DSpace Repository

Winning the battle for secure ML

Show simple item record

dc.contributor.author Maaroof, Bestan
dc.date.accessioned 2025-11-18T21:12:13Z
dc.date.available 2025-11-18T21:12:13Z
dc.date.issued 2025
dc.identifier c579cdd2-a99e-4fa2-b67a-2e4a78914428
dc.identifier.uri https://openlibrary-repo.ecampusontario.ca/jspui/handle/123456789/2446
dc.description.tableofcontents Chapter 1: Introduction to Machine Learning Security and Challenges en_US
dc.description.tableofcontents Chapter 2: Threat Modelling en_US
dc.description.tableofcontents Chapter 3: Evasion Attack (Adversarial Examples) en_US
dc.description.tableofcontents Chapter 4: Poisoning Attack and Mitigations en_US
dc.description.tableofcontents Chapter 5: Backdoor Attacks en_US
dc.description.tableofcontents Chapter 6: Privacy Attack en_US
dc.language.iso eng en_US
dc.publisher Fanshawe College en_US
dc.relation.isformatof https://ecampusontario.pressbooks.pub/securemachinelearning/ en_US
dc.rights CC BY-NC-SA | https://creativecommons.org/licenses/by-nc-sa/4.0/ en_US
dc.title Winning the battle for secure ML en_US
dc.type Book en_US
dcterms.accessRights Open Access en_US
dcterms.educationLevel College en_US
dcterms.educationLevel University - Undergraduate en_US
dc.identifier.slug https://openlibrary.ecampusontario.ca/catalogue/item/?id=c579cdd2-a99e-4fa2-b67a-2e4a78914428
ecO-OER.Adopted No en_US
ecO-OER.AncillaryMaterial No en_US
ecO-OER.InstitutionalAffiliation Fanshawe College en_US
ecO-OER.ISNI 0000 0001 0487 5961 en_US
ecO-OER.Reviewed No en_US
ecO-OER.AccessibilityStatement Yes en_US
ecO-OER.AccessibilityURI https://ecampusontario.pressbooks.pub/securemachinelearning/front-matter/about-this-book/
ecO-OER.CourseTitle Fanshawe College, Machine Learning Security (INFO-6149) en_US
lrmi.learningResourceType Learning Resource - Textbook en_US
ecO-OER.POD.compatible No en_US
dc.description.abstract This book provides a comprehensive yet methodical understanding of securing today's AI systems. It covers vulnerabilities throughout the complete machine learning life cycle from data collection, to training, and deployment and inference, as well as presents practical methods for mitigating the most harmful threats. By integrating theoretical foundations, practical case studies, and recent research, the book covers essential topics including threat modelling, adversarial attacks, poisoning attacks, and privacy breaches. en_US
dc.subject.other Technology en_US
ecO-OER.ItemType Textbook en_US
ecO-OER.ItemType Learning Resource en_US
ecO-OER.ItemType Instructional Object en_US
ecO-OER.MediaFormat EPUB en_US
ecO-OER.MediaFormat PDF en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account