then these same operations carry
[ A ‘ b ] — [ I, ‘ c } for some column . Hence the system

—

AZ = b has a solution (in fact unique) by gaussian elimination.
This proves (4).
@) — (5. Write [, = [ €1 € -+ €y } where
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51,52, .. .,5n are the columns of I,. For each \newline
j=1,2,...,n, the system AZ¥ = é}- has a solution 5] by
(4),soA5j = é}-.NowletC = [ C1 Cy -+ Cn ]bethe
N X M matrix with these matrices E'J as its columns. Then
Definition 2.9 gives (5):

AC=A[& & - & |=[Ad A - A, |=[& & - & |=I

(5) = (1). Assume that (5) is true so that AC' = I, for some
matrix (. Then CZ =0 implies =0 (because
Z=1,7=ACx = A6 = 6). Thus condition (2) holds for
the matrix (' rather than A. Hence the argument above that (2) —
(3) — (4) — (5) (with A replaced by C ) shows that a matrix C’
exists such that CC’ = [, n- But then

A= AL, = A(CC') = (AC)C' = I,C' = C'

Thus CA = CC' = n, which, together with AC' = I,
shows that (' is the inverse of A. This proves (2).

The proof of (5) — (1) in Theorem 2.4.5 shows that if AC =1
for square matrices, then necessarily CA=1 , and hence that C
and A are inverses of each other. We record this important fact for
reference.

Corollary 2.4.1

If A and C are square matrices such that AC =1,
thenalso CA = I.In particular, both A and C are
invertible, C' = A_l, and A = C~ 1L,

Here is a quick way to remember Corollary 2.4.1. If A is a square
matrix, then

126 | Matrix Algebra



LIfAC = I thenC' = A1,
2.1fCA =T thenC' = A~ L

Observe that Corollary 2.4.1 is false if A and C' are not square
matrices. For example, we have

-1 -1 1
1 -1 :[2 but 1 -1 r2 7&[3
1 1 111

In fact, it can be verified that if AB = I,, and BA = I,
where A is M X N and B is M X ™M, then 1M, = 7, and A and
B are (square) inverses of each other.

An 1 X N matrix A has rankn if and only if (3) of Theorem
2.4.5 holds. Hence

Corollary 2.4.2

An 0 X 7 matrix A is invertible if and only if
rankA = n.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=66
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3. Determinants and
Diagonalization

Introduction

With each square matrix we can calculate a number, called the
determinant of the matrix, which tells us whether or not the matrix
is invertible. In fact, determinants can be used to give a formula
for the inverse of a matrix. They also arise in calculating certain
numbers (called eigenvalues) associated with the matrix. These
eigenvalues are essential to a technique called diagonalization that
is used in many applications where it is desired to predict the future
behaviour of a system. For example, we use it to predict whether a
species will become extinct.

Determinants were first studied by Leibnitz in 1696, and the term
“determinant” was first used in 1801 by Gauss is his Disquisitiones
Arithmeticae. Determinants are much older than matrices (which
were introduced by Cayley in 1878) and were used extensively in
the eighteenth and nineteenth centuries, primarily because of their
significance in geometry. Although they are somewhat less
important today, determinants still play a role in the theory and
application of matrix algebra.

3.1 The Cofactor Expansion

In Section 2.4, we defined the determinant of a 2 X 2 matrix
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a b
=[]
as follows:

detA =

a
C

b
d

':ad—bc

and showed (in Example 2.4.4) that A has an inverse if and only
if det A 7& (. One objective of this chapter is to do this for any
square matrix A. There is no difficulty for 1 X 1 matrices: If
A = [a), we define det A = det [a] = a and note that A is
invertible if and only if @ 7 0.

if Ais3 X 3 and invertible, we look for a suitable definition
of detA by trying to carry A to the identity matrix by row
operations. The first column is not zero (A is invertible); suppose
the (1, 1)-entry a is not zero. Then row operations give

A=

a b c a b ¢ a b c a b c
d e f|—=>]ad ae af | 5|0 ae—bd af—cd | =0 u af —cd
g h i ag ah ai 0 ah—bg ai—cg 0 v ai—cyg

where % = ae —bd and v = ah — bg. Since A s
invertible, one of U and v is nonzero (by Example 2.4.11); suppose
that 4 7 (). Then the reduction proceeds

a b c a b c a b c
A= |0 uw af—cd | = |0 u af—cd =0 u af—cd
0 v )

0 wv wu(ai—cg)
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w = u(ai — cg) —v(af — cd) = a(aei + bfg + cdh — ceg — afh — bdi)
. We define
@1 detA =aei+bfg+ cdh —ceg —afh —bdi
and observe that detA # 0 because detA = w # 0 (is

invertible).

To motivate the definition below, collect the terms in Equation 3.1
involving the entries @, b, and Cin row 1 of A:

a b ¢
detA=|d e f|=aei+bfg+ cdh—ceg—afh— bdi
g h 1
=a(ei — fh) —b(di — fg) + c(dh — eg)
_ e f _ d f d e
Y h b‘g ;| te g h

This last expression can be described as follows: To compute the
determinant of a 3 X 3 matrix A, multiply each entry in row 1
by a sign times the determinant of the 2 X 2 matrix obtained by
deleting the row and column of that entry, and add the results. The
signs alternate down row 1, starting with —+-. It is this observation
that we generalize below.
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a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=70

Example 3.1.1

2 37
0 6 —4 6 -4 0
det | =4 0 6 :2‘ ‘—3' ‘+7‘ ’
15 0 5 0 1 0 1 5

= 2(—30) — 3(—6) + 7(—20)
=182

This suggests an inductive method of defining the determinant of
any square matrix in terms of determinants
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of matrices one size smaller. The idea is to define determinants of
3 X 3 matrices in terms of determinants of 2 X 2 matrices,

then we do 4 X 4 matrices in terms of 3 X 3 matrices, and so
on.

To describe this, we need some terminology.

Definition 3.1 Cofactors of a matrix

Assume that determinants of (n — 1) X (n — 1)
matrices have been defined. Given the 7 X T matrix A,
let

Aj; denote the (n — 1) X (n — 1) matrix obtained
from A by deleting row ¢ and column 7.

Then the (i, j)-cofactor ¢;; (A) is the scalar defined by
cij(A) = (=1)""det(Aj;)

Here (— 1)i+j is called the sign of the (7, 7 )-position.

The sign of a position is clearly 1 or —1, and the following
diagram is useful for remembering it:
L 4 i
-+ - 4+
+ - 4+ -
-+ - +
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Note that the signs alternate along each row and column with -+
in the upper left corner.

Example 3.1.2

Find the cofactors of positions (1, 2), (3, 1), and
(2, 3) in the following matrix.

3 -1 6
A=1|5 2 7
8 9 4

Solution:
. |97
Here A19 is the matrix
8 4
that remains when row 1 and column 2 are deleted. The sign of
position (1,2) is (—1)1+2 = —1 (this is also the (1, 2)-entry

in the sign diagram), so the (1, 2)—cofactor is

c2(A) = (-1)'*?

- ‘ = (~1)(5-4—7-8) = (—1)(—36) = 36

Turning to position (3, 1), we find

es1(A4) = (-1 Ay = ()| T D ‘ = (+1)(=T—12) = —19
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Finally, the (2, 3)—cofactor is

3 —1

023(14) _ (_1)2+3A23 _ (_1>2+3 g 9

‘ — (—1)(27 +8) = =35

Clearly other cofactors can be found—there are nine in all, one for
each position in the matrix.

a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=70

We can now define det A for any square matrix A

Definition 3.2 Cofactor expansion of a Matrix

Assume that determinants of (n — 1) X (n = 1)
matrices have been defined. If 4 = [aij] is 0 X M define

detA = ajici1(A) + arzci2(A) + - - - + aincin(A)

This is called the cofactor expansion of detA along row
1.

It asserts that det A can be computed by multiplying the entries
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of row 1 by the corresponding

cofactors, and adding the results. The astonishing thing is that
detA can be computed by taking the cofactor expansion along
any row or colummn: Simply multiply each entry of that row
or column by the corresponding cofactor and add.

Theorem 3.1.1 Cofactor Expansion Theorem

The determinant of an 7% X 7 matrix A can be
computed by using the cofactor expansion along any row or
column
of A. That is det A can be computed by multiplying each
entry of the row or column by the corresponding cofactor
and adding the results.

Example 3.1.3

Compute the determinant of

3 4 5
A=1|11 7 2
9 8 -6

Solution:
The cofactor expansion along the first row is as follows:
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detA = 3611(A) + 4612(A) + 5013(A)

72 12 17
B —6‘_4|9 —6‘+3‘9 8‘
— 3(—58) — 4(—24) + 5(—55)

— 353

Note that the signs alternate along the row (indeed along any
row or column). Now we compute detA by expanding along the
first column.

detA = 3611(A) + 1coy (A) + 9631(A)

7 2| |4 5 45
=38 —6‘_‘8 —6 +9‘7 2‘
— 3(—58) — (—64) + 9(—27)

— 353

The reader is invited to verify that det A can be computed by
expanding along any other row or column.

The fact  that  the cofactor  expansion along
any row or column of a matrix A always gives the same
result (the determinant of A) is remarkable, to say the least. The
choice of a particular row or column can simplify the calculation.

Example 3.1.4

Compute det A where

Determinants and Diagonalization | 137



3 0 0 0
5 1 2 0
A= 2 6 0 —1
-6 3 1 0
Solution:

The first choice we must make is which row or column to use in
the
cofactor expansion. The expansion involves multiplying entries by
cofactors, so the work is minimized when the row or column
contains as
many zero entries as possible. Row 1 is a best choice in this matrix
(column 4 would do as well), and the expansion is

1 2 0
=36 0 -1
3 1 0

This is the first stage of the calculation, and we have succeeded in
expressing the determinant of the 4 X 4 matrix A
in terms of the determinant of a 3 X 3 matrix. The next stage
involves
this 3 X 3 matrix. Again, we can use any row or column for the
cofactor
expansion. The third column is preferred (with two zeros), so
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This completes the calculation.

This example shows us that calculating a determinant is simplified
a great deal when a row or column consists mostly of zeros. (In fact,
when a row or column consists entirely of zeros, the determinant
is zero—simply expand along that row or column.) We did learn that
one method of creating zeros in a matrix is to apply elementary
row operations to it. Hence, a natural question to ask is what effect
such a row operation has on the determinant of the matrix. It turns
out that the effect is easy to determine and that elementary
column operations can be used in the same way. These
observations lead to a technique for evaluating determinants that
greatly reduces the labour involved. The necessary information is
given in Theorem 3.1.2.

Theorem 3.1.2

Let A denote an 70 X 7 matrix.
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1. If A has a row or column of zeros, detA = 0.

2. Iftwo distinct rows (or columns) of A are
interchanged, the determinant of the resulting matrix
is —detA

3. Ifarow (or column) of A is multiplied by a constant
U, the determinant of the resulting matrix is
u(detA).

4. 1If two distinct rows (or columns) of A are identical,
detA = 0.

5. If amultiple of one row of A is added to a different
row (or if a multiple of a column is added to a
different column), the determinant of
the resulting matrix is det A.

The following four examples illustrate how Theorem 3.1.2 is used to
evaluate determinants.

Example 3.1.5

Evaluate det A when
1 -1 3
A= 1|1 0 —1
2 1 6
Solution:

The matrix does have zero entries, so expansion along (say) the
second row would involve somewhat less work. However, a column
operation can be
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used to get a zero in position (2, 3)-namely, add column 1 to
column 3. Because this does not change the value of the
determinant, we obtain

1 -1 3 1 -1 4 1 4
detA=|1 0 -1 =1 00 :—’ 1 8’:12
2 1 6 2 1 8

where we expanded the second 3 X 3 matrix along row 2.

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=70

Example 3.1.6

a b c
ifdet | p q r | =6,
T Yy =z

evaluate det A where
a+x b+y c+z
A= 3z 3y 3z
-p  —q -
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Solution:
First take common factors out of rows 2 and 3.

a+zr b+y c+z
detA = 3(—1)det x Y z
p q r

Now subtract the second row from the first and interchange the
last two rows.

detA = —3det = 3det

" R
R o
s 0
NI 0
I
w
D
I
—_
oo

8
QR o

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=70

The determinant of a matrix is a sum of products of its entries.
In particular, if these entries are polynomials in X, then the
determinant itself is a polynomial in . It is often of interest to
determine which values of ' make the determinant zero, so it is
very useful if the determinant is given in factored form. Theorem
3.1.2 can help.
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Example 3.1.7

Find the values of Z for which det A = 0, where

1l = =«
A=z 1 =z
r x 1

Solution:
To evaluate detA, first subtract & times row 1 from rows 2 and
3.

x 1 x x 122 -2
z|=]0 1-2% z—2°|= 9
1

0 x—2 1—2x

detA =

8 8 =
8 —= 8

At this stage we could simply evaluate the determinant (the result
is 223 — 322 + 1). But then we would have to factor this
polynomial to find the values of ' that make it zero. However, this
factorization can be obtained directly by first factoring each entry
in the determinant and taking a common
factor of (1 - x) from each row.
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1+ T
T 1+z

=(1-2)?%2x+1)

detA =

(1-2)1+x) x(1—1x) ’:(1_x)2

x(1—x) 1-2)1+=z)

Hence, det A = () means (1 — $)2(2$L‘ + 1) =0, that is
r=1lorx = —

S

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=70

Example 3.1.8

If a1, @2, and a3 are given show that
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Solution:

Begin by subtracting row 1 from rows 2 and 3, and then expand
along column 1:

1 a 1 ay al o — a2 — a2
det | 1 ay a3 | =det| 0 ag—ay a}—a} | =| "2 "0 "2
1 a 2 0 _ 2 _ 2 a3 —ap az—ay

3 asg as ayp ajz ay

Now (CL2 — al) and (CL3 — al) are common factors in rows 1
and 2, respectively, so

1 a a? 1 arta
det | 1 as a3 | = (a2 —ay)(as — ay)det A
5 1 az+ay

1 a3 a3

= (ag2 —a1)(az — a1)(a3 — a2)
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The matrix in Example 3.1.8 is called a Vandermonde matrix, and
the formula for its determinant can be generalized to the 72 X T
case.

If A is an 72 X T matrix, forming 1A means multiplying every
row of A by u. Applying property 3 of Theorem 3.1.2, we can take
the common factor U out of each row and so obtain the following
useful result.

Theoerem 3.1.3

If Ais an 70 X T matrix, then det(uA) = u"detA
for any number U.

The next example displays a type of matrix whose determinant is
easy to compute.

Example 3.1.9

Evaluate det A if
a 0 0 O
A— uw b 0 0
v w ¢ 0
x Yy z d
Solution:

146 | Determinants and Diagonalization



Expand along row 1 to get detA = a . Now

QL O O

0
c
z

< & o

expand this along the top row to get

c 0
detA = ab = abcd, the product of the main
z

d
diagonal entries.

A square matrix is called a lower triangular matrix
if all entries above the main diagonal are zero (as in Example 3.1.9).
Similarly, an upper triangular matrix is one for which
all entries below the main diagonal are zero. A
triangular matrix is one that is either upper or lower
triangular. Theorem 3.14 gives an easy rule for calculating the
determinant of any triangular matrix.

Theorem 3.1.4

If A is a square triangular matrix, then det A is the
product of the entries on the main diagonal.

Theorem 3.1.4 is useful in computer calculations because it is a
routine matter to carry a matrix to triangular form using row
operations.

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:
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3.2 Determinants and Matrix Inverses

In this section, several theorems about determinants are derived.
One consequence of these theorems is that a square matrix A is
invertible if and only if det A # (. Moreover, determinants are
used to give a formula for A1 which, in turn, yields a formula
(called Cramer’s rule) for the
solution of any system of linear equations with an invertible
coefficient matrix.

We begin with a remarkable theorem (due to Cauchy in 1812)
about the determinant of a product of matrices.

Theorem 3.2.1 Product Theorem

If A and B are M X 71 matrices, then
det(AB) = det AdetB.

The complexity of matrix multiplication makes the product theorem
quite unexpected. Here is an example where it reveals an important
numerical identity.

148 | Determinants and Diagonalization


https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=70#pb-interactive-content
https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=70#pb-interactive-content

Example 3.2.1

a b c d

IfA—l_ba‘|andB— _d C]
. ac—bd  ad+ bc

then AB = [ —(ad +bc) ac —bd }

Hence det Adet B = det(AB) gives the identity

(a® 4+ b*)(® + d*) = (ac — bd)? + (ad + bc)?

Theorem 3.21 extends easily to

det(ABC) = det Adet BdetC'. n fact, induction gives

det(A1Ag - - Ap_1Ag) = detArdetAy - - - det Ay _1det Ay,

for any square matrices Aq,..., Aj of the same size. In
particular, if each A; = A, we obtain

det(AF) = (detA)¥, for any k > 1

We can now give the invertibility condition.

Theorem 3.2.2

An 70 X 7 matrix A is invertible if and only if
detA # 0.When this is the case,
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det(A™1) = 1

Proof:
If A is invertible, then AA V=T ; so the product theorem gives
1 =det]l = det(AA™Y) = det Adet A1

Hence, det A # () and also detA=! = deltA'
Conversely, if detA 75 0, we show that A can be carried to [
by elementary row operations (and invoke Theorem 2.4.5). Certainly,

A can be carried to its reduced row-echelon form R, SO
R = E},--- E3F1 A where the E; are elementary matrices
(Theorem 2.5.1). Hence the product theorem gives
detR = detEy, - - - det Eydet i det A
Since detE # () for all elementary matrices [, this shows
detR 75 0. In particular, R has no row of Zeros, So R=1
because I? is square and reduced row-echelon. This is what we
wanted.

@ An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm/?p=70

Example 3.2.2
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1 0 -—c
For which valuesof Cdoes A = | —1 3 1
0 2¢ —4

have an inverse?

Solution:
Compute det A by first adding € times column 1to column 3 and
then expanding along row 1.

1 0 —c 1 0 0
detA=det | -1 3 1 |=det| -1 3 1—c | =2(c+2)(c—3)
0 2¢ —4 0 2¢ -4

Hence, detA = 0ifc= —2orc = 3, and A has an inverse

ifc # —2andc # 3.

Example 3.2.3

If a product Ay Ag - - - Ay, of square matrices is
invertible, show that each A; is invertible.

Solution:

We have det AjdetAg - - - det Ay, = det(A1 Ay -+ Ay)
by the product theorem, and det(A1A2 SR Ak) 35 0 by

Theorem 3.2.2 because A Ag - - - Ay, is invertible. Hence
detAidetAs ---detAy # 0

Determinants and Diagonalization | 151



sodet A; 7~ 0 for each 7. This shows that each Aj; is invertible,
again by Theorem 3.2.2.

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.presshooks.pub

linearalgebrautm /?p=70

Theorem 3.2.3

If A is any square matrix, detAT = det A.

Proof:

Consider first the case of an elementary matrix F. If F is of type
I or II, then ET = E; so certainly detET = detE.1f E is of
type 11, then E7T is also of type II; so det BT = 1 = detE
by Theorem 3.1.2. Hence, d etET = detE for every elementary
matrix .

Now let A be any square matrix. If A is not invertible, then
neither is AT; so detAT =0 = detA by Theorem 3.1.2. On
the other hand, if A is invertible, then A = E}, --- EoFy,
where the [FJ; are elementary matrices (Theorem 2.5.2). Hence,
AT = ETE2 s E;{ so the product theorem gives
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detAT = detET detEL - detEL = detEydetE; - - - detE),
= detE}, - - - det Exdet Fn
= detA

This completes the proof.

Example 3.2.4

ifdetA = 2 and det B = 5, calculate
det(A3B~1AT B?).

Solution:
We use several of the facts just derived.
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det(A3B~ AT B?) = det(A%)det(B')det(AT)det(B?)

1
= (detA)? A(detB)?
(detA) dethet (detB)
1
—923.2.9.52
5
=80

E An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=70

Example 3.2.5

A square matrix is called orthogonal if
Al = AT. What are the possible values of detAif A
is orthogonal?

154 | Determinants and Diagonalization


https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=70#pb-interactive-content
https://ecampusontario.pressbooks.pub/linearalgebrautm/?p=70#pb-interactive-content

Solution:
If A is orthogonal, we have I = AAT Take determinants to
obtain

1 = det] = det(AAT) = det Adet AT = (detA)?
Since det A is a number, this means det A = +1.

Adjugates

In Section 24 we defined the adjugate of a 2 X 2 matrix
a b

A= l c d
. d —b

tobe adj(A) = e

Then we verified that A(ade) = (detA)I = (ade)A
and hence that, if det A 7é 0, A_l = deltA ade. We are now
able to define the adjugate of an arbitrary square matrix and to show

that this formula for the inverse remains valid (when the
inverse exists).

Recall that the (4, j )-cofactor ¢ij(A) of a square matrix A is
a number defined for each position (7, j) in the matrix. If A is a
square matrix, the cofactor matrix of A is defined to be
the matrix [¢;;(A)] whose (7, J)-entry is the (7, j )-cofactor of A

Definition 3.3 Adjugate of a Matrix

The adjugate of A, denoted adj(A), is the
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transpose of this cofactor matrix; in symbols,

adj(A) = [ci;(A)]"

Example 3.2.6

1 3 -2
Compute the adjugate of 4 = 0 1 5)
-2 —6 7

and calculate A(adj A) and (adjA)A.

Solution:

We first find the cofactor matrix.
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T 15| | 05 0 1]
-6 7 2 7 -2 —6
ci1(A) ca(4) ci3(4) 3 _9 1 -9 1 3
c21(A) c2(A) c3(4) | = | — 6 7‘ ‘72 7 —’ _9 76‘
c31(A) c32(A) c33(A)
3 -2 |1 -2 13
L1 s 5 01| |
[ 37 —10 2
=1 -9 3 0
17 -5 1

Then the adjugate of A is the transpose of this cofactor matrix.
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T

37 =10 2 37 =9 17
adjA=| -9 3 0 = -10 3 -5
17 -5 1 2 0 1

The computation of A(adj A) gives

1 3 -2 3r -9 17 3 00

AladjA) = 0 1 5 -0 3 -5|=]03 0|=3I
2 0 1 0 0 3

and the reader can verify that also (ade)A = 31. Hence,

analogy with the 2 X 2 case would indicate that det A = 3; this
is, in fact, the case.

a An interactive or media element has been excluded
from this version of the text. You can view it online
here:

https: //ecampusontario.pressbooks.pub

linearalgebrautm /?p=70

The relationship A(adjA) = (det A)I holds for any square
matrix A.
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Theorem 3.2.4 Adjugate formula

If A is any square matrix, then
A(adjA) = (detA)I = (adjA)A
In particular, if det A # 0, the inverse of A is given by

_ 1 .
A~ = detAad]A

It is important to note that this theorem is 10%an efficient way to
find the inverse of the matrix A. For example, if A were 10 X 10
, the calculation of adj A would require computing 10% = 100
determinants of 9 X 9 matrices! On the other hand, the matrix
inversion algorithm would find A~ with about the same effort
as finding det A. Clearly, Theorem 3.2.4 is not a practicalresult:
its virtue is that it gives a formula for A~ that is useful for
theoreticalpurposes.

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.presshooks.pub

linearalgebrautm/?p=70
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Example 3.2.7

Find the (2, 3)-entry of AL if

2 1 3
A=|5 =7 1
3 0 -6

Solution:
First compute

2
detA=|5 -7 1|=|5 =7 11 :3‘
3

: -1 1 ~ 1 T

since A% = gz adj A = 155 i (A)]
the (2,3)—entry of A7 is the (3,2)—entry of the matrix
ﬁ Cij (A); that is, it equals

2

Example 3.2.8

If Ais™ X 1, > 2, show that
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det(adjA) = (detA)" .

Solution:

write d = det A; we must show that det(adjA) = a1
. We have A(ade) = dl by Theorem 324, so taking
determinants gives ddet(ade) = d". Hence we are done if
d # 0. Assume d = (); we must show that det(adjA) =0
, that is, ade is not invertible. If A 75 0, this follows from
A(ade) =dl = 0; it A= 0, it follows because then
adjA = 0.

Cramer’s Rule

Theorem 3.2.4 has a nice application to linear equations. Suppose

A =1

is a system of 7 equations in 72 variables 1, X2, . .., y. Here
Ais the 0 X T coefficient matrix and  and l_; are the columns
x1 b1
o = b2
T = and b=
Tn by,

of variables and constants, respectively. If det A 75 0, we left

multiply by A~ to obtain the solution # = A~ 1h. When we use
the adjugate formula, this becomes
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oL agiag
: dera “44)
L,
011(14) C21 (A) s Cnl (A) bl
1 c12(A) ca2(A) -+ cna(A) by
~ detA : : : :
Cln(A) CQn(A) T Cnn(A) bn
Hence, the variables '1, L9, . . ., Ty, are given by
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1

xr1 = m [blcll(A) —+ bQCQl(A) 4+ -+ bpcna (A)]
1
_ A A) 44 byenn(A
T2 = [b1c12(A) 4 bacaa(A) + - - - + buena(A)]
1
Ty = Tt A [b1c10(A) + bacon(A) + -+ + bypcan(4)]
Now the quantity

blcll(A) + boco (A) + -+ bpcna (A) occurring in the
formula for g looks like the cofactor expansion of the determinant
of a matrix. The cofactors involved are
011(14), C21 (A), ..., Cnl (A), corresponding to the first
column of A. If A is obtained from A by replacing the first column
of A by b, then C;1 (Al) = C;i1 (A) for each 7 because column
1 is deleted when computing them. Hence, expanding det (Al ) by
the first column gives
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detAy = bic11(A1) + bacar (A1) + - - - + bpcni(Ar)
= blcll(A) + szzl(A) + -+ bncnl(A)

= (detA)x;
Hence, 1 = d;(fé‘l and similar results hold for the other

variables.

Theorem 3.2.5 Cramer’s Rule

If A is an invertible 72 X 7T matrix, the solution to the

system
AZ =0
of 7 equations in the variables 1, L9, . . . , Ly, is given
by
detAq detAs detA,
Ir1 = = =

~ detA’ 92 = detA’ 00 B = detA

where, for each k, A}, is the matrix obtained from A by
replacing column & by b.
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Example 3.2.9

Find 11, given the following system of equations.
91+ x2 — x3=4
91+ 29— 23=1
1 —T9+5r3=2

Solution:

Compute the determinants of the coefficient matrix A and the
matrix A, obtained from it by replacing the first column by the
column of constants.

[ 5 1 —1]
detA=det| 9 1 -1 | =-16
1 -1 5 |
[ 4 1 —1]
detA; =det | 1 1 -1 | =12
2 -1 5
Hence, L1 = (f]eéf%l = —%by Cramer’s rule.

Cramer’s rule is .07 an efficient way to solve linear systems or
invert matrices. True, it enabled us to calculate g1 here without
computing o or I3. Although this might seem an advantage, the
truth of the matter is that, for large systems of equations, the
number of computations needed to find all the variables by the
gaussian algorithm is comparable to the number required to find
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one of the determinants involved in Cramer’s rule. Furthermore,
the algorithm works when the matrix of the system is not invertible
and even when the coefficient matrix is not square. Like the
adjugate formula, then, Cramer’s rule is 10t a practical numerical
technique; its virtue is theoretical.

@ An interactive or media element has been excluded
from this version of the text. You can view it online

here:

https: //ecampusontario.presshooks.pub

linearalgebrautm/?p=70

3.3 Diagonalization and Eigenvalues

The world is filled with examples of systems that evolve in time—the
weather in a region, the economy of a nation, the diversity of an
ecosystem, etc. Describing such systems is difficult in general and
various methods have been developed in special cases. In this
section we describe one such method, called diagonalization,
which is one of the most important techniques in linear algebra. A
very fertile example of this procedure is in modelling the growth
of the population of an animal species. This has attracted more
attention in recent years with the ever increasing awareness that
many species are endangered. To motivate the technique, we begin
by setting up a simple model of a bird population in which we make
assumptions about survival and reproduction rates.
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Example 3.3.1

Consider the evolution of the population of a species of
birds. Because the number of males and females are nearly
equal, we count only females. We assume that each female
remains a juvenile for one year and then becomes an adult,
and that only adults have offspring. We make three
assumptions about reproduction and survival rates:

1. The number of juvenile females hatched in any year
is twice the number of adult females alive the year
before (we say the reproduction rateis 2).

2.  Half of the adult females in any year survive to the
next year (the adult survival rateis %).

3. One-quarter of the juvenile females in any year
survive into adulthood (the
juvenile survival rateis %).

If there were 100 adult females and 40 juvenile females
alive initially, compute the population of females k years
later.

Solution:

Let ag and 7k denote, respectively, the number of adult and
juvenile females after k years, so that the total female population is
the sum @y, + Jg. Assumption 1 shows that Ji 11 = 2ay, while
assumptions 2 and 3 show that @1 = %ak + i]k Hence the
numbers A, and J in successive years are related by the following
equations:
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1 1

A1 = iak + Ejk

Jk+1 = 2ag
= a
If we write U, = l .k 1
Jk

1
andA:l2 %:|

these equations take the matrix form
U1, = AUy, for each £k =0,1,2,...

D=

Taking k = 0 gives /] = AT, then taking k = 1 gives
Uy = Aty = A0, and taking k=2 gives
Uy = AUy = Agﬁo. Continuing in this way, we get

o, = APy, for each k=10,1,2,...

Since U = @0 = 100
o] [ 40

is known, finding the population profile U}, amounts to computing
AF for all k > 0. We will complete this calculation in Example
3.3.12 after some new techniques have been developed.

Let A be a fixed 7 X T matrix. A sequence U, U1, U3, . . .
of column vectors in " is called a
linear dynamical system. Many models regard ¥; as
a continuous function of the time ¢, and replace our condition
between [;k +1 and A}, with a differential relationship viewed as
functions of time if /) is known and the other 7/}, are determined
(as in Example 3.3.1) by the conditions

U1 = AUy, for each £ =0,1,2,...

These conditions are called a matrix recurrence for the

vectors Uy. As in Example 3.3.1, they imply that

T, = A¥%, for all k > 0

so finding the columns ¥}, amounts to calculating AF for k>0
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Direct computation of the powers AF of 2 square matrix A can
be time-consuming, so we adopt an indirect method that is
commonly used. The idea is to first diagonalize the matrix A,
that is, to find an invertible matrix P such that

(3.8) P 1AP = D is a diagonal matrix

This works because the powers DF of the diagonal matrix [ are
easy to compute, and Equation (3.8) enables us to compute powers
AF of the matrix A in terms of powers DF of D. Indeed, we can
solve Equation (3.8) for A to get A= PDP 1 Squaring this
gives

A* = (PDP Y (PDP 1) = PD*P!

Using this we can compute A3 as follows:

A% = AA? = (PDP Y (PD?*P~') = PDP!

Continuing in this way we obtain Theorem 3.3.1 (even if [) is not
diagonal).

Theorem 3.3.1

fA = rPDp1 then Ak =5 PDkP_l for each
k=1,2,...

Hence computing Ak comes down to finding an invertible matrix
P asin equation Equation (3.8). To do this it is necessary to first
compute certain numbers (called eigenvalues) associated with the
matrix A.
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Eigenvalue and Eigenvectors

Definition 3.4 Eigenvalues and Eigenvectors of a Matrix

If A isan 7 X 7 matrix, a number \ is called an
eigenvalue of A if

AZ = \¥ for some column ¥ # 0 in "

In this case, I is called an €eigenvector of A
corresponding to the eigenvalue \, or a A-
eigenvectorfor short.

Example 3.3.2

3 5 O )
IfA_l1 _1]andx_l11then

AZ = 4% so A = 4 is an eigenvalue of A with
corresponding eigenvector 77,

The matrix A in Example 3.3.2 has another eigenvalue in addition
to A = 4. To find it, we develop a general procedure for any
7 X M matrix A.
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By definition a number A is an eigenvalue of the 7 X 70 matrix

A if and only if AZ = AT for some column X # (. This is
equivalent to asking that the homogeneous system

(M —A)z=0

of linear equations has a nontrivial solution & 74 6 By Theorem
2.4.5 this happens if and only if the matrix A — Aisnot invertible
and this, in turn, holds if and only if the determinant of the
coefficient matrix is zero:

det(N — A) =0

This last condition prompts the following definition:

Definition 3.5 Characteristic Polynomial of a Matrix

If Aisan? X 1 matrix, the
characteristic polynomial c4(z) of Ais
defined by
cA(x) =det(xl — A)

Note that C A(SC) is indeed a polynomial in the variable I, and it
has degree 70 when A is an 70 X 7 matrix (this is illustrated in the
examples below). The above discussion shows that a number A is an
eigenvalue of A if and only if CA ()\) = 0, that is if and only if A is
a root of the characteristic polynomial C A(QL‘) We record these
observations in

Theorem 3.3.2
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Let A bean T X M matrix.

1. The eigenvalues A of A are the roots of the
characteristic polynomial CA () of A.

2. The \-eigenvectors T are the nonzero solutions to
the homogeneous system

M —-A)Z=0

of linear equations with A — A as coefficient matrix.

In practice, solving the equations in part 2 of Theorem 3.3.2 is
a routine application of gaussian elimination, but finding the
eigenvalues can be difficult, often requiring computers. For now, the
examples and exercises will be constructed so that the roots of the
characteristic polynomials are relatively easy to find

(usually integers). However, the reader should not be misled by this
into thinking that eigenvalues are so easily obtained for the matrices
that occur in practical applications!

Example 3.3.3

Find the characteristic polynomial of the matrix

A=[i 1]

discussed in Example 3.3.2, and then find all the
eigenvalues and their eigenvectors.
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Solution:
Since

z 0 3 5 r—3 -5
M_A_{o x]_L —1]_{ -1 x—{—l]

we get

ca(x) = det [ x:13 mfl ] =22 -2 —8=(x—4)(z+2)
Hence, the roots of CA(ZC) are \{ = 4 and Ao = —2, so

these are the eigenvalues of A. Note that \{ = 4 was the
eigenvalue mentioned in Example 3.3.2, but we have found a new
one: \g = —2.

To find the eigenvectors corresponding to A9 = —2, observe
that in this case

- A—3 =5 -5 =5
(Mol —A)z=| "7 =
-1 A+1 -1 -1
so the general solution to ()\QI - A)f =0 s
S -1
r=t
where t is an arbitrary real number. Hence, the eigenvectors T
- -1
corresponding to Ay are I = t{ 1 1 where t# 0 is
arbitrary. Similarly, A\; = 4 gives rise to the eigenvectors

- D
r=t { 1 ,t # 0 which includes the observation in Example

3.3.2.
Note that a square matrix A has many eigenvectors associated
with any given eigenvalue . In fact every nonzero solution T of
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()\I — A)f = 6 is an eigenvector. Recall that these solutions
are all linear combinations of certain basic solutions determined
by the gaussian algorithm (see Theorem 1.3.2). Observe that any
nonzero multiple of an eigenvector is again an eigenvector, and such
multiples are often more convenient. Any set of nonzero multiples

of the basic solutions of ()\I — A)f = 0 will be called a set of
basic eigenvectors corresponding to .

Example 3.3.4
Find the characteristic polynomial, eigenvalues, and basic
eigenvectors for

20 0 -2 0 0
A= |1 2 —1 | Solution: Herethecharacteristicpolynomialisgivenbyca(z) = det | -1 x—2 1 = (z—2)(z—1)(z+1)
13

so the eigenvalues are \| = 2, Ay =1,and A3 = —1. To
find all eigenvectors for )\1 = 2, compute
Al—2 0 0 0 0 0
Ml —A= -1 Al —2 1 =1 -1 0 1
-1 -3 AL +2 -1 -3 4

We want the (nonzero) solutions to ()\1] — A){I_f = 0. The
augmented matrix becomes

0 0 0|0 1 0 -1(0
-1 0 1|0 —=10 1 -1
-1 -3 4|0 0 0 O
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using row operations. Hence, the general solution T to

1
(MI—A)Z=0isg=¢] 1
1
1
where t is arbitrary, so we can use T = 1
1

as the basic eigenvector corresponding to A1 = 2. As the reader
can verify, the gaussian algorithm gives basic eigenvectors

0
To= |1
1
0
and 73 = %
1
corresponding to A9 = 1 and A3 = —1, respectively. Note that
0
to eliminate fractions, we could instead use 3;{;’3 = 1
3

as the basic \3-eigenvector.
@ An interactive or media element has been excluded from
this version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70

@ An interactive or media element has been excluded from
this version of the text. You can view it online here:

https://ecampusontario.pressbooks.pub/

linearalgebrautm/?p=70
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Example 3.3.5

If A is a square matrix, show that A and AT have the
same characteristic polynomial, and hence the same
eigenvalues.

Solution:
We use the fact that 21 — AT = (QZI — A)T. Then

cqr(z) = det (xI — AT) = det [(z] — A)T} =det(x] — A) = ca(x)
by Theorem 3.2.3. Hence C T (JJ) and CA(.I) have the same
roots, and so AT and A have the same eigenvalues (by Theorem
3.3.2).
The eigenvalues of a matrix need not be distinct. For example, if
11
A=
01
the characteristic polynomial is (l’ — 1)2 so the eigenvalue 1
occurs twice. Furthermore, eigenvalues are usually not computed

as the roots of the characteristic polynomial. There are iterative,
numerical methods that are much more efficient for large matrices.
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4. Vector Geometry

4.1 Vectors and Lines

In this chapter we study the geometry of 3-dimensional space. We
view a point in 3-space as an arrow from the origin to that point.
Doing so provides a “picture” of the point that is truly worth a
thousand words.

Vectors in R

Introduce a coordinate system in 3-dimensional space in the usual
way. First, choose a point () called the o7r1gin, then choose three
mutually perpendicular lines through O, called the x, y, and
zaxes, and establish a number scale on each axis with zero at the
origin. Given a point I in 3-space we associate three numbers ,
1, and 2 with P , as described in Figure 4.1.1.
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Folx, v, 0)

Figure 4.1.1

These numbers are called the coordinates of P , and we denote
the point as (.I‘, Y, z), or P(a;, Y, Z) to emphasize the label P
. The result is called a cartestan coordinate system for 3-space,
and the resulting description of 3-space is called
cartesian geometry.
As in the plane, we introduce vectors by identifying each point
P(l‘, Y, Z) with the vector
T
v= |y | in R3, represented by the arrowfrom the origin
z
to P as in Figure 4.1.1. Informally, we say that the point P has
vector ¥/, and that vector U has point P. 1n this way 3-space is
identified with RS, and this identification will be made throughout
this chapter, often without comment. In particular, the terms
“vector” and “point” are interchangeable. The resulting description
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of 3-space is called vector geometry. Note that the origin
0

is 6 = O
0

Length and direction

We are going to discuss two fundamental geometric properties of
vectors in R>; length and direction. First, if U/ is a vector with point
P, the length of vector 1 is defined to be the distance from
the origin to P, that is the length of the arrow representing ¥/. The
following properties of length will be used frequently.

Theorem 4.1.1

Let ¢ = Y be a vector.

z

Lo [0l = vt + P+ 22
2 17=0ifandonlyif||17||=0
& ||a17|| = |a|||17|| for all scalars @.

Proof:
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Figure 4.1.2

Let U have point P(:C, Y, Z)

In Figure 4.1.2, ||U]| is the hypotenuse of the right triangle
OQ P, and so ||17| |2 = h? + 22 by Pythagoras’ theorem.
But A is the hypotenuse of the right triangle ORQ, SO

h2 = £L‘2 + yz. Now (1) follows by eliminating h? and taking
positive square roots.

if ||7]| = 0, then 22 + % + 2% = 0 by (1). Because squares
of real numbers are nonnegative, it follows that

T = y = z = (), and hence that ¥ = (). The converse is
because ||0|| =0

- T
. We have av = [ ar ay az } so (1) gives

lad][* = (az)* + (ay)® + (a2)* = a’||7]]”
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Hence ||CL17|| = va2||1?||, and we are done because
Va? = |a| for any real number a.

Example 4.1.1

2
Fif— | —3

3
then ||¥]| = V4 + 9 + 9 = V/22. Similarly if
i=| _;

in 2-space then ||U]| = v/4 + 9 = v/13.

When we view two nonzero vectors as arrows emanating from the
origin, it is clear geometrically what we mean by saying that they

have the same or opposite direction. This leads to a
fundamental new description of vectors.

Theorem 4.1.2

Let ¥ # () and w0 # () be vectors in R3. Then ¥ = 0
as matrices if and only if 7 and 1) have the same direction
and the same length.
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Proof:

If U = 0, they clearly have the same direction and length.
Conversely, let ¥ and W be vectors with points P (33 YUY, 2 ) and
Q (5131, Y1, 21) respectively. If ¥ and W have the same length and
direction then, geometrically, P and Q must be the same point.

Hence x = x1, Y = Y1,
and zZ = 21, that s

&

s P

o ()

w

Figure 4.1.3

x 1
z Z1

Note that a vector’s length and direction do n.0? depend on the
choice of coordinate system in R3. Such descriptions are important
in applications because physical laws are often stated in terms of
vectors, and these laws cannot depend on the particular coordinate
system used to describe the situation.

Geometric Vectors

If A and B are distinct points in space, the arrow from A to B has
length and direction.
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Figure 4.1.4

Hence,

Definition 4.1 Geometric vectors

Suppose that A and B are any two points in R3.1n

Figure 4.1.4 the line segment from A to B is denoted A B
and is called the geometric vector from A to B.
Point A is called the tail of AB, B is called the tip

and the lengthis denoted | |A_B| |

Note that if ¥/ is any vector in R3 with point P then v =0Pis
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itself a geometric vector where () is the origin. Referring to AB as

a “vector” seems justified by Theorem 4.1.2 because it has a direction

(from A to B) and a length ||AB | | However there appears to be
a problem because two geometric vectors can have the same length

and direction even if the tips and tails are different.

e (0, 2)

eA(3. 1)
P(1,0)

O

Figure 4.1.5

For example A_B and P_Q
in Figure 4.1.5 have the same
length \/g and the same
direction (1 unit left and 2 units
up) so, by Theorem 4.1.2, they
are the same vector! The best
way to understand this

apparent paradox is to see A B

and P() as different
representations of the
same underlying vector

[ _; ] Once it is clarified,

this phenomenon is a great benefit because, thanks to Theorem

412, it means that the same geometric vector can be positioned

anywhere in space; what is important is the length and direction,

not the location of the tip and tail. This ability to move geometric

vectors about is very useful.
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The Parallelogram Law

We now give an intrinsic
description of the sum of two
vectors U and 0 in ]R3, that is
a description that depends only

on the lengths and directions of
¥ and W and not on the choice
Figure 4.1.6 of coordinate system. Using
Theorem 4.1.2 we can think of

these vectors as having a

common tail A. If their tips are P and () respectively, then they
both lie in a plane P containing A, P , and Q, as shown in Figure
4.1.6. The vectors U and 1 create a parallelogram in P, shaded in
Figure 4.1.6, called the parallelogram determined by U and W

If we now choose a coordinate system in the plane P with A as
origin, then the parallelogram law in the plane shows that their sum
U -+ 10 is the diagonal of the parallelogram they determine with
tail A. This is an intrinsic description of the sum U —+ W0 because it
makes no reference to coordinates. This discussion proves:

The Parallelogram Law

In the parallelogram determined by two vectors ¥ and w
, the vector U/ + 0 is the diagonal with the same tail as U/
and W.
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. ,
VW
'I_'.l - F
EVEE A
v
V+ W
(b)
WY v
2 B
Figure 4.1.7

Because a vector can be positioned with
its tail at any point, the parallelogram law
leads to another way to view vector
addition. In Figure 4.17 (a) the sum U -+ W
of two vectors ¥/ and 0 is shown as given
by the parallelogram law. If 0 is moved so
its tail coincides with the tip of ¥ (shown in
(b)) then the sum U + 0 is seen as “first U
and then 10J. Similarly, moving the tail of ¥/
to the tip of 1 shows in (c) that ¥/ -+ 0 is
“first 20 and then ¥’ This will be referred
to as the tip-to-tail rule, and it
gives a graphic illustration of why
T+w=w+7.

Since A_B denotes the vector from a
point A to a point B, the tip-to-tail rule
takes the easily remembered form

AB + BC = AC
for any points A, B, and C.

W

u

u+v-+-w

Figure 4.1.8
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One reason for the importance of the
tip-to-tail rule is that it means two or more
vectors can be added by placing them tip-
to-tail in sequence. This gives a useful
“picture” of the sum of several vectors, and
is illustrated for three vectors in Figure
4.1.8 where U + U + 10 is viewed as first
?7, then ¥/, then .



B
v i i C f;’
A
w C

Figure 4.1.9

Figure 4.1.9.

Theorem 4.1.3

There is a simple geometrical way to
visualize the (matrix) difference¥ — W
of two vectors. If U and 0 are positioned so
that they have a common tail A | and if B
and (' are their respective tips, then the tip-
to-tail rule gives w + C_B = 7. Hence

U — W = C B is the vector from the tip of
W to the tip of /. Thus both U — W and
U+ W appear as the
parallelogram determined by ¥/ and w (see

diagonals in

If ¥ and 20 have a common tail, then U — W is the
vector from the tip of 2 to the tip of .

One of the most useful applications of vector subtraction is that it

gives a simple formula for the vector from one point to another, and

for the distance between the points.

Theorem 4.1.4
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Let P1 (:Bl, Y, Zl) and PQ(QS’Q, Y2, ZQ) be two
points. Then:

T2 — I
L PPy=| y2—mn
22 — 21

2. The distance between Py and Pyis
V(@2 —21)2 + (y2 — y1)? + (22 — 21)2.

Can you prove these results?

Example 4.1.3

The distance between P} (2, —1,3) and P»(1,1,4)
is \/(—1)2 + (2)2 + (1)2 = \/6, and the vector

from P; to Pyis
!
PiPy=| 2
1

The next theorem tells us what happens to the length and direction
of a scalar multiple of a given vector.

Scalar Multiple Law
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If a is a real number and U 7% 0 is a vector then:

Q Thelengthof(lﬁis“&ﬁ” = |a|||17||

. Ifav # 6, the direction of /47 is the same as ¥ if
a > 00" title="Rendered by QuickLaTeX.com"
height="12" width="42" style="vertical-align: Opx;">;
opposite to U if @ < 0.

Proof:

The first statement is true due to Theorem 4.1.1.

To prove the second statement, let () denote the origin in R3.
Let U have point P, and choose any plane containing () and P. If
we set up a coordinate system in this plane with O as origin, then

7 = OP so the result follows from the scalar multiple law in the

plane.
Avector 1 is called a unit vector if ||u|| = 1. Then
1 0 0
i=|0l].j=1|1]adk=|0
0 0 1

are unit vectors, called the coordinate vectors.

Example 4.14

—

If ¥ # 0 show that Gl U is the unique unit vector in

the same direction as ¥.

Vector Geometry | 189



Solution:

The vectors in the same direction as ¥ are the scalar multiples aif
where a > 0 0" title="Rendered by QuickLaTeX.com" height="12"
width="42" style="vertical-align: 0px;">. But
||a17|| = |a|||17|| = a||17|| when a > 0 0" title="Rendered by
QuickLaTeX.com" height="12" width="42" style="vertical-align:

0px;">, so a4 is a unit vector if and onlyif @ =

ol

Definition 4.2 Parallel vectors in

Two nonzero vectors are called parallel if they have
the same or opposite direction.

Theorem 4.1.5

Two nonzero vectors ¥ and 0 are parallel if and only if
one is a scalar multiple of the other.

Example 4.1.5
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Given points P(Z, —1, 4), Q(3, —1, 3), A(O, 2, 1)
,and B (1, 3, 0), determine if P() and AB are parallel.

Solution:

By Theorem 413, P_Q = (1,0,-1) and
AB = (1,1,-1).1t PQ = tAB
then (1,0, —1) = (¢,t, —t), so 1 =t and ) = ¢, which is
impossible. Hence P_Q is not a scalar multiple of A_B, so these
vectors are not parallel by Theorem 4.1.5.

Lines in Space

These vector techniques can be used to give a very simple way of
describing straight lines in space. In order to do this, we first need
away to

specify the orientation of such a line.

Definition 4.3 Direction Vector of a Line

- -
We call a nonzero vector d 7 () a direction vector for

the line if it is parallel to A.B for some pair of distinct
points A and B on the line.
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o
Note that any nonzero scalar multiple of d would also serve as a
direction vector of the line.

We use the fact that there is exactly one line that passes through
a particular point Py (x(), Yo, Zo) and has a given direction vector

a
j = b |.We want to describe this line by giving a condition
Cc
on &I, , and 2 that the point P(:E, Y, Z) lies on this line. Let
Zo
Po=| Y%
<0
€T
and ﬁ = y | denote the vectors of Pyand P, respectively.
zZ
Then
4 p=po+ P
Py P o
P Hence lies on the line if
PP and only if )P is parallel to
Py d —that is, if and only if
P PyP = td for some scalar t
e by Theorem 4.1.5. Thus ﬁ is the
Origin . o
S vector of a point on the line if
Figure 4.110 and only if p'= pg + td for

some scalar .

Vector Equation of a line
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The line parallel to d 75 0 through the point with vector

—

Po is given by
P =po+ td t any scalar

In other words, the point P with vector ﬁ is on this line
if and only if a real number t exists such that

ﬁ=ﬁo+tcf.

In component form the vector equation becomes

x 20 a
y|{=1|wv | +t| Db
z 20 c

Equating components gives a different description of the line.

Parametric Equations of a line

The line through P() (xo, Yo, Zo) with direction vector
a

Ci = b 75 6 is given by
C
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T = xo + ta
y =1yo+tb tany scalar
z=zp+tc

In other words, the point P (LE, Y,z ) is on this line if
and only if a real number ¥ exists such that x = x + ta,
y = yo + th,and z = zg + tc.

Example 4.1.6

Find the equations of the line through the points

Py(2,0,1) and Py (4, —1,1).

Solution:
Let
2
d=PP; = | 1
0

—

denote the vector from I to P,. Then d is parallel to the line (

Py and Pj are on the line), so d serves as a direction vector for
the line. Using ) as the point on the line leads to the parametric

equations
r=24+2
y=—t t a parameter
z=1
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Note that if P} is used (rather than F), the equations are
r =44 2s

y=—1—s s a parameter
z=1

These are different from the preceding equations, but this is
merely the result of a change of parameter. In fact, s = ¢ — 1.

Example 4.1.7

Determine whether the following lines intersect and, if
so, find the point of intersection.

rx=1—3t r=—1+4+s
z=1+1 z=1-—3s

Solution:
Suppose P (x, Y, z ) with vector ﬁ lies on both lines. Then

1-3t x —1+s
245t | =y | =| 3—4s for some t and s,
1+1¢ z 1—s5

where the first (second) equation is because P lies on the first
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(second) line. Hence the lines intersect if and only if the three

equations
1-3t=—-1+s
245t=3—4s
1+t=1-s
have a solution. In this case, { = 1 and § = —1 satisfy all three
equations, so the lines do intersect and the point of intersection is
1-3¢ —2
p=|2+5t | =| 7
1+t 2

using { = 1. Of course, this point can also be found from

—1+s
p= 3 —4s | usings = —1.
1—s

4.2 Projections and Planes

Suppose a point Panda plane are given and it is desired to find the
point Q that lies in the plane and is closest to P, as shownin Figure
4.2.1
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P Clearly, what is required is to
find the line through P that is
perpendicular to the plane and
then to obtain Q as the point of
intersection of this line with the

D)

plane. Finding  the line

perpendicular to the plane

requires a way to determine

when two vectors are
Figure 4.2.1 perpendicular. This can be done
using the idea of the dot product
of two vectors.

The Dot Product and Angles

Definition 4.4 Dot Product in

Given vectors

<y
I
<
=
fsb)
=
o

45
Y2 |, their dot product ¥ - 0 is a number

%)
defined
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= =T

VW =122 + Y1y2 + 2122 =T W

- - . . . .
Because ¥ - W is a number, it is sometimes called the scalar

product of ¥ and 0.

Example 4.2.1

and ¢ = 4 |,then
L _1 -
14 (=1)-4+3-(=1) = —5.

Y
g
I
o

Theorem 4.2.1

Let U, ¥, and W denote vectors in R3 (or RQ).

U - 0 is a real number.
U-wW=1w-7.
— —

3. Uv-0=0=0-7.
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The readers are invited to prove these properties using the
definition of dot products.

Example 4.2.2

Verify that ||T — 34||?> = 1 when ||7]| = 2,
||u7|| = l,andﬁ-ﬁz 2.

Solution:
We apply Theorem 4.2.1 several times:
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|7 — 3W||* = (¥ — 30) - (¥ — 3)

W) — 30 - (T — 310)
=07 —3(¥- %) — 3(0 - T) + (0 - &)
1~ | |*

Il
ST
Yy
<y

I
o

= [lv

There is an intrinsic description of the dot product of two
nonzero vectors in . To understand it we require the following
result from trigonometry.

Laws of Cosine

If a triangle has sides a, b, and C, and if 6 is the interior
angle opposite C then

? =a®+b%>—2abcosh
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Proof:
We prove it when is 6 acute,
that is 0 < 0 < %; the

a p c obtuse case is similar. In Figure
422 we have p = asin6
0 g b—q and ¢ = a cos 6.

Hence Pythagoras’ theorem

b

gives
Figure 4.2.2

A =p*+(b—q)? =a*sin?0 + (b — acosh)?
= a*(sin® § + cos? ) + b* — 2abcos b

The law of cosines follows because sin2 0 + COS2 0 =1 for
any angle 0.

Note that the law of cosines reduces to Pythagoras’ theorem if #
is a right angle (because COS % = 0).

Now let ¥/ and W be nonzero vectors positioned with a common
tail. Then they determine a unique angle 6 in the range

0<o<nm

This angle 6 will be called the angle between U and 0. Clearly v
and W are parallel if 6 is either () or 7. Note that we do not define
the angle between ¥ and 1 if one of these vectors is 6

The next result gives an easy way to compute the angle between
two nonzero vectors using the dot product.

Theorem 4.2.2
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Let ¥ and 27 be nonzero vectors. If 6 is the angle
between ¥ and W , then

v w = ||0]||[]| cos 0

Proof:
We calculate ||17— u7||2 in
two ways. First apply the law of

A V=W Cosines to the triangle in Figure
\ P 4.2.4 to obtain:
W
Figure 4.2.4
|7 — U7||2 = ||17||2 + ||U_J’||2 — 2|[]|[|@][ cos &

On the other hand, we use Theorem 4.2.1:
|0 — @ = (7 — @) - (7 — )

Comparing these we see that
—2| |17| | | |IU|| cosf = —2(17- ZU), and the result follows.

If 7 and 1 are nonzero vectors, Theorem 4.2.2 gives an intrinsic
description of ¥ -+ W because ||7]|, ||7]|, and the angle € between
¥ and W do not depend on the choice of coordinate system.
Moreover, since | ||| and ||17|| are nonzero (¥ and 10 are nonzero
vectors), it gives a formula for the cosine of the angle 0

v-w

cosf = I ETTT——
[|5]] ]
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since ) < € < 71, this can be used to find 6.

Example 4.2.3

Compute the angle between

-1

U= 1 and
)
2
U= 1

L _1 -
Solution:
. vw . —2+41-2 _ 1
Compute cOS 6 = el — Veve 2 Now recall

that cOs 6 and Sin 0 are defined so that (cos f, sin 9) is the
point on the unit circle determined by the angle 0 (drawn
counterclockwise, starting from the positive I axis). In the present
case, we know that COS = —% and that 0 < @ < 7. Because
COS % = %, it follows that = %T

If ¥ and W are nonzero, the previous example shows that COS 0
has the same signas U - W, so
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U-w >0 ifand only if 6 is acute (0 <6 < T)
v-w <0 if and only if 6 is obtuse (§ < 6 < 0)
v-w=0 ifandonlyif 6=7

0 & \mbox{if and only if } & \theta \mbox{ is acute } (0 \leq

\theta < \frac{\pi{2}) \\ \vec{v} \cdot \vec{w} < 0 & \mbox({if

and only if } & \theta \mbox{ is obtuse } (\frac{\pi{2} < \theta

\leq 0) \\ \vec{v} \cdot \vec{w} = 0 & \mbox{if and only if } &

\theta = \frac{\pi{{2} \end{array} \end{equation*}" title="Rendered

by QuickLaTeX.com">

In this last case, the (nonzero) vectors are perpendicular. The
following terminology is used in linear algebra:

Definition 4.5 Orthogonal Vectors in
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Two vectors ¥/ and 10 are said to be
\textbfforthogonal}\index{orthogonal
vectors}\index{vectors!orthogonal vectors} if v = () or
w = () or the angle between them is %

<L
I
=7
]

2
~
STl
I
=1

Since U - = 0 if either
following theorem:

, we have the

Theorem 4.2.3

Two vectors U and 1] are orthogonal if and only if
— —
v-w = 0.

Example 4.2.4

Show that the points P(3, —1, 1), Q(4, 1, 4), and
R(ﬁ, 0, 4) are the vertices of a right triangle.

Solution:
The vectors along the sides of the triangle are
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1 3 2

— —

PQ=|2|,PR=|1],andQR=| —1
3 3 0

Evidently PQ) - QR =2 —240 =0, so PQ) and QR
are orthogonal vectors. This means sides P() and QR are
perpendicular—that is, the angle at Q is a right angle.

Projections
Planes

The Cross Product

4.3 More on the Cross Product
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5. Vector Space [latex size

="40"[\machbb{R}"n[/latex]

5.1 Subspaces and Spanning

5.2 Independence and Dimension
5.3 Orthogonality

5.4 Rank of a Matrix

5.5 Similarity and Diagonalization
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