Please use this identifier to cite or link to this item: https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/2435
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDionne, Benoit-
dc.date.accessioned2025-11-06T20:47:49Z-
dc.date.available2025-11-06T20:47:49Z-
dc.date.issued2025-
dc.identifier383fb587-8319-46fe-a013-49cfcac4467e-
dc.identifier.urihttps://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/2435-
dc.description.tableofcontentsI. Integration on Manifolden_US
dc.description.tableofcontentsII. Differential Geometryen_US
dc.language.isoengen_US
dc.publisherUniversity of Ottawaen_US
dc.relation.isformatofhttp://hdl.handle.net/10393/50918en_US
dc.relation.haspartResources for Educators: Lecture Notes | https://github.com/BenoitDionne/Analysis_on_Manifoldsen_US
dc.rightsCC BY-NC-SA | https://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.subjectGeometryen_US
dc.subjectTopologyen_US
dc.subjectCohomologyen_US
dc.titleAnalysis on manifoldsen_US
dc.typeBooken_US
dcterms.accessRightsOpen Accessen_US
dcterms.educationLevelUniversity - Undergraduateen_US
dcterms.educationLevelUniversity - Graduate & Post-Graduateen_US
dc.identifier.slughttps://openlibrary.ecampusontario.ca/catalogue/item/?id=383fb587-8319-46fe-a013-49cfcac4467e-
ecO-OER.AdoptedNoen_US
ecO-OER.AncillaryMaterialYesen_US
ecO-OER.InstitutionalAffiliationUniversity of Ottawaen_US
ecO-OER.ISNI0000 0001 2182 2255en_US
ecO-OER.ReviewedNoen_US
ecO-OER.AccessibilityStatementNoen_US
lrmi.learningResourceTypeLearning Resourceen_US
lrmi.learningResourceTypeLearning Resource - Textbooken_US
ecO-OER.POD.compatibleYesen_US
dc.description.abstractThe document is aimed at students planning to pursue their studies at the graduate level. The first part of the document is a rigorous introduction to integration, in particular to integration on manifolds. It includes a chapter on manifolds and differential forms. A chapter is devoted to applications and the link between modern differential geometry and classical vector calculus. The second part of the document is an introduction to modern differential geometry. There is a chapter on De Rham cohomology and a chapter on homology and cohomology, both simplicial and singular, with a proof of the relation between the simplicial and singular cohomology and de Rham cohomology. The last chapter is on Riemannian geometry and covers Cartan structural equations and geodesics, including a proof of Gauss-Bonnet theorem. The document ends with an introduction to non-euclidean geometries.en_US
dc.subject.otherSciences - Mathematics & Statisticsen_US
ecO-OER.VLS.CategoryNoneen_US
ecO-OER.VLSNoen_US
ecO-OER.CVLPNoen_US
ecO-OER.ItemTypeLearning Resourceen_US
ecO-OER.ItemTypeTextbooken_US
ecO-OER.MediaFormatPDFen_US
ecO-OER.MediaFormatOtheren_US
ecO-OER.VLS.cvlpSupportedNoen_US
Appears in Collections:Ontario OER Collection

Files in This Item:
File Description SizeFormat 
Benoit_Dionne_Analysis_on_Manifolds.pdf%%dl%% Digital PDF6.59 MBPDFView/Open
analysisonmanifolds.png%%c%%409.04 kBimage/pngView/Open
Analysis_on_Manifolds-master.zip%%anc%% Resources for Educators: Lecture Notes (Mixed Files)3.04 MBzipView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.